SMAI-JCM
SMAI JOURNAL OF
COMPUTATIONAL MATHEMATICS

Parallel reverse time integration and
reduced order models

B1JAN MOHAMMADI
Volume 1 (2015), p. 5-28.
<http://smai-jcm.cedram.org/item?id=SMAI-JCM_2015__1__5_0>

© Société de Mathématiques Appliquées et Industrielles, 2015
Certains droits réservés.

cedram

Article mis en ligne dans le cadre du
Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

creative

SAY

http://smai-jcm.cedram.org/item?id=SMAI-JCM_2015__1__5_0
http://www.cedram.org/
http://www.cedram.org/

Y

/

SMAI Journal of Computational Mathematics
Vol. 1, 5-28 (2015)

Parallel reverse time integration and reduced order models

BIJAN MOHAMMADI !

! Montpellier University, Mathematics, CC51, 34095 Montpellier, France
FE-mail address: bijan.mohammadi@umontpellier.fr.

Abstract. We discuss complexity issues in time dependent adjoint evaluation. We address the question of
storage complexity and redundant calculation of intermediate states in adjoint calculations for time dependent
flows. Parallel in time solutions are introduced in reverse time integration together with reduced order
modelling for the recovery of intermediate forward states between checkpoints.

The approach is illustrated on an identification problem from partial macroscopic variables fields obser-
vations and also in the context of shape sensitivity evaluation in fluids for the pressure and viscous drag
coefficients.

Math. classification. 65Y00, 65Y05, 68W10, 35Q93, 90C52.

Keywords. LBM, discrete adjoint, meta model, uncertainty, contour identification, shape optimization,
parallel time reversal.

1. Introduction

Large dimensional sensitivity analysis is of utmost importance in many applications among which
optimization and design, of shapes for instance, or identification of parameters in models or contours
in an image or in a flow. The interest for sensitivity analysis also grows with the increasing needs
for uncertainty quantification in simulations and the curse of dimensionality with the limitations of
statistical tools when control spaces are of large dimension.

For instance, the first order Sobol indices [34, 35| for a functional J(X), X = (X1,..,X,) e I CR"
of random inputs X;—1 _ , can be estimated if the sensitivities of the functional with respect to the
entries are known and are bounded. More precisely, one can prove that [35]:

Var(E(J(X)|X;)) c 2T \?
Var(J) = Var(J) /H (aX) dzi,

where C gives an information on II. In particular, in cases where X; are Gaussian variables X; =
N(pi,0?) we have C = o2/Var(J). Hence, when available, gradients can be useful beyond their
traditional applications and also address quantitative robustness issues both in simulation and design.
The interest for the gradients grows even more if these are accessible through an adjoint formulation
with a cost of evaluation independent of n.

Adjoint techniques have been widely used with fluids, and in particular for aeronautics applications,
with first applications back to the 70’s [31, 32]. They are now the natural way to obtain the sensitivity
of a functional in high dimensional control spaces. One difficulty is that developing an adjoint solver
means extra development effort and also difficulty to maintain the adjoint code up to date with respect
to the forward solver.

Automatic differentiation (AD) [12] tools have been of some help reducing the programming effort.
But they appear often inefficient without some intervention and monitoring by the programmer. In
previous works we showed how to use discrete adjoint constructions for large dimensional sensitivity
analysis in robust shape design through adequate multi-point optimization [22, 24, 23] avoiding any
sampling of a large dimensional control space.

s =

mailto:bijan.mohammadi@umontpellier.fr

B. MOHAMMADI

But most of the previous works with the adjoint, in aeronautics for instance, is for steady flow
configurations and the question of the complexity of backward sensitivity analysis for time dependent
problems still remains an issue. This question concerns, for instance, the storage of forward states
necessary during backward integration and the difficulty with redundant calculations in case of partial
storage.

2. Summary of the work

The paper aims at discussing the complexity issues in time dependent adjoint calculations with em-
phasis on the identification of hidden parallelism. It proposes different possible strategies to break this
complexity introducing a priori information on the physics of the problem and the use of meta-models
when available.

The ingredients we propose are generic. We illustrate them on a model problem and for the flow solu-
tion by a Lattice Boltzmann Method (LBM). LBM is a good example as both the steady and unsteady
situations follow a same calculation procedures and it is challenging as the volume of data in time is
much higher than with classical incompressible Navier-Stokes fluid solvers (i.e. per time step, in 2D
a minimum of 9 variables per node with the D2Q9 lattice instead of 3 with a Navier-Stokes solver
and in 3D a minimum of 19 with the D3Q19 lattice instead of 4). Also, LBM consists of successive
applications of two linear and nonlinear operators which need each specific treatment with the adjoint.
A major interest here is to see how to reduce the complexity of these sensitivity evaluations using re-
duced order modelling and functional reformulation. These are specially interesting in situations where
the simulation chain cannot be fully differentiated, because of being partly available as a black-box
solver for instance.

We discuss two situations. First we show that drastic simplification of the contributing terms to the
sensitivity can be achieved for some specific functionals through the incomplete sensitivity concept
[25]. Then, we see how the introduction of Bayesian-like a priori assumption on the behavior of a
variable permits to improve the prediction of the sensitivities.

The paper illustrates its ingredients through two applications. First, the pertinence of the different
strategies for the exact and approximate adjoints is analyzed on a problem of contours identification
from partial macroscopic field observation where a level set parameterization is used to account for the
presence of obstacles in the field. Then, incomplete sensitivity theory is used to reduce the complexity
of adjoint evaluations for a shape sensitivity analysis problem for cost functions based on the pressure
and viscous contributions to the aerodynamic drag coefficient.

3. Flow solver

As we said, the ingredients of the paper can be used with any time integration procedure. We choose
to illustrate the approach with a Lattice Boltzmann Method for the solution of low speed flows and
described in appendix A. We emphasis, in particular, on the Lattice Boltzmann Method chosen, the
way solid walls are accounted for through a regularized level set function and the implementation of
the boundary conditions for and finally the steps which are taken at each time iteration by the solver.
This latter is important to our discussion on adjoint formulation.

3.1. Backward linearization of a flow solver

Let us consider the Navier-Stokes equations for incompressible fluids with initial «(0,z) = up(x) and
appropriate boundary conditions describing the velocity vector field w and pressure p for (t,z) €

PARALLEL REVERSE TIME INTEGRATION

[0,T] x €

u+ (u-Vu—vAu+Vp=0, V-u=0. (3.1)
And its adjoint equations (see [31, 32, 25] for instance for details) for the solution of Lagrange multi-
pliers @ and p having the same structure than u and p respectively, with final value @(7,z) = 0 and
appropriate boundary conditions:

— iy — (Va)'u+ (Vu)i —vAL - Vp=—J,, —V-i=—J. (3.2)

The equations involve the partial derivatives of a functional J. In the sequel, we see several examples
of J.

Hence, backward linearization of time dependent nonlinear state equations, such as this Navier-Stokes
equations, requires the storage of the intermediate states (here u(t,x),0 <t <T).

In the Navier-Stokes equations, this is due to the presence of the nonlinear advection operator (u-V)u
and the right-hand sides, the other operators being linear (i.e. Vp, vAu, V - u).

It is fair to think that switching to a Lattice Boltzmann formulation should not modify this com-
plexity. On the other hand, the LBM would have an enormous advantage over the classical PDE
based formulation in sensitivity analysis. Considering the steps of our Lattice Boltzmann formulation
in appendix A, one sees that unlike in the PDE based formulation where the nonlinearity is in the
transport operator, the nonlinearity there is in the collision step which is at the origin of the diffusion
mechanism in the Navier-Stokes equations. We develop this analysis in the next section.

