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Abstract. In this paper, we develop and analyze a finite element fictitious domain approach based on
Nitsche’s method for the approximation of frictionless contact problems of two deformable elastic bodies.
In the proposed method, the geometry of the bodies and the boundary conditions, including the contact
condition between the two bodies, are described independently of the mesh of the fictitious domain. We
prove that the optimal convergence is preserved. Numerical experiments are provided which confirm the
correct behavior of the proposed method.
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1. Introduction

In the vast majority of finite element software, the contact conditions between deformable solids are
taken into account through the introduction of Lagrange multipliers and/or penalization terms. The
multipliers, which generally approximate the contact stresses, represent some additional unknowns.
The approximated problem is then solved in a coupled way or iteratively on the multiplier using
Uzawa’s algorithm (see e.g. [27]). Recently in [6, 7], it has been proposed an extension to the contact
conditions of Nitsche’s method [24, 11, 17] which was originally dedicated to Dirichlet’s condition.
This method combines the advantages of both the penalty and Lagrange multiplier methods since it
remains consistent, optimal and avoid the use of multipliers.

In a fictitious domain framework, this paper aims to adapt Nitsche’s method to the case of frictionless
contact of two elastic solids with the small deformations hypothesis. Frictionless contact is considered
to keep the presentation as simpler as possible. However, the analysis extends without additional
difficulties to the case of Tresca friction, in a similar way as in [5]. One of the advantages of the
fictitious domain approach comes from the possibility to work with structured meshes regardless of
the complexity of the geometry of the bodies and of the potential contact zone. This approach is
particularly advantageous in the case of free boundary problems such as shape optimization and fluid-
structure interaction. In that case, it prevents the consecutive remeshing which can be very costly,
in particular for three-dimensional problems, and which may also generates some instabilities. More
generally, a fictitious domain method may be used in the presence of complex or moving geometries
to avoid meshing them.
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The fictitious domain approach we consider in this work is the one using “cut elements” which is
currently a subject of growing interest and is closely related to XFem approach introduced in [21] and
widely studied since then (see for instance [20, 16, 26, 4, 23]). The case of a body with a Dirichlet (or
transmission) condition with the use of cut-elements is studied in [16] when Lagrange multipliers and
a Barbosa-Hughes stabilization are used, and in [14, 4, 1] when Nitsche’s method and an additional
interior penalty stabilization are considered. This fictitious domain method is to be compared with
more classical strategies (see [19, 12, 13, 25, 2] and the references therein) where the elements are not
cut. These more classical strategies offer the possibility to leave unchanged the stiffness matrix of the
problem. The boundary conditions are then prescribed via additional penalty and Lagrange multiplier
terms. However, in classical strategies, it is often quite difficult to obtain an optimal method regarding
the convergence order which easily takes into account both Dirichlet and Neumann conditions. The
Fictitious domain method with cut elements allows to consider both Dirichlet and Neumann conditions
in a rather standard way. The main price to pay is the adaptation of integration methods on cut
elements.

In that context of cut elements, our study is focused on the case of two bodies with Nitsche’s method
for both the Dirichlet condition and the frictionless contact condition.

The outline of the paper is the following. In Section 2, we introduce the contact problem and
the fictitious domain situation. Then, in Section 3, the finite element approximation with the use of
Nitsche’s method is built. In particular, a specific, parameter free stabilization technique is introduced
which is necessary to guarantee the optimal rate of convergence. The properties of the approximated
problem are described in Section 4 including the existence and uniqueness of a solution to the discrete
problem, the consistency and the a priori error analysis. Finally, in Section 5, some two and three-
dimensional Hertz-type numerical experiments are presented which illustrate the optimality regarding
the convergence of the method.

2. The unilateral contact problem in a fictitious domain framework

An example of fictitious domain situation is illustrated in Figure 2.1. Let €;, 1 < i < 2, be two
possibly overlapping domains with piecewise %! boundaries included in R?, d = 2 or 3, representing
the reference configurations of two elastics bodies. Let €2 be a simple shaped polygonal fictitious
domain (typically allowing the use of a structured mesh) containing both ©; and Q9. The boundary
I’y of ©; (respectively I'y of Q) is divided into three non overlapping parts: I'; ¢ the slave potential
zone of contact with meas(I'y,c) > 0 (respectively I's ¢ with meas(I'y ) > 0); I'y v the Neumann
part (respectively I's x) and I'; p the Dirichlet part with meas(I'; p) > 0 (respectively 'y p with
meas(I'y p) > 0).

The two elastic bodies are subjected to volume forces f = (f1, f2) on Q1 x Q9, to surface loads
¢ = (£1,¢3) on 'y y xT'y y and satisfy non homogeneous boundary Dirichlet conditions on I'y p x I'y p,
the displacement being prescribed to the given value up = (u1,p,u2,p). We assume small elastic

1
deformation for the two bodies. The linearized strain tensor field is given by (v) = §(Vv + Vol and

the stress tensor field o = (05)1<i,j<2 is given by o(v) = Ae(v) where A is the fourth order symmetric
elasticity tensor satisfying the usual uniform ellipticity and boundedness properties. Consequently, the
displacement (u1,u2) on € X Q9 has to satisfy the following set of equations, apart for the contact
condition which will be described later:

Find u = (u1,ug) satisfying

—divo(u;) = f; in
o(u;) = Ae(uy) in (2.1)

U; = U; D on I p,

U(uz)nz = & on Fi,N'
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Ficure 2.1. Example of fictitious domain situation for a contact problem between two
elastics bodies with an example of structured mesh.

Now, concerning the contact conditions, let us define II the orthogonal projection from the slave
boundary I'; ¢ on the master boundary I's ¢:

e — Tac

™ o 1),

(2.2)

In order to simplify the mathematical analysis, the operator II is assumed to be a €' one to one
correspondence on II(I'; ) (this hypothesis is satisfied, for instance, when I'; ¢ are convex and €1 for
i € {1,2}). The outward unit normal vector n for the contact condition is chosen to be the one of
P27ci

e — R4
x = ng(Il(x)).
The initial gap g between I'y ¢ and I's ¢ is defined to be the following distance function:

FI,C’ —- R
x = (z—1II(z)) - n.

For (v1,v2) a displacement field defined on €27 x g, the normal jump is defined on the slave boundary
I"; for the normal displacement as follows:

[v-n] = (vaoll—wp)-n.
Concerning the normal stress, we define
o(v1)n1 = —op(v1)n + o¢(v1) with o, (v1) = —o(v1)ny - n
and
o(vg o )ng o II = oy, (vg o I)n + o4 (vg o II) with o, (v o IT) = o(ve o Il)ng o I1 - n.
This allows to define the normal stress jump as

[o(u)n] = o(u1)ny + o(ug o )ng o II |det(Jr)|,
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with Jp the Jacobian matrix of II. This latter expression is derived accordingly with Newton’s second
law (action-reaction principle) which is expressed on arbitrary elementary surfaces (see Figure 2.2):

Vw c Tic, / o(ur)ny dT = —/ o (ug)ngdT’ = —/ o (ug 0 ng o TT |det(J)| dT.
w II(w)

w

h

FIGURE 2.2. An example illustrating the action-reaction principle between the two bodies.

