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Abstract. We are interested in geometric approximation by parameterization of two-dimensional multiple-
component shapes, in particular when the number of components is a priori unknown. Starting a standard
method based on successive shape deformations with a one-component initial shape in order to approximate
a multiple-component target shape usually leads the deformation flow to make the boundary evolve until it
surrounds all the components of the target shape. This classical phenomenon tends to create double points
on the boundary of the approximated shape.

In order to improve the approximation of multiple-component shapes (without any knowledge on the
number of components in advance), we use in this paper a piecewise Bézier parameterization and we consider
two procedures called intersecting control polygons detection and flip procedure. The first one allows to prevent
potential collisions between two parts of the boundary of the approximated shape, and the second one permits
to change its topology by dividing a one-component shape into a two-component shape.

For an experimental purpose, we include these two processes in a basic geometrical shape optimization
algorithm and test it on the classical inverse obstacle problem. This new approach allows to obtain a nu-
merical approximation of the unknown inclusion, detecting both the topology (i.e. the number of connected
components) and the shape of the obstacle. Several numerical simulations are performed.

Math. classification. 68U05, 68W25, 49Q10, 65N21.
Keywords. Shape approximation; free-form shapes; multiple-component shapes; Bézier curves; intersecting
control polygons detection; flip procedure; inverse obstacle problem; shape optimization.

1. Introduction

Geometric shape approximation methods are commonly based on successive shape deformations, where
the boundary of the approximated shape is parameterized and evolves at each step in a direction given
by the deformation flow. This technique is widely used for example in shape optimization problems
where the flow is given by the so-called shape gradient (see, e.g., Chapter 5 of the book [23] of Henrot
et al.), or in image segmentation (see, e.g., [25]). Numerous parameterizations of the boundary have
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been considered in the literature, such as polygons, Fourier series, etc. Each of these parameterizations
has its own advantages and drawbacks, that depend on the nature of the problem studied.

In this paper we are especially interested in the geometric approximation of multiple-component
shapes, in particular when the number of components is a priori unknown. Starting a parameterization
method with a one-component initial shape in order to approximate a multiple-component target shape
usually leads the deformation flow to make the boundary evolve until it surrounds all the components
of the target shape (see Figure 1.1 for illustrations). This classical phenomenon tends to create double
points on the boundary of the approximated shape.

Target shape
Approximated shape

(a) Two-dimensional case (b) Three-dimensional case

Figure 1.1. Geometric shape approximation of a two-component target shape starting
from a one-component initial shape.

In order to improve the approximation of multiple-component shapes, our idea is to look for an
appropriate parameterization that allows to achieve two numerical tasks. Firstly the parameterization
has to be well-suited in order to prevent the potential formation of double points, i.e. to locate the
parts of the boundary that are close to each other. Secondly it has to be adapted in order to easily
change the topology of the approximated shape, precisely in order to divide a one-component shape
into a two-component shape. Moreover, for practical uses, we look for a complete method that is easily
implementable with a relatively low numerical cost.

We present in this paper a method based on a Bézier parameterization. The main idea is that this
polynomial parameterization can be approximated by its control polygon. In particular one can easily
prevent the potential formation of double points by looking for intersecting control polygons. We refer
to Section 3.2 for details on the so-called intersecting control polygons detection. Once this first step
is achieved, one can easily reorganize the control points of the Bézier parameterization in order to
modify the topology of the shape, precisely in order to divide one component into two. We refer to
Section 3.3 for details on the so-called flip procedure.1 In this work we detail the above method in the
two-dimensional case, using piecewise Bézier curves.2

In order to test the two procedures introduced in this paper, we perform numerical simulations
on the classical inverse obstacle problem. Precisely we consider the inverse problem of detecting some
unknown inclusions ωex in a larger bounded domain Ω from boundary measurements made on ∂Ω. The
aim is to reconstruct numerically an approximation of the target shape ωex using shape optimization
tools (see Figure 1.2 for an illustration). In this paper we will study this inverse problem by minimizing
a shape least-square functional.

1Actually a similar procedure can also be considered in order to merge two components into one (see Appendix B for
some details).

2Let us give a brief discussion on the three-dimensional case. We refer for instance to [31] where deformation of
piecewize Bézier surfaces is presented with an implementation. Note that the adaptation of the complete algorithmic
setting of the flip procedure to the three-dimensional case would be nontrivial since it would increase the algorithmic and
combinatoric complexities. Numerous considerations about this generalization could be addressed, however we postpone
this interesting issue to a future work.

256



Flip procedure in approximation of multiple-component shapes

Exterior boundary ∂Ω
Target shape (or exact shape) ωex
Initial approximated shape
Final approximated shape

Figure 1.2. Illustration of reconstruction for the inverse obstacle problem.

