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Abstract. This paper deals with diffusive limit of the p-system with damping and its approximation by
an Asymptotic Preserving (AP) Finite Volume scheme. Provided the system is endowed with an entropy-
entropy flux pair, we give the convergence rate of classical solutions of the p-system with damping towards
the smooth solutions of the porous media equation using a relative entropy method. Adopting a semi-discrete
scheme, we establish that the convergence rate is preserved by the approximated solutions. Several numerical
experiments illustrate the relevance of this result.
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1. Introduction

The present work is devoted to analyze the behavior of numerical schemes, within some asymptotic
regimes, when approximating the solutions of the p-system with damping. The system under consid-
eration reads: {

∂tτ − ∂xv = 0,
∂tv + ∂xp(τ) = −σ v, (x, t) ∈ R× R+, (1.1)

where τ > 0 stands for the specific volume of gas away from zero and v ∈ R is the velocity while σ > 0
denotes the friction parameter. The pressure law p(τ) fulfills the following assumptions:

p ∈ C2(R∗+), p(τ) > 0, p′(τ) < 0,
if τ ≥ c > 0 then there exists m such that p(τ) ≥ m > 0 and p′(τ) ≤ −m < 0.

(1.2)

The solution w = t(τ, v) is assumed to belong to the following phase space:

Ω =
{
w = t(τ, v); τ > 0, v ∈ R

}
.

In addition, in order to rule out unphysical solutions, the system (1.1) is endowed with an entropy
inequality given by:

∂tη(τ, v) + ∂xψ(τ, v) ≤ −σ v2 ≤ 0, (1.3)

The authors thank the project ANR-12-IS01-0004 GeoNum and the project ANR-14-CE25-0001 Achylles for their partial
financial contributions.
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where the entropy function is given by:

η(τ, v) = v2

2 − P (τ).

The quantity −P (τ) denotes an internal energy and is defined by:

P (τ) =
∫ τ

τ?

p(s) ds, (1.4)

where we have set τ? > 0 an arbitrary fixed reference specific volume. In (1.3), the function ψ is the
entropy flux function defined as follows:

ψ(τ, u) = u p(τ). (1.5)

The study of long time asymptotic for hyperbolic systems of conservation laws, as (1.1), goes back
to the work of Hsiao and Liu [14]. They consider the isentropic Euler system with damping which
solutions tend to those of the nonlinear porous media equation time asymptotically. Using the existence
of self-similar solutions of the limit parabolic equations proved in [29, 30], they provide convergence
rates in ‖(w − w̄)(t)‖L∞ = O(1)t−1/2 for smooth solutions away from zero. Here, w = t(τ , v) defines
the solution of the following parabolic-type system, the so-called porous media equation: ∂tτ + 1

σ
∂xxp(τ) = 0,

∂xp(τ) = −σ u,
(x, t) ∈ R× R+. (1.6)

Some similar convergence rates have been obtained by Nishihara [25, 26]. Then, under proper
assumptions on the initial data, Nishihara and co-authors [27] improve the convergence rate as ‖(w−
w̄)(t)‖L∞ = O(1)t−3/2, using energy estimates techniques. For a more general overview, we refer to
the review of Mei [22] where the author gives numerous references about convergence results for the
long-time asymptotic behavior of the p-system with damping (1.1) including references concerning non-
linear damping and boundary effects. Let us emphasize that, in [2], the authors exhibit convergence
rate in time for general dissipative hyperbolic systems under the Shizuta-Kawashima condition [18].

All the aforementioned results are based on energy estimates which are difficult to transpose in
the discrete framework. To overcome these difficulties, an other way to study the time-asymptotic
behavior of solutions of (1.1) is to use an appropriate time-rescaling (for instance, see [21, 22]), here
governed by a small parameter ε > 0. We also refer the reader to [20, 23, 24] devoted to related works
where the parameter ε > 0 is directly proportional to the Knudsen number and the Mach number of
the kinetic model.

Here, we are concerned by solutions within asymptotic regimes governed by long time and dominant
friction. As a consequence, a small parameter ε > 0 scales the solutions t(τ ε, vε) under interest which
now satisfy the following PDE system:

ε ∂tτ
ε − ∂xvε = 0,

ε ∂tv
ε + ∂xp(τ ε) = −σ

ε
vε,

(x, t) ∈ R× R+. (1.7)

Because of the dominant friction, we immediately note that the velocity solution is in the form
vε = εuε. Therefore, in this paper, we focus on the pair wε = t(τ ε, uε) ∈ Ω solution of the system
given by: {

∂tτ
ε − ∂xuε = 0,

ε2 ∂tu
ε + ∂xp(τ ε) = −σ uε,

(x, t) ∈ R× R+, (1.8)

supplemented by the following entropy inequality:

∂tη
ε(τ ε, uε) + ∂xψ(τ ε, uε) ≤ −σ (uε)2 ≤ 0, (1.9)

100



Numerical diffusive limit of hyperbolic systems

where we have set:

ηε(τ, u) = ε2u
2

2 − P (τ). (1.10)

From now on, let us underline that, in the limit of ε to zero, the solutions wε = t(τ ε, uε) of (1.8)
converge, in a sense to be prescribed, to the solutions w̄ = t(τ , u) of (1.6).

Considering the behavior of the solutions of (1.8) to the solutions of (1.6), we study the convergence
of the solutions of a hyperbolic system endowed with a stiff source term to the solution of a parabolic
problem.

Next, the existence of an entropy-entropy flux pair (ηε, ψ), associated with (1.8), where ηε ∈ C2(Ω)
is a strictly convex function, turns out to be an essential ingredient in the analysis of the convergence
from wε to w̄ as ε goes to zero. Indeed, we can define the relative entropy η(wε|w) of the system (1.8)
which corresponds to a first order Taylor expansion of ηε around a smooth solution w̄ of (1.6):

η(wε|w̄) = ηε(wε)− ηε(w̄)−∇ηε(w̄) · (wε − w̄), (1.11)

where wε is a (classical) solution of (1.8). Thanks to the convexity of ηε, the relative entropy η(wε|w̄)
behaves like ‖wε − w̄‖2L2(R).

The notion of relative entropy for hyperbolic systems of conservation laws goes back to the works
of DiPerna [10] and Dafermos [8]. It allows to prove a stability result for classical solutions in the class
of entropy weak solutions, see [9] for a condensed proof.

In [28], Tzavaras applies a similar relative entropy technique to study the convergence of the classical
solutions of hyperbolic systems with stiff relaxation towards smooth solutions of the limit hyperbolic
systems. Thanks to the quadratic behavior of the relative entropy, one can control the distance between
the relaxation dynamics and the equilibrium solutions, leading to stability and convergence results.
Based on the same ideas, Lattanzio and Tzavaras address in [19] the case of diffusive relaxation. They
focus on several hyperbolic systems with diffusive relaxation of type (1.8). Under some regularity
assumptions on the pressure law, they provide convergence rate in ε4. Recently in [7], the authors
extend the relative entropy method to the class of hyperbolic systems which are symmetrizable, leading
to similar convergence results in the zero-viscosity limit to smooth solutions in a Lp framework.