These jumps being defined, the unilateral frictionless contact conditions can be expressed on the
slave boundary I'; ¢ as follows:

[u-n]<g (1),
Uﬂ(ul) <0 (”)7
on(ur)([u-n] —g) = (i), (2.3)
[o(u)n] = (iv),
o(u1) =0 (v)

Now, let us introduce the Hilbert space V' and the convex cone K of admissible displacements:

V =HY Q)% x HY (D)4,

K={v=(v,n)eV|vn=uyponTipandvy=usponTyp|Jv-n]—g<0onTic}

We assume that f belongs to L2(01)¢ x L%(Q2)?, £ belongs to L*(T'; x)¢ x L?(T'e,n)¢ and up belongs
to H%(Fl p)? x H%(I‘g p)?. We define the bilinear and the linear forms a(.,.) and L(.) by

Z/ o(ui) s e(vi) A9, L(v Z/flvde—l—Z/ (;v; dT.
1=1,2 1=1,2 i=1,2
The weak formulation of Problem (2.1)-(2.3) as a variational inequality (see [10, 15, 18, 28]), reads:

{ Find v € K such that

a(u,v —u) > L(v — u) Vo e K. (2.4)

Stampacchia’s Theorem ensures that Problem (2.4) admits a unique solution.
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3. A Nitsche-based finite element approximation

3.1. Nitsche’s formulation

In this section, we assume that both the solution u and the test functions v are sufficiently regular
(for instance, (u,v) € (H3/2V(Qq)4 x H3/2t(Q9)%)? for v > 0). From the equilibrium equations and
Green’s formula, we obtain:

a(u,v) Z / n(ui)n; - v; dT' — on(up)fv-n] dT' = L(v).

i=1,2 Tie

In order to build Nitsche’s formulations for the contact and Dirichlet conditions, the contact conditions
are expressed in an equivalent way by extending to our case the formulation given in [6, 7]. Denoting
z4 = max(z,0) and for an arbitrary v > 0, the contact conditions (2.3) on I'; ¢ can be equivalently
rewritten:

on(ur) = —imu o P (3.1)

Let § € R be a fixed parameter. This additional parameter for Nitsche’s method determines the
symmetry properties (see remarks (3.2) and [6, 7]). Then by using (3.1) and [v-n] = (Jv-n] —
Oyon(v)) + Oyon(v)), we obtain:

a(u,v) —/ Ovyon(uy)op(vy) dI' — Z / n(ui)n; - v; dI'
Iie i=1,2

* /Fl c i[[[u -n] — g —yon(w)]+([v- n] = 6yon(vi)) dI' = L(v).

Using contact conditions (2.3), it holds oy, (u1) = o, (ugoIl) |det(Ji)|. In order to ensure the stability,
we introduce a stabilized formulation for elements having a small contribution [14, 4, 16]. We replace
on(u1) by a convex combination of o, (u1) and o, (ug o IT) |det(Jrr)|. Namely, we define

on(u) = top(ug o I) |det(Jr)| + (1 — t)op(u), (3.2)

for a parameter ¢ € [0,1] which may be different for an element to an other for the finite element
approximation. Note that a similar approach has been developed in [1] where an optimal choice of the
fixed parameter ¢ € [0, 1] is proposed. We obtain:

a(u,v) — /1“1,0 Oyon(u)op(v) dI' — Z /Fw on(u)n; - v; dT'

i=1,2

+ [ w0l - g yon(@)i (I - n] - 6r0n(v)) dT = L(v).
Tic Y

We did not treat yet the Dirichlet conditions. In order to be coherent with the fictitious domain
approach, we also describe the Dirichlet conditions thanks to Nitsche’s method [14, 4, 17]. Then,
writing v; = (v; — 0yo(v;)n;) + 0yo(v;)n; as in the formulation for the contact conditions, we deduce:

— / o(ug)n; - v; dT°
Tip

1
_ / (w5 — uip — v (ui)ng) - (vi — 00 (v;)ng) dT — / 0o (ui)ns - o(vi)n; AT (3.3)
Tip Y T'i,p
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We obtain the following weak formulation:

a(u,0) + [ Llu-n] - g — 10wy (o 1] — 6yoa(v)) dT
Iic?

+ Z /ZD 5 — i p —yo(ui)n;) - (v; — 00 (v;)n;) dT

1=1,2

—/F 00 ()0 (v) dT — Z/ Oyo(us)ns - o (vi)ns AT = L(v) Yo € V. (3.4)

1=1,2

Finally, defining the bilinear form
Agy(u,v) = a(u,v) —/ Ovyon(u)on(v) dI' — Z / O~o(ui)n; - o(vi)n; dT,
Ie i=1,2
our Nitsche-based method reads:

Agy(u,v) + lH[U 1] =g —yon(w)]+([v-n] = Oyon(v)) dT
I'ic?

+ Y / (i = w0 = 90(u)n) - (v =260 (w)n) A = L(v) Y € V. (35
1=1,2 Lip

3.2. Discrete Nitsche’s formulation

In what follows, Ciarlet’s notations [8] are used. Let 7T}, be a family of triangulations of the fictitious
domain 2 such that Q = Ugeq, K. Let hi be the diameter of K € T and h = maxker, hi. The

hi
family of triangulations is assumed to be regular, i.e. it exists C' > 0 such that — < C where pg

denotes the radius of the ball inscribed in K. We suppose that the mesh is quasi u?nform in the sense
that it exists ( > 0 a constant such that VK € T}, hg = (h.

Let K be the fixed reference element (a triangle for d = 2, a tetrahedron for d = 3) and let Tk be
the geometric transformation which satisfies Tk (K) = K. The family of triangulations is supposed
affine, i.e. T reads as

VK €Ty, Tx(2) = Jxé + by, &€ K,
where Jg € R% is the Jacobian matrix of Tk being invertible and by € R%. Thus, we have:

mes(K _
det(ic)| = 2D e < haefoge IR < o
mes(K)

Remark 3.1. The family of triangulations is regular and affine, so it holds:

det(Jie)| < Chf, |kl < Chie, ||| < Ohi

We introduce U" ¢ H(Q) a family of finite element spaces indexed by h coming from some

order k > 1 finite element method defined on T}. Consequently, we suppose the existence of a global

interpolation operator 7" : €°(Q2) — U" and a local one 7% on each element K € T}, such that:

Yue¢'(Q),  7'(wlg =mk(wk) and  Vp € Pi(K), mk(p) = p.
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We assume that the finite element method satisfies the following classical local interpolation error
estimate for k > 1> 0, u € HFY(Q):

Hu — W%uHmK < Cptti-m ‘“|l+1,Ka with 0 <m <<k

Note that, in particular, the classical P, Lagrange finite element method [8] satisfies this estimate.
The approximation spaces for our problem are defined by

Vi= UM, . W=U", and V'=V]xV).
In the same way, we define the global operators
e Q) s vhi={1,2} and II": HM(Q)? x MY Q)Y = v

In order to write a discrete approximation of formulation (3.5), let us introduce the following discrete
linear operators:

Vi x Vi — L2T10)

v = [v-n] —71on(v),
oV = LA(Tip)?
nT e Vi — Ui—TU(vi>ni.

Pl

T

Then, a finite element approximation of our Nitsche-based method reads as:

Find w" € V" such that

AQV(Uh, ’Uh) + frl,C’ %[Prél(uh) - g]-ﬁ-PGh'y(Uh) dl’ (36)

—h —=h
‘1‘21':172 frw %(Pi,v(u?) — Ui,D) 'Pz‘,w(vzh) dI' = L(Uh) Vot e Vi,
In the following, we define v = yohx.