We briefly recall now the major shape optimization techniques used in order to study this problem
in the literature. Two main categories are topological and geometric shape optimization methods. The
topological gradient approach was introduced by Schumacher in [33] and Sokolowski et al. in [36].
This method is based on asymptotic expansions and consequently is essentially adapted for relatively
small inclusions. Moreover, even if the topological optimization is useful in order to find the number
of inclusions, it may be not well-suited in order to find a satisfactory approximation of the shape
of the inclusions (see, e.g., [12] and references therein). We refer to [4] and references therein for a
comprehensive mathematical treatment with theoretical and numerical results about reconstruction
of small inclusions from boundary measurements. We also refer to the work [21] for generalities on
topological asymptotic expansion in the elastic context. In the geometric shape optimization category,
two main techniques are addressed in the literature. They are both based on the computation of a
shape gradient used as a flow making the shape evolve. These two methods use different representations
of the shape and different techniques to deform it. The first approach is the so-called level set approach
(see, e.g., the survey [9] of Burger et al. and references therein or [35]). It is originally based on an
implicit representation of the approximated shape on a fixed mesh and, in the case of inverse problems,
some regularization methods are usually needed (as curve shortening in, e.g., [32, Section 8]). In order
to detect several inclusions, this method does not need any a priori knowledge on the number of
inclusions. The second approach is based on boundary variations via mesh variations and, in the case
of inverse problems, on an explicit representation of the approximated shape. This method is used
e.g. in the work [1] of Afraites et al. (where a regularization by parameterization is used). Note that
the standard algorithm based on shape derivatives moving the mesh does not provide the opportunity
to change the topology of the shape and consequently the number of inclusions has to be known in
advance. Recent works propose to mix several of the above different approaches. For instance we refer
to the works of Allaire et al. in [2, 3] and Burger et al. in [8] (see also the thesis [30, Section 5]) that
combine the classical geometric shape optimization through the level set method and the topological
gradient, to the work of Pantz et al. in [29] which develops an algorithm using boundary variations,
topological derivatives and homogenization methods and to the works of Caubet et al. in [11] and
Christiansen et al. in [15] which couple topological and boundary variations approaches.

The method presented in this paper is based only on mesh variation techniques. The parameteri-
zation by piecewise Bézier curves and the flip procedure permit to dynamically change the topology
of the shape in order to find the number of inclusions, and the shape derivatives approach allows to
approximate the shape of the inclusions with an explicit representation. This new method seems to
be well-suited in order to study the above inverse obstacle problem, in particular in the case where
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the number of inclusions is a priori unknown, and can be seen as an alternative to the above mixed
methods combining the level set approach and the topological gradient.

Organization of the paper. The paper is organized as follows. Section 2 recalls some basics
and notations about piecewise Bézier curves. Section 3 is concerned with the two main features of
this paper, that is, the intersecting control polygons detection and the flip procedure. Section 4 is
dedicated to several numerical simulations in the context of the inverse obstacle problem.

2. Notations and basics on piecewise Bézier curves

In this section we fix our notations and recall some basics about Bézier curves (see, e.g., [19, 34] or [20,
from p. 409] for more details). Let d ∈ N∗ and a set of d + 1 points P0, . . . , Pd of R2. The associated
Bézier curve, denoted by B([P0, . . . , Pd]), is defined by

∀t ∈ [0, 1], B([P0, . . . , Pd], t) :=
d∑
j=0

Pjbj,d(t),

where bj,d are the classical Bernstein polynomials given by

bj,d(t) :=
(
d

j

)
tj(1− t)d−j .

The integer d is the degree of the curve and the points P0, . . . , Pd are its control points (or its control
polygon). Note that a Bézier curve does not go through its control points in general. However it starts
at P0 and finishes at Pd. If P0 = Pd, the Bézier curve is said to be closed. Each point of a Bézier curve
is a convex combination of its control points. As a consequence, a Bézier curve lies in the convex hull
of its control polygon (see Figure 2.1).

P0

P1

P2

P3

P4

Figure 2.1. A non-closed Bézier curve of degree 4 lying in the convex hull of its control polygon.

Remark 2.1. As Bézier curves are widely used in Computer Aided Geometric Design (see [19, 34]),
they are commonly defined as parametric curves lying in the euclidean space R2 (or R3). However
this definition can be extended to Rn for any n ∈ N∗. In this paper, we are only interested in the
two-dimensional case n = 2.

In this paper we focus on the geometric approximation of boundaries of two-dimensional bounded
shapes with the help of Bézier curves. In the sequel no distinction will be done between a two-
dimensional bounded shape and its boundary.

Using a single closed Bézier curve in order to approximate a two-dimensional shape is not an
efficient method for several reasons. Indeed, in order to approximate a shape with a lot of geometric
features, one would need to increase the number of degrees of freedom, i.e. the number of control
points. However, as is very well-known, increasing the degree of an approximating polynomial curve
leads to a classical oscillation phenomenon and, in the particular case of a Bézier polynomial curve, it
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leads to numerical instabilities (due to the ill-conditionness of the Bernstein-Vandermonde matrices,
see, e.g., [27]). Moreover, since each control point has a global influence on the curve, one could not
handle local complexities of a shape with a single Bézier curve. The classical idea is then to divide
the curve in several Bézier curves of small degrees. This leads us to recall the following definition of
piecewise Bézier curves.