4. Sensitivity analysis

The time dependent nonlinear equations solver we use to illustrate our ingredients (based on a Lattice
Boltzmann Method presented in appendix A) appears as part of the following dependency chain in an
optimization or identification problem:

¢ = {f(¥,1),t € [0,T]} = J(¢, U(E(y, 1 € [0,T]))), (4.1)
where v is the independent variable (here the shape parameterization). U = (p,u)’ gathers the
macroscopic density and velocity distributions, f = (fo, .., f;)! (for a DdQq stencil) and J is a scalar
functional. To be accurate, one should have also considered the independent physical parameters
(1, wi, ¢, etc.). But, this would have brought unnecessary complications to the notations.

As presented in sections 11.1 and 11.4, f can be formally seen as solution of a time dependent
equation involving a first order time derivative:

of + F(f,U(f),vy) =0, £(0) = fH(v), (4.2)

where (1)) is the initial density distribution on the lattice. Now consider a functional involving an
integral over time and the macroscopic variables. Steady situations or when the functional is defined
at a given time are particular cases of this:

(0,T)x€
where €) denotes the lattice. There is usually no direct dependency between j and f as the functionals
usually involve macroscopic quantities.

4.1. Adjoint formulation

Let us formally describe the adjoint method in the context of the LBM time dependent equations.
Linearizing J with respect to v one has:

v J:/ 4 UL,
¥ (O,T)XQ(Jd) Ju Vs 11;)

B. MOHAMMADI

In this expression U, is easy to get as the relation (11.2) between f and U is algebraic. Also, j, and
Ju are usually easy to analytically derive. f, on the other hand, is costly to get as it requires the
linearization of the LBM solver.

The linearized LBM solver for f, can be formally seen as:

() + F, + (F, U, + F)f, =0, ,(0) = f(4)). (4.4)

It permits to write for all function ¢ (where ¢ has the same structure than f):

0:/(0T)Xﬂ(at()+ F, +(FyU, + FE,) 6.

We introduce the adjoint LBM operator F*(f, U(f),¢) = (F, U, + F;)* which corresponds to the
adjoint of one step of the LBM described in section 11.4. This operator will be defined using automatic
differentiation in section 5. Beyond what presented here, the LBM operator might be quite complex,
including other ingredients to account for extra physics or numerical accuracy (turbulence modelling,
wall functions, higher order scheme, etc). It is therefore interesting to handle the definition of F* in
an automatic manner and, in particular, separate it from the mentioned intermediate states storage
complexity.
Integrating by parts and using F* we have:

_ B . T
o_/(oj)m(0+ F d>)fw+/ﬂ[¢fw]o - (07T)XQ¢Fw(f,U(f),1/;),

Introducing the linear backward adjoint problem, we have:

8t¢ +F* (f7 U(f)7 1/})(;5 = jUUf‘ (f)v ¢(T) =0. (45)

Which permits to eventually have:

oUef, = [60 V) (¥ oF, (U, 1), (4.6)
Juya 0 = 20RO~ [

with ¢ solution of the backward adjoint equation (4.5) for the chosen final condition.

If there is no direct dependency between the initial condition f(0) and v the first term in the right-
hand-side vanishes. In our implementation of the LBM, the initial density distribution is uniform and
the presence of the obstacles are accounted for at step 2 of the algorithm given in section 11.4 and
then at each of the time iterations. This is actually where the direct dependency in % is in F' and
linearizing (11.5) provides F,.

As described in section 11.3 we use either periodic, slip or no-slip boundary conditions for the
density f. These give the corresponding boundary conditions for the adjoint variable ¢.

Suppose N is the lattice size in d dimensions in space, then calculation and memory complexities
can be estimated. Variable f in (4.5) is of size ¢N??. Calculating f, means therefore solving N 4 times
equation (4.2). We recover the expected complexity of the direct mode. On the other hand, as f, ¢ is
of dimension ¢N? but for its calculation we need states f in the reverse order because of the backward
integration in time in (4.5).

One possibility to avoid this difficulty is to consider an approximation of the adjoint by considering
only one time step in the direct LBM solution [30]. Previous tentative with automatic differentiation
of LBM codes [16, 36] also show that brute force approach cannot be successful because of this storage
complexity issue even with the introduction of a check-pointing technique to optimize the balance
between intermediate storage and state recalculation [12, 14, 13, 11]. We discuss these options in the
next section.

PARALLEL REVERSE TIME INTEGRATION

5. Discrete adjoint by Automatic Differentiation

The previous analysis has been implemented by automatic differentiation applied to our Lattice Boltz-
mann solver. In this section, we describe how the Tapenade AD tool [14] treats this problem. Appendix
B gives a short description of automatic differentiation in direct and reverse modes.

Our LBM program can be seen taking the following steps. The program linking the independent
variables to the functional J is called the forward code.

Forward code:

f = given, J =0,

do iter = 1,.., itery,q, (time iterations)

fi = l1(f) (collision, ny relations, I : RV]Rqu)

fy = Io(fy) (transport and boundary conditions, no relations, lo : RV ¢ 5 RN d)

f = f5 this is a linear operation and no storage is necessary.

U = I3(f) (macroscopic variables, ng relations, I3 : R*Y * 5 R(

J =J+14(U) (cost function, ng relations, Iy : RUTDN? _, R)

done

The number of substitutions (=’ relationship) roughly describes the size of a program. What is
inside the loop is the kernel of our LBM code and we will discuss how to separate its linearization
from the rest of the program.

The adjoint code method [14, 25] (see appendix B for an example) considers a given computer
program in the reverse order of execution and produces a new program where a given line y = y+ g(z)
of the initial program gives p, = py + ¢'py. A new complementary variable is introduced at each
substitution and the intermediate forward states have been stored before each substitution for reverse
integration (except if the program is identified to be linear with respect to its inputs).

A given complementary variable p, has the same structure than z. Hence, below p¢, pg, and pg, are

d+1)Nd)

in R4V d, pu in REHHN * and py is scalar. All the complementary variables receive a zero initialization,
except the last one which is set to one which constitutes the initialization of the first variable in the
reverse integration.

After executing the direct LBM code above and storage of all intermediate variables, a sketch of
the reverse mode code is as follows:

Reverse code:

Py = 1,pr =P, = P, =0, pu =0,

do iter = iter,qy, .., 1 (reverse time iterations)

pu = pu + I} (U(iter))py, with I} : R — RV’

pr = 15 (£(iter))py, with I§ : RETDNT _, RaN*

Ps, = Pf

pr, = 15 (f1(iter))pg, with 15 : RN _y RaN?

pr = I}* (f(iter))pg, with 17" : RN _ RaN?

done

This is how the tapenade AD tool works and generates the discrete adjoint code.

6. Storage complexity of the AD reverse code
The total memory necessary for storage in our situation can be estimated as

iter,naz (N4 (n1 + n2) + (d + 1)Néng).

B. MOHAMMADI

One can reduce the storage complexity in such a situation accepting redundant calculations. Check-
pointing is available in tapenade [11, 13]. One defines optimal storage moments and recompute missing
variables in between. This reduces the storage complexity to logy (iter,naz) (N4 (n1 4ng)+(d+1)Nn3)
which is still very demanding. This is the best complexity we can have if applying the AD tool directly
to the whole code without any user intervention.

6.1. User intervention

We would like to go one step further requiring some user intervention. After the previous differentiation
giving the reverse code with the mentioned storage complexity, we apply the automatic differentiation
tool individually to each operator l;,i = 1,2,3,4 and generate I/*. The user gathers the operators [;
and [J* and generates new operators we call [; U l/*. The user then assembles these pieces to build
the reverse code with the aim of not storing more than one intermediate density by time iteration
in the forward run. Applied together with the checkpointing strategy the total storage requirement
can be reduced to logy(itery,q.)N ¢ This is the best one could expect in term of storage complexity
and it is obviously still very challenging. In addition, this is achieved introducing a huge amount of
redundant calculations. Figure 6.1 shows a sketch of this strategy. One of our aims here is to reduce
or remove these redundant calculations and also, if possible, reduce even more the storage complexity.
We will see that these can be achieved in specific physical situations and also introducing dynamic
meta-models based on checkpoint states.