The main objective of this work is to recover the convergence rate in ε4 when both wε and w̄ are
approximated by relevant numerical schemes. From a numerical point of view, one of the main difficulty
stays in the derivation of a suitable discretization of (1.8) in order to get the required discretization
of (1.6) in the limit of ε to zero.

Let us set (Hε
∆) a discretization of the hyperbolic system (1.8), where ∆ stands for the discretization

parameter. We distinguish two types of numerical schemes:

• The scheme (Hε
∆) is said to be Asymptotically Consistent with the parabolic limit regime

(AC) if it is consistent with the hyperbolic model (1.8) for all ε > 0 and if, in the limit ε→ 0,
it converges to a scheme, say (P∆), consistent with the limit parabolic model (1.6).

• The scheme (Hε
∆) is said to be Asymptotic Preserving (AP) if it is AC and if the stability

conditions stay admissible for all ε > 0.

The notion of asymptotic-preserving scheme was first introduced by Jin et al. in [16, 15] in the
context of diffusive limits for kinetic equations. Naldi and Pareschi also proposed several numerical
schemes for a two velocities kinetic equation [23, 24]. Since these seminal articles, a large variety of
asymptotic-preserving schemes have been proposed, for various physical models. Concerning specif-
ically the discretization of hyperbolic systems with source terms in the diffusive limit, Gosse and
Toscani proposed a well-balanced and asymptotic-preserving scheme for the Goldstein-Taylor model
in [11], and then for more general discrete kinetic models in [12]. In [1], Berthon and Turpault propose
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(Hε
∆) (Hε)

(P∆) (P )
∆→ 0

ε→ 0 ε→ 0

∆→ 0
(Hε): Scaled hyperbolic system (1.8)
(P ): Parabolic asymptotic regime (1.6)
(Hε

∆): Discretization of (1.8)
(P∆): Discretization of (1.6)

Figure 1.1. Diagram of the asymptotic preserving properties

a modification of the HLL scheme [13] for hyperbolic systems to include source terms, and then a cor-
rection which allows to be consistent at the diffusive limit. More recently, several works are devoted
to the derivation of asymptotic-preserving schemes for 2D problems on unstructured meshes [3, 4, 5].

The purpose of this article is to study the convergence rate of the numerical scheme (Hε
∆) towards the

numerical scheme (P∆) as ε tends to 0 (see Figure 1). After the work by Lattanzio and Tzavaras [19], we
here adopt an error estimation given by a relative entropy in order to exhibit the required convergence
rate from (Hε

∆) to (P∆). Indeed, in [19], the relative entropy is considered to establish the expected
convergence rate from the scaled p-system (1.8) to the porous media problem (1.6). Let us note that
the relative entropies have been recently suggested in [17, 6] in order to derive suitable error estimates
for finite volume approximations of smooth solutions of nonlinear hyperbolic systems.

The paper is organized as follows. In the next section, for the sake of completeness, we give the
main properties satisfied by the relative entropy associated with (1.8). More precisely, we detail the
convergence rate obtained by Lattanzio and Tzavaras [19], from the so-called p-system (1.8) to the
porous media equation (1.6). In fact, the establishment of this result is constructive and it will be
suitably adapted to get the expected numerical convergence rate. Section 3 concerns our main result.
By adopting a semi-discrete in space numerical scheme to approximate the weak solutions of (1.8), we
exhibit the convergence rate as ε goes to zero, to recover a semi-discrete approximation of the porous
media equation (1.6). Moreover, the obtained convergence rate, from a numerical point of view, exactly
coincides with the one established in [19] from a continuous point of view. The numerical convergence
rate is next illustrated, in the last section, performing several numerical experiments by adopting
a full discrete scheme proposed by Jin et al. [16]. The performed simulations give an approximated
convergence rate in perfect agreement with the numerical convergence rate established in Section 3.
As a consequence, it seems that our main result is thus optimal.

2. Convergence in the diffusive limit

In this section, we recall the convergence result established in [19] since it is useful in the forthcoming
numerical development. For the sake of simplicity, the convergence statement is given by arguing
smooth solutions. Such an assumption is not at all restrictive in the derivation of our main numerical
result established in the next section. We refer to [19] to extend the following results with weak
solutions.

To exhibit the rate of convergence from (τ ε, uε), solution of (1.8), to (τ̄ , ū), solution of (1.6), in the
limit of ε to zero, Lattanzio and Tzavaras [19] adopt the well-known relative entropy to define an error
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estimate. Considering the p-system (1.8), the relative entropy is defined by:

ηε(τ, u|τ , u) = ηε(τ, u)− ηε(τ , u)−∇ηε(τ , u) ·
(
τ − τ
u− u

)
,

= ε2

2 (u− u)2 − P (τ |τ), (2.1)

with
P (τ |τ) = P (τ)− P (τ)− p(τ)(τ − τ). (2.2)

This relative entropy satisfies an evolution law given in the following statement.

Lemma 2.1. Let (τ ε, uε) be a strong entropy solution of (1.8) and (τ , u) be a smooth solution of (1.6).
Then the relative entropy ηε, defined by (2.1), satisfies the following evolution law:

∂tη
ε(τ ε, uε|τ , u)+∂xψ(τ ε, uε|τ , u) =

− σ(uε − u)2 + 1
σ
p(τ ε|τ)∂xxp(τ) + ε2

σ
(uε − u)∂xtp(τ), (2.3)

where
ψ(τ, u|τ , u) = (u− u)(p(τ)− p(τ)), (2.4)
p(τ |τ) = p(τ)− p(τ)− p′(τ)(τ − τ). (2.5)

Let us emphasize that equality (2.3) becomes an inequality as soon as the smoothness of solution
(τ ε, uε) is lost. The numerical counterpart is fully proved in the next section.
Proof. First, let us rewrite the parabolic system (1.6) such that we get the same left hand side than
for the scaled p-system (1.8). Then, (1.6) reads equivalently as follows:{

∂tτ − ∂xu = 0,
ε2∂tu+ ∂xp(τ) = −σ u+ ε2∂tu.

(2.6)

As a consequence, the derivative with respect to time of the relative entropy (2.1) satisfies the following
sequence of equalities:

∂tη
ε(τ ε, uε|τ , u) = ε2(uε − u)∂t(uε − u)− p(τ ε)∂tτ ε + p(τ)∂tτ

+ p′(τ)∂tτ(τ ε − τ) + p(τ)∂t(τ ε − τ)
= −(uε − u)∂x (p(τ ε)− p(τ))− σ(uε − u)2 − ε2(uε − u)∂tu

− p(τ ε)∂xuε + p′(τ)(τ ε − τ)∂xu+ p(τ)∂xuε,

= −σ(uε − u)2 + ε2

σ
(uε − u)∂xtp(τ)

− ∂x
(

(p(τ ε)− p(τ)) (uε − u)
)
− p(τ ε|τ)∂xu.