Let N ∈ N∗, d ∈ N∗ and a set of N(d+ 1) control points P1,0, . . . , P1,d, . . . , PN,d of R2 satisfying the
continuity relations Pi,d = Pi+1,0 for every i = 1, . . . , N − 1.3 The associated piecewise Bézier curve,
denoted by B([P1,0, . . . , PN,d])4, is defined by

∀t ∈ [0, 1], B([P1,0, . . . , PN,d], t) := B([Pi,0, . . . , Pi,d], Nt− i+ 1),

if t ∈
[
i− 1
N

,
i

N

]
, i ranges from 1 to N.

The global curve is then composed of N Bézier curves called patches. Note that a piecewise Bézier
curve goes through Pi,0 and Pi,d for all i = 1, . . . , N . If P1,0 = PN,d, the piecewise Bézier curve is said
to be closed.

Remark 2.2. In practice we use cubic patches (d = 3) because they are sufficient in order to recover
many geometrical situations, such as inflexion points (see Figure 2.2).

Figure 2.2. A closed piecewise Bézier curve composed of seven cubic patches.

Remark 2.3. In this paper, since each Bézier patch has the same degree d, the curve is said to be
uniform in degree. Nevertheless one can easily build piecewise Bézier curves with patches of different
degrees.

Adapting the proof of the classical Stone-Weierstrass theorem, one can prove the following result
(which corresponds to a particular case of the classical Bishop theorem, see [6]).

Theorem 2.4. Let f ∈ C([0, 1],R2). For all ε > 0 and all d ∈ N∗, there exist N ∈ N∗ and a
set of N(d + 1) control points P1,0, . . . , P1,d, . . . , PN,d, satisfying the continuity relations, such that
‖f(t)−B([P1,0, . . . , PN,d], t)‖R2 ≤ ε for all t ∈ [0, 1].

This result fully justifies the use of piecewise Bézier curves in order to approximate two-dimensional
bounded shapes.

Remark 2.5. Recall that the use of polar coordinates, where the radius is expanded in a truncated
Fourier series, is another common and efficient strategy in order to approximate two-dimensional

3The continuity relations guarantee the well-definedness and the continuity of the piecewise Bézier curve.
4One would note here a conflict in notations of a Bézier curve and of a piecewise Bézier curve. In the sequel no

confusion is possible since we will only consider piecewise Bézier curves.
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shapes (see, e.g., [1] in the context of inclusions detection). However it has two main drawbacks. Firstly
it allows to represent only star-shaped domains and secondly, due to a classical oscillation phenomenon,
it cannot represent rigorously straight lines (see, e.g., [14, Figure 5 p 140] in the context of inclusions
detection). The use of piecewise Bézier curves is then an alternative in order to approximate non
star-shaped domains and straight lines (see Section 4.3 for some numerical simulations in the context
of inclusions detection). To conclude this remark, let us recall that the flip procedure, which is the
main feature of this paper, is based on the detection of potential collisions between two parts of the
boundary of the approximated shape (see Section 3 for more details). Thus, it is worth precising that
a parameterization based on polar coordinates, where the radius is expanded in a truncated Fourier
series, is not adapted to prevent such collisions, in contrary to a piecewise Bézier parameterization
(see Section 3.2 for details).

3. Intersecting control polygons detection and flip procedure

In this paper we are interested in geometric two-dimensional shape approximation problems in which
the target shape can have multiple connected components but the number of components is unknown.
In such a case, starting a classical geometric approximation with a one-component initial shape may
lead to the situation depicted in Figure 3.1, that is, the deformation flow makes the boundary evolve
until it surrounds all the components of the target shape. This classical phenomenon tends to create
a collision between two parts of the boundary of the approximated shape.

Geometric shape
approximation

Target shape
Initial approximated shape
Final approximated shape

Figure 3.1. A geometric shape approximation of a two-component target shape start-
ing from a one-component initial approximated shape. The final approximated shape
surrounds the two components.

In this paper our major aim is to provide a simple and new concept (called flip procedure) that can
be added to any shape approximation algorithm based on piecewise Bézier curves, and which allows
to change the topology of the approximated shape. Precisely, the flip procedure allows to divide a
one-component shape into a two-component shape.

Remark 3.1. In this paper, we focus on piecewise cubic Bézier curve (d = 3, see Remark 2.2).
However, this method could be easily extended to any d ≥ 2.

3.1. Overview

Let us consider a general geometric shape approximation algorithm in which the boundary of the
approximated shape is parameterized by a piecewise cubic Bézier curve. It starts from a one-component
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initial shape ω0 and produces a sequence of one-component shapes (ωk)k≥0 by deforming the boundary
at each step. Our idea consists in two phases (that are summarized in Figure 3.2):

(1) check, at each step of the approximation algorithm, if the current shape ωk is in the situation
depicted in Figure 3.1, that is, if two parts of the boundary are very close to each other. The
parameterization by piecewise Bézier curves allows us to prevent such a situation by looking
for intersecting control polygons. This procedure will be called intersecting control polygons
detection and will be detailed in Section 3.2;

(2) if some control polygons intersect each other, we apply the flip procedure in order to obtain a
two-component shape by keeping unchanged all other control polygons. The flip procedure is
detailed in Section 3.3.