N
Intermediate states not stored
AN Forward
........ / \ | seceeeee l

= “*; 4 f(iter) by redundant
forward calculations or by
meta-model based state
reconstruction

Redundant Forward

Backward

< |
FIGURE 6.1. Sketch of our forward/redundant fegward/backward céffbination, or
when the redundant forward is replaced by a meta-model based reconstruction of non
available intermediate states using checkpoint states.

6.2. Steady flows

A major complexity reduction can be achieved when looking for steady flows as limit solutions in a
time marching procedure. Again, our LBM solver can be seen as discrete form of (4.2):

£l = £ P(F7,U(F7),9), O = given, (6.1)

and steady solution is when ||f"*! —£"|| — 0. We denote by £ this solution. The reverse code can be
seen as discrete form of equation (4.5) and taking advantage of the fact that we look for the sensitivity

10

PARALLEL REVERSE TIME INTEGRATION

for the stationary solution, we replace f(¢) in this equation by f:
O+ F (2, U(f*),¥)¢ = j, U, (f*), &(T)=0. (6.2)

This can be achieved in our reverse code in section 5 by replacing f(iter) by f(iter,,q,) which corre-
sponds to the steady solution by the forward code and iter,,q; is the number of iterations which were
necessary to reach it. This, however, represents many manipulations of the AD generated codes by the
user (which are not easy to read in general). A simpler way to proceed is to differentiate one iteration
of the forward code and then change the number of iterations in the backward loop to iter;,,, and
initiate the calculation with the stationary solution, previously computed. These practical issues aside
and the final (steady) state being obviously available, there is no extra storage requirement [4, 33, 25].

6.3. Meta-models to avoid redundant calculations

Up to now we did not introduce any major approximation, even when addressing the steady state
situation. At this point we propose to introduce dynamic meta-models for the density to avoid the
redundant calculations to recover unavailable states between two checkpoints. Of course, many reduced
order modelling approaches exist and the choice of a particular meta-model heavily depends on the
domain of application and the nature of the equations. The checkpointing theory tells how to choose
nep checkpoint locations in order to minimize the redundant calculations [11]. As with our meta-models
we will not have any redundant calculations, we equidistribute our n., checkpoints every iter,,q,/n¢p
iterations. Let us present the idea with data interpolation which is the most simple approach to build a
reduced-order model based on a polynomial parametric approximation of a function known over a set
of points. For instance, using a linear combination of f at checkpoints T; we have for 1 <t < iter;,qz:

Nep

f(t,2) =Y NOF(Ty,2), 0<X() <1, (6.3)
j=1

where \;(t) are, for instance, barycentric functions such that

Nep

Z)\j(t) = 1, and)\j(Tz) = 52]
j=1

Checkpoints (only two states stored) and
intermediate states constructed by meta-models

for partial backward integration

0 / J \ Forwartj

<
<

+ < |

FIGURE 6a@waldartial forward /backwardiwecumulation with only twaeeheckpoint states
stored and dynamically erased.

6.4. Partial forward/backward accumulation

Another major simplification one might be tempted with is to consider the backward integration only
on a partial forward time window. This is illustrated in figure 6.2. To have a more detailed description

11

B. MOHAMMADI

of this choice consider functional (4.3) and, for the sake of simplicity, n + 1 uniformly distributed
checkpoints at t = T;,7 = 0, ..,n. The functional can be rewritten as:

J:é/i/ﬁjw,w:—ng?‘l/ij,U), (6.4)

with Ty = 0 and 7;,, = T. These representations are interesting as they permit to localize in time
the derivation with respect to 1. Reconsidering the analysis presented in section 4.1 for each interval
|T;—1, T;[we have:

izn:l/(Til,T-)ijUUffw = Zf:l (/Q &(Ti-1)E),(Ti-1) _/(

T;—1,T;)xQ

oF, (U, ¢)> : (6.5)

where f{b(ﬂ,l) = 0 as there is obviously no direct dependency between 1 and f(7;_1). The adjoint
variable ¢ over this time interval is solution of:

at¢+F*(va(f)v¢)¢ :jUUf(f)’ ¢(Tz) = ¢+(Tz)7 (6'6)

where ¢T(T;) indicates the solution at time ¢ = T; of the adjoint equation over the interval (T}, T;41)
with ¢ (T},) = 0.

Partial forward/backward accumulation can be defined by simply setting ¢ (7;) = 0 for all i. And
the introduction of a meta-model for f can be seen as solving:

0ip + F*(£,UF), 0)p = j, U, (F), o(T;) = ¢*(Th), (6.7)
where f(t €]T;_1,T;[) is a linear interpolation between checkpoints f(7;_1) and f(7}).

6.5. Parallel fixed point partial backward with meta-forward

We introduced two ingredients to address two difficulties in adjoint calculation for time dependent situ-
ations: forward states storage and redundant calculations in case of partial storage. And, we presented
two alternatives to address these issues: meta-model construction for intermediate state recovery and
partial forward /backward accumulation. Of course, each of them introduces some approximations and
therefore errors. Here we would like to reduce some of these uncertainties taking advantage of the
natural parallelism present in the two ingredients as illustrated in figure 6.3.

Y Checkpoints (two stored states) and intermediate Cell (i-1,i)
ell (i-1,i
states constructed by a meta-model
I/ l \ Fixed point iteration
oooooooooooooooo Partial mEta- Meta-forward: N para"el ce"S
forward/backward 2 meta-model
- accumulation based forward
Adjm'nt t'o L L S — Adjoint from
cell (i-2,i-1) = cell (i,i+1)
i-1 i :

FIGURE 6.3. Parallel partial meta-forward/backward accumulations for independent
cells (i — 1,1),i=1,..,n.

12

PARALLEL REVERSE TIME INTEGRATION

Figure 6.3 indicates how a fixed point iteration can be created over independent problems for cells
(T;-1,T;),i = 1,..,n where on each cell one solves a partial meta-forward/backward accumulation
problem using the two ingredients presented above:

Ot + F (£, U®E),) = 5, U (F), ow(Th) = o (T), (6.8)

where gi);ll(Ti) indicates the adjoint computed at the previous fixed point iteration by the sub-problem
solved on cell (T}, T;41). The fixed point iterations aim at removing the error in the partial accumulation
which can be measured at its k*" iteration by:
n—1
er = 3 l6x(T3) — S (T (6.9)
i=1
At each iteration of the fixed point, a cell problem on (7;_1,7;) is independent once it receives the
adjoint qﬁg(TZ) accumulated over cell (7;,T;11). Eventually, it then has to communicate to the cell
(T;—2,T;—1) his contribution at t = T;_; denoted by gb;(Ti,l). Of course, the approximation due to
the introduction of the meta-model for intermediate states recovery will still be present.

6.5.1. Links with the multiple shooting and the parareal algorithms

This algorithm is similar in spirit to the multiple shooting algorithm [3] and to the parareal method
[19, 8]. In these methods, introduced independently by the authors, the solution of a Cauchy problem
is replaced by those of parallel coupled forward initial value problems on successive sub-intervals as
in our case. The motivations for the introduction of the methods have been different and related to
parallelization in time for the latter and error and stability control in solution of differential algebraic
equations for the former.

With these algorithms, solution of problem (4.2) on (0,7T") = Uj=1 »(Ti—1,T;) is replaced by iterations
(denoted by k) of n parallel sub-problems:

6tfk + F(fk’?U(fk)ad}) = 07 fk(T‘lfl) = f];_l(nfl)a on cell (nflan)a (610)

where f,_ | (T;_1) comes from the solution of the sub-problem for cell (T;_o,Tj—1) if i > 1 as f,(Tp) = o
is given for all k. An error indicator, similar to (6.9) measures the convergence of the forward parallel
iterations:

n—1
er = > |IE(T) — f_1(T)]I. (6.11)
=1

The complexity of these algorithms in term of number of iterations necessary to reduce sufficiently
ey and g, is difficult to predict in distributed situations involving the solution of partial differential
equations. With ordinary differential equations this complexity is bounded by n as we will see in section
7. This complexity can be reduced by using a reduced order model acting as either a preconditioner or
in a sequential predictor step as in the parareal method [19, 8]. An interest of such splitting approaches
is the possibility of using different numerical methods on the different cells, with different accuracy
for instance.

