SMAI-JCM
SMAI JOURNAL OF
COMPUTATIONAL MATHEMATICS

Positive nonlinear CVFE scheme for
degenerate anisotropic Keller-Segel
system

CLEMENT CANCES, MOUSTAFA IBRAHIM & MAZEN SAAD
Volume 3 (2017), p. 1-28.
<http://smai-jcm.cedram.org/item?id=SMAI-JCM_2017__3__1_0>

© Société de Mathématiques Appliquées et Industrielles, 2017
Certains droits réservés.

cedram

Article mis en ligne dans le cadre du
Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

creative
commons

SAY



http://smai-jcm.cedram.org/item?id=SMAI-JCM_2017__3__1_0
http://www.cedram.org/
http://www.cedram.org/

/
A/ SMAI Journal of Computational Mathematics
Vol. 3, 1-28 (2017)

Positive nonlinear CVFE scheme for degenerate anisotropic
Keller-Segel system

CLEMENT CANCES !
MOUSTAFA IBRAHIM 2
MAZEN SAAD 3

! nria Lille - Nord Europe, 40, Avenue Halley, 59650 Villeneuve d’Ascq, France

E-mail address: clement.cances@inria.fr

2 American College of the Middle East, Math and science division. 220 Dasman, 15453,
Kuwait.

E-mail address: Moustafa.Ibrahim@acm.edu.kw

3 Ecole Centrale de Nantes, Laboratoire de Mathématiques Jean Leray, 1, rue de la Noé, BP
92101, 44321 Nantes, France

E-mail address: Mazen.Saad@Qec-nantes.fr.

Abstract. In this paper, a nonlinear control volume finite element (CVFE) scheme for a degenerate
Keller-Segel model with anisotropic and heterogeneous diffusion tensors is proposed and analyzed. In this
scheme, degrees of freedom are assigned to vertices of a primal triangular mesh, as in finite element methods.
The diffusion term which involves an anisotropic and heterogeneous tensor is discretized on a dual mesh
(Donald mesh) using the diffusion fluxes provided by the conforming finite element reconstruction on the
primal mesh. The other terms are discretized using a nonclassical upwind finite volume scheme on the
dual mesh. The scheme ensures the validity of the discrete maximum principle without any restriction on
the transmissibility coefficients. The convergence of the scheme is proved under very general assumptions.
Finally, some numerical experiments are carried out to prove the ability of the scheme to tackle degenerate
anisotropic and heterogeneous diffusion problems over general meshes.
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1. Introduction and model

In this paper, we are interested in degenerate nonlinear parabolic reaction—convection—diffusion sys-
tems modeling the chemotaxis process over general mesh, with anisotropic and heterogeneous diffusion
tensors. From the numerical point of view, the convergence analysis of the finite volume scheme for
this type of systems is carried out in [4] for the isotropic case (i.e. the diffusion tensor is considered
to be proportional to the identity matrix) and under the “admissibility” assumption on the mesh
used for the space discretization in the sense of satisfying the orthogonality condition (see e.g. [21]).
Although its ability to ensure stability, the classical upwind finite volume method does not permit to
handle anisotropic diffusion even if the mesh verifies the orthogonality condition. Various "multi-point”
schemes, where the approximation of the flux through an edge involves several scalar unknowns, have
been proposed for anisotropic diffusion problems, see for example [22, 18, 14, 2, 15] for a detailed
review of modern finite volume methods for diffusion equations. However, nonlinear corrections have
been proposed in [11] in order to enforce the monotony, but no complete convergence proof have been
provided for such methods yet.

Let us introduce the chemotaxis model. For that, let €2 be a connected open bounded polygonal
domain of R?, and ¢ > 0 be a fixed time. The modified Keller-Segel system (e.g., see [26, 27]) modeling
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the chemotaxis process is given by the following set of equations

{atu —div (A(x)a (u) Vu — A(x)x (v) Vo) = f (u) in Qg = Q2 x (0,t),

0w — div (D(x)Vv) = g (u,v) in Q¢ = Q x (0,t). (1.1)

The system is complemented with zeros-flux boundary conditions on X, := 0§ x (0, t¢) given by
(A(x)a (u) Vu — A(x)x (u) Vv) -n =0, D(x)Vv-n =0, (1.2)
and the initial conditions on €2
u(x,0) =wup(x), v(x,0)=wvo(x). (1.3)

In the above model, the density of the cell-population and the chemoattractant concentration are
represented by u = u (x,t) and v = v (x,t) respectively. Next, a(u) is a density-dependent diffusion
coefficient, and A(x) is the diffusion tensor in a heterogeneous medium. Furthermore, the function x
is the chemoattractant sensitivity, and D(x) is the diffusion tensor for v. The function f describes the
cell density proliferation and the cell density death. The function g describes the production and the
degradation of the chemoattractant concentration; for simplicity, we assume that it is a linear function
given by

g (u,v) = au — P, a,>0. (1.4)
« and S represent respectively the production and the degradation rate of the chemical concentration.

Let us state the main assumptions made about system (1.1)-(1.3):

(A1) The cell-density diffusion coefficient a : [0,1] — R* is a continuous function such that,
a(0) =a(l) =0, and a(u) > 0 for 0 < u < 1.