Remark 3.2. The additional parameter 6 is aimed to be chosen in [—1,1]. The following values of 6
are of particular interest: for § = 1, we recover the symmetric method proposed and analyzed in [6];
for # = 0, we recover a non-symmetric version presented in [7] and for § = —1, we obtain a skew-
symmetric version which has the remarkable property that convergence occurs for any value of 7
(see [7]).

Remark 3.3. Note that, concerning the Dirichlet conditions, we obtain Nitsche’s classical reformu-
lation since the terms on I'; p in (3.6) read

1
/ —(uwj —uyp) v dI' — «9/ (uj —wip) - o(v)n; dI' — / o(ui)n; - v; dI.
Lip Y I'ip I'ip

Indeed, the first term is a kind of penalty term for the Dirichlet condition, the second one ensure the
symmetry when 6 = 1 and the third one ensure the consistency.

3.3. Consistency

The advantage of Nitsche’s method, compared to penalization, is the consistency of the approximation
in the following sense.

Theorem 3.4. Let u be the solution to Problem (2.1)-(2.3). Assume u is sufficiently reqular (typically,
(u1,uz) € H*V ()% x H2T(Q)4, for v > 0), then u is also a solution to the discrete problem (3.6)
replacing u by u.
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Proof. Let u be the solution to (2.1)-(2.3) and take v® € V. We assume u sufficiently regular such
that o,,(u) € L?(T1¢) and for i = 1,2, 0, (u;) € L*(T; p). As a result, Pghv(u) € L*(Ty ), for i = 1,2,

PZ@,},(’U@‘) € L*(I; p) and Ag,(u,v™) makes sense. On the one hand, we use the definition of Pfglv’ P

1,01
the reformulations (3.1) and (3.3) to obtain:

Aanfo, ")+ [ Z(PI) ol P 0" d”;l:? Los —i.p) - Plg(ef) dL
= a(u,v") — Oyop(u)on(v") dT' — Oyo (u;)n; - Zhnidf’
(k) = [ r0ae) py} / r0uin; o))
b [ Mlen] = g Ao (1 ] — thetaroy () aT
Tic?
lu—u- — ~vo(u)ni) - (v = v0o(v!)n;
# 30 J 5 p =30t - = toln ar
:a(u,vh) _/I‘ CG’yan(u)Un(vh) dr + - l(—'yan(u))([[vh'n]] —070n(vh)) dr
1
o(ui;)n;) - (v —~lo n;) dl' — O~o (u;)n; - JUZ}»‘ n; dI’,
ﬂ;m/m(”)” 200 () 2/ Yo (un; - o(u))
:au,vh — -n| dI' — o(ui)n; - vi dr,
()= [ ol nl =3 [ o
=a u,vh — -n| dI’ — o(ug)n; - U,f” dr'.
(") = [ onfun)le" o] 1212 /

On the other hand, multiplying by vh and integrating (2.1), it holds:

—Z/ leO”LLZU dQ—Z/ fzv dQ.

i=1,2 1=1,2
Using Green’s formula, we have:
/ divo (u;) v dQ) = / o(u;) ) dQ — / o(ug)n; - v dr 1=1,2,
with
—/ o(u;)n; - vf-‘ dl’ = —/ o(u;)n; - vzh dr —/ o(u;)n; - UZh dr —/ o(ui)n; - vlh dIr i=1,2,
I Iip Iin i,C
—/ o(ui)n; - U,?’ dI' = —/ o(ui)n; - vzh dr —/ Eivfl dr —/ o(ui)n; - vlh dr 1=1,2.
Fi Fi,D Fi,N Fi,C

Using the one to one correspondence of the projection, it holds:
/ o(ug)ng - v dI' = / o(ug o Mng o I - vl o II |det(Jry)| dT.
IPNe]
Hence

- Z / divo(u)vl dAQ = [ o(uy) (@) dQ+ | o(ug) : e(vh) dQ —/ o(uy)ny - v dT°
I'ic

i=1,2 Qs
—/ o (ug 0 Mng o TT - ol o TT [det(Jiy)| dT
I'ie
— Z / o(ug)n; - vl dT — (ol AT — lov dT.
T

i=1,2 Iin BN,
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Using (2.3), it holds:
- Z/ dive (ug)ol dQ = a(u, v") —

1=1,2 i=1,2

- /FLC on(un)[v" - 1] dT.

Z / o(ui)n; - vl dT — (ol AT — lyvh dT
T,

FLN FQ,N

So
a(u,vh)—/FLC n(up)[v" - n] AT — Z/ w(ug)ng - ot dI = L(v").

i=1,2
Which ends the proof. O

Moreover, formulation (3.5) is formally equivalent to (2.1) and (2.3) in the following sense.

Theorem 3.5. Let u € H?(Q1)%x H?(2:)? be a solution to equation (3.5) then u is a solution to (2.1)
and (2.3).

Proof. For u € H?(;)% x H?(:)? a solution to (3.5) and whatever v € H?(2)% x H?()?, it
satisfies:

/ (divo(u;) + fi)v; A2 =0 Vu; € H% ()
i.e.
—dive(u;) = f; a.e.in Q;, 1<i<2.

We have, for all v € H2(Q1)4 x H?(Q)%:

[ Sten)—g—son@lfo-nl dr+ [ oo dr+ [ ouang-u dr =0,

FI,C FQ,C
1
/ —[[u-n] — g —~von(u)]+(v1 —vaoIl-n) dI' — on(uy)n - vy dT°
Fl,C ’}’ FI,C
+ on(ug o In - vg o IT |det(Jyy)| dI' = 0.
e
Hence .
/F (;[[[u n] — g —yon (W)t + on(ur))vr -ndl =0 Voy € H?(Qy),
1,C

and

Gl nl = g =0} = oufuz 0 D) [det(Jn) oz o T+ dT = 0 ¥oy € F2(2)

Hence .
g[ﬂu ‘n] —g—vyon(u)]y = —op(ur) a. e. on {2y,

which is a formulation equivalent to (2.3). Arguing in the same way as above the Neumann and
Dirichlet conditions are recovered. 0

3.4. Stabilization method

A stabilization technique is necessary to control the possible bad quality of o, (u") on elements having
very small intersection with the real domains. The stabilization used is the one proposed in [16]
which consists in using extension of the normal stress on a neighbor element having a sufficiently
large intersection with the real domain. The advantage of this stabilization technique is the absence
of parameter to fit, except the threshold under which an intersection is considered to be too small.
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Note that other stabilization techniques are available, such as the so-called ghost penalty stabilization
considered in [4].

For a given small radius 1 > p > 0, let R (respectively R;) be an operator of approximation of
the normal stress of displacements o, (u") (respectively o(ul?)) which we define thereafter. For K € T},
such that K NIy ¢, we note Sk = {K' € T}, | K' NII(K) # 0}. We note also Ek, the polynomial
extrapolation of an element v" € V" define from K to €.