Shape ωk

Scan for
intersecting

control polygons

Two intersecting
control polygons

Flip

Two-component
shape ωk+1

Figure 3.2. Overview of the complete procedure.

For the sake of simplicity of presentation, we will assume that, during the evolution of the shape ωk,
situations of intersection between control polygons have always the same pattern:

(A1) only two situations of intersection between control polygons are possible: either one control
polygon intersects exactly another one, or one control polygon intersects exactly two consecu-
tive ones (see Figure 3.3);

P0

P1

P2
P3

Q0Q1

Q2

Q3

(a) Case with two control
polygons

P0

P1

P2

P3
Q0

Q1

Q2

Q3R0

R1

R2

R3

(b) Case with three control
polygons

Figure 3.3. Assumption (A1).
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(A2) futhermore, at each iteration, at most one situation of intersection occurs.

Assumptions (A1)-(A2) are ordinarily satisfied in practice, in particular in all numerical simulations
we made (see Section 4.3). Removing these assumptions should not involve new deep ideas or new
concept, however the complete algorithmic description and implementation would become considerably
tricky and challenging. It is not our aim to deal with this issue in this paper.

Remark 3.2. In Figure 3.3, note that collisions between two patches are not excluded. In that case,
we say that the shape ωk is self-intersecting. However, from Assumption (A3) enunciated later, this
situation does not jeopardize the integrity of Algorithm A presented in Section 4.3.1 (see in particular
Step 3(b)ii of the algorithm).

Remark 3.3 (Controlling the size of the patches using split and merge functions). In order to maintain
numerical stability, one should control the size of the control polygons (that is, the diameter of their
convex hull) in a range [Smin, Smax] with 0 < Smin < Smax. This avoids to deal with very large patches
and/or very small ones. To this end, the diameter of the convex hull of each control polygon can be
computed at each iteration. If a control polygon does not satisfy the size condition, it is either split into
two control polygons or merged with a neighbor one. The split and merge functions (see [26] for more
details) are inverse operations and both use interpolation in order to compute the new control polygons
(see Figure 3.4). The split function divides a control polygon into two. Precisely, it interpolates the
first half of the patch and, in a second time, interpolates the other half. Since each half of the patch
is a Bézier curve, the shape is not modified after a split. The merge function is the reverse operation.
From two consecutive control polygons Q and R, it computes one patch that interpolates the four
points B(Q, 0), B(Q, 2

3), B(R, 1
3) and B(R, 1). Then one starts from seven control points and ends

with four. Note that merging polygons modifies slightly the boundary.

P

Q R

(a) (Q, R) ←− Split(P ) - The bound-
ary is not modified.

Q

R

P

(b) P ←− Merge(Q, R) - The boundary is
slightly modified.

Figure 3.4. Examples of the split and merge functions.

3.2. Intersecting control polygons detection

Checking if each control polygon intersects another one may be very expensive in terms of compu-
tations. Axis-Aligned Bounding Boxes (AABBs) are a very common tool in Computer Graphics and
Computational Geometry in order to detect the collision of two objects (see, e.g., [18]), with a rela-
tively low computational cost. AABB is defined as the smallest rectangle, whose sides are aligned with
the axes, containing the control polygon (see Figure 3.5).
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x

y

Figure 3.5. AABBs of control polygons.

A necessary condition for two intersecting control polygons is clearly the intersection of their re-
spective AABBs. As a consequence, instead of looking directly for intersecting control polygons, we
first look for intersecting AABBs. Thus, the intersecting control polygons detection consists in two
steps:

(1) we first list all the pairs of intersecting AABBs;

(2) in a second time, we check these pairs in order to see if the associated control polygons intersect.
To do so, we directly check the 9 segment-segment intersections of the polygons (see, e.g., [28,
p. 28-30]).

Finally, each pair of intersecting control polygons will be given as input to the flip procedure detailed
in the following section.

3.3. The flip procedure

From Assumption (A1), only two cases of intersecting control polygons are considered (see Figure 3.3).
The flip procedure described in this section is a simple tool that can be easily implemented and that
handles these two situations.

First case: two intersecting polygons. From P = {P0, P1, P2, P3} and Q = {Q0, Q1, Q2, Q3}
being two intersecting polygons of a same connected component, the flip procedure builds two new
polygons as follows, (see Figure 3.6):{

P0, P0 + 1
3
−−−→
P0Q3, P0 + 2

3
−−−→
P0Q3, Q3

}
and

{
Q0, Q0 + 1

3
−−−→
Q0P3, Q0 + 2

3
−−−→
Q0P3, P3

}
.

Second case: three intersecting polygons. The case with three control polygons is very sim-
ilar. From P = {P0, P1, P2, P3} being a control polygon intersecting two consecutive ones Q =
{Q0, Q1, Q2, Q3} and R = {R0, R1, R2, R3}, the flip procedure builds two new polygons as follows,
(see Figure 3.7):{

P0, P0 + 1
3
−−−→
P0R3, P0 + 2

3
−−−→
P0R3, R3

}
and

{
Q0, Q0 + 1

3
−−−→
Q0P3, Q0 + 2

3
−−−→
Q0P3, P3

}
.