The expected result directly comes from −σu = ∂xu to write ∂xu = − 1
σ∂xxp(τ). The proof is thus

completed.

From now on, let us establish a technical result satisfied by the relative internal energy P (τ |τ),
defined by (2.2).

Lemma 2.2. Assume that the pressure function p(τ) satisfies the conditions (1.2). Then there exists
two positive constants, C and C ′, such that for all τ ≥ c > 0 and τ ≥ c > 0, we have:

|p(τ |τ)| ≤ C ′(τ − τ)2 ≤ −C P (τ |τ). (2.7)
where P (τ |τ) and p(τ |τ) are respectively defined by (2.2) and (2.5).
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Proof. Since p belongs to C2(R∗+), by definition of p(τ |τ) and P (τ |τ), we immediately get:

p(τ |τ) = (τ − τ)2
∫ 1

0
(1− s)p′′ (τ + s(τ − τ)) ds,

P (τ |τ) = (τ − τ)2
∫ 1

0
(1− s)p′ (τ + s(τ − τ)) ds.

Because of the smoothness of p, there exists a positive constant C ′ such that |p′′(τ + s(τ − τ))| ≤ 2C ′
for all s ∈ (0, 1). As a consequence, we obtain:

|p(τ |τ)| ≤ C ′(τ − τ)2.

Moreover, the condition (1.2) imposes the existence of a positive constantm such that p′(τ+s(τ−τ)) ≤
−2m for all s ∈ (0, 1). Then we have:

−P (τ |τ) ≥ m(τ − τ)2.

By considering C = C ′/m, the proof is achieved.

Arguing with these properties satisfied by the relative entropy, we are now able to compare (τ ε, uε),
solution of (1.8), with (τ , u), solution of (1.6). To address such an issue and according to the assump-
tions stated in [19] (see also [25]), we impose that the porous media equation is given for admissible
specific volumes τ ≥ c > 0. Moreover, the solutions of (1.6) are assumed to be smooth, hence we can
consider regularity on the pressure function (x, t) 7→ p(τ(x, t)) and its derivatives.

In addition, we suppose that the systems (1.8) and (1.6) are endowed with initial conditions such
that the following limits hold:

lim
x→±∞

τ ε(x, t) = lim
x→±∞

τ(x, t) = τ±,

lim
x→±∞

uε(x, t) = lim
x→±∞

u(x, t) = 0,
(2.8)

where τ± are positive constant specific volume.
Now, let us introduce the positive error estimate given by:

φε(t) =
∫
R
ηε(τ ε, uε|τ , u)dx, (2.9)

to establish the expected convergence rate away from vanishing specific volume (see also [19]).

Theorem 2.3. Consider initial data (τ0(x), u0(x)) for (1.6) and (τ ε0 (x), uε0(x)) for (1.8) such that
φε(0) < +∞. Endowed with these initial data, let (τ , u) be the smooth solution of (1.6) defined on
QT = R× [0, T ), and let (τ ε, uε) be a strong entropy solution of (1.8). Let us assume that τ ≥ c > 0.
Moreover, let us assume that there exists a positive constant K such that ‖∂xxp(τ)‖L∞(QT ) ≤ K and
‖∂xtp(τ)‖L2(QT ) ≤ K. Then the following stability estimate holds:

φε(t) ≤ CeCT (φε(0) + ε4), t ∈ [0, T ), (2.10)

where C is a constant depending on σ and p(τ). Moreover, if φε(0)→ 0 as ε→ 0, then

sup
t∈[0,T )

φε(t)→ 0, as ε→ 0. (2.11)

Proof. Arguing the limit assumptions (2.8), we have ψε(τ ε, uε|τ , u)→ 0 in the limit x→ ±∞. As a
consequence, the integration of (2.3) over R× [0, t], for all t < T , gives:

φε(t)− φε(0) ≤ −σ
∫ t

0

∫
R

(uε − u)2dx ds+ 1
σ

∫ t

0

∫
R
∂xxp(τ) p(τ ε|τ)dx ds

+ε2

σ

∫ t

0

∫
R
∂xtp(τ) (uε − u)dx ds.

(2.12)
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Now, we estimate the integrals within the above relation. First, by Lemma 2.2 and since ‖∂xxp(τ)‖L∞ ≤
K, there exists a positive constant, say C, such that we have:

1
σ

∫ t

0

∫
R
|∂xxp(τ) p(τ ε|τ)|dx ds ≤ C

σ

∫ t

0
φε(s) ds.

Concerning the last integral in (2.12), applying Cauchy-Schwarz and Young’s inequalities together
with the assumption on ‖∂xtp(τ)‖L2(QT ) ≤ K, we immediately obtain:

ε2

σ

∫ t

0

∫
R
|∂xtp(τ) (uε − u)|dx ds ≤ σ

2

∫ t

0

∫
R

(uε − u)2dx ds+ ε4

2σ3

∫ t

0

∫
R
|∂xtp(τ)|2dx ds

≤ σ

2

∫ t

0

∫
R

(uε − u)2dx ds+ C ε4.

As a consequence, identity (2.12) now reads:

φε(t)− φε(0) ≤ −σ2

∫ t

0

∫
R

(uε − u)2dx ds+ C

σ

∫ t

0
φε(s) ds+ C ε4,

to get

φε(t) ≤ φε(0) + C

σ

∫ t

0
φε(s) ds+ C ε4.

The required estimation (2.10) is then obtained by the Grönwall’s inequality. The proof is thus com-
pleted.

3. Semi-discrete finite volume scheme and numerical convergence rate

In this section, our purpose concerns the evaluation of the convergence rate where both solutions wε
and w are approximated by a semi-discrete scheme.

Let us consider a uniform mesh made of cells (xi− 1
2
, xi+ 1

2
)i∈Z of constant size ∆x. Here, the dis-

cretization points are given by xi = i∆x for all i ∈ Z. On each cell (xi− 1
2
, xi+ 1

2
), the solutions of (1.8)

are approximated by time dependent piecewise constant function wi(t) = t(τi(t), ui(t)). For the sake
of clarity in the notations, we omit the dependence on the parameter ε. Next, these functions are
evolved in time by adopting a semi-discrete scheme. Here, the suggested semi-discrete scheme is base
on the standard HLL numerical flux (see [13]). Hence the semi-discrete in space numerical scheme, to
approximate the solutions of (1.8), reads:

d

dt
τi = 1

2∆x (ui+1 − ui−1) + λ

2∆x(τi+1 − 2τi + τi−1),

d

dt
ui = λ

2∆x(ui+1 − 2ui + ui−1)− 1
2ε2∆x(p(τi+1)− p(τi−1))− σ

ε2ui,

(3.1)

where we have set:

λ = sup
t∈(0,T )

max
i∈Z

(
√
−p′(τi)). (3.2)

Let us underline that, as soon as ε goes to zero, the adopted semi-discrete finite volume scheme turns
out to be consistent with the porous media equation (1.6) (AC according to the definition stated in the
introduction). As a consequence, the pair wi = t(τ i(t), ui(t)), to approximate the solutions of (1.6),
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are evolved in time as follows:
d

dt
τ̄i = 1

2∆x(ūi+1 − ūi−1) + λ

2 ∆x(τ̄i+1 − 2τ̄i + τ̄i−1),

σūi = −p(τ̄i+1)− p(τ̄i−1)
2∆x .