7. A model problem
Let us illustrate the previous alternatives on a simple model:
vy = sin((v? 4+ 1)t), v(0) =wvp =0, J(vg) = /0100 v (t)dt.
Of course, in this case a direct linearization is possible because the control parameter is one dimen-

sional. But, we would like to evaluate d.J/dvy with an adjoint formulation as in section 4.1. Denoting

13

B. MOHAMMADI

the adjoint variable by v* and here F being sin((v? + 1)t), a similar analysis than above gives for
expression (4.6):

dJ 100 i}) 100 .
o= [, = v) - [0 R, =),
as v(vo) = 1 and F, = 0. To remain close to our LBM problem, the equation is solved with a
backward Euler scheme with a time step of 0.1 s. Figure 7.1 shows dJ/dvy evaluated backward with
a full adjoint (100 forward states stored) and using 5, 10 and 20 uniform checkpoints and between a
linear interpolation as meta-model. We see that increasing the number of checkpoints improves the
accuracy of the gradient as reducing the size of the time subdomain improves the accuracy of the
meta-model. This approximation permits therefore to provide the adjoint with a prescribed memory
requirement for the checkpoints. The necessary memory growths with the requested accuracy for the
gradient. The necessary precision usually increases during an optimization with a descent method.
Figure 7.2 shows the impact of partial reverse accumulation presented in figure 6.2. We saw that with
this algorithm only two checkpoints are stored and dynamically reallocated and again a meta-model
is used for intermediate states reconstructions. Here the best result is with fewer checkpoints which
is reasonable as the partial reverse integration covers a larger portion of the whole integration time.
Without a meta-model, fewer checkpoints would have implied more redundant calculations.

To go one step further and address this loss of accuracy, figure 7.3 shows the application of the
parallel fixed point iterations applied to the partial backward accumulation with exact and meta-
forward states described in 6.4. One sees that with 5 checkpoints and exact forward states the gradient
is fully recovered after 3 iterations of the fixed point algorithm. The error indicator &, given by (6.9)
is shown during fixed point iterations for 5, 10 and 20 checkpoints and it shows that the number of
the fixed point iterations necessary to recover the gradient increases linearly with the number of the
checkpoints and is bounded by the this number.

More generally, for the solution of backward ordinary differential equations, a worse case analysis
gives a maximum of n iterations of the algorithm to fully remove the error introduced by the partial
backward accumulation approximation. Indeed, n iterations will permit to an information at T;, =T
to reach Ty = 0 as in a sequential calculation. One saw from figure 7.3 that the number of iterations
is often much less than n. This analysis cannot be simply extended to distributed systems involving
partial differential equations as with the LBM method as we will see in section 9.

The error introduced in the gradient when using a meta-model for the intermediate states cannot
be removed with this fixed point iterations. It can, however, be reduced increasing the number of
checkpoints. One sees that a compromise can be found with 20 checkpoints between accuracy, absence
of redundant calculations and checkpoints storage. One also takes advantage of the fact that the
calculations on the 20 cells between two checkpoints are fully parallel.

8. Low complexity models and specific functionals

Our aim in this section is to see how to reduce the complexity of these sensitivity evaluations using
reduced order modelling and functional reformulation. Indeed, we have observed that some function-
als are more suitable for sensitivity evaluation in term of calculation complexity [25]. One situation
where this observation receives even more importance is when the functional enters in the domain
of application of the concept of incomplete sensitivities. Beyond the computational complexity issue,
the necessity for such alternatives also comes from the fact that it is not always possible to proceed
with the linearization of the direct simulation chain used for the definition of J. Let us reconsider the
simulation chain (4.1) where the variables have been split in two categories following their nature in
term of computational complexity. This is a very common situation.

14

PARALLEL REVERSE TIME INTEGRATION

20 Backward adjoint from t=10
;: — Impact of the intermediate with v*(10)=0, all 100 states
15\ \\\\ states reconstructions on stored then with 5, 10 and 1
\ dJ/dvo = v*(0) 20 checkpoints and
10 t Y intermediate states 4
\ reconstruction.
5
0oF
5 = 1
-10
0

2 4 .. 6 8 10
FIGURE 7.1. Model problem 7: full adjoint Pérsus 5, 10 and 20 uniform checkpoints
with the intermediate states reconstructed from these by a linear interpolation.

20

15 -

10 r

-10
(0]

t(s)
FIGURE 7.2. Same than figure 7.1 but with partial reverse accumulation and dynamic

reallocation of the checkpoints. The same intermediate states reconstruction has been
applied.

¢ = q() = {£(q(¥), 1),t € [0,T]} = J(¥,q(¢), U(E(q(¥),t € [0,T1))), (8.1)

where ¢ is cheap to compute and represents here geometrical quantities. The other dependent variables
f and U are expensive to compute as solution of the LBM solver. The gradient of J with respect to
P is:

V,J=J,+J, +J,Uf,)q,, (8.2)
where J,J, and J are easy to access and are usually provided by the user as external modules
in an industrial simulation platform. f; and ¢, are, on the other hand, difficult to access. Also, the
major part of the cost of this evaluation is due to U,f, g, and its evaluation with an adjoint method
has been discussed throughout the paper. Today’s industrial simulation platforms are more and more
based on black-boxes and commercial packages not enabling the user for a direct access to the source
of the codes. Linearizing the simulation codes by automatic differentiation is therefore off the table.
In the same way, it is quite inconceivable to develop in house adjoint solvers when the cost function

15

B. MOHAMMADI

16 20

14 & 3 iterations of fixed point with & 3 iterations of fixed point with

12 exact forward states between 1 ‘233 intermediate meta-forward

0 5 checkpoints. The gradient is 10 .'-»; states between 5 checkpoints.
fully recovered.

0 2 4 t(s) 8 0 %
100 100
10 Error in the adjoint for 5, 10 Error in the adjoint for 5, 10
s and 20 checkpoints with exact and 20 checkpoints with meta-
forward states. 10 forward states.

0.1

0.01
0.001
0.0001

20 checkpoints
1e-005 o1

1e-006

1e-007 0.01
2 4 6 8 10 12 14 2 4 6 8 10 12 14

Fixed paint iterations . . .Fixedpoint,iteration . .
FIGURE 7.3. Parallel fixed point iterations of partial backward accumulation with

meta-forward states described in 6.4. Upper left: with 5 checkpoints and exact forward
states the gradient is fully recovered after 3 iterations of the fixed point algorithm.
Upper right: the error in the gradient is due to the forward states between checkpoints
based on a meta-model. Lower-left: error 5, by (6.9) during fixed point iterations for 5,
10 and 20 checkpoints. Lower-right: same but with meta-forward states. One sees that a
compromise can be found with 20 checkpoints between accuracy, absence of redundant
calculations and checkpoints storage.

calculation relies on commercial packages. The only realistic gradient calculation approach with black-
boxes is with finite difference approximation which has a cost proportional to the size of the control
parameter space. This approach therefore is not an option either.

Suppose we have § and U two reduced order models for ¢ and U with relations ®G(1)) = ¢(¢)) and
WU(G(v)) = U(q(e)). ® and U are transfer functions which will be frozen during the linearization.
One aims through U to remove the dependency with respect to f, using macroscopic fluid models for
instance. We consider the following approximate simulation chain where black-box and high complexity

terms have been approximated:
J v = a(®) = U@)) - J (v, 25(%), ¥O(G(¥))) - (83)

We need both ¢ and U as ¢ is now often part of a black-box package as when using Computer Aided
Design (CAD) tools.
Linearizing (8.3) gives:
V,J=J,+(J, + J, (YU, (¥'U)))®q,, (8.4)

where ﬁq (U~1U) indicates the linearization of the reduced order model around the high-fidelity

solution U restricted to the domain of definition of U.
If this approach is effective, one will not need anymore to store or reconstruct f or even U during
forward iterations.