We distinguish three cases to define the stabilized operator Rj. Let K € Ty, and K NT'y ¢ # 0 then:

e if the intersection between K and () is sufficiently large i.e. it exists §x > 0 such that
B(§k, p) C Ti' (K N Q) (see Figure 3.1 a)), then R;(v")|, = on (vl ),

e otherwise, if it exists K € Sk intersecting {22 such that it exists J= > 0 with B(jz,p) C
TIZ(I(K N€) (see Figure 3.1 b)), then R;(v")|, = O’n(EI?(UQ) o IT) |det(Jm)|,

e otherwise, we suppose that it exits a neighbor element K’ of K such that it exists §x > 0
with B(fr, p) C Tt (K' 0 Q) (see Figure 3.1 ¢)), then Ry(v")| . = 0 (B (v})).

Ol

I'ic
O T
NIy T
Qy oo Qy K Qs 20 v
a) If Q; N K is sufficiently large b) If Hf( € Sk such that ¢) Otherwise

0 N K is sufficiently large
FIGURE 3.1. The different cases for the definition of Rj.

In the same way, we define the operator E,; on I p fori=1,2:

VIl — L*lip)?
— Yy, 2 PPN -1
vi o Ryl = { o(v)n; 3 yx > 0 such that B(gk,p) C Tr (K NQy)

o(Exg(vM)n; otherwise.

R,

Let us introduce the stabilized discrete linear operators:
Vi x Ve — L2(T10)
v = [v-n] = TRs(v),
—hp VI — LAy p)?
P, =
’ V; = U; — TRI@(UZ‘).

hp .
pho

We define the discrete form of Ag,(.,.) as follows:

A (o 0") = au o) = [ 0RO R A0 = 3 [ 0Byl Byl
1,C i=1,2 i,D
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The stabilized version of our approximation (3.6) reads:
Find u" € V" such that
A (u +/ ~[PIP(uh) — g) Pyl (v") dT
1 C

Z/ = PUP(ul) —u; p) - PRAy(ol) dF = L(wh) b e V.
i=1,2 Tip

(3.7)

Note that strict consistency of this stabilized discrete problem do not occur. However, we have the
following result.

Theorem 3.6. Let u be the solution to Problem (2.1)-(2.3). Assume u is sufficiently reqular (typically,
(u1,us) € H*V ()4 x H>(Q9)¢ for v > 0) then u is also a solution to the following problem:

a(u, v™) —/ Oyon(u)Ry(v™) dl' — Z / O~vo(ui)n; - Ry(v my dr
Te i=1,2
+ [Ph( ) — g]+P£i;” (v") dr (3.8)
e )
+ / *(??,y(ui) —ui,p) -P,hw( ) dl' = L(v")  wh e vh
i=1,27Tip 7

Proof. The proof can be straightforwardly deduced from the one of Theorem 3.4.

4. Analysis of the Nitsche-based approximation

4.1. Existence and uniqueness results

Theorem 4.1. Let v = yohy. It exists a unique solution v € V? to the discrete problem (3.7), for
all v > 0 if 0 = —1 and for vo > 0 sufficiently small if 0 # —1.

Proof. The proof is adapted from [7]. The main adaptations concern the fictitious domain framework
and in particular the stabilization term, the consideration of two elastic solids and the semi-coercivity
of the bilinear form due to the fact that Dirichlet conditions are taken into account with Nitsche’s
method. We begin by providing some stability and approximation property for operators R; and R
in Lemmas 4.2, 4.5 and 4.6. Then a coercivity property is proved in Lemma 4.7. Finally, the existence

and uniqueness result is deduce from the hemi-continuity of the non-linear operator which corresponds
o (3.7).

Lemma 4.2. Let v" € VP, there exists a constant C > 0 independent of h such that

con (ot |l ) whevn (4.1)

HRﬁ(Uh
1.0 1,09

o

The proof of this lemma is detailed in the appendix.
Remark 4.3. The following more general operator R could be considered:
Ry(u")| e = (1 — t)on (B (uh o 1)) |det(Jin)| + ton (Excn (ul)),

with ¢ € [0, 1], the element K’ being K itself or a neighbor element such as the intersection between
K’ and Q9 is large enough and the element K" being K itself or a neighbor element such as the
intersection between K" and €2 is large enough. Lemma 4.2 can be easily extended to this operator.
When the elastic coefficients in 7 and €9 are equal, a proposed optimum choice is given by (see [1]):

mes(Q; N K)

t = .
K mes(Q1 N K) 4+ mes(Qy N K)
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Remark 4.4. When the initial gap between the two bodies vanishes, for p sufficiently small either
K NQy or KN is sufficiently large and thus it is not necessary to consider any neighbor element.

Lemma 4.5. Let u" € V", I'; p be Lipschitz continuous then it exits a constant C' > 0 independent
of h such that

2

u

H p(u1) 0lp Hio,”

and
_ 2 2
R (ul H < Cht HuhH .
H p(uz) 0Top 21,0,

The proof of this lemma can be straightforwardly deduced from the one of Lemma 4.2.

Now, Let u", v" € V* and v = hgvo and using Lemma 4.2, it holds:
2

H'yZR u —vh)H2 < Cy ult — ol
0.0 k+1,9;
1=1,2
1— 2 2
= h h h
2 Rs(u; — v; ’ < O |lul = 2! .
H’Y p( i 7,) 0. p X U7 ||U; IFeY

Due to the know approximation properties of the stabilized operators on regular and quasi-uniform
families of meshes (see [16]), one obtains the following lemma:

Lemma 4.6. For any v € H*1(Qq)? x HF1(Qg)?

2

|Ro @) —anw)]|, < OW* Y ol

Olc i=1,2

and

- 2
< CR#t Z HUHkJrLQi'
i=1,2

_ 2
> ||[Bo(ml (v) — owi)m;
) 0,I'sp
1=1,2 ’
The following coercivity property can be stated :

Lemma 4.7. For M > 0 fized, it exists o > 0 such that for all v with M > v > 0 the following
coercivity property holds:

a(v,v) + 5 Z/ Y 17}2 dal' > a Z ”lelQ Yo e V. (4.2)

112 i=1,2

The proof of this lemma is detailed in the appendix. Now, by defining the following operator B" from
V" to Vh

(Bhu" v)lg—A —l—Z/

—h,p
7 ul') = i p) - PiJp(vf!) T
1=1,2 Pip

7’7

+ / LPro(uhy — gl PP AT Wb o e VP, (4.3)
I'ic?

it is sufficient to prove that B" is hemi-continuous (see the Corollary 15 p. 126 of [3]) to end the proof
of Theorem 4.1. The proof of hemi-continuity of B” is detailed in the appendix. O
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4.2. A priori Error analysis

In this section some optimal a priori error estimates are proved for the problem under consideration.
The rate of convergence is the same as for standard finite element methods.

Theorem 4.8. Let u be a solution of the stabilized problem (2.4) belonging to H%Jr”(Ql)d x H2tV (Q2)4
with v > 0.

(1) If § # —1, we suppose o > 0 is sufficiently small. The solution u” of the stabilized prob-
lem (3.7) satisfies the following error estimate:

5 -t o, 7O+ TP — ) OF + 3 i@l -7 )
< O nf, (3 oot P RS S LECH R A
# 3 [t b, + 3 et Rt ) @9

with C' > 0 a constant independent of h, u and ~g.

(2) If @ = —1, then for all vo > 0, the solution u" of the stabilized problem (3.7) satisfies the error
estimate (4.4) with C' > 0 a constant independent of h and u.