(A2) The chemosensitivity x : [0,1] — R is a continuous function such that, x(0) = x(1) = 0.
X (u
a(u

~—

Furthermore, we assume that there exists a function p € C ([0, 1] ; R™), such that u (u) =
for all w € (0,1) and p(0) = (1) =0.

~—

(A3) The diffusion tensors A and D are two bounded, uniformly positive symmetric tensors on (2,
that is: Yw # 0,0 < T_ |w|> < (T(x)w,w) < Ty [w|* < 0o, T =AorD.

(A4) The cell density proliferation f is a continuous function such that f (0) > 0 and f (1) <0.
(A5) The initial function ug and vg are two functions in L? (Q) such that, 0 < ug < 1 and vg > 0.

In the sequel, we use the Lipschitz continuous nondecreasing function & : R — R defined by

€ (u) = /Ou\/c@ds, Vu € R, (1.5)

We recall the definition of a weak solution of system (1.1)—(1.3).

Definition 1.1 (weak solution). Under the assumptions (A1)—(A5), we say that the couple of mea-
surable functions (u,v) is a weak solution of system (1.1)—(1.3) if

0<u(xt)<1, 0<w(x,t) fora.e. in Qy,
& (u) € L2 (0.t H' (),
ve L®(Qy)N L (o, te; HY (Q)),
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and for all ¢, € D (ﬁ X [O,tf)), one has

—/QUO(X)so(x,O) dx—//QtfuatsodxdtJr//Qtf Va(WA)VE (u) - Ve dxdt
_//Qt A(X)X(U)Vv.Vgodxdt://Qt fu)o(x,t)dxdt,  (16)
_/Qvo(XW(X,O)dX—//Qt uatwdxdw//@ D(X)Vu.vwdxdt://@ g (w,v) pdxdt.  (1.7)

A standard weak formulation uses the Kirchhoff transform () as a primitive of the function a(u).
According to [8, 9], we approximate the degenerate diffusion term in its original form in (1.1). Next,
we use the specific form of the chemoattractant function to propose a new scheme preserving the
positivity of solutions and convergent.

Schemes with mixed conforming piecewise linear finite elements on triangles for the diffusion term
and finite volume on dual elements were proposed and analyzed in [7, 13, 1] for fluid mechanics
equations, and in [25] for a degenerate nonlinear chemotaxis model. The convergence analysis for
these schemes is carried out for the case of anisotropic and heterogeneous diffusion problems under
an essential assumption that all the transmissibility coefficients are nonnegative. However, there is
no sufficient conditions for nonnegativity of transmissibility coefficients and therefore the schemes do
not permit to tackle general anisotropic diffusion problems. Nevertheless, in [12] the authors propose
a combined nonconforming finite elements finite volumes scheme for which they add a monotone
regularization permitting positiveness of discrete solution; the convergence of the scheme, introduced
in [11], is ensured under a numerical condition depending on the mesh size and on the discrete solutions.

Recently, Canceés and Guichard proposed and analyzed in [9] a nonlinear Control Volume Finite

Element (CVFE) scheme for solving degenerate anisotropic parabolic diffusion equations modeling
flows in porous media. The convergence analysis is carried out without any restriction on the trans-
missibility coefficients, and the efficiency of the scheme is tested using anisotropic diffusion tensors
over an unstructured mesh.
Our aim is to elaborate a general approach, inspired from [9] and [25], to approximate a nonlinear
degenerate parabolic system modeling the chemotaxis process over general mesh, with anisotropic
and heterogeneous diffusion tensors. Especially, the diffusion terms are discretized by means of a con-
forming piecewise linear finite element method on a primal triangular mesh and using the Godunov
scheme to approximate the diffusion fluxes provided by the conforming finite element reconstruction.
The others terms are discretized by means of a nonclassical upwind finite volume method on a dual
mesh (Donald mesh or Median dual mesh).

The rest of this paper is organized as follows. In section 2, we define a primal triangular mesh
and its corresponding Donald dual mesh, next, we define standard P, finite element and finite vol-
ume reconstructions. Then, we introduce the nonlinear CVFE scheme and specify the discretization
of the degenerate diffusion and convection terms. In Section 3, we prove the existence of a discrete
solution to the CVFE scheme based on the establishment of a priori estimates on the discrete so-
lution as well as the discrete maximum principle. In Section 4, we give estimates on differences of
time and space translates for the approximate solutions. In Section 5, using the Kolmogorov relative
compactness criterion, we prove the convergence of a subsequent of discrete solutions to the weak
solution (Definition 1.1). Finally, some numerical simulations are carried out, in Section 6, to show
the effectiveness of the scheme to tackle degenerate anisotropic and heterogeneous diffusion problems
over general unstructured mesh.
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2. The numerical scheme and main result

In this section, we describe the space and time discretizations of @y, define the approximate spaces,
introduce useful properties on discrete H!'-norms stemming from finite elements discretizations as well
as the nonlinear CVFE scheme, and state the main result.

2.1. Space-time discretization and notations
2.1.1. Space discretizations of ).

In order to discretize problem (1.1)—(1.3), we perform a finite element triangulation 7 of the polygonal
domain €, consisting of open bounded triangles such that Q@ = Jpc7 T and such that for all T,7" € T,
T NT' is either an empty set or a common vertex or edge of 7" and 7”. We denote by V the set of
vertices of the discretization 7, located at positions (Xx )¢y, and by € the set of edges of T joining
two vertices of V. The edge joining two vertices K and L is denoted by ok .