(3.3)

We now analyze the convergence from (τi, ui) to (τ i, ui) as ε tends to zero. First, let us impose the
limit condition (2.8) to be imposed to the approximate solution as follows:

lim
i→±∞

τi = lim
i→±∞

τ̄i = τ±,

lim
i→±∞

ui = lim
i→±∞

ūi = 0. (3.4)

Next, to simplify the forthcoming estimations, we introduce several semi-discrete norms. Let v(t) =
(vi(t))i∈Z a function of time t ∈ [0, T ) piecewise constant on cells (xi− 1

2
, xi+ 1

2
). Then we define:

‖Dxv‖L∞(QT ) = sup
t∈[0,T )

sup
i∈Z

∣∣∣∣vi+1 − vi
∆x

∣∣∣∣ ,
‖D̃xxv‖L∞(QT ) = sup

t∈[0,T )
sup
i∈Z

∣∣∣∣vi+2 − 2vi + vi−2
(2∆x)2

∣∣∣∣ , (3.5)

‖Dxxv‖L∞(QT ) = sup
t∈[0,T )

sup
i∈Z

∣∣∣∣vi+1 − 2vi + vi−1
(∆x)2

∣∣∣∣ , (3.6)

‖D̃txv‖L2(QT ) =

∫ t

0

∑
i∈Z

∆x
∣∣∣∣ ddt

(
vi+1 − vi−1

2∆x

)∣∣∣∣2 (s)ds

1/2

, (3.7)

‖Dxxv‖L2(QT ) =

∫ t

0

∑
i∈Z

∆x
∣∣∣∣vi+1 − 2vi + vi−1

(∆x)2

∣∣∣∣2 (s)ds

1/2

, (3.8)

where QT = R× [0, T ).
We adopt the approach introduced by Lattanzio and Tzavaras [19] to the semi-discrete scheme (3.1).

As a first step, according to the definition of the relative entropy given by (2.1), we now set:

ηεi (t) = ηε(τi, ui|τ̄i, ūi)(t)

= ε2

2 (ui(t)− ūi(t))2 − P (τi(t)|τ̄i(t)).
(3.9)

Mimicking the continuous framework, we introduce φε(t) to denote the discrete space integral of
ηεi (t) as follows:

φε(t) =
∑
i∈Z

∆x ηεi (t). (3.10)

Without ambiguity and for the sake of clarity, the time dependence is omitted in the sequel.
Now, we give our main result.

Theorem 3.1. Let wi(t) = (τ̄i(t), ūi(t))i∈Z be a smooth solution of (3.3) away from zero, defined on
QT = R × [0, T ). We assume the existence of a positive constant K < +∞ such that the following
estimations are satisfied:

‖D̃txp(τ̄)‖L2(QT ) ≤ K, ‖D̃xxp(τ̄)‖L∞(QT ) ≤ K (3.11)
‖Dxxτ̄‖L∞(QT ) ≤ K, ‖Dxτ̄‖L∞(QT ) ≤ K, ‖Dxxū‖L2(QT ) ≤ K. (3.12)
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Let wi(t) = (τi(t), ui(t))i∈Z be a solution of (3.1), away from zero, such that φε(0) < +∞. Then we
have:

φε(t) ≤ BeBT (φε(0) + ε4), t ∈ [0, T ), (3.13)
where B is a positive constant which depends on K and σ. Moreover if φε(0) → 0 as ε → 0 then
supt∈[0,T ) φ

ε(t)→ 0 when ε→ 0.

Let us emphasize that the regularity conditions (3.11) exactly coincide with the smoothness im-
posed in Theorem 2.3. Here, because of the numerical viscous terms, additional assumptions, stated
in (3.12), must be imposed on the approximate solution of the porous media equation. However such
conditions are not restrictive since solutions of the parabolic system (1.6), in general, come with enough
smoothness.

Now, we turn to establish the above statement. To access such an issue, we need three technical
results. The first one is devoted to exhibit the evolution law satisfied by the relative entropy ηεi . We
will see that this evolution law turns out to be a discrete form of (2.3) supplemented by numerical
viscosity. The two next Lemmas concern estimations of the numerical viscous terms associated to the
relative entropy.

Concerning the evolution law satisfied by ηεi , we have the following result:

Lemma 3.2. Let (τ̄i, ūi)i∈Z be a smooth solution of (3.3) and let (τi, ui)i∈Z be a solution of (3.1).
The relative entropy ηεi , defined by (3.9), verifies the following evolution law:

dηεi
dt

+ 1
∆x(ψi+1/2 − ψi−1/2) = −σ(ui − ūi)2

+ 1
σ

p(τ̄i+2)− 2p(τ̄i) + p(τ̄i−2)
(2∆x)2 p(τi|τ̄i)

+ ε2

σ
(ui − ūi)

d

dt

(
p(τ̄i+1)− p(τ̄i−1)

2∆x

)
+Rui +Rτi ,

(3.14)

where ψi+1/2 corresponds to an approximation of the relative entropy flux ψ at the interface xi+1/2
given by:

ψi+1/2 = 1
2(ui − ūi)(p(τi+1)− p̄(τ i+1)) + 1

2(ui+1 − ūi+1)(p(τi)− p(τ̄i)), (3.15)

and the quantities Rui and Rτi denote numerical residuals given by:

Rui = λε2

2∆x(ui − ūi)(ui+1 − 2ui + ui−1),

Rτi = − λ

2∆x
(
(p(τi)− p(τ̄i))(τi+1 − 2τi + τi−1)− (τi − τ̄i)p′(τ̄i)(τ̄i+1 − 2τ̄i + τ̄i−1)

)
.

(3.16)

From now on, we state estimations satisfied by both residuals Rui and Rτi .