Proof. The proof is also an adaptation to our fictitious domain framework of the one in [7]. Let

v € V" using the coercivity inequality (4.2) and continuity of the form a(., . + Z / “1()2dr
1=1,2
and Young’s inequality, it holds:

<a(u—u u—u) + = Z/ 7 (u; — ult)? dr,

i=1,2 2 i=1,2
h h 1 2
=a(u—u”, (u—o") + (" )+ = Z ’y2u—u ,
0,I';,p
i=1,2 ’
‘ui—vfl N + a(u — ul, v —ul)
i=1,2 B
52 2
+ = H §u —u ’
’Y {2 071‘1'D’
i=1,2 ’
a
2 _Z ‘ ! 1,9
1 1 K h h h . h
+ = H’y 2u—ui)’ +a(u,v" —u") —a(u”,v" —u")
2 < 0,I';,p
Hence
2
3 o <5 3 =t ROl
— U; — Uy — U; — V; + 2u—u
2. ‘ ! e T 2a Z ‘ ! Z 7 0l p
i=1,2 i=1,2 i=1,2

+ a(u, v" — ul) — a(u " —u"). (4.5)
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Let u be the solution to (2.4), it verifies the stabilized formulation (3.8), thus we have:

a(u,v" — u") — a(ul " —ul) = /F 0y(on(u) — Ry(u™))Ry(v" — u™) dT

1 —n —h,p —h,p
= [ S ) - P - Pl el -l dr
i=127Tip Y
B B (4.6)
+ 30 [ orlotum — Ro(ul) - Bylel — ul) dr
1=1,2
1 hep
+ —([PP (") = g+ = [P (u) = gl4) Py (v — ™) dT.
Tic Y
First, using Cauchy-Schwarz and Young’s inequalities for 51 > 0, it holds:
[ 01on(w) = Ry By(v" — ") T
'y e
6% | 1 B |2 By L [ N |E
<gg Irrentw = R L+ @+ pERe =t @)
For all a,b € R, we have the following estimate:
([al+ = [B]+)(b = a) < —([a]+ — [B]+)*. (4.8)
Then, set:
1 - N
T = ~([PPP(u") = gy — [P(w) = g]4) Pyl (" — ") L,
e
1 R R
= [ (ou(w) + Z[PIP(u") = gl Py (v — ) dI.
I'ie Y
Using Cauchy-Schwarz and Young’s inequalities for 55 > 0 and 83 > 0 and (4.8), it holds:
n< (~14 oo+ ) [ + Lot - o
202 2833 7 0c
Bo |l ~1 php h h 2 1=01Bs| 2 n  hl?
+ H 3 (PP(u") — P <“))Ho,r1,c e |2 Rs0" - w )Ho,rw . (4.9)
Moreover, set:
= _ 2 o -1/ h _ . Ph _Ph’P h dr
Z PY 2 u u 0T Z Y (vi ul) ( z'y(ul) 1,7y (uz))
i=1,2 )
) /F (i — ) - (o (ug)n; — Ry(o})) dT (4.10)
i=1,27 T
(1+6) 3 / ) (Bp(uh — ul)) dr.

1=1,2
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Using Young’s inequality for 84 > 0, it holds:

=2l ) (P () = P ) T
1=1,2
54 Z H (v; —u) Z H *5 2k (ui _ﬁhap(uh))Hz
=12 v “llo,ry D 2ﬁ4 v M’ 1 i,y \ %4 07Fi,D7
54 > H7 (o u, Z H’Y " 9 (4.11)
=12 ? 0.l p 54 ! 0.l
+ = 3 | twns - Rl
ﬂ4 i=1,2 . PR 07F¢,D,
and for 85 > 0
S [ G-l (otuns — Ry(ol)) ar
i=1,27 LD
1 2 B — 2
2ﬁ5 Z pr ? (i — g 0.Ts.p ?; )ni_Rﬁ(v?))Ho,ri,D’ (4.12)
and for B > 0
(1+6) Y [ (il (Ry(ol — ul)) ar
i=1,27Ti,0
|1+ 0| 1 12 56|1+9| L a2
206 l:Z;QH ? (i =) 0rp 12122 72 (R — uj ))HO,D,D’ (4.13)
Using inequalities (4.11), (4.12) and (4.13) in 79 + = Z H,y 3 (u; — ui‘) 2 it holds:
i=1,2 0. p
T2+ 5 ZH7 5u—u ’
i=1,2 OF@D
1 1 1 [1+0 R
g(_§+F+%+ 286 )EQHV Pl =l
1 ) e (4.14)
Z%Hv W — ) orn D yi(a(ui)ni—Rﬁ(ui))HOF‘D
Bs 1o P
! ?i:1,2 (o (u)n: Rp(vi))HO,FiD i=1.2 G ))Ho,n,n'
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Gathering (4.6), (4.7), (4.9) and (4.14) in (4.5), it holds:

2
: i, < 5 2 =t
- U — U < — U — V;
2 Z_ZMH Ct e T 20 Z e,

2

o) = B
)

1-46 1 1
+( ”252“2/3 | H 2(on(u) + Z[PPP(u") = gl+)

3 e -,

"2

1 o by
Y2R;(v" —u )’01‘10

2

0,1 ¢

1 1 . 4.15
AW
+ ﬁ;‘;:? 7_5(”?_“i)“z,mp
+ ﬁluzzl;z 72 (o (ui)n —Rﬁ(“h))”z,n,p
n % 3 72 (o (ui)n; — Eﬁ(vlh))HzP D

i—12 .

2
2 (vi _uh))HO,Fi,D

Using Lemmas 4.2 and 4.5, we obtain:

2 2
< Jor =t
Mo, <1 3 [t

1,9

W%Rﬁ(vh —ul

< 20170 ZHU —UH +ZHU_UH1Q
W%R,s(vihfuzh)Hz’r b Z HU T H

i=1,2
a5 [t -, +,zmuw—uﬁuim>,

>

i=1,2

and we know

|2 o) - p¢<u>\\2

<2frtet - w), + 2B - )]
0lc 0.1c P oo
and using Young’s inequality for 8 > 0, it holds:
_1 2 1 1 2
=3 -, < -5 X [rotwni - Ry
=12 ep =12 ep (4.16)
_1l—h —h, 2 ’
— (=5 X |y P ~ PR
i=1,2 (S
Let 6 € R be fixed, if £, 83, B4, B5 and Fg are chosen sufficiently large such that
I1— 0] 1

< )
252 2033 2
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and

L S B |
2 Ba 285 286 4

And if 7 is sufficiently small and 8 < 1, we get the inequality (4.4).