For the sake of simplicity of presentation, we will assume that the following hypothesis is satisfied:

(A3) the flip procedure does not produce intersecting control polygons.
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P0

P1

P2
P3

Q0Q1

Q2
Q3

Flip

P0

P3
Q0

Q3

Figure 3.6. Flip procedure - Case of two control polygons.

P0

P1

P2

P3 Q0
Q1

Q2

Q3R0

R1

R2

R3

Flip

P0

R3

Q0P3

Figure 3.7. Flip procedure - Case of three control polygons.

In the same spirit of Assumptions (A1)-(A2), Assumption (A3) is ordinarily satisfied in practice, in
particular in all numerical simulations we made (see Section 4.3).

4. Application to multiple-inclusion detection

This section focuses on the problem of reconstructing numerically an obstacle ωex living in a larger
bounded domain Ω of R2 from boundary measurements. Our aim is in particular to test the flip pro-
cedure introduced in this paper in the case where ωex is a two-component obstacle (see Section 4.3.4).

In order to solve numerically the above inverse obstacle problem, we will actually consider a shape
optimization problem, by minimizing a shape cost functional. In this paper we use the classical ge-
ometrical shape optimization approach, based on shape derivatives and on a shape gradient descent
method. We refer to the classical books of Henrot et al. [23] and of Sokołowski et al. [37] for more
details on the techniques of shape differentiability.

Let us fix some notations that will be used in this section. We denote by Lp, Wm,p and Hs the usual
Lebesgue and Sobolev spaces. We note in bold the vectorial functions and spaces, such as Wm,p. Let Ω
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be a nonempty bounded and connected open set of R2 with a C2,1 boundary and let g ∈ H5/2(∂Ω)
such that g 6= 0. We denote by n the external unit normal to ∂Ω, and for a smooth enough function u,
we denote by ∂nu the normal derivative of u.

Let d0 > 0 be fixed (small). In the sequel Od0 stands for the set of all open subsets ω strictly
included in Ω, with a C2,1 boundary, such that the distance d(x, ∂Ω) from x to the compact ∂Ω is
strictly greater than d0 for all x ∈ ω, and such that Ω\ω is connected. Finally we also introduce Ωd0
an open set with a C∞ boundary such that

{x ∈ Ω ; d(x, ∂Ω) > d0/2} ⊂ Ωd0 ⊂ {x ∈ Ω ; d(x, ∂Ω) > d0/3} .

4.1. Problem setting

We focus on the following inverse problem. Assume that an unknown obstacle ωex ∈ Od0 is located
inside Ω. We consider hereafter the Laplace equation in Ω\ωex with homogeneous Dirichlet boundary
condition on ∂ωex and non-homogeneous Dirichlet boundary condition on ∂Ω. Precisely we denote by
uex ∈ H1(Ω\ωex) the unique solution of the problem

−∆uex = 0 in Ω\ωex,
uex = g on ∂Ω,
uex = 0 on ∂ωex.

(4.1)

Since g ∈ H5/2(∂Ω) and Ω\ωex has a C2,1 boundary, note that uex belongs to H3(Ω\ωex). Our main
purpose is to reconstruct the unknown shape ωex, assuming that a measurement is done on the
exterior boundary ∂Ω. Precisely we assume in this paper that we know exactly the value of the measure
fb := ∂nuex ∈ H3/2(∂Ω) on ∂Ω. Thus, for a given nontrivial Cauchy pair (g, fb) ∈ H5/2(∂Ω)×H3/2(∂Ω),
we are interested in the following geometric inverse problem:

find ω ∈ Od0 and u ∈ H1(Ω\ω) ∩ C0(Ω\ω) which satisfies the overdetermined system
−∆u = 0 in Ω\ω,

u = g on ∂Ω,
∂nu = fb on ∂Ω,
u = 0 on ∂ω.

(4.2)

The existence of a solution is trivial since we assume that the measurement fb is exact. From the
classical Holmgren’s theorem (see, e.g., [24]) one can obtain an identifiability result for this inverse
problem which claims that the solution is unique. This fundamental question about uniqueness of a
solution to the overdetermined problem (4.2) was deeply studied, see for example [7, Theorem 1.1],
[16, Theorem 5.1] or also [17, Proposition 4.4 p. 87]. We recall the identifiability result for the reader’s
convenience.5

Theorem 4.1. The domain ω and the function u that satisfy (4.2) are uniquely defined by the Cauchy
data (g, fb) 6= (0, 0).

Remark 4.2. Actually we could assume that the measurement fb is done only on a nonempty subset O
of ∂Ω. All the presented result can be adapted to this case (see, e.g., [10]).

In order to solve the inverse problem (4.2) we will actually focus on the shape optimization problem

ω∗ ∈ argmin
ω∈Od0

J(ω), (4.3)

5Note that Theorem 4.1 is true even with the following weaker assumptions: (g, fb) ∈ H1/2(∂Ω) × H−1/2(∂Ω) and ω
has only a continuous boundary (see [7, Theorem 1.1]).
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where J is the nonnegative least-square functional defined by

J(ω) :=
∫
∂Ω
|∂nuω − fb|2 ,

where uω ∈ H3(Ω\ω) is the unique solution of the problem
−∆uω = 0 in Ω\ω,

uω = g on ∂Ω,
uω = 0 on ∂ω.