For a given triangle T" € T, we denote by x7 the centre of gravity of T', by &r the set of the edges
of T, by hr the diameter of T', and by pr the diameter of the largest ball inscribed in the triangle 7'
We denote by h the size of the triangulation 7 defined by h := maxpc7hr and and by 67 the shape
regularity of the triangulation 7, defined by 67 := maxperhr/pr.

For K € V, we denote by £k the set of the edges having K as an extremity, and by Tk the subset of
T including the triangles having K as a vertex. We also define a barycentric dual mesh M (known as

FiGURE 2.1. Triangular mesh 7 and Donald dual mesh M: dual volumes, vertices, interfaces.

Donald dual or Median dual mesh) generated by the triangulation mesh 7. There is one dual element
wg associated with each vertex K € V. We construct it around the vertex K by connecting the
barycenter xp of each surrounding triangle T' € Tx with the barycenters x, of the edges o € £x. We
refer to Fig. 2.1 for an illustration of the primal and the barycentric dual mesh in a two-dimensional
space. Note that Q = (J Kkey Wik The 2-dimensional Lebesgue measure of wy is denoted by m .
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2.2. Discrete finite elements space H7, control volumes space X,.

We define two discrete functional spaces associated with each mesh of the above meshes. The first
one, denoted by H7, is the usual Pi-finite element space corresponding to the triangular mesh T,
consisting of piecewise affine finite elements.

Hr = {peC®(Q); ¢, ePL(R), VT T} C H' (0).
The canonical basis of H7 is spanned by the shape functions (¢x )¢y, such that
or (xx) =1, ¢g(x)=0ifL#K,  VKeV.

On the other hand, we denote by X4 the discrete control volumes space consisting of piecewise
constant functions on the dual mesh M.

Xy = {p : @ — R measurable; Ploy € R is constant, VK € V}.

Given a vector (ug) ey € R7Y (resp. (vi)gey € R?Y), there exists a unique function ur € Hy (resp.
vy € H7) and a unique upg € Xpq (resp. v € Xpq) such that

UT(XK) = um (XK)ZUK, VK €V, 91
or (i) = o (k) = vk, VK €V, 2
For all (K, L) € V%, we define the transmissibility coefficient Tk, by
Trr = —/ T(x)Vek(x) - Vor(x)dx = Tk, T=Aor D. (2.2)
Q

We have T = — Z Tk, since Z Vg = 0. As a consequence, one has
LK Key

/T(X)VUT'vadX: Z Tkr (ux —ur) (v —vr), T =AorD.
Q

oK LEE

2.3. Time discretization of (0, ).

For the time discretization of the interval (0, ¢f), we consider a uniform time discretization, and we do
not impose any restriction on the time step. In addition, we assume that the spatial meshes do not
change with the time step. We note that all the results presented in this paper can be extended to the
case of general time discretization.

Let N be a nonnegative integer, we define the uniform time step At = ¢¢/ (N + 1), and t" = nAt for
allm € {0,..., N + 1}, so that t° = 0, and tV*! = ¢;.

2.4. Space-time discretization of ().

Here, we define the space and time discrete spaces H1 Ay and X A as the set of piecewise constant
functions in time with values in H7 and X7 respectively.

HT,At = {QO eL? (O,tf; H! (Q)) Lo (x,t) =@ (X,thrl) eHr, Vte (tn,tn+1]},
Xpmat = {¢ : Qi — R measurable, ¢ (x,t) = ¢ (x,t”“) € Xy, Ve (1" ).

N+2)#V (

For a given (u%)ne{07~--,N+1},K€V e R( resp. (v?()ne{o,m,N-i—l},KEV)’ there exists a unique

function uyr ar € Hr ar (resp. vrar € Hrar) and a unique uaqar € Xaqar (resp. v ar € Xaac)
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such that
Ut At (XKa t) = UM,At (XK’ t) = unK+17 VK € V? vt € (tna tn+1]a (2 3)
vrac(Xi,t) = vpar (i, t) = v, YK €V, Ve (1,87, |
2.5. The nonlinear CVFE scheme
The discretizations of the initial data u(}( and v%, K €V are defined by
0 0 1
upm (X)) =up = — ug (y) dy, VX € wg, (2.4)
mK WK
0 0 1
v (X) = v = — vo (y) dy, Vx € wg, (2.5)
mg Jwg
2.5.1. Discretization of the first equation of system (1.1)
For all K € V, and n € {0,..., N}, we define the discretization of the diffusion term by
Z a?&lAKL (ua}{ﬂ _ u1£+1) 7
oKLEEK
where,
max_ a (u) if Agr, >0,
bl — L uelict! (2.6)
KL min a (u) if Agp <0,
ue[}'{;l
n+1

and I7;" denotes the interval defined by

Iy = [min(uf™ up ™), max(ui™ up )]

Let us focus on the discretization of the convection term, and recall that the function x (u) is defined
to be the product of the continuous functions p(u) and a (u). To handle the discretization of the
convection term in order to obtain a robust and stable scheme, we perform a nonclassical upwind
finite volume scheme which consists of considering an upwind scheme for the function p (u) according
to the discrete gradient of v, and an upwind finite volume scheme for the function a (u) with respect
to u. These choices of discretization are crucial to ensure the discrete maximum principle as well as
the energy estimates on the approximate solutions.