In the case § = —1, thanks to (4.15), it holds:
02

< 2 A:ZQ

2

h
Ui il g,
= e

2

+ 55 [ on(w) = Re(e)|
B

+ (- 1—|—f—|-53)

07F1,C

T
Y2 R;(v u') 0o

1 1 ! 1 2
14— 3 ~ [P, (uM) —
+ ( + 2032 - 53) 7 (on(w) + ’Y[ /() = gl 0.1
+@H L phog H (4.17)
2 i v 0l1,c
1 1 1 1 2
+(—§+@+m) ) H’Y Al A
B 1 Yolun — Ba(u
ZZMHV o =y, + 57 2 [ ewon T
Bs 1 5 (. hnl?
+2 Y | ewmn Ry .
i=1,2 b

Let 1 > 0 and 12 > 0, we take 81 = 2m, fo =1+ 1/m1, B3 =14+m, Ba =2(1+1n2), B5 = 2(1 4+ 1/m2),
then it holds:

C? ll2
Uz - Ui
2a i= 1792
1 1 IANIE 1 h &
+ g E @) = Ba@ g 2w [ E R =)
m 1 1 h 2
- 72 (on(w) + ~ [Py (u") = g]+)
2(14+m) " 7[ K ] 0l o
+ g iR H
27]1 OFI,C
1+772 H 0,I"; D
1 2
+ (1+172)121:2H7 ff =)o
. 2
S(uh
1+n2 ni = Ryt
. 2
+(1+1/m) Z 72 (o (i) = Rp(v]))|

0T p
=12 ep
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Using (4.16) and 8 = 5 _7_277 < 1, we have:
2
2 ok 2
41+ 1) —1—772 121:2” ‘O,Fi,D S 2(1+1m9) —1—772 e - Rp(ui) ‘o,rw
72 _1l=h —h,0, B 2
- T EQHW P ) - PO
and
2
5 Irbotean -l <2 5 bhoteon -l
+2Z‘ry2a (v; —uh)‘ir_D.

i=1,2

Let 79 be positive. If we take 71 = «/(32C170) and n2 = C27y9/(32a), then we get the inequality (4.4).
This ends the proof of Theorem 4.8 O

Theorem 4.9. Let u be a solution of the variational problem (2.4). Suppose that u belongs to
(H2 Q) x (H2( Q) with 1/2 > v > 0 ifk = 1 and with 1 > v > 0 if k = 2. Then, if
additionally vo > 0 is sufficiently small when 6 # —1, the solution u" of the stabilize problem (3.6)
satisfies the following a priori error estimate:

1 1 5 2
o [t + 2P - gl
i=1,2 Y 0,I'1,c
_1 , —=h 2
+ 3 @) - Pl <OR Y fullly,g, (418)
i=1,2 i i=1,2

with C > 0 a constant independent of h and u.
Proof. Now let us establish the inequality (4.18). Set v} = I1?(u;), we have the following estimates:
2

| R () = on(|, < OR*T ST JullEy g,
b i=1,2

u; — 0] (u;)

k41—
_ < OpFimm ”UszHQZ )

and

_ 2 _ 2
> |[Ro0tt ) = owyni <O YT fullfg,
i=1,2 Y i=1,2

If we replace v by T17(u;) in (4.4), ¥ = Yoh and we use the previous inequalities, we get (4.18). We
can write:

0,I'1,¢

_1,—=hp —h
+ 3 | ) P )] <O Y ully g, (419)
i=1,2 h i=1,2

g
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5. Numerical study

This section is dedicated to some numerical experiments with isoparametric Lagrange P1 or P2 finite
element methods. The accuracy of the method is discussed for the different cases with respect to the
finite element used, the mesh size and the value of the parameter ~y. Note that the following results
are obtained without the stabilization introduced in Section 3.4. From a numerical viewpoint, the
stabilization seems not strictly necessary to obtain an optimal rate of convergence. This has already
been observed in a linear case in [16]. The numerical tests in two dimensions (resp. three dimensions)

are performed on a fictitious domain Q =] — 0.5,0.5[? (resp. Q@ =] — 0.5,0.5[*> which contains the first
body 1, a circle of radius 0.25 and center (0,0) (resp. a sphere of radius 0.25 and center (0,0,0)),
and the second Q9 =] — 0.5,0.5[x] — 0.5, —0.25[ (resp. Q22 =] — 0.5,0.5[*>x] — 0.5, —0.25[). A Dirichlet

condition is prescribed on the bottom of the rectangle (resp. parallelepiped).

The projector II is defined from the lower part of the boundary of ©; (i.e. for I'i ¢ = {z € 98 :
xq < 0}) onto its projection on the top boundary of Qs. All remaining parts of the boundaries of £y
and o are considered traction free.

Since no Dirichlet condition is applied on €21, the problem is only semi-coercive. In order to recover
the uniqueness of the solution, it is needed to prescribe the horizontal rigid translation in 2D and two
horizontal translations and one rotation in 3D. This is done by prescribing the displacement on some
given convenient points.

We use a generalized Newton’s method to solve the discrete problem (3.6) (see [27] for more details)
and our finite element library GetFEM++'. The tool for fictitious domain methods of GetFEM++
has been used which provides cut integration methods. The geometries are described with zero level
sets of some signed distances to the domain boundaries. The distance functions are approximated by
quadratic Lagrange finite elements. In order to build cut integration methods, each element of the
mesh which crosses a domain boundary is cut into a set of sub-elements conforming to this boundary.
Then, an integration method is produced on each sub-element lying on the interior of a domain and
on each sub-element boundary lying on a domain boundary. In order to obtain a convenient order
for the produced integration methods and for the approximation of the domain boundaries, curved
sub-elements are used.

Moreover, no specific treatment have been considered for the fact that boundary terms for the
contact condition approximated by Nitsche’s method is non-regular (due to the positive part). We
used an order four numerical integration method on each sub-element and we noted no improvement
of the accuracy with higher order or refined numerical integration method.

For simplicity, we consider a dimensionless situation with Lamé coefficients A=1 and y=1 and a
vertical volume density of force —0.1.

The situation studied is not strictly speaking of Hertz type due to the fact that €y is bounded.
The expression of the exact solution being unknown, the convergence is studied with respect to a
reference solution computed with a P, isoparametric element on a very fine mesh (h = 1/200 in 2D
and h = 1/30 in 3D) with the skew-symmetric method § = —1 (see Figures 5.1 and 5.2).

5.1. Numerical convergence in the two dimensional case

We perform a numerical convergence study on the three methods § = 1, 8 = 0 and § = —1 for a
fixed parameter 79 = 1/200 (chosen small in order to have the convergence for the three cases). On
Figures 5.3, 5.4 and 5.5, the relative error in percentage in L? and H'-norms on each bodies for P
Lagrange finite elements are plotted. As expected the optimal convergence is obtained in H'-norm
for all methods in good accordance with Theorem 4.9. The rate of convergence in L?-norm is slightly
sub-optimal on (s if one refers to Aubin-Nitsche lemma in the linear case. However, such a result is

'see http://download.gna.org/getfem/html/homepage/
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FIGURE 5.1. 2D numerical reference solution with contour plot of Von Mises stress.
Parameters h = 1/400, v = 1/200, § = —1 and P» elements.

not available for the nonlinear contact problem. Moreover, this slight sub-optimal convergence may
be caused by the Neumann-Dirichlet transition at the bottom of .

On Figures 5.6, 5.7 and 5.8, the same experiments are reported but for P, isoparametric Lagrange
finite elements. The convergence rate for the three cases is close to 1.6 on €27 and 1.3 on 9. This is also
close to optimality if one takes into account that the expected maximal regularity of the displacement
next to the transition between contact and non-contact should be H%2~7 for any n > 0 (However,
this result has only been proved in a scalar case in [22]). Accordingly, one could expect that the
convergence rate in the L?-norm would be close to 2.5. This is approximately the case with again
some sub-optimal rates which may due to the nonlinear characteristic of the contact condition or to
the presence of non-regularities on the transition between the Dirichlet and the Neumann condition.