Lemma 3.3. Let K < +∞ be a positive constant. Assume ‖Dxxū‖2L2(QT ) ≤ K, then for all θ ∈ R∗+,
we have: ∫ t

0

∑
i∈Z

∆x Rui ds ≤
λθ

2

∫ t

0

∑
i∈Z

∆x (ui − ūi)2ds+ ε4λ∆x
2θ ‖Dxxū‖2L2(QT ). (3.17)

Lemma 3.4. Let K < +∞ be a positive constant. Let us assume ‖Dxxτ̄‖L∞(QT ) ≤ K and ‖Dxτ̄‖L∞(QT ) <
K. Then there exists a positive constant C such that∫ t

0

∑
i∈Z

∆x Rτi ds ≤ λ
(
C ∆x‖Dxxτ̄‖L∞(QT ) + C‖Dxτ̄‖L∞(QT )

) ∫ t

0
φε(s)ds. (3.18)
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Equipped with these three technical lemmas, we now establish our main result.
Proof of Theorem 3.1. Arguing Lemma 3.3, we evaluate the function φε by a discrete integration
in space of the equation (3.14) and next, an integration in time over [0, t). Since the limit assump-
tions (3.4) hold, the relative entropy flux tends to 0 when i→ ±∞. As a consequence, a straightforward
computation gives:

φε(t)− φε(0) = −σ
∫ t

0

∑
i∈Z

∆x (ui − ūi)2(s)ds

+ 1
σ

∫ t

0

∑
i∈Z

∆x
(
p(τ̄i+2)− 2p(τ̄i) + p(τ̄i−2)

(2∆x)2 p(τi|τ̄i)
)

(s)ds

+ ε2

σ

∫ t

0

∑
i∈Z

∆x
(

(ui − ūi)
d

dt

(
p(τ̄i+1)− p(τ̄i−1)

2∆x

))
(s)ds

+
∫ t

0

∑
i∈Z

∆x (Rui +Rτi )(s)ds.

(3.19)

Now, we evaluate each term involved within the right-hand side. Let us note that the second and third
terms of (3.19) are nothing but the discrete counterparts of the second and third terms in (2.12).
Concerning the second term of (3.19), from the definition (3.5) of ‖D̃xxp(τ)‖L∞(QT ) and Lemma 2.2,
the following estimation holds:

1
σ

∫ t

0

∑
i∈Z

∆x
∣∣∣∣p(τ̄i+2)− 2p(τ̄i) + p(τ̄i−2)

(2∆x)2 p(τi|τ̄i)
∣∣∣∣(s)ds ≤

− C

σ
‖D̃xxp(τ)‖L∞(QT )

∫ t

0

∑
i∈Z

∆xP (τi|τ i)(s)ds.

Because of definition (3.9), we have −P (τi|τ i) ≤ ηεi . As a consequence, by definition of φε given
by (3.10), we immediately obtain:

1
σ

∫ t

0

∑
i∈Z

∆x
∣∣∣∣p(τ̄i+2)− 2p(τ̄i) + p(τ̄i−2)

(2∆x)2 p(τi|τ̄i)
∣∣∣∣ (s)ds ≤ C

σ
‖D̃xxp(τ)‖L∞(QT )

∫ t

0
φε(s)ds. (3.20)

Concerning the third term in (3.19), we use the Cauchy-Schwarz and Young’s inequalities to get
ε2

σ

∫ t

0

∑
i∈Z

∆x
∣∣∣∣(ui − ūi) ddt

(
p(τ̄i+1)− p(τ̄i−1)

2∆x (s)
)∣∣∣∣ ds

≤ σ

2

∫ t

0

∑
i∈Z

∆x |ui − ūi|2(s)ds+ ε4

2σ3

∫ t

0

∑
i∈Z

∆x
∣∣∣∣ ddt

(
p(τ̄i+1)− p(τ̄i−1)

2∆x (s)
)∣∣∣∣2 ds.

Involving the definition (3.7) of ‖D̃txp(τ)‖L2(QT ), the following estimation holds:
ε2

σ

∫ t

0

∑
i∈Z

∆x
∣∣∣∣(ui − ūi) ddt

(
p(τ̄i+1)− p(τ̄i−1)

2∆x

)∣∣∣∣ (s)ds
≤ σ

2

∫ t

0

∑
i∈Z

∆x (ui − ūi)2ds+ ε4

2σ3 ‖D̃txp(τ̄)‖2L2(QT ).

(3.21)

Now, the control of the numerical error terms Rui and Rτi is established in Lemma 3.3 and Lemma 3.4,
in order to have the estimations of the last term in (3.19). Accounting on the estimations (3.17), (3.18),
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(3.20) and (3.21), from the relation (3.19) we write

φε(t) ≤φε(0) +
(
λθ

2 −
σ

2

)∫ t

0

∑
i∈Z

∆x (ui − ūi)2(s)ds

+
( 1

2σ3 ‖D̃txp(τ̄)‖2L2(QT ) + λ∆x
2θ ‖Dxxū‖2L2(QT )

)
ε4

+
(
Cλ∆x‖Dxxτ̄‖L∞(QT ) + Cλ‖Dxτ̄‖L∞(QT ) + C

σ
‖D̃xxp(τ̄)‖L∞(QT )

)∫ t

0
φε(s).

(3.22)

Let us fix θ ≤ σ

λ
such that λθ2 −

σ

2 ≤ 0. Then we get

φε(t) ≤ φε(0) +
( 1

2σ3 ‖D̃txp(τ̄)‖2L2(QT ) + λ∆x
2θ ‖Dxxū‖2L2(QT )

)
ε4

+
(
C

σ
‖D̃xxp(τ̄)‖L∞(QT ) + λC ∆x‖Dxxτ̄‖L∞(QT ) + λC

2 ‖Dxτ̄‖L∞(QT )

)∫ t

0
φε(s)ds.

(3.23)

The expected estimation (3.13) is a direct consequence of the Grönwall Lemma. The proof is thus
completed.

To conclude this section, we now give the proofs of the three intermediate results.
Proof of Lemma 3.2. From (3.9), the derivative with respect to time of the relative entropy ηεi
reads

d

dt
ηεi = ε2(ui − ūi)

d

dt
(ui − ūi)− (p(τi)− p(τ̄i))

d

dt
τi + (τi − τ̄i)p′(τ̄i)

d

dt
τ̄i. (3.24)

Now, let us rewrite the second equation of (3.3) as follows:

ε2 d

dt
ūi = ε2 d

dt
ūi − σūi −

1
2∆x(p(τ̄i+1)− p(τ̄i−1)). (3.25)

From (3.1), since we have:

ε2 d

dt
ui = λε2

2∆x(ui+1 − 2ui + ui−1)− 1
2∆x(p(τi+1)− p(τi−1))− σui,

we obtain:

ε2 d

dt
(ui − ui) =− σ(ui − ūi)− ε2 d

dt
ūi

− 1
2∆x

(
(p(τi+1)− p(τi−1))− (p(τ̄i+1)− p(τ̄i−1))

)
+ λε2

2∆x(ui+1 − 2ui + ui−1).