Definition 2.1. Consider system (1.1) and the notations given in §2.2. We say that the function

,u’}le =z (u?;rl, u%“) is an approximation of the function p (u) on the interfaces of wx with respect

to the discrete gradient of v if it is nonincreasing (resp. nondecreasing) with respect to the first
variable u?fl and nondecreasing (resp. nonincreasing) with respect to the other variable uﬁ“ when

Akr (v?fl —UZH) > 0 (resp. Axr (v?fl —vﬁ“) < 0). Furthermore, we have z (uTIL(Jrl,u”K“) =

1 (unKH).
We give here two examples on the construction of ,u’};zl. The first example consists of taking the

Engquist-Osher scheme and the second example consists of taking the Godunov scheme (see e.g. [24,
28)).
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Engquist-Osher scheme

1 1 . 1 1
° MnJrl K u}?‘ + p Uz+ ) if Akr U}l{—’— - Uz+ >0,
KL — .
g (W) 4y (), if Agr, (vt —o7tt) <.

The functions p4 and p are given by

Herein, st = max(s,0) and s~ = max(—s,0).

Godunov scheme

: n+1 n+1 n+1 n+1
Jmax g (u), if Agr (vK vy ) >0, and vy <up’,
[uy" ]
min  u(u), if Ay (v?{ﬂ - UEH) >0, and u}?l > uzﬂ,
[n+1 n+1]
o iy =4 e
: n+1 n+1 n+1 n+1
max (u), if Agr, (vK — vy ) <0, and up" >up",
[up ™ ]
: . 1 n+1 n+1 n+1
min U if A <U"+ ) and u <utr.
[un un+1]M( ) KL\"K L <0, K ="L
K 7L

We are now in a position to introduce what we call nonlinear control volume finite element (CVFE)
scheme. For all K € V, and all n € {0,..., N},

n+1

U —u?
K K 1 1 1 1 1 1 1 1
ot 3 Apaid! (witt =) = 30 Aol (v —of ) = f (wi) mr,

oK LEEK oKkLEEK
(2.7)
where, the transmissibility coefficients A, and Dy are given in equality (2.2).

2.5.2. Discretization of the second equation of system (1.1)—(1.3)

Here, we focus on the discretization of the second equation of system (1.1)—(1.3). We note that a
classical discretization of this equation is given by the following form

n+1

mK% + Z Dgr, (U}?Fl — UEH) =mg (au}‘{ — 61}}?1) . (2.8)

oxLEEK

However, this discretization does not guaranty the positivity of the discrete solutions without any re-
striction on the transmissibility coefficients, for instance, one can get the discrete maximum principle
by assuming that all the transmissibility coefficients Dg, are nonnegative (see [25]).

Here, we propose a numerical discretization in order to ensure the discrete maximum principle with-
out any restriction on the transmissibility coefficients. To do this, we introduce the following set of
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functions: n (v), p (v), I (v) and ¢ (v) defined by

n (v) = max (0, min (v, 1)), (2.9)
vl 1 if 1
p(v) = / R nUe (0.1), (2.10)
1 n(s) v—1 ifv>1,
v vin(v) —v+1 ifve|0,1),
I'(v) = / s)ds = 2.11
= [ pe {(v_;)z oy (2.11)
vo1 2 if 1
¢(v)=/ T hUe 0:1); (2.12)
0o vn(s) v+1 ifo>1
In the sequel, we adopt the convention
n(v)p(v) =0 ifv <0. (2.13)
We give the discretization of the second equation of system (1.1)—(1.3); specifically, we have
il g
mKKTtK + Y Dgpui! (p (v’}fl) —p (vf“)) =mg (au’}( - Bv}?“l) : (2.14)
okLEEK
where, denoting by Jit! = [min(vir™, o7 ) max (vt 07T, we have set

(2.15)

ntl {InaxseJ;tln(s) ifl)KL > 0,
kL =

minseJ;? n(s) if Dy <O0.
Note that because of the use of the function p in the scheme, the scheme (2.14) only makes sense if
vl >0 VK €V, Vn > 0. (2.16)

This will be assumed in the a priori estimates and rigorously proved later on (cf. Lemma 3.11).

We can show that the scheme (2.7)—(2.14), whose construction is based on finite elements for the
diffusion term and a nonclassical upwind finite volume for the convection term, can be interpreted as
a finite volume scheme. Indeed, denoting by

F}}—H _ AKLa?&l (urf(ﬂ _ Uzﬂ) _ AKLM?Lla?(JFLl (U?(H _ vazﬂ) ,
O = Dpnit! (p (v?('H) —p (UZ'H)) )
Then the scheme (2.7)—(2.14) rewrites
Fptl+ Pl = 0= ot + o7t for all oy, € €,
u?{‘i’l B ’LL?{ FTL+1 _ n+1 f 1K
mg—— o+ > Fip —f(UK )va orall K €V,
oKkLEEK
’U?(Jrl B U?(' @ﬂ—l—l o n n+1 f 1K V
oKLEEK

2.6. Main result
Let (Tm),,>1 be a sequence of triangulations of {2 such that

hy = max diam (T') — 0 as m — oo.
TeT:

m
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We assume that the sequence of triangulations has a bounded regularity, i.e., there exists a constant
6 > 0 such that

Or, <60, Vm>1.
As before, a sequence of dual meshes (M,,),,~; is given.
Let (Np,),, be an increasing sequence of integers, then we define the corresponding sequence of time

steps (Aty,),, such that At,, — 0 as m — oo. The intention of this paper is to prove the following
main result.