5.2. Influence of the parameter g

The influence of vy on the H'-norm of the error is plotted in Figure 5.9 for P; elements and on
Figure 5.10 for P, elements. The most affected method is the one for § = 1. Indeed, it converges only
for vy very small. The large oscillation in the error norm comes from the fact that Newton’s algorithm
do not fully converge for all numerical experiments probably because there is no solution to the discrete
problem in some cases. The method for § = 0 gives a more regular error with respect to yg. It is still
important to have vy small to keep a good solution but a larger value is allowed. Accordingly to the
theoretical result of Theorem 4.9, the influence of 7y on the method 6 = —1 is more limited. There is
only a slight increase of the error for large values of vy. Note that the nonlinear discrete system (3.6)
becomes very stiff when g is very small. Thus, the possibility to have a large ~y is an advantage.
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the 3D case
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0.1

P1 finite elements for the relative L?-norm of the error (on the left) and the relative

H'-norm of the error (on the right).

FiGURE 5.3. Convergence curves in 2D for the method 6
Due to the high number of degrees of freedom in 3D, it obviously has not been possible to produce

convergence curves with a mesh size as small as in 2D. The convergence curves for 3D are shown in
Figures 5.11, 5.12 and 5.13 only for P; elements. Although we also made some tests with P> elements
and on the influence of 7y, we do not reproduce them for brevity of the paper. Indeed, the conclusions

that can be drawn are were very similar to the 2D case.

5.3. Numerical experiment
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FiGURE 5.6. Convergence curves in 2D for the method 6 = 1, with g

P2 finite elements

Hl

In this paper, we developed a fictitious domain approach for the approximation in small deformations
of the frictionless contact with nonzero initial gap of two elastic bodies. The main ingredients are the

Conclusion
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FIGURE 5.7. Convergence curves in 2D for the method 6 = 0, with 79 = 1/200 and
P2 finite elements for the relative L?-norm of the error (on the left) and the relative
H'-norm of the error (on the right).
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FIGURE 5.8. Convergence curves in 2D for the method # = —1, with 79 = 1/200 and
P2 finite elements for the relative L?-norm of the error (on the left) and the relative
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adaptation of Nitsche’s method for the contact condition introduced in [6, 7] and the fictitious domain
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method (inspired by the X-fem) developed in [16] including the stabilization proposed for the elements
having a small intersection with the real domains.

42



A FICTITIOUS DOMAIN NITSCHE’S METHOD FOR CONTACT PROBLEMS

3
10 -
-©-norm on Q 1 (slope=0.94461
@ @ -4 norm on Qz (slope=0.9588)
= £ —— —
‘: : “““““ a
£ E
3 310
2 2
k= k=
@ = X
=1 St
e -©-norm on Ql (slope=1.5875 -m
-4 horm on QZ (slope=1.4664) NN B
B 10" R B
0.01 0.1 1 0.01 0.1 1
h h

FIGURE 5.13. Convergence curves in 3D for the method § = —1, with 79 = 1/100 and
P1 finite elements for the relative L?-norm of the error (on the left) and the relative
H'-norm of the error (on the right).

Perspective of this works would be to weakened the conditions on the projection operator II to
include for instance non regular situations such as the one illustrated in Figure 5.14 where II is only
piecewise regular. Another possibility would be to consider a non-orthogonal projection.

Iy

FIGURE 5.14. Example of non regular situation on I'y ¢.

As already mentioned, the analysis can be easily adapted to Tresca friction similarly as it has been
done in [5] for the non-fictitious domain situation.

From this study we conclude that the presented method allow an optimal approximation of unilateral
contact problems for affine and quadratic finite element methods. The method for # = 1 is symmetric
which can be an advantage for the numerical solving but requires a very small parameter vg which may
lead to a very stiff discrete problem (3.6). The method for § = 0 has the advantage of the simplicity
and allows the use of a moderate 7. Finally, the skew-symmetric method # = —1 allows the use of
larger value of vy which can be a real advantage for the solving of the discrete problem.
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Appendix

Proof of Lemma 4.2. First, we define the following matrix norms:

1Al 0. = sup([[|A()][|z) and [||A][5 % = / A@)|I7 de,
zeK K

where [|.]|| is Frobenius’ norm. If v is a fixed vector, we define the translation of a vector u, by
ty(u) = u+v. In the following, the constant C' may vary from a line to another but is independent of
h. In order to prove (4.1), we distinguish the three different cases from the definition of R;. First, by
using the geometric transformation, the integral is expressed on the reference element. Then by using
the equivalence of the infinity norm with the 2-norm located on a ball, we are able to deal with the
2-norm located on the current element. Finally by using the definition of the stress tensor, we obtain
the result.

e If K satisfies 3 g > 0 such that B({x, p) C Tr' (K N ), then R;(u”) | = on(uf| k) and it
holds:

L e

We define fl = T4, cNK) and 6(u1) = o(ul) o Tk and A1 a unit normal vector on fl C.
K b 1 b
/ op(ul)? AT = / G (u1)? |det(Jx)| HJ;(%lH dr,
FLcﬂK Iy

’ dr, (5.1)

_ /F 6:(u)n - nf?|det(Jic)| [T
1
<O o (un)lllZ, 4 [P
because
(6 (ur)n - nl < )l Inllz = 18 ()5

Moreover,

F‘l is bounded, indeed the operator T is a continuous one to one correspondence.

Now using the equivalence of norms in Pk(f( ), we have:

o), & < I\Ié(U1)III§o,B@K,2> = [116:(u1) o t—gy I, 502 -
, ,B(0,2)
< Cll|o(ur) o L@Klllg,g(o,ﬁ) =C I\Ié(U1)III§,B@K,p) ; (5.2)
< O )2 e :c/ &(uy)|||% di.
[16( 1)|||27TK1(QIHK)) -1, mK)III (u1)[|%

Using the upper bound of ‘f‘l‘ and the previous inequalities, it holds:

hd*l
R,(u™)? dI < =K / 6 (ur)||% |det(Jx)| dz,
A b e 1N et 1)

< e
1

< Chy! /mK HAVuHH; dz,

o[} d,

< Chyt /QmK ‘Vu’sz dz.
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o Otherwise, if 3K € Sk such as 3§ > 0 such that B(jz,p) C Tg(fm ), then Ry(v")|, =
0n(E~(vh) o II) |det(V Pi)| and using the continuous of Jy i.e. |det(Ji)| < C, it holds:

K
(P 2 _/ _(h 2 2
IR e = o oo Bt 20 fai

<C on(E(ub) o IN)? |det(Jyr)| dT,
FlycﬂK

<C ou(E(ul))? dr,
II(Ty,cNK)

<C Un(Ef((u}Q‘))2 dr.