(4.4)

Indeed, the identifiability result ensures that J(ω) = 0 if and only if ω = ωex. Finally, in order to solve
numerically the shape optimization problem (4.3), we will now compute the shape gradient of the cost
functional J and apply a classical gradient descent method.

4.2. Computation of the shape gradient.

In order to define shape derivatives, we will use the Hadamard’s method. We first introduce the space
of admissible deformations given by

U := {V ∈W3,∞; Supp V ⊂ Ωd0}. (4.5)
In particular we are interested in the shape gradient of J defined by

DJ(ω) · V := lim
t→0

J
(
(I + tV )(ω)

)
− J(ω)

t
,

for every ω ∈ Od0 and every V ∈ U . For sake of completeness, we recall the proof of the following
result in Appendix A.

Proposition 4.3. The least-square functional J is differentiable at ω ∈ Od0 in the direction V ∈ U
with

DJ(ω) · V = −
∫
∂ω
∂nuω ∂nwω (V · n) , (4.6)

where wω ∈ H1(Ω\ω) is the unique solution of the adjoint problem given by
−∆wω = 0 in Ω\ω,

wω = 2 (∂nuω − fb) on ∂Ω,
wω = 0 on ∂ω.

(4.7)

From the above explicit formulation of the shape gradient of J , we are now in a position to implement
some numerical simulations based on a classical gradient descent method and we include the flip
procedure introduced in this paper in order to detect in particular a multiple-component obstacle.

4.3. Numerical simulations

Before coming to numerical simulations, let us recall that many difficulties can be encountered in order
to solve numerically Problem (4.3), as explained in [1, Theorem 1] (see also [5, Proposition 2.4]). Indeed,
the gradient has not a uniform sensitivity with respect to the deformation directions. However, we use
in this paper a parametric model of shape variations using piecewise Bézier curves which corresponds
to a regularization method (as the truncated Fourier series used in [1]) allowing to overcome the
ill-posedness of the inverse problem and then to solve it numerically.

Note that we use here piecewise Bézier curves that do not satisfy the C2,1-regularity assumption
made in the previous section.6 This regularity hypothesis is sufficient in order to prove rigorously the

6However one could retrieve the C2,1-regularity hypothesis by imposing some additional constraints on the control
points of the piecewise Bézier curves.
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previous theoretical results. In this section dedicated to numerical simulations, we make the choice to
not deal with this regularity issue since we still observe relatively good numerical reconstructions of
obstacles. Besides, let us mention that the issue of knowing if the computed shape gradient (computed
in particular from approximations of shapes by mesh and of solutions of PDEs by a finite element
method) is an actual approximation of the genuine one is a fully-fledged question and it is not our
aim to address this issue in this paper.

4.3.1. Framework for the numerical simulations

The numerical simulations presented hereafter are performed in the two-dimensional case using the
finite element library FreeFem++ (see [22]). The exterior boundary ∂Ω is assumed to be the circle
centered in the origin and of radius 10 and we consider the exterior Dirichlet boundary condition
g = 100. In order to get a suitable measure fb, we use a synthetic data, that is, we fix a shape ωex and
solve Problem (4.1) using a finite element method (here P2 finite element discretization) and extract
the measurement fb by computing ∂nuex on ∂Ω.

Then we use a P1 finite element discretization to solve Problems (4.4) and (4.7) with 50 discretiza-
tion points for both the exterior boundary and each cubic Bézier patch describing the shape ω. In order
to numerically solve the optimization problem (4.3), we use the following classical gradient descent
algorithm and we include the flip procedure at Step (3).

Algorithm A

(1) Fix k = 0, fix an initial shape ω0, fix a maximal number M ∈ N∗ of iterations and fix λ ≥ 1
a given tolerance coefficient for the flip procedure (see Step (3(b)ii), λ should be chosen close
to 1).

(2) Control the size of the patches of ωk (see Remark 3.3).

(3) Scan ωk looking for intersecting control polygons (see Section 3.2):

(a) in the case of no intersecting control polygons, go to Step (4);
(b) in the case of intersecting control polygons:

(i) apply the flip procedure and obtain a multiple-component shape ω1
k ∪ ω2

k;
recall that ω1

k ∪ ω2
k is not self-intersecting from Assumption (A3);

(ii) compute J(ω1
k ∪ ω2

k) and J(ωk), and set J(ωk) = +∞ if ωk is self-intersecting:
(A) if J(ω1

k ∪ ω2
k) < λJ(ωk), do ωk ← ω1

k ∪ ω2
k;

(B) else, go to Step (4).

(4) Solve Problems (4.4) and (4.7) with ω = ωk.

(5) Compute the shape gradient DJ(ωk) from Formula (4.6).

(6) Move the control points of the shape, that is, do ωk+1 ← ωk − αkDJ(ωk), where αk is a small
positive coefficient chosen, e.g., by a classical line search.