Theorem 2.2. Let (UMm,Atmava,Atm)m be a sequence of solutions to the scheme (2.7)—~(2.14), such
that 0 < upmg,, At <1 and 0 < vy, A, for almost everywhere in Qy,, then

UM Aty — u and UM, At — v a.e. in Qtf as m — 00,

where the couple (u,v) is a weak solution to the system (1.1)—(1.3) in the sense of Definition 1.1.

3. Discrete properties, a priori estimates and existence of a discrete solution

In this section, we first bring up some technical lemmas presented by Cances and Guichard [9], that
we reproduce here for clarity. Then, we establish the a priori estimates necessary to prove later the
existence of a solution to the discrete problem.

Lemma 3.1. Let ( "+1)K e RINVHD#Y (regp, ( "+1)K € RWNFV#Y) then denoting by &7 a¢ (resp.
n

1 )

dT1.at) the unique function of H ar with nodal values (f (u?<+1)) e RIVHD#V (resp. ((]5 (v?{ﬂ)) €
RNFD#Y) - one has

ZAt Z Agpalit] (uTIL(-i-l uzﬂ)Q

n=0 oxL€EE

>ZAt S Awr (€ (u) — e () = / [, AVEran Versdxdt, (31)

UKL€5
and
n+1 n+1 n+1 2
zm > D (p@i™) = pth)
O'KLEc‘:
Sy ar Y Dicr (6 () — o () / Dby Voradxdi. (3:2)
n=0 oxLEE

Proof. We refer to [9, Lemma 3.1], for the proof of this lemma. [ |

Let T € T, and let (K, L) € V2, we denote by
Mep = —/TAVgoK Verdx = AT,
Py /T DVx - Vrdx = 6%

As a consequence, Axy = Z A[TQ and Dk = Z 6IT<L for all oy, € €.
TeT TeT
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Lemma 3.2. Let V5 = Z Vi € Hr, then there exists a quantity Cy depending only on A, D,

Key
and 07 such that
D ’)\KL‘ (Y —p)? < co/ AV - VI dx, (3.3)
oL EETET
and
D ‘5KL‘ b — ) < CO/ DV - VUrdx. (3.4)
o €EETET
Proof. We refer to [9, Lemma 3.2] for the proof of this lemma. [ |

Lemma 3.3. There exists a quantity Cy dependmg only on A, D, and 07 such that

N
2

Sar Y Arclagt (wEt ) <o ZAt > Awraid! (uptt =gty (3.5)

n= O'KLch O'KLEE

and

N 2

Sar Y Dzl (pei) - pwp)” < z At ST Dreomit (poi™) = ppth)

n=0  ogp€E n=0  ogr€€

(3.6)
Proof. We denote by £~ := {oxr € &; Ak < 0}, then since |x| = x + 2x7, x~ = max (—x,0), one
has
2
ZAt Z ‘AKL|Gn+1( n+l n+1) ZAt Z AKLan+1( 7;{—&—1 urLH—l)
n=0 ok EE n=0 o1 €E

N
2
+2§ At E |Axcp|ait?! (u?(Jrl u%“) :
n=0 oxLEET

Now, from the definition (2.6) of /!, there exists ¢ € I}-f! such that

(6 (i) = ()" =a@ (w - )" = @it (i = upt)", Voup €&

Therefore,

> ar Y Arclaids! (e —upt)” < S A Y A ()’

n=0 o €EE n=0 oKLGS

+22At > Al (¢ () — ¢ (w3t))". 30

O'KLGS

Lemma 3.2 ensures the existence of a quantity Cy > 0( Co (A, 67)) such that

ZAtZIAKL!((”“) (up)) < ZAtz S Pl (€ () = € ()

o €E ok €EETET

< Gy / AVES - VEr ardxdt,
Qt

and from Lemma 3.1, we deduce that

%At > Akl (¢ (uyl)—g(u'g“)) <COZAt > Axcrafd! (it - z+1)2. (3.8)
n=0

oxLEE orLEE

10
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Plugging estimate (3.8) into estimate (3.7), then estimate (3.5) holds with C; = 1 + 2Cy. The proof
of estimate (3.6) is similar. (]

3.1. Discrete maximum principle

Lemma 3.4. Let (u"KH,U?(H) be a solution to the CVFE scheme (2.7)—~(2.14). Then,
KEVﬂ"LE{O,,N}
forall K €V, and alln € {0,...,N + 1}, we have 0 < ul, < 1.