Plugging the above relation into (3.24) leads to:
d

dt
ηεi =− σ(ui − ūi)2 − ε2(ui − ūi)

d

dt
ūi

− (ui − ūi)
1

2∆x
(
(p(τi+1)− p(τi−1))− (p(τ̄i+1)− p(τ̄i−1))

)
+ λε2

2∆x(ui − ūi)(ui+1 − 2ui + ui−1)

− (p(τi)− p(τ̄i))
d

dt
τi + (τi − τ̄i)p′(τ̄i)

d

dt
τ̄i.

(3.26)
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Next, we substitute d

dt
τi and

d

dt
τ̄i by their definitions, given by (3.1) and (3.3), to obtain

d

dt
ηεi =− σ(ui − ūi)2 − ε2(ui − ūi)

d

dt
ūi

− 1
2∆x

(
p(τi+1)− p(τ i+1))(ui − ūi)− (p(τi−1)− p(τ̄i−1))(ui − ūi)

+ (p(τi)− p(τ̄i))(ui+1 − ui−1)− (τi − τ̄i)p′(τ̄i)(ūi+1 − ūi−1)
)

+ λε2

2∆x(ui − ūi)(ui+1 − 2ui − ui−1)

− λ

2∆x
(
(p(τi)− p(τ̄i))(τi+1 − 2τi + τi−1)− (τi − τ̄i)p′(τ̄i)(τ̄i+1 − 2τ̄i + τ̄i−1)

)
,

(3.27)

Let us remark that the two last terms are respectively the numerical error terms Rui and Rτi defined
in (3.16). Moreover, by definition of p(τi|τ̄i), given by (2.5), the above relation rewrites as follows:

d

dt
ηεi =− σ(ui − ūi)2 − ε2(ui − ūi)

d

dt
ūi

− 1
2∆x

(
(ūi+1 − ūi−1)p(τi|τ̄i) + (ui − ūi)(p(τi+1)− p(τ̄i+1))

+ (p(τi)− p(τ̄i))(ui+1 − ūi+1)− (ui−1 − ūi−1)(p(τi)− p(τ̄i))

− (ui − ūi)(p(τi−1)− p(τ̄i−1))
)

+Rui +Rτi ,

(3.28)

Adopting the definition (3.15) of the discrete relative entropy flux ψi+1/2, we directly obtain:
d

dt
ηεi =− σ(ui − ūi)2 − ε2(ui − ūi)

d

dt
ūi

− 1
∆x(ψi+1/2 − ψi−1/2)

− 1
2∆x(ūi+1 − ūi−1)p(τi|τ̄i)

+Rui +Rτi .

(3.29)

Finally, from the scheme definition (3.3), we deduce the following two relations:
d

dt
ūi = − 1

2σ∆x
d

dt
(p(τ̄i+1)− p(τ̄i−1)),

ūi+1 − ūi−1 = − 1
2σ∆x (p(τ̄i+2)− 2p(τ̄i) + p(τ̄i−2)) ,

to recover the expected evolution law (3.14). The proof is thus achieved.

Proof of Lemma 3.3. Because of the definition (3.16) of the residual Rui , we have:∫ t

0

∑
i∈Z

∆x Rui (s)ds = ε2λ

2

∫ t

0

∑
i∈Z

(ui+1 − 2ui + ui−1)(ui − ūi)(s)ds, (3.30)

which equivalently rewrites as follows:∫ t

0

∑
i∈Z

∆x Rui (s)ds = ε2λ

2

∫ t

0

∑
i∈Z

(
ūi+1 − 2ūi + ūi−1

)
(ui − ūi)(s)ds

+ ε2λ

2

∫ t

0

∑
i∈Z

(
(ui+1 − ūi+1)− 2(ui − ūi) + (ui−1 − ūi−1))

)
(ui − ūi)(s)ds.

(3.31)
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Since ui and ui satisfy the assumption limit (3.4), we immediately have:∑
i∈Z

(
(ui+1 − ūi+1)− 2(ui − ūi) + (ui−1 − ūi−1))

)
(ui − ūi) =

−
∑
i∈Z

(
(ui+1 − ui+1)− (ui − ui)

)2
.

As a consequence, we obtain the following inequality:∫ t

0

∑
i∈Z

∆x Rui (s)ds ≤ ε2λ

2

∫ t

0

∑
i∈Z

(
ūi+1 − 2ūi + ūi−1

)
(ui − ūi)(s)ds,

which rewrites:∫ t

0

∑
i∈Z

∆x Rui (s)ds ≤ ε2λ∆x
2

∫ t

0

∑
i∈Z

√
∆x ūi+1 − 2ūi + ūi−1

(∆x)2

√
∆x(ui − ūi)ds. (3.32)

Combining again Cauchy-Schwarz and Young’s inequalities gives, for all θ > 0,∫ t

0

∑
i∈Z

∆x Rui (s)ds ≤ ε4λ∆x
2θ

∫ t

0

∑
i∈Z

∆x
(
ūi+1 − 2ūi + ūi−1

(∆x)2

)2
ds

+ λθ

2

∫ t

0

∑
i∈Z

∆x (ui − ūi)2ds.

(3.33)

Finally, the definition (3.8) of ‖Dxxu‖L2(QT ) leads to the required inequality (3.17).

Proof of Lemma 3.4. First, arguing the definition of p(τi|τ̄i), given by (2.5), a straightforward
computation leads to the following reformulation of Rτi :

Rτi =− λ

2∆x
(
p(τi|τ̄i)(τ̄i+1 − 2τ̄i + τ̄i−1)

)
+ λ

2∆x
(
(p(τi)− p(τ̄i)) ((τi+1 − τ̄i+1)− 2(τi − τ̄i) + (τi−1 − τ̄i−1))

)
,

(3.34)

to get ∫ t

0

∑
i∈Z

∆x Rτi ds = T1 + T2, (3.35)

where we have set:

T1 = −λ2

∫ t

0

∑
i∈Z

p(τi|τ̄i)(τ̄i+1 − 2τ̄i + τ̄i−1)ds, (3.36)

T2 = −λ2

∫ t

0

∑
i∈Z

(p(τi)− p(τ̄i))
(
(τi+1 − τ̄i+1)− 2(τi − τ̄i) + (τi−1 − τ̄i−1)

)
ds. (3.37)

We first estimate T1. Thanks to Lemma 2.2, we write:

T1 ≤ −
∆xλC

2

∫ t

0

∑
i∈Z

∆x P (τi|τ̄i)
∣∣∣∣ τ̄i+1 − 2τ̄i + τ̄i−1

(∆x)2

∣∣∣∣ ds. (3.38)

Since we have −P (τi|τ i) ≤ ηεi and ‖Dxxτ‖L∞(QT ) is bounded, we easily obtain:

T1 ≤ ∆xλC‖Dxxτ̄‖L∞(QT )

∫ t

0
φε(s)ds. (3.39)

Now, let focus on T2. By a discrete integration by parts, we directly get:

T2 = λ

2

∫ t

0

∑
i∈Z

(
(p(τi+1)− p(τ̄i+1))− (p(τi)− p(τ̄i))

)(
(τi+1 − τ̄i+1)− (τi − τ̄i)

)
,
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to write:

T2 =λ

2

∫ t

0

∑
i∈Z

(p(τi+1)− p(τi))
(
(τi+1 − τ̄i+1)− (τi − τ̄i)

)
− λ

2

∫ t

0

∑
i∈Z

(p(τ̄i+1)− p(τ̄i))
(
(τi+1 − τ̄i+1)− (τi − τ̄i)

)
.