U?ESK Fz’cﬁf
We define I'y = Tli(l(UfesK IycNK) and 6(ug) = o(uh) o 1% and f2 a unit normal vector

on f‘g,c. As previously, we have ‘fg‘ bounded. In the same way as in (5.1), we have:

on(Eg(u))? AT < ChE [ (i)

.
112, 5, P2/

/UKGSK ngcﬂ?
Now using the equivalence of norms in P¥(K)? and in the same way as in (5.2), we obtain:

N 2 ~ 2
’”‘7(712)‘“0071;2 < |H‘7(u2)H|OO,B@;,2 |1 HTI:(«IH)’

<C / _ lo(a)||[3 da.
-l
Hence, using the previous inequalities, it holds:
hE!
R;(uM? dI < K / 6 (ur)|||% |det(J=)| dz,
[ B B [ oo Nl e 7)
: 7 T=
2
<onzt [ |vib|] de.
K INK 2

e Otherwise, we suppose it exits an neighbor element K’ of K such that 3 §x > 0 such that
B({xr, p) C T (K' N Q), then Ry(v")|, = 0n(Er(v})). Then, it holds:
(M| — hy)\2
| Bs(u )HOILCmK oo on(Egr (ul))? dT.
We define by I} = Trt (T1,c N K) and ¢ (u) = o(ul) o Ty and by 7 a unit normal vector

on f‘l,c. As previously, we have ’f’ll bounded. In the same way as in (5.1), we have:
hy\2 N 2 —1a e
/ on(Excr(uh))? dT = / 6 (un)? [det(Jien)| | Tk | dF
Iy cnK i

— A 2 [
< ORI 116" ) 3 e | B

Now using the equivalence of norms in P*(K)? and in the same way as in (5.2), we have:

N 2 ~ 2
oI 2200y < @I ey

gc/ )% da.
TE(QmK,)WU(ul)WF z
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Hence, using the previous inequalities, it holds:

hd—l
RAh2dF<CK'/ 2 [det (Jxr)| di,
A i oy I et a2

< Chyt
Q1NK’

Finally, by iterating on all the elements K intersecting I'; ¢ and using the quasi uniformity of
the mesh, we obtain (4.1). O

vah|[* d
u12x.

Proof of Lemma 4.7. We argue by contradiction. It is sufficient to prove the result for v = M.
Suppose there exists (v )nen C V' such that -, 5 [|v;, n||§ o, = 1, for n € N, which satisfies

1
Una’Un + Z / Ui2,n drgﬁ

112

Hence, it holds lim Z / v?, dl' =0 and lim a(v,,v,) = 0. From the weak sequential com-
n—+00 i=10YT ’ n—+00

pactness of the unit ball of V', there exits v € V and a subsequence still denoted by v,, which weakly
converges to v. The compact injection of H' into L? implies that up to a subsequence, v, converges
to v strongly in L%(Q1)? x L?(Q)?. First, we show that v = 0 and then that v, Converges to v
strongly in H'(Q1)? x H'(€2)%. By using the lower semi-continuity of v — ¥,_; , Jr, " vf, dT, we
have Z / UZ-2 dI' = 0 with mes(I'; p) # 0. Furthermore, due to the L?-convergence, one has
i=1,2714,
li = larl h k1 f
Jm Z [vimllg.o, = 221:2 [villg g, - Similarly by using the weak lower semi-continuity of a(.,.), we

deduce a(v, v) = 0 and using the property of the fourth order tensor A, it holds:

oz/Q o(vr) : e(vr) A = / vi) : £(v;) A2 = [|e(wi)]o g, -

Let us finally show that v = 0. Since, the tensor A is uniformly elliptic, it holds:

a(vp,vy) = C Z / e(Vin) 1 e(vip) dQ2=C Z le(in)llg 0 and ngrfooa(vn,vn) =0.
i=1,2 i=1,2

Hence

i 2 le@iallog, = 2 ei)li,

Moreover, thanks to Korn’s inequality (see [9]), it holds:

> le@im)lloq, + > rip 2 C Y lvinllgg, -

i=1,2 i=1,2 1=1,2
We deduce:
Jim 3 ol g, = 3 olg, =0
i=1,2 1=1,2
which contradicts Y-,_; 5 HUWH? o =1 O

Proof for operator B" to be hemi-continuous (for the proof of Theorem 4.1).
First, we need to prove B" is coercive which is a consequence of the previous lemmas. Then we
establish an estimate which will imply the hemi-continuity. Let u”, v* € V", it holds:

(B"u" — BMM ut — M)y o =T+ 1T+ 11T (5.3)
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with
— o (wh _ R R h h_ . h h_ ., h
I =a(u" —v"u —v)—/F OyRy(u" —v")Ry(u" — o) dI’
1,C

— 0 R u —v; - Ry(ut —uv;) dl,
Z J o ) Rp(ul o)
- Pﬁi:ﬁvﬁ» (P (ult) — Pty (o)) dT,

7’Y 0 i,70

II_Z/

112 1D7

111 = / ) i([PWuh) — gly — [PPP(0") = g]4) (PP (u) = PP (")) dT.

Now, we need to bound 1,1, 1] from below to prove the coercivity.
Using Young’s inequality for 8 > 0, it holds:

11> (0= B2 [ ey = gl - (P20 - o Hirl .
-, 6
Using Young’s inequality for 3 > 0:
00 5 it - 019 5 iy w09
We deduced from the estimates of I1 and I that:
(B"u" — BM" u — M) g
> ot ot o) bRy - o) 3 I @ota) = Bl .
= 20 b epotd) - gl - 1200 g1
1-6B <9| p WR U ”h)Hi,rl,c
- '12}0');;‘,2 bt =), + (60— W)EQ o @t = R,
= ot — ) (1 !12;/9|)i§2H7—§(u?—v?> .
_sog 3 iRty oty I e ]
ra- '12‘6"5 b Pt = gl — 1P = gl
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If § =1 and B’ = 2, we have:

(B"uh — Bl ul — vh)l Q

h 2

> a(u — o, ul )+ = ZH7 (uj — v} ‘iD_Q.Z‘

73 (Rp(ult) — Ry(ul))
N

I';p

)

(PRt — gl — (PR — )| i

0, ¢ 0l ¢

Thus, if vy is sufficiently small and using the coercivity (4.2) for I and the previous Lemma 4.7:

u—v
i=1,2 L&

(Bhu — Bhyh

If 6 = —1, choose = |12;9\7 it holds:
2

(B"u" — B"" " — M) g > a(ul — ot u —oM) + > H'f%(u? -l -
i=1,2 b

Y

and from the coercivity (4.2) for I, we obtain:

2

(B"u" — Bl — M) g > C Z ‘ ult — ol Lo
i=1,2 T
If 0 # —1, we take g = 159 6' and 3’ = |1 + 6], it holds:
(B"uh — Bl ul — vh’)1 Q
R ) ] (I R e o
- 2(1 +0)° |43 Ry “h)HZ,pLC .

So, using 7o sufficiently small and using the coercivity (4.2) for I and previous Lemma 4.7, it holds:

(Bl — Bl ol ult — ol

i=1,2 L&

Now, we prove the hemi-continuity of B". Let ¢, s € [0, 1] and u",v" € V", we have:
(B (u" — o) = BM(u" — s0"),0")1 0

W%Rﬁw)H; s =10l Y iR

< s —tla(o™, ") +|s — t]|0) \

ehl,,

1=1,2
Y (5.6)

For all a, b in R, we have the following estimate:

lla]4 — [b]+] < la—1b|.
So we deduce that
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. 1 5 N ho
intr o [ [PPP(u = t0") — gl = [PIP(u" = s0") — gl | [P/ ()] T

1 hop
Sls=tl [ = [l"nl =R 0" [P M) ar (57)
Tic
Hence
‘(Bh(uh — tvh) — BRM P — sol), ’Uh)LQ‘

<lo=t (ath) +ol PR, 10 3 AR,
> Jo S [PEn] - [Plen] avs [ Z[proah|[pifan)] ar).
Hence B" is hemi-continuous. O
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