Proof. We show this property using an induction on n. The property is true for n = 0 thanks to the

definitions (2.4) and (2.5) of uY and v}, and to the assumptions on uy and vy. Now, assume that the

claim is true up to time step n. Consider a dual control volume wx such that ui! = ani{)l{u’}JH}, we
€

want to show that u’}(ﬂ >0i.e. (u’};rl)i = 0. Multiplying equation (2.7) by — (u’}(ﬂ)i, one has

n+1 n
u —u - -
met g () = 3 A (o =) (o)
oxLEEK
1 n+1 1 1 1\~ 1 1\~
+ g AKLM’[?L a?;rL <v?<+ fvz+ ) (u’};r ) =-—mgf (ur;;“ ) (u"K+ ) <0,

OKLEEK
(3.9)
to which, we have used the extension by f(0) > 0 (see assumption (A4)) of the continuous function
f for u <0.
In view of the definition (2.6) of ', and of the fact that a (u) = 0 if u < 0, one has a! = 0, if
Ak < 0. Therefore, the second term in the left hand side of equation (3.9) reads to
_ Z ar}z(+L1 (AKL)JF (u}z(ﬂ _ uz+l> (u?(+1> >0,
OoKLEEK
Let us now focus on the third term of equation (3.9), and denote by A this term. Since aff&l =0 for
Agp <0, then A rewrites
A= S Madtat (ot —opt) () = Y Mttt (ot - optt) ()
oKLEEK oKxLEEK
The second term of A is nonpositive, but in view of Definition 2.1 on the approximation ,u}l('zl and in
view of the extension by zero of the function p for u < 0 since p (0) = 0, one can deduce that

1 1 1\~ 1\~ 1 1 1\~ 1\~
i N (R =i ) (i) < (i) Ay (o —o™) () =0
thus, the second term of A is equal to zero and consequently A > 0 since the first term of A is
nonnegative.

+ —_
Finally, we use the identity u%+1 = (u%“) — (u"KJrl) and the nonnegativity of u%, one can deduce
from equation (3.9) that (u’}{H)_ = 0. According to the choice of the dual control volume wg, then

ILni)rjl{u’,f'H} is non-negative. Consequently, v} >0, VK €V, and alln € {0,...,N + 1}.
€

In order to prove by induction that u% < 1, VK € V, ¥n € {0,..., N + 1}, we proceed in the same

way as before, so that we consider a dual control volume wy such that u™ = rila]}f{uﬁﬂ}‘ We get
€

up the result using Remark 2.1, the extension by zero of each of the function a, and u for v > 1, and
the extension by f (1) < 0 of the continuous function f for u > 1. [ |

11



CLEMENT CANCES, MOUSTAFA IBRAHIM, et al.

3.2. Entropy estimates on v ¢

In the following, C' denotes a “generic” constant, that may vary throughout the proofs. We prove now
an entropy estimate on v a¢-

Lemma 3.5. There exists C > 0 depending only on |lvolr2(q), 2, t, a and B such that, for all
n* € {0,...,N}, one has

Z miT (W) + ZAt Z DKLT]nH( (W) — p(o 2+1))2 <c

Key oL EE

Proof. It follows from Jensen’s inequality — recall that I' is convex — that

Z mgl (v?{) < /QF(UO(X))dX.

Key
Since I'(v) < (v — 1) for all v > 0, we obtain that
Z mgT (U%) < / (vo(x) — 1) dx < C. (3.10)
Kev @
Multiplying the scheme (2.14) by p(v "H)At and summing of K € V and n =0,...,n* provides
A+B=C, (3.11)

where we have set

n*

A=2" mi (v = vi)p(i),

n=0 Key
2
B= z At ST Do (pi™) —ppt™)
o €EE
C = ZAt Z m (aul — B p(uitt).
n=0 Key
Since, thanks to Lemma 3.4, u is non-negative for all K € V and all n > 0, and since p(v) < (v—1)
for all v > 0 (with the convention p(0) = —oo) one has

aufep(vf) < aufe (vt — 1).

On the other hand, there exists an absolute constant ¢* such that vp(v) > (v —1)? — ¢* for all v > 0.
Therefore,

61}?{—5—11?( n+1) > ,3( n+1l )2 _ C*.

As a consequence, we obtain that

C < te|Q|c* + Z At Z M (au’}{(v}‘(ﬂ —1) — Buptt — 1)2) .

n=0 Key
Using the weighted Young’s inequality cab < Bb% + %aQ for all (a,b) € R? provides
2

[\

auK(UK+1 -1)- /B(UK+1 - 1)2 < @UK < E
thanks to Lemma 3.4. Hence, we obtain that
o2
<tQ [+ —= ). 12
C_f|!<0+4ﬁ> (3.12)

The function p being increasing, an elementary convexity inequality provides that

(a—0b)p(a) > T(a) = T(b), V(a,b) € (R4)?,

12
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ensuring that

A2 33 e (TR = Twgo) = 32 mae (PR = T(R)). (3.13)
n=0 KeV Key
Using (3.12), (3.13) and (3.10) in (3.11) concludes the proof of Lemma 3.5. |

As a second step, we propose to derive a classical energy estimate on vaqa¢. Even though the
convergence analysis of the scheme can be performed without this estimate, it is interesting to check
that our nonlinear scheme also allows to recover the classical estimates ones expects from the classical
scheme (2.8).