(7) Do k ← k + 1 and get back to Step (2) while k < M .
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4.3.2. First simulations: detection of smooth and convex shapes

We first test Algorithm A on the problem of detecting one smooth convex object. Precisely, we begin by
detecting the circle centered at the origin and of radius 6 and the ellipse {(8 cos θ, 5 sin θ), θ ∈ [0, 2π]}
using four cubic Bézier patches. Numerical simulations are performed and depicted in Figure 4.1.

 

 

Exterior boundary

Exact shape

Initial shape

Approximated shape

(a) Detection of a circle
 

 

Exterior boundary

Exact shape

Initial shape

Approximated shape

(b) Detection of an ellipse

Figure 4.1. Detection of convex and smooth obstacles.

4.3.3. Detection of a non-smooth shape and of a non-convex shape

We test now Algorithm A on the problem of detecting a non-smooth shape and of detecting a non-
convex shape (see Figure 4.2). Precisely we first consider the square of side 10 and centered at the origin
and we use four cubic Bézier patches. As one can see in Figure 4.2(a), each Bézier patch detects a side of
the square. Figure 4.3 shows the decrease of the objective function during the simulation. Secondly, in
Figure 4.2(b), we consider the non-convex shape parameterized by {(2.8(1.6+cos(3θ)) cos(θ), 2.8(1.6+
cos(3θ)) cos(θ)), θ ∈ [0, 2π]}, using six cubic Bézier patches.7

4.3.4. Detection of a two-component obstacle starting from a one-component shape

In this section we test the flip procedure introduced in Section 3 in order to detect a two-component
shape starting from a one-component initial shape. We consider two circles of radius 2 centered at
(−4,−4) and (4, 4). We present different states of the algorithm in Figure 4.4. The initial Bézier
shape consists in a single component with four cubic Bézier patches, located at the center (Fig-
ure 4.4(a)). The shape grows and surrounds the two objects until two control polygons intersect each
other (Figure 4.4(b)). The flip procedure is performed and the shape is divided in two connected
components (Figure 4.4(c)). At the end, the algorithm provides an approximation of the two obstacles
(Figure 4.4(d)).

Figure 4.5 depicts the evolution of the objective function during this simulation. One can note a
change of behavior after Iteration 133 which corresponds to the performance of the flip procedure.
Precisely, the algorithm finds in a first place a local minimizer at Iteration 13, which corresponds

7This shape is also considered in [13, Figure 4] where authors obtained the convex hull of the shape. However, note
that the authors used a different method where the descent direction is obtained by solving a boundary value problem
involving the kernel of the shape gradient.
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(a) Detection of a square
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(b) Detection of a non-convex shape.

Figure 4.2. Detection of a non-smooth obstacle and of a non-convex obstacle.

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

350

400

450

500

Figure 4.3. Evolution of the objective function for the detection of the square.

to a one-component minimizer. After oscillations around this local minimum, the flip procedure is
performed and the functional decreases and stabilizes around a two-component minimizer.

4.3.5. Checking the objective function value after a flip procedure

In Algorithm A, Step (3(b)ii) makes sure that, whenever a flip procedure is performed, the objective
function value does not significantly increase. If J(ω1

k ∪ ω2
k) ≥ λJ(ωk) (for instance λ = 1.1), then

we consider that adding another component to the shape is not a wise choice and we cancel the flip
procedure. This situation typically occurs when the target shape has a single component with a very
thin part (i.e. two parts of its boundary are very close to each other). In such a case Algorithm A
probably leads to two control polygons intersecting each other and to a flip performance, while the
target shape has a single component. We present an example of such a situation in Figure 4.6. The
obstacle is composed of one component with a very thin part and the current shape ωk of the algorithm
has two control polygons intersecting each other. The objective function value before the flip procedure
is J(ωk) = 3211 and after the flip procedure, it has increased to J(ω1

k ∪ ω2
k) = 3579. Since the ratio is

greater than λ, the algorithm cancels the flip procedure and goes to Step (4).
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(a) Initial shape
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(b) Intersecting control polygons
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(c) Flip procedure
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Exact shape

Approximated shape

(d) Final shape

Figure 4.4. Detection of two obstacles starting from a one-component shape

Remark 4.4. In Algorithm A, if the previous situation ωk is restored after the performance of
a flip procedure (that is, in the case 3(b)iiB), then the obstacle is highly likely composed of one
component with a very thin part. Next, the gradient flow makes evolve the approximated shape ωk
with a small deformation step to a better approximation ωk+1 of the target shape. This would lead
to a new perfomance of a flip procedure on ωk+1. Actually, in such a situation, a flip procedure is
performed/cancelled at each iteration until the end.

5. Conclusion and perspectives

In this paper we studied the use of a piecewise Bézier parameterization for the representation of
two-dimensional shapes in geometric approximation based on successive shape deformations. We pro-
posed procedures in order to manipulate this parameterization and showed how to manage changes of
topology and so multiple-component shape approximations. We applied this approach to a problem
of multiple-inclusion detection and performed numerical simulations using FreeFem++. The com-
putational efficiency of the method arises from the simplicity and the flexibility of the proposed
parameterization.
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Figure 4.5. Evolution of the objective function for the detection of a two-component shape.
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3211
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(b) After the flip procedure, J(ω1
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3579

Figure 4.6. The objective function value significantly increases whenever the flip pro-
cedure is not needed.