With some abuse in the notations, we introduce:
p(τi+1)− p(τi)
τi+1 − τi

(τi+1 − τi) =
{
p(τi+1)− p(τi) if τi+1 − τi 6= 0,
0 otherwise,

to rewrite T2 as follows:

T2 =λ

2

∫ t

0

∑
i∈Z

p(τi+1)− p(τi)
τi+1 − τi

(
(τi+1 − τ̄i+1)− (τi − τ̄i)

)
(τi+1 − τi)ds

− λ

2

∫ t

0

∑
i∈Z

p(τ̄i+1)− p(τ̄i)
τ̄i+1 − τ̄i

(
(τi+1 − τ̄i+1)− (τi − τ̄i)

)
(τ̄i+1 − τ̄i)ds.

(3.40)

We notice that:(
(τi+1 − τ̄i+1)− (τi − τ̄i)

)
(τi+1 − τi) =

(
(τi+1 − τ̄i+1)− (τi − τ̄i)

)2

+ (τ̄i+1 − τ̄i)
(
(τi+1 − τ̄i+1)− (τi − τ̄i)

)
,

so that T2 now reads:

T2 =λ

2

∫ t

0

∑
i∈Z

p(τi+1)− p(τi)
τi+1 − τi

(
(τi+1 − τ̄i+1)− (τi − τ̄i)

)2
ds

+ λ

2

∫ t

0

∑
i∈Z

p(τi+1)− p(τi)
τi+1 − τi

(τ̄i+1 − τ̄i)
(
(τi+1 − τ̄i+1)− (τi − τ̄i)

)
− λ

2

∫ t

0

∑
i∈Z

p(τ̄i+1)− p(τ̄i)
τ̄i+1 − τ̄i

(
(τi+1 − τ̄i+1)− (τi − τ̄i)

)
(τ̄i+1 − τ̄i)ds.

(3.41)

According to the assumption (1.2), the pressure p is a decreasing function of τ . As a consequence, the
first term of (3.41) is nonpositive. Hence we obtain:

T2 ≤
λ

2

∫ t

0

∑
i∈Z

(
p(τi+1)− p(τi)
τi+1 − τi

− p(τ̄i+1)− p(τ̄i)
τ̄i+1 − τ̄i

)(
(τi+1 − τ̄i+1)− (τi − τ̄i)

)
(τ̄i+1 − τ̄i)ds. (3.42)

Under the assumption (3.12) on ‖Dxτ‖L∞(QT ), the above relation becomes:

T2 ≤
λ

2 ‖Dxτ̄‖L∞(QT )

∫ t

0

∑
i∈Z

∆x
∣∣∣∣p(τi+1)− p(τi)

τi+1 − τi
− p(τ̄i+1)− p(τ̄i)

τ̄i+1 − τ̄i

∣∣∣∣
× |(τi+1 − τ̄i+1)− (τi − τ̄i)| ds.

(3.43)

Now, let us emphasize that we have:∣∣∣∣p(τi+1)− p(τi)
τi+1 − τi

− p(τ̄i+1)− p(τ̄i)
τ̄i+1 − τ̄i

∣∣∣∣ ≤ ∫ 1

0

∣∣∣p′(τi + z(τi+1 − τi))− p′(τ̄i + z(τ̄i+1 − τ̄i)))
∣∣∣dz.
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Since p ∈ C2(R∗+), the function p′ is Lipschitz continuous with a Lipschitz constant D. Then the
following sequence of inequalities holds:∣∣∣∣p(τi+1)− p(τi)

τi+1 − τi
− p(τ̄i+1)− p(τ̄i)

τ̄i+1 − τ̄i

∣∣∣∣ ≤ D ∫ 1

0

∣∣∣(τi + z(τi+1 − τi))− (τ̄i + z(τ̄i+1 − τ̄i)
∣∣∣dz,

≤ D
∫ 1

0

(
(1− z)|τi − τ̄i|+ z|τi+1 − τ̄i+1|

)
dz,

≤ D

2 (|τi − τ̄i|+ |τi+1 − τ̄i+1|) .

Plugging this estimation into (3.43) gives:

T2 ≤
λ

2
D

2 ‖Dxτ̄‖L∞(QT )

∫ t

0

∑
i∈Z

∆x (|τi+1 − τ̄i+1)|+ |τi − τ̄i)|)2 ds,

≤ λD‖Dxτ̄‖L∞(QT )

∫ t

0

∑
i∈Z

∆x |τi − τ̄i|2ds.

By Lemma 2.2, there exists a positive constant C such that |τi − τ i|2 ≤ −CP (τi|τ i) ≤ Cηεi . As a
consequence, there exists a constant, once again denoted C, such that we have:

T2 ≤ λC‖Dxτ̄‖L∞(QT )

∫ t

0
φε(s)ds, (3.44)

Both inequalities (3.39) and (3.44) complete the estimation of Rτi and the proof is achieved.

4. Numerical illustrations

In this section, we perform numerical experiments to attest the relevance of the established convergence
rate given by (3.13). To address such an issue, we consider a fully discrete scheme as proposed by Jin
et al. in [16]. This scheme is based on a reformulation of system (1.8) as follows:

∂tτ − ∂xu = 0,

∂tu+ ∂xp(τ) = − 1
ε2

(
σ u+ (1− ε2)∂xp(τ)

)
.

Arguing this reformulation, a 2-step splitting technique is adopted. During the first step, a purely
convective and non-stiff system is considered:{

∂tτ − ∂xu = 0,
∂tu+ ∂xp(τ) = 0.

Its solutions are approximated by adopting a classical HLL scheme [13]:

τ
n+ 1

2
i = τni −

∆t
∆x

(
Fτ
i+ 1

2
−Fτ

i− 1
2

)
, (4.1a)

u
n+ 1

2
i = uni −

∆t
∆x

(
Fu
i+ 1

2
−Fu

i− 1
2

)
, (4.1b)

where the numerical fluxes are defined by:

Fτ
i+ 1

2
= 1

2(−uni − uni+1)− λ

2 (τni+1 − τni ),

Fu
i+ 1

2
= 1

2(p(τni ) + p(τni+1))− λ

2 (uni+1 − uni ).
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It is well known that this scheme is stable under the CFL condition ∆t
∆xλ ≤

1
2, where λ is defined

by (3.2), which does not depend on ε. Next, the stiff source term is treated by a second step where
the following system is discretized:

∂tτ = 0,

∂tu = − 1
ε2

(
σ u+ (1− ε2)∂xp(τ)

)
.