16

PARALLEL REVERSE TIME INTEGRATION

One interesting example of approximate modelling concerns Hadamard incomplete sensitivity for-
mulation. This is an example of simplification in the continuous level. However, it only concerns specific
functionals [25, 27] where:

e the cost function J and control ¢ have a same domain of definition (e.g. a shape and an
aerodynamic coefficient defined over it),

e J is a product of geometry by state functions J(v) = G(v,q(¢)) S(U(q(¥))).

If these requirements hold, we can use an incomplete evaluation of this gradient, neglecting the sen-
sitivity with respect to the state, leading to the approximation ij ~J,+Jyq, =V,GS. This is
very interesting as V, f can often be analytically calculated. And, if not, an approximate model ¢ can
be used as described above leading to V wj = J, + jy(®G,). Finally, the approach is also interesting
because the quantities involved are all locally defined on the domain of definition of ¥ and do not
involve the full domain of definition of the state variable U. In the case of the shape optimization
problem, for instance, there will be no field variable linearized as everything will be defined on the
shape.

One can go one step further from incomplete sensitivities introducing low order models such as
simple algebraic relations in U [25]. We give examples of such algebraic relations in section 9.2 to
address minimal drag sensitivity analysis where the incomplete sensitivity approximation is improved
with the introduction of the cosine relation for the macroscopic pressure distribution over a shape and
a priori assumptions for the behavior of the velocity in the normal direction to the shape.

9. Numerical examples

Now we illustrate our adjoint implementation for the LBM with the D2Q9 stencil presented in appendix
A applied to a contour identification and a shape optimization problem. We show in particular how
to use reduced order models and incomplete evaluations of sensitivities to break the complexity of
adjoint evaluations.

9.1. Contour recognition

Non intrusive recognition of a body using partial observations of some macroscopic field is an important
domain of application. It is obvious that reducing the computational complexity and improving the
speed of the identification is interesting and helps making the necessary device more portable and
cheap. We would like to test the pertinence of our adjoint formulations on this problem and see how
the adjoint calculations can be accelerated. Also, because the aim is to detect the contours, the choice
of the functional is free as far as it helps reducing the calculation complexity.

A typical functional is given by the measure of the deviation of a macroscopic velocity field u from
observations uys and put under the form of (4.3), it reads:

o=[" [ituton, (0.1

where j(1,u) = (u(t,x) — ueps(t,) WICW (u(t ,:L') — Ueps(t,x)), involving the covariance matrix C
of the observation. C' is diagonal if the observations are independent and with the diagonal element
function of the variance of the observations. W is a diagonal weighting matrix which permits to give
more importance to some of the data. These matrices can depend on time as well if the quality of the
data acquisition is variable in time for instance. {2, is the domain of observation which is usually only
a subset of the whole calculation domain. This can also be a function of time if the spatial observation

17

B. MOHAMMADI

100

FIGURE 9.1. On a 100 x 100 lattice: L1, Ly and Lo, unit balls and x given by (11.4).
On the right: contours for the macroscopic pressure and norm of the the macroscopic
velocity after 10000 iterations of the LBM.

window changes with time. This is a very general formulation and we have used it, for instance, for
the identification of the effective rigidity of the lithosphere using for u.ps the interseismic velocity field
from surface global positioning system (GPS) data in time and space [26].

As this is a test problem to evaluate the pertinence of the different adjoint formulations, we would
like to avoid any other sources of error and only concentrate on the complexity issues in terms of
memory and redundant calculations. We consider ups(t € [0, 7], x) where T denotes 100 iterations of
the LBM solver. We consider a set of simple obstacles given in figure 9.2 on a 100 x 100 lattice. 100
iterations permits to a given information to cross the domain. The observation domain {2, represents
1% of the calculation domain. An indication of this and the iso-contours of d.J/dy by a full adjoint
calculation with 7 checkpoints are given in figure 9.2. The number of stored state is 7, just above
log,(100) and is chosen by tapenade in order to minimize the redundant calculations to reconstruct
missing intermediate states during backward adjoint integration. This is the reference solution.

7 checkpoints is affordable but 100 iterations is a very small compared to what is necessary with the
LBM where the number of iterations is usually of several thousands. With 10000 iterations, the number
of checkpoints will be 14 which is still acceptable. Therefore, the real difficulty is not a storage question
but comes from very penalizing redundant forward calculations to recover intermediate states between
the checkpoints. As we said, in tapenade the checkpoints are distributed in order to minimize these,
but they can also be distributed uniformly or, in order for the reduced order model to fit best the state
history, minimizing for instance the interpolation error [5] as in mesh adaptation by metric control [9].
One can measure the error one commits substituting a function of time f(¢) by its linear interpolation
ms(t)f constructed from f given on n checkpoints distributed following 6(¢) by |f — w5 f| < co?|f"|.
The distribution law §(¢) can be chosen as 6(t) = min(daz, max(dmin, €/+/|f"])) in order to equi-
distribute this error. € is an indication of the level of the error and d,,q, and d,,i, are cut-off bounds
to avoid very large or small values for §. Hence, n given checkpoints from Ty = 0 can be distributed
following d(t) by T; = T;—1 + d(T;—1) such that T,, = T. Uniform distribution of the checkpoints can
be obviously realized with 6 = T'/n. As f is not a scalar function and has 9 components in D2Q9, one
must adapt the distribution §(¢). The simplest way is to replace |f”| by max(|f/|,i = 1,..,9). One

18

PARALLEL REVERSE TIME INTEGRATION

could also introduce different checkpoints for each of the 9 component (but then we need to handle
conservation issues).

Hence, to avoid redundant calculations and provide a possible parallel solution we use the ingredients
presented in sections 6.4 and 6.5 with in particular the parallel fixed point partial reverse accumulation
algorithm with 5 uniformly distributed checkpoints. Figure 9.3 shows four snapshots of the evolution
of dJ/diy at iterations 5, 10, 15 and 20 of the parallel fixed point partial reverse accumulation to
be compared to the full gradient presented in figure 9.2. One sees that unlike with the ordinary
differential equation in section 7 here the number of iterations necessary has been much larger than
the number of checkpoints. But still, no intermediate states have been stored and no redundant
calculations performed. The reduced order model is again a linear interpolation between checkpoints.
This could be improved using more sophisticated reduced order models to recover missing informations
in the gradient in figure 9.3. One could also adapt the distribution of the checkpoints as suggested
above. But these are not central to our discussion.

. Qobs
I Identified contours

T
O e
&> o

FiGURE 9.2. Contour identification from partial macroscopic field observation. Left:
target shapes and two examples of the observation domain €, each making 1% of the
total domain. Right: d.J/dy by full adjoint of the LBM for J defined by (9.1) for the
two observation domains.

9.2. Minimal drag design

We discuss Hadamard incomplete sensitivity and the use of reduced order models for the pressure
and viscous drags evaluation through the comparison of these with full adjoint based gradients with
respect to shape deformations.

Consider the mean pressure and viscous contributions to the drag coefficient over at time ¢ where
the macroscopic quantities come from our LBM solver: Cy(t) = C(t) + C4(t). Linearization of these
functionals permits also to address situations where an integral over time of these quantities is involved
such as in a functional of mean drag over time.

Let us first illustrate our purpose with the linearization of the pressure drag coefficient for a shape
described by v (here scalar for simplicity):

N 2PH1U”2 /Shape(w) p(t7 Q(T/)))(Uoo ' n(q(w))’ (92)

where superscript co indicates inflow conditions.
We are in the validity domain of Hadamard incomplete sensitivities described in section 8 with
S =pand G=n.