We considered in this paper a two-dimensional problem, but the challenging extension to the three-
dimensional case may be interesting and the algorithmic contents could be generalized. As a conclu-
sion, the implementation described here was made for an experimental purpose and a complete and
optimized implementation may be proposed.

Acknowledgment. The authors would like to thank the anonymous reviewers for their valuable
comments and suggestions in order to improve the quality of the paper.
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Appendix A. Proof of Proposition 4.3

We detail here the classical proof of Proposition 4.3 for the reader’s convenience. For any V ∈ U
(whereU is defined by (4.5)), we introduce the perturbed domain ωt := (I+tV )(ω) and the functional j
defined for all t ∈ [0, T ) by j(t) := J(ωt) and we consider the unique solution ut ∈ H3(Ω\ωt) of the
perturbed problem 

−∆ut = 0 in Ω\ωt,
ut = g on ∂Ω,
ut = 0 on ∂ωt.

Let us recall the definition of the shape derivative in our situation (see [23] for details). We introduce

U :=
{
θ ∈ U ; ‖θ‖3,∞ < min

(
d0
3 , 1

)}
and, for any θ ∈ U , we consider the unique solution uθ ∈ H3(Ω\ωθ) of the perturbed problem

−∆uθ = 0 in Ω\ωθ,
uθ = g on ∂Ω,
uθ = 0 on ∂ωθ,

where ωθ := (I + θ)(ω). Then,

• if the mapping θ ∈ U 7→ uθ◦(I+θ) ∈ H1(Ω\ω) is Fréchet differentiable at 0, we say that θ 7→ uθ
possesses a total first variation (or derivative) at 0. In such a case, this total first derivative at 0
in the direction θ is denoted by .

uθ and is called material derivative (or Lagrangian derivative);

• if, for every D ⊂⊂ Ω\ω, the mapping θ ∈ U 7→ uθ D ∈ H1(D) is Fréchet differentiable at 0, we
say that θ 7→ uθ possesses a local first variation (or derivative) at 0. In such a case, this local
first derivative at 0 in the direction θ is denoted by u′θ, is called shape derivative (or Eulerian
derivative) and is well defined in the whole domain Ω\ω:

u′θ = d

dt
(utθ D) t=0 in each D ⊂⊂ Ω\ω.

In the sequel, let V ∈ U and let u′ be the local first variation u′V which is referred as the shape
derivative of the state.

The differentiability of the cost functional J is directly obtained from the existence of the shape
derivative of the state u given for example in [23, Theorem 5.3.1]. Notice that in [23, Theorem 5.3.1],
the result claims the differentiability of t ∈ [0, T ] 7→ ũt ∈ L2(Ω), where ũt is an extension of ut in Ω.
Since we want to obtain the differentiability of t ∈ [0, T ] 7→ ũt ∈ H2(Ω) (in order to differentiate
properly the functional J), we have here to work with the mentioned spaces, that is with domains
with a C2,1 boundary (and not only Lipschitz) and perturbations V which belong to W3,∞(R2) (and
not only to W1,∞(R2)).

Moreover we can easily characterize the shape derivative u′ ∈ H1(Ω\ω) as the solution of the
following problem (see again for example [23, Theorem 5.3.1]):

−∆u′ = 0 in Ω\ω,
u′ = 0 on ∂Ω,
u′ = −∂nu (V · n) on ∂ω.

(A.1)

Then by differentiation under the sum sign, we obtain

j′(0) = 2
∫
∂Ω
∂nu

′(∂nu− fb).
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Using the weak formulation of Problem (A.1) solved by u′ with w as a test function, we obtain∫
Ω\ω
∇u′ · ∇w −

∫
∂(Ω\ω)

w ∂nu
′ = 0

and using the weak formulation of the adjoint Problem (4.7) solved by w with u′ as a test function,
we obtain ∫

Ω\ω
∇w · ∇u′ −

∫
∂(Ω\ω)

u′ ∂nw = 0.

Finally, using the boundary conditions, the proof is complete.

Appendix B. Detection of one obstacle starting from a two-component shape

In this paper we have introduced the flip procedure as a method that enables to divide a one-component
shape into a two-component shape. Actually the flip procedure can be easily adapted in order to
perform the reverse operation, that is, to merge a two-component shape into a one-component shape
(see Figure B.1).

We focus now on the detection of the one-component shape {(4 cos θ, 6 + 2.5 sin θ), θ ∈ [0, 2π]} and
we start Algorithm A with a two-component shape. We present different states of the algorithm in
Figure B.2. At the end, the algorithm provides an approximation of the one-component obstacle.

Two-component
shape ωk

Scan for
intersecting

control polygons

Two intersecting
control polygons

Flip

One-component
shape ωk+1

Figure B.1. The flip procedure can merge a two-component shape into a one-
component shape.
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(d) Final shape

Figure B.2. Detection of one obstacle starting from a two-component shape
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