During this relaxation step, an implicit method is suggested in order to obtain unconditional stability:

τn+1
i = τ

n+ 1
2

i ,

un+1
i − un+ 1

2
i

∆t = − 1
ε2

σ un+1
i + (1− ε2)

pn+1
i+ 1

2
− pn+1

i− 1
2

∆x

 .
As in [16], the nodal values are given by the following centered discretization:

pn+1
i+ 1

2
= 1

2
(
p(τn+1

i ) + p(τn+1
i+1 )

)
.

Since τn+1
i = τ

n+ 1
2

i , let us emphasize that un+1
i can be computed explicitly from (τni , uni )i. Finally, the

relaxation step can be written as:

τn+1
i = τ

n+ 1
2

i , (4.2a)

un+1
i =

(
ε2

ε2 + σ∆t

)
u
n+ 1

2
i −∆t

( 1− ε2
∆t σ + ε2

)
p(τn+ 1

2
i+1 )− p(τn+ 1

2
i−1 )

2 ∆x . (4.2b)

We underline that this scheme corresponds to the semi-discrete framework introduced Section 3.
Indeed, combining (4.1b) and (4.2b), we get:

un+1
i = uni −

σ∆t
ε2 + σ∆tu

n
i −

∆t
2 ∆x(ε2 + ∆t σ)

(
p(τn+1

i+1 )− p(τn+1
i−1 )

)
+ ∆t λ

2 ∆x

(
ε2

ε2 + σ∆t

)
(uni+1 − 2uni + uni−1).

Now, we fix ∆t = ∆t ε2

ε2 + σ∆t , and we note that this new time increment is consistent with ∆t. We
immediately remark that we recover (3.1) as soon as ∆t tends to zero.

Next, we consider the scheme (4.1)-(4.2) in the limit of ε to zero to approximate the solutions of
the parabolic problem (1.6). We get the following scheme:

τn+1
i = τni + ∆t

2 ∆x
(
uni+1 − uni−1

)
− λ∆t

2 ∆x(τni+1 − 2τni + τni−1),

un+1
i = − 1

2σ∆x
(
p(τn+1

i+1 )− p(τn+1
i−1 )

)
,

which is an approximation of (1.6).
We notice that this scheme is AP in the sense of the definition given in the introduction. Indeed, its

limit as ε → 0 is consistent (AC) with the parabolic problem (1.6), while its stability condition does
not depend on ε.

Equipped with this scheme, we now perform numerical experiments. We approximate the solutions
on the interval (−4, 4), and we consider zero-flux boundary conditions. The final time of simulation is
T = 10−2. The friction coefficient is fixed to σ = 1.
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Concerning the pressure law, we adopt p(τ) = τ−γ where the adiabatic coefficient is fixed to 1.4.
We compute the approximate solutions of the hyperbolic system (1.8) for different values of ε: 10−1,

3.10−2, 10−2, 3.10−3, 10−3, 3.10−4, 10−4, and different number of cells N = 100, 200, 400, 1600. The
two following initial data are considered:

• Condition 1 (discontinuous):

τ0(x) =
{

2 if x < 0,
1 if x > 0, (4.3)

• Condition 2 (smooth):
τ0(x) = exp(−100x2) + 1. (4.4)

Here, the initial velocity u0 is computed to be compatible with the discrete diffusive limit in order to
avoid an initial layer:

u0
i = − 1

σ

p(τ0
i+1)− p(τ0

i−1)
2∆x .

We display, Figure 4.1, the discrete space integral of the relative entropy φε(T ) with respect to ε
in log scale for the p-system. We observe that both for discontinuous and smooth initial condition,
and for different numbers of cells, the decay rate is always in O(ε4), which is in good agreement with
Theorem 3.1.

A natural extension of this work concerns the Goldstein-Taylor model, which reads:{
∂tρ

ε + ∂xj
ε = 0,

ε2∂tj
ε + ∂xρ

ε = −σ jε,
(x, t) ∈ R× R+. (4.5)

This system can be seen as a simplified two velocities kinetic model in macroscopic variables (see for
example [15, 24]). In the diffusion limit ε → 0, the Goldstein-Taylor model coincides with the heat
equation given by:  ∂tρ−

1
σ
∂xxρ = 0,

∂xρ = −σ j,
(x, t) ∈ R× R+. (4.6)

Concerning this model, a direct adaptation of the numerical scheme (4.1)-(4.2) is suggested. The nu-
merical results are displayed Figure 4.2. As well as for the p-system case, the convergence rate is also
in O(ε4) which is in good agreement with convergence results given in [19].

In [19], the authors also apply their relative entropy method to other systems, leading to the
same kind of estimates. To conclude this section, we also extend the numerical scheme (4.1)-(4.2) to
approximate the weak solutions of both isentropic Euler system and visco-elastic system with memory
as considered in [19]. Concerning the isentropic Euler equation, the adopted scaled system is the
following: 

∂tρ
ε + ∂x(ρεuε) = 0,

∂t(ρεuε) + ∂x
(
ρε(uε)2

)
+ 1
ε2∂xp(ρ

ε) = − σ
ε2 ρ

εuε,
(x, t) ∈ R× R+.

The corresponding asymptotic regime in the limit ε→ 0 is given by:{
∂tρ− ∂xxp(ρ̄) = 0,
∂xp(ρ̄) = −σρ̄ū,

(x, t) ∈ R× R+.
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Figure 4.1. p-system: space integral of the relative entropy φε with respect to ε in log scale.
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Figure 4.2. Goldstein-Taylor model: space integral of the relative entropy φε with
respect to ε in log scale.

Similarly, the visco-elastic system reads as follows:
∂tu

ε − ∂xvε = 0,
∂tv

ε − ∂xγ(uε)− ∂xzε = 0,

∂tz
ε − µ

ε2∂xv
ε = − σ

ε2 z
ε,

(x, t) ∈ R× R+,

where the asymptotic regime satisfies the following system:
∂tu− ∂xv̄ = 0,
∂tv̄ − ∂xγ(ū) = µ∂xxv̄,

µ∂xv̄ = σz̄,

(x, t) ∈ R× R+.

The numerical results are displayed Figures 4.3 and 4.4. We still observe a convergence rate in
O(ε4), which is in good agreement with results established Theorem 3.1 (see also [19]).
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Figure 4.3. Isentropic Euler system: space integral of the relative entropy φε with
respect to ε in log scale.

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 0.0001  0.001  0.01  0.1

P
h

i(
e

p
s
)

eps

N=100
N=200
N=400

N=1600
eps^4

(a) Discontinuous initial data

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 0.0001  0.001  0.01  0.1

P
h

i(
e

p
s
)

eps

N=100
N=200
N=400

N=1600
eps^4

(b) Smooth initial data

Figure 4.4. Visco-elastic model: space integral of the relative entropy φε with respect
to ε in log scale.
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