Ca(t)

19

B. MOHAMMADI

Forward states reconstructed from 5 uniformly distributed checkpoints
@ -y ﬂ-o u—q
8 3 . 3 r:-"
¢ L iy
- . * oo ol
o P & & £ P o _é}
-y rllq‘ Ty -
3 LI gr = r'-:.
o =)) S
. - et Tt
EA £ L Eas
& & & i
4‘ Forward states reconstructed from 5 checkpoints minimizing the interpolation error ‘7

FiGURE 9.3. Contour identification from partial macroscopic field observation. Four
snapshots of dJ/dy at iterations 5, 10, 15 and 20 of the parallel fixed point partial
reverse accumulation to be compared to the full gradient presented in figure 9.2. The
forward states are either reconstructed from 5 uniformly distributed checkpoints (up-
per) and when the checkpoints are distributed in order to reduce the interpolation error
between f and msf.

Let us analyze the incomplete sensitivity approximation in a situation where the pressure is given
analytically from the cosine-square law: p(¢)) = p,,, (u_ -n(¢))? where p,,, is the total pressure function
of the inflow conditions.

We therefore have p(¢)u,, - n(y) = p,,, (u., - n(1))>. Its derivative with respect to ¢ is (pu, -n), =
(puy) - ny, +p,(uy - n) = 3p,,u. (uy, -n)*n,. The first term in the sum is what we called above
incomplete sensitivity and is (pu)n, = p,,u. (U, -1)*n,.

We see that if the pressure is defined by the cosine-square law, the exact and incomplete derivatives
only differ by a factor of 3 and have the same sign.

Now what happens when the pressure comes from the LBM method and is given by p =1/3Y"; f;.
The expression above can be rewritten as pu_ -n = plu_| COS(% -n). The incomplete sensitivity is
therefore p(u,, -n), = —plu,,| sin(lzﬁ -n) = 0 when n is aligned with u__ . The incomplete sensitivity
fails therefore for these area. On the other hand, the model tells us that the pressure sensitivity with
respect to shape variations vanishes if those are along the normal to the shape such that n, = 0. But
this is compatible with the 'macroscopic’ pressure boundary condition p, = 0 even if not used in the
LBM.

We therefore expect the incomplete sensitivity to be a good approximation of the gradient if the
macroscopic pressure verifies the zero normal pressure condition and if the shape deformation param-
eterization is along the normal to the shape. As in our level set parameterization n = V/|V|, this
latter means that the variation 03 must be along the normal such that: |09| = 0¢ - n.

Now, it is interesting to notice that a descent method can also be interpreted as a Hamilton-Jacobi

equation for the motion of the level set in the direction normal to the shape:

Y ==V, J = =VVy, ¥(0) = given,

20

PARALLEL REVERSE TIME INTEGRATION

with V = IVV% - n. The incomplete sensitivity provides therefore a good approximation for the
gradient of the pressure drag. We see that sensitivity evaluation can be dramatically simplified in
some situations.

Figure 9.4 shows a comparison of V C%(t) with the macroscopic pressure distribution obtained
from f after 100 iterations of the LBM solver. It also shows the error one commits with the incomplete
sensitivity approximation. The error between the i*® component of the gradient of a functional J and
its approximation J is estimated through:

n=sgn(V, LV, L)V, Ji =V, J (9.3)
Two remarks can be made. First that the sign of the incomplete sensitivity is always correct as 7 is
always positive. Second that the level of the error is about three orders of magnitude less than the

gradient and is in particular concentrated where the condition p, = 0 might not be well realized (e.g.
at corners).

| Adjoint based pressure drag gradient Error indicator between exact and incomplete sensitivities

0.02+ 4e-005

2e-005

0.02| 100

100

0

’ x and y in lattice unit ‘ 1000

F1GURE 9.4. Left: pressure drag sensitivity V wCﬁ (t) with full adjoint. Right: Local
error between the full and incomplete evaluation of the gradient by indicator n from

(9.3).

We discussed above on how to reduce the complexity of sensitivity evaluation for the pressure drag. The
other contribution to the drag coefficient is the viscous drag which involves the boundary integral over
the shape of the viscous contribution to the Newtonian stress tensor D(t,q(v)) = —v(Vu(t,q(v)) +
Vul(t,q(1))) involving the gradient of the macroscopic velocity u = 1/p3"; ¢; fi:

v L n@@) -
Ci0) = 5y oy (P00 m(a) (0.4

Here again we are in the validity domain of Hadamard incomplete sensitivities described in section
8 with S = D and G = n. Figure 9.6 shows a comparison of V Cj (t) with the macroscopic velocity
distribution obtained from f after 100 iterations of the LBM solver. It also shows the error one commits
with the incomplete sensitivity approximation through indicator (9.3). We see that the incomplete
sensitivity prediction does not perform so well in this situation with its sign often incorrect.

One interesting way to go further is to take advantage of the fact that the velocity must satisfy a
no-slip boundary condition. This is unlike with the pressure where a Dirichlet boundary condition is

21

B. MOHAMMADI

not explicitly prescribed. This a priori available information can be exploited as in Bayesian methods.
Let us express the velocity in the domain by:

u(t, ¥) = w@)v(t, w(y)), (9-5)

where w tends to zero with the distance 1 to the shape in order for u to satisfy a homogeneous
Dirichlet boundary condition on the shape and v is free and selected in order for wv to satisfy the
state equations (for instance with v = u/w where w # 0). The behavior of w is a priori selected (say
linear in ¢ for simplicity).

Macroscopic velocity u

FIGURE 9.5. A snapshot of the macroscopic velocity v and its decomposition from (9.5).

Now, sensitivity analysis for a functional J (such as the viscous drag J = C}) with respect to the

shape gives:

vV, J=J,+J,q, + Ju(wy, +vw,),
which reduces at ¢ = 0 to J,, + J,q, + Jyv, because w is chosen such that w, =1 and w(yy =0)=0.
Therefore, in cases where the near-wall dependency of the solution with respect to the distance to
the shape can be reasonably guessed the sensitivity with respect to shape variations normal to the
wall can be obtained without linearizing the state equation. Figure 9.6 shows an example of such
decomposition with a linear dependency in v for w.

Figure 9.6 shows how this can improve the incomplete sensitivity prediction. Indeed, introducing
this a priori information on the behavior of the velocity normal to the shape, information which
is frozen during linearization, the sign of the gradient is now always correct and its amplitude is
better predicted. This is therefore a very powerful approach and complete the Hadamard incomplete
sensitivity approximation.

These examples are good indications of how reduced order approximations can fully remove the ad-
joint calculation and drastically reduce the complexity of sensitivity evaluations, especially penalizing
in time dependent problems.

22

PARALLEL REVERSE TIME INTEGRATION

Adjoint based viscous drag gradient

2e-005
1e-005 ¢

-1e-005
-2e-005 ¢
100

1000

Error indicator between exact and incomplete sensitivities improved with the u=v w decomposition

1.5e-005 6e-006
1e-005
5e-006

0

-5e-006
-1e-005
-1.5e-005

4e-006

2e-006

100
100

x and y in lattice unit ‘ 1000

1000

FIGURE 9.6. Top: viscous drag sensitivity V Cj(t) with full adjoint. Lower-left: Local
error between the full and incomplete evaluation of the gradient by indicator n from
(9.3). Lower-right: same but taking advantage of decomposition (9.5).

Acknowledgements The discrete adjoint Lattice Boltzmann solver has been obtained using Tapenade
automatic differentiation tool developed at INRIA-Sophia Antipolis.

10. Concluding remarks

The complexity of sensitivity evaluations in adjoint mode has been discussed for time dependent prob-
lems. The different ingredients have been illustrated in the context of a lattice Boltzmann solver chosen
because challenging in term of the number of variables per node and per time step. The techniques
used here to reduce storage complexity in reverse mode of differentiation can be applied to any time
marching solver. If an automatized differentiation is targeted, the paper shows the different steps a
user should take before the application of automatic differentiation tools which are not necessarily
efficient if directly applied to the code.

23

B. MOHAMMADI

11. Appendix A: Lattice Boltzmann Method

This section shortly describes the ingredients of Lattice Boltzmann Methods.