Lemma 3.6. There exists C depending only on €, ||lvollr2qy, @, B, and ty such that, for all n* €
{0,...,N}, one has

1

5 Z mg (’U?(*—H) + ZAt Z DKL( ntl UE—H) S C.
Key ok €EE
Proof. Let n € {0,...,n*}, then multiplying the scheme (2.14) by U"+1At and summing over K € V
yields
At prtt — ol (3.14)
where

n+1 __ n+1 n+1 n
A Z MKV ( v — vK) ,

Key
Bl — At Z DKLnnJrl ( (v ?{H) p(szrl)) (v?{ﬂ szrl) 7
ok LEE
ot = At Z mg (om”Jrl ﬁv”“) optt,
Kevy
. . . b2
It follows from the simple inequality a(a — b) > % — % that
1 1
+1 +1 +1
A" 22;771[((11?( ) —§Zm;<(v% ) . (3.15)
ey Kev
The definition (2.15) of n&h! and the relation (2.10) between 1 and p implies that
2
Dicrnit (p(wih) = ppth) (vt = vpt!) > Dep (o — o), Vowp £
Therefore,
2
B> At > Diep (vt = op ) (3.16)
O'KLES

Let us now focus on the term C™*!. Thanks to the simple inequality cab < %QQ + Bb?, one gets that

o2
n+1 n+1
C <Ath: mK4ﬂ (uK )
ey
Using now the fact that 0 < u%" < 1 (cf. Lemma 3.4), we obtain that
a?At|Q
48

cntl < (3.17)

13
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Combining (3.15)—(3.17) in (3 14) and summing over n € {0,..., N} provides that

2 2 2%
*ZmK( n+1> ZAt Z DKL( ntl z+1) S%ZmK (U%) +an4gtlﬂ|.
Key oL EE Key
In order to conclude the proof of Lemma 3.6, it only remains to check that
2

> i (vh)” < leollfao

Kevy
as a consequence of Jensen’s inequality. |

3.3. Energy estimates on ux Ay

Proposition 3.7. There exists a constant C' > 0 depending only on ||lvo||r2(q), , tt, o, B, A, D, and
01 such that, for alln* € {0,..., N}, one has

Z mg ( n H) Z At Z AKLCL"+1 (u?{H qu)Q < C. (3.18)

Key n=0 ok €E

Proof. We multiply equation (2.7) by At u"+1 and sum over K € V and n € {0,...,n*}. This yields
E1+4+ Es + E3 = Fy, (319)

where

Z Z mK( nt+l _ UK) n+l’ ZAt Z Z AKLan+1 (u?(-i-l “TLLH) u?{+17

n=0 Key KeVogrelfi
'fL
1 1 1 n+l 1 1 1
E4—ZAthKf(”+) }?r, EngZAtZ Z AKLM?(JFLCL?{E(WF fszr)uT};r.
n=0 Key n=0 KeVogrelfi

—_

For the time evolution term, we use the following inequality: (a — b)a > 3 <a2 — b2> , Ya,b € R, to
get

2 1 2

nt+l\° _ omN2) _ © n*4+1\" 0

Z S i (( )~ (upo) ) o> mk (( u ) = () ) (3.20)
n=0 KeV Key

Next, for the diffusion term, we reorganize the sum over the edges we find

o L e EEES o SR VI FUR

KeVogreli oL EE
(3.21)

Similarly, we reorganize the sum over the edges for the convection term. We obtain

1 1 1 1 1
By = — ZAt S0 Agppitlal ( it )u}?“
n=0 KeVogrefi

_ n+1 _n+1 n+1 n+1 n+1 n+1
——ZAt Z Agrpl’ ayy ( -7 )(uK —uy )

n=0 oxL€EE

14
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Using the weighted Young inequality and the uniform boundedness of the function p, we deduce

|E3| < CZ Ay N \AKL]a”“‘ n+l _ n+1’ ‘ nbl el
KeVogreli

<czmz S Akl (vt -t

KeVogr€elk

ZAt Z Z IAKL\CL"H( n+1 uzﬂ) :

n=0 KeVogrelfi
where (' is the same constant introduced in Lemma 3.3.
Thanks to estimates (3.3) and (3.5), one has

TR S S S T CER S 0 i S S C R

n=0 KeVogrelk n=0 KeVogr€elfi
Therefore, Lemma 3.6 provides
B3| < C+ = ZAt S Awrapt! (up! u’g“) . (3.22)
KeVogrelfi

Finally, for the reaction term, since 0 < u?(ﬂ < 1 thanks to Lemma 3.4, one has

E4_zm > e (i) wltt <190l oo o, te (3.23)

= KeVnm
Plugging estimates (3.20)7(3.23) into equation (3.19), one deduces that estimate (3.18) holds. [ |

3.4. Enhanced estimate on v Ay

The goal of this section is to prove a refined estimate on v A inspired from [9, Lemma 3.10], claiming
that either v a; is constant equal to 0, or v Ar > 7, > 0 for some 7, depending on the discretization
parameters. The first step consists of bounding from below the L>((0,#¢); L'(£2)) norm of v as-

Lemma 3.8. Assume that [, uo(x)dx > 0 or [ vo(x)dx > 0, then there exists k > 0 depending on
the discretization and on the data such that

/ opmar(x,t)dx >k, VE € [0, t].
Q

Proof. Summing equation (2.14) over K € V ensures that

Z m (1 + AT = Z Mmivg + oAt Z mguy, Yne{0,...,N}. (3.24)
Kev Key Key
Assume that vgn > 0 or ug, > 0 for some K}' € V, as this is the case for n = 0 because of the
assumption on the initial data ug and vg, then we deduce from (3.24) and from the non-negativity of
v and uf proved in Lemma 3.4 that
> mg (14 BAvE > 0.
Key
In particular, there exists K?*! € V such that Unth is (strictly) positive and

Z mKUK ‘= Kn+1 > 0.
Key

One concludes the proof by setting Kk = min &y, ]
n=1,...,N+1

15
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We give now the definition of D-transmissive path, which was introduced in [9, Definition 3.4].