11.1. Lattice Boltzmann solver

Lattice Boltzmann Method (LBM) [20] is a smoothed alternative to lattice gas automata. It is capable
of solving low speed flow configurations. It mainly gained in popularity because of its algorithmic
simplicity making it suitable for parallelization. Our discussion is general and addresses a generic
DdQq stencil in d space dimension with ¢ velocities (cg,..,cq—1) on a d-dimensional (d = 2 or 3)
square or cubic lattice. The notations are classical with ¢p = 0 at the lattice center, etc. [17]. The
evolution of the distribution function f;(z,t) is given by the Lattice Boltzmann equation with the
BGK collision operator:

fl(l‘ + ¢ ALt + At) - fi(l‘,t) = _%(fz - fieq)’ 1=0,1,..,q — 1, (111)

where x denotes the coordinate in the physical space. 7 = 3v + At/2 is the relaxation time related to
the kinematic velocity v. ¢ = h/At is the lattice constant. We unitize h and At such that ¢ = 1. f;4
is the equilibrium distribution function given by:

1(ci-u)? 1u-

eq _ G- U u -
1 —wzp<1+ 2 +§ o 3 2),Z—0,1,2,..,q—1,

where w; are positive weights depending on the stencil chosen. ¢, = \/§/ 3 is the speed of sound.
The macroscopic variables p, the fluid density, u, its velocity, and p, the fluid pressure, are related to
fi, 1=0,..g — 1 through:

p(w,t) - Zfi(x7t)7 u(m,t) = ;Zcifi(xvt)a b= pc? = /0/3’ (11'2)

7

Numerical examples in section 9 are with the D2Q9 stencil. This popular implementation [17] uses
nine velocities (co,..,cg) on a two-dimensional square lattice. We use the classical notation where
co = 0 is at the lattice center and c; is toward east, cy north, c3 west, ¢4 south, c; north-east, etc.
c; = c(cos((i — 1)7/2),sin((i — 1)m/2))! for i = 1,..,4 and ¢; = v/2¢(cos((2i — 9)7/4),sin((2i — 9)7/4))*
for i = 5,..,8. The weights w; are wgp =4/9, w; =1/9 for i =1,..,4 and w; = 1/36 for i =5, ..,8.

11.2. Level set parameterization

The level set method, first introduced in [6] and [7] and popularized in [28] is an established technique
to represent moving interfaces. Immersed boundary, fictitious domain methods as well as penalizing
methods using forcing to account for the presence of curved and moving boundaries in cartesian meshes
belong to the same class and have been widely used in different applications [29, 15, 18, 10, 1, 2, 21].
A review of these is presented in [30] together with an application with the LBM.

A level set parameterization is based on the signed Euclidean distance function 1 (other choices of
distance are possible) to the boundary I" which is described by the zero-level curve of):

T={z€9 : y() =0}, ¥(x) =% inf |z — .
y
with the convention of a plus sign if x € (2 and minus sign otherwise:

WF = 07 w‘Rd\Q < 07 wQ > 0. (113)

For a given shape given by (11.3), the normal to I" is n = V¢ /|V#| at ¢ = 0, which is useful for
Neumann and slip boundary conditions and also for sensitivity evaluation with respect to deformation

24

PARALLEL REVERSE TIME INTEGRATION

normal to the shape as presented in section 9.2.

More precisely, ¥ known, we account for the boundary conditions in the state equation using a relaxed
normalized distance function x(v), (0 < x(¢)) < 1). This is necessary when the iso-(¢» = 0) and the
lattices do not exactly coincide. More details are given in section 11.3 in the context of the LBM. The
relaxation is defined through an explicit regularization expression:

Y

O,W), (11.4)

X = max(

where € ~ 0.01 and A = 1 in the LBM.

11.3. Boundary conditions

We use three types of boundary conditions: no-slip, slip and periodic. The no-slip condition is for
obstacles and the slip and periodic conditions for external boundaries.

The slip condition is somehow similar to the no-slip one but with a different condition on the velocities.
The two conditions can be summarized as:

no-slip condition: f; = f;, if ¢; = —¢; and slip condition: f; = f;, if ¢; - ¢; = 0,

where f; and fj,i,5 = 1,..,¢ — 1 are two densities in an element of the lattice.

To account for the presence of walls defined by the level set function one needs to identify the nodes
where no-slip boundary condition must be enforced. To make this decision one applies the mask de-
fined by x on the lattice. An example of this is shown in figure 9.1 with periodic boundary conditions
on the external boundaries.

When x = 0, this is clearly an obstacle node and the fluid is bounced back from those playing the
role of the no-slip boundary condition. The velocity vector of all fluid densities is inverted, so all the
fluid densities are sent back to the node where they were located before the last propagation step (see
section 11.4), but with opposite velocity vector. For nodes in the buffer zone where 0 < x < 1 we pro-
ceed with a linear interpolation following the value of y between the propagated density (y = 1) and
the bounced back value (y = 0). This representation is similar to the porous boundary representation
in [30]. This formulation can be improved but this is not central to our discussion. Such constructions
are necessary when the obstacle does not exactly match the nodes of the lattice.

The periodic condition is simply implemented linking the north and south nodes of two facing elements
of the lattice in the top and bottom boundaries and the east and west nodes of two facing elements
in the right and left boundaries.

The flow direction is enforced by density redistribution in the first lattice column: the west nodes
densities are reduced by the suitable D2Q9 ratio and the east ones increased by the same. This is done
as far as positivity can be ensured.

11.4. Some implementation details

At each time step the solver achieves the following tasks which can be taken in different orders that
presented here:

e collision step with relaxation parameter 1/7 applied from equation (11.1):

fi(x7t) = fi(xat) - %(fz(mat) - fieq($7t))7 1= 07 17 - q — 17

where p and u in f;%(z,t) are evaluated from (11.2) using fi(z,t).

25

B. MOHAMMADI

e density propagation where all fluid densities are propagated from free nodes (non body) along
the lattice connection lines to their next neighbors made available by the periodic boundary
conditions on the external boundaries:

K (xfilx+ci,t+1)+ (1= x)filzx —ci,t + 1)) = fi(z,t), i =0,1,..,¢— 1. (11.5)

This step takes into account the no-slip boundary condition on obstacles as described in section
11.3 through a linear interpolation in the buffer area. K is a scaling factor to enforce local
density conservation and is given by the ratio of the sum of the densities over ¢ — 1 nodes of
an element of the lattice (excluding the central node) before and after the interpolation.

12. Appendix B: Principles of Automatic Differentiation by examples

We would like to give a brief description of automatic or algorithmic differentiation methods which
permit to compute derivatives in discret level from a computer code linking the independent variables
to the functional.

Consider the problem of finding j'(u) when j(u) is given by a computer program.

12.1. The direct mode of AD

Because the program is made of differentiable lines, j' can be computed by differentiating every line
and adding them to the computer program immediately above each line. For instance,

Program for j. Lines to add
= (14+u)x*log(u) dr=(1+u)x*du/u-+log(u)
z = x + cos(u) dz = dx — sin(u) * du
j=x*xz dj =dr*z+xx*xdz.

If this new program is run with u=u0, du=1, dx=0, dz=0, dj=0, then dj is the derivative of j with
respect to u at 0. This is called the direct mode of AD.

12.2. The reverse mode of AD

The reverse mode of AD is similar to the continuous adjoint method presented in section 4.1 and aims
to provide the gradient with a cost independent of the number of variables in the program. Let us
interpret this mode introducing the Lagrangian of the code above by associating to each variable in
the program a dual variable p, except for the last line for which p = 1 (each line of a computer code
is seen as an equality constraint and the final line as the cost function):

L =pi[z — (1 +u)log(u)] + p2[z — x — cos(u)] + j — 2 (12.1)
Stationarity with respect to intermediate variables in reverse order (z,x) gives
OL

gz = 0=z+po
= 0=z —pycos(u) + p1.
This gives po first, and then p;, and then dj/du is
. oL . 1+u
J' =5 = pawsin(u) — pi(log(u) +)-

26

PARALLEL REVERSE TIME INTEGRATION

This is different from the direct mode in term of complexity because whatever the number of inde-
pendent variables, the adjoint variables p; are evaluated only once. A powerful technique to avoid
the Lagrange method is to use reverse accumulation and this is how Tapenade works as presented in
section 5 for our LBM code. More precisely, for each assignment y = y + f(z), the dual expression is
Pz = pz + f'py with p, and p, the dual variables associated to z and y. Hence, for (p, =0,p, =1) as
initialization, this gives p, = f’. The previous example becomes

Do =p:=pu =0, pj =1,

Pz = Dz + 2Pj, Dz = P + TPy,

Pz = Pz + Dzy Pu=DPu — sin(u)pz,

. 1+u
7' = pu + (log(u) + T)pz-

This approach can be used to directly write ’by hand’ the adjoint code. This can also be seen as an
alternative to deriving the continuous adjoint and programming it.

References
[1] D.M. Anderson, G.B. McFadden, and A. Wheeler. Diffuse-interface methods in fluid mechanics. Annu. Rev.
Fluid Mech., 30:139-165, 1998.

[2] P. Angot, C.-H. Bruneau, and P. Fabrie. A penalization method to take into account obstacles in viscous
flows. Numerische Mathematik, 81:497-520, 1999.

[3] H.-G. Bock and K.J. Plitt. A multiple shooting algorithm for direct solution of optimal control problems.
In Proceedings of the 9th IFAC World Congress, pages 22—-31. Budapest Univ., 1984.

[4] B. Christianson. Reverse accumulation and implicit functions. Optimization Methods and Software, 9:307—
322, 1998.

[5] P.G. Ciarlet. The finite element method for elliptic problems. North-Holland, Amsterdam, 1978.

[6] A. Dervieux and F. Thomasset. A finite element method for the simulation of Rayleigh-Taylor instability.
Lecture Notes in Mathematics, 771:145-159, 1979.

[7] A. Dervieux and F. Thomasset. Multifuid incompressible fows by a finite element method. Lecture Notes
in Physics, 11:158-163, 1991.

[8] M. Gander and S. Vandewalle. Analysis of the parareal time-parallel time integration method. SIAM J.
Sci. Comput., 29:556-578, 2007.

[9] P.-L. George. Automatic mesh generation. Applications to finite element method. Wiley, London, 1991.

[10] R. Glowinski, T.W. Pan, and J. Periaux. A fictitious domain method for external incompressible viscous
flows modeled by Navier-Stokes equations. Comput. Meth. Appl. Mech. Eng., 112:133-148, 1994.

[11] A. Griewank. Achieving logarithmic growth of temporal and spatial complexity in reverse automatic dif-
ferentiation. Optimization Methods and Software, 1:35-54, 1992.

[12] A. Griewank. Computational derivatives. Springer, New York, 2001.

[13] L. Hascoet and M. Araya-Polo. Enabling user-driven checkpointing strategies in reverse mode AD. In
Wesseling, editor, ECCOMAS CFD conference, pages 153—162. Springer, 2006.

[14] L. Hascoet and V. Pascual. Tapenade user’s guide. In INRIA Technical report, pages 1-31. INRIA, 2004.

[15] J. Kim, D. Kim, and H. Choi. An immersed-boundary finite-volume method for simulations of flow in
complex geometries. J. Comput. Phys., 171:132-150, 2001.

[16] M.J. Krause. Fluid flow simulation and optimisation with lattice Boltzmann methods on high performance
computers. PhD thesis, Karlsruhe Institute of Technology, 2010.

27

[17]

[18]

B. MOHAMMADI

P. Lallemand and L. Li-Shi. Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy,
Galilean invariance, and stability. In NASA/CR-2000-210103, ICASE Report No. 2000-17,, pages 1-45.
ICASE, 2000.

R.J. Leveque and Z. Li. The immersed interface method for elliptic equations with discontinuous coefficients
and singular sources. SIAM J. Num. Anal., 31:1001-1025, 1994.

J.-L. Lions, Y. Maday, and G. Turinici. A parareal in time discretization of PDE’s. C.R. Acad. Sci. Paris,
Serie 1., 332:1-8, 2001.

G. McNamara and G. Zanetti. Use of the Boltzmann equation to simulate lattice-gas automata. Phys. Rev.
Letters, 61:2332-2335, 1988.

B. Mohammadi. Global optimization, level set dynamics, incomplete sensitivity and regularity control. Int.
J. Comp. Fluid. Dynamics, 21:61-68, 2008.

B. Mohammadi. Reduced sampling and incomplete sensitivity for low-complexity robust parametric opti-
mization. Int. J. Num. Meth. Fluids, 73:307-323, 2013.

B. Mohammadi. Uncertainty quantification by geometric characterization of sensitivity spaces. Compt.
Meth. Appl. Mech. Eng., 280:197-221, 2014.

B. Mohammadi. Value at risk for confidence level quantifications in robust engineering optimization. Op-
timal Control: Applications and Methods, 35:179-190, 2014.

B. Mohammadi and O.Pironneau. Applied shape optimization for fluids (2nd Edition). Oxford Univ. Press,
Oxford, 2009.

B. Mohammadi, M. Peyret, J. Chery, and C. Joulain. Plate rigidity inversion in southern California using
interseismic GPS velocity field. Geophys. J. Int., 187:783-796, 2011.

B. Mohammadi and O. Pironneau. Shape optimization in fluid mechanics. Annu. Rev. of Fluid Mech.,
36:255-279, 2004.

S. Osher and J. Sethian. Fronts propagating with curvature-dependent speed: Algorithms based on
Hamilton-Jacobi formulations. J. Comput. Phys., 79:12-49, 1998.

C.S. Peskin. The fluid dynamics of heart valves: experimental, theoretical and computational methods.
Annu. Rev. Fluid Mech., 14:235-259, 1981.

G. Pingen, M. Waidmann, A. Evgrafov, and K. Maute. A parametric level-set approach for topology
optimization of flow domains. Struct. Multidisc. Optim., 41:117-131, 2010.

O. Pironneau. On optimal shapes for Stokes flow. J. Fluid Mech., 70:331-340, 1973.
O. Pironneau. Optimal shape design for elliptic systems. Springer, Berlin, 1984.

N. Rostaing. Direct and revers modes of AD for inverse problems. In SIAM workshop on computational
differentiation, pages 253-282. STAM, 1996.

I.M. Sobol. Sensitivity estimates for nonlinear mathematical models. Mathematical Modelling and Compu-
tational Fxperiments, 1:407-414, 1993.

L.M. Sobol and S. Kucherenko. Derivative based global sensitivity measures and their link with global
sensitivity indices. Mathematics and Computers in Simulation, 79:3009-3017, 2009.

M. Tekitek, M. Bouzidi, F. Dubois, and P. Lallemand. Adjoint lattice Boltzmann equation for parameter
identification. Computers and Fluids, 35:805-813, 2006.

28

	1. Introduction
	2. Summary of the work
	3. Flow solver
	3.1. Backward linearization of a flow solver

	4. Sensitivity analysis
	4.1. Adjoint formulation

	5. Discrete adjoint by Automatic Differentiation
	6. Storage complexity of the AD reverse code
	6.1. User intervention
	6.2. Steady flows
	6.3. Meta-models to avoid redundant calculations
	6.4. Partial forward/backward accumulation
	6.5. Parallel fixed point partial backward with meta-forward
	6.5.1. Links with the multiple shooting and the parareal algorithms

	7. A model problem
	8. Low complexity models and specific functionals
	9. Numerical examples
	9.1. Contour recognition
	9.2. Minimal drag design

	10. Concluding remarks
	11. Appendix A: Lattice Boltzmann Method
	11.1. Lattice Boltzmann solver
	11.2. Level set parameterization
	11.3. Boundary conditions
	11.4. Some implementation details

	12. Appendix B: Principles of Automatic Differentiation by examples
	12.1. The direct mode of AD
	12.2. The reverse mode of AD

	References