Definition 3.9. A D-transmissive path w joining K; € V to K € V consists in a list of vertices
(Kq)0<q<M such that K; = Ko, Kt = Ky, with K, # Ky if ¢ # ¢, and such that o k., € £ with
Dk, k,., > 0 for all ¢ € {0,..., M — 1}. We denote by W(Kj, Kt) the set of the transmissive path
joining K; € V to K¢ € V.

We now state a result which is proved in [9, Lemma 3.5].
Lemma 3.10. For all (K;, K;) € V? there exists a transmissive path w € W(K;, Kg).

We have now introduced all the necessary tools for proving the main result of this section.

Lemma 3.11. Assume that [ uo(x)dx > 0 or [, vo(x)dx > 0, then there exists r, > 0 depending on
the data as well as on the mesh T and At such that

ittt >y, VK €V, ¥n € {0,...,N}. (3.25)

Proof. Thanks to Lemma 3.8, we know that there exists K;j such that v L'S 0. Let K¢ € V, then
there exists a D-transmissive path w = (K)o, < s € W(K;, Kt) thanks to Lemma 3.10, with K¢ = K;
and KM = Kf.

Thanks to Lemmas 3.3 and 3.5, we know that there exists C' such that

N

2

S ALY Drrl it (pR) - ppth)) < C
n= o €EE

In particular, this ensures that

2 C
Dicytey i, (D) = p(off)” < Ay Yae {0 M—1}.

Assume now that v”'H > 0, as this is the case for ¢ = 0, then 77”Jr1 o2 n(v’[}“) > (. Then one has
2 C
1 n+1
p(oEh) = p(vil))) < — < oo (3.26)
( q+1 ) AtDg, q+1n?(—:Kq+1
We deduce from (3.26) that p(v?(tll) > —oo and, since lim,_,op(v) = —oo hence v}gil > 0. A

straightforward induction provides that v"“

> 0, and since K¢ was chosen arbitrarily, we obtain that
"+1 >0, VKeV.

Since the set V x {0,..., N} is finite, we can conclude that there exists r; such that (3.25) holds. m

3.5. Existence of a discrete solution

Proposition 3.12. Given (uf, Vi) ey such that up ae(-, nAt) and vaqa¢(-, nAt) are non-negative,
then there exists (at least) one solution (u?(H U?(H)Kev of the scheme (2.7),(2.14). Moreover,

up,ae(-nAL) and vagae(-, nAt) are non-negative.

Proof. The case where (u},v}) Kxey = 0 has to be treated apart. In this very particular case, it is
easy to check that (u’}('H v?(+1)K N 0 is a solution to the scheme.
€

Let us now focus on the case where u or vy is strictly positive for some K € V. Because of the
weak coupling on the numerical scheme, we can first solve (2.14), and afterwards (2.7). The existence

of a solution (v?(Jrl)Kev can be proved by slightly adapting the proof of [9, Proposition 3.11], which

16
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relies on a topological argument. The main difficulty comes from the fact the scheme (2.14) is not

continuous w.r.t. (vK n (R1)#Y, but Lemma 3.11 ensures that no component vjit! of the

) ev
discrete solution can go close to 0. Let us detail now the proof.

Let v € [0, 1], we denote by (v?fwl)K the solution (if it exists) to the numerical scheme

U%Jrl — v
HEmg Y Drenill (P —peih)
oxLEEK
(L= > IDkellpi)) —pith) = aufemi — Bogtime. (3.27)
oKkLEEK
In the above scheme, we have set
_— {Ir1a><ve,?£17 n(v) if Dgr >0,

KLy = min i1 n(v) i Drp <0,

n+1 _ n+1 _  n+l1 n+l  n+l . : . .
where Jj" = {mln(vK7 yup s ), max(vig, vp )} Reproducing the analysis carried out in §3.2 and

§3.4, we get that for all v € [0, 1],

2
2 DKL( (Vi) = Sz ) > DKLUKL»Y( (vh) = p(vﬁl)) <C (3.28)
TKLEE okLEE
and, that there exists € > 0 such that
vl >e>0, VK eV (3.29)

This ensures in particular that for all 7 € [0, 1], the solutions of equation (3.27) stay in the interior of
a compact subset K of R#Y such that
i #) >
dist (IC, (R-) > 5
Define the function Y : K x [0, 1] — R#Y by: VK € V,
wkj——v
TthK +7 Y Drungyl (p(wk) — p(wg))

oKL EEK

Tk (wK)g,v) =

+(1 -7 Y [Drrl(wk)—plwr)) — aufmy + Bwgmk.
oKLEEK
The function Y is uniformly continuous on K x [0,1], and for all v € [0, 1] the solution v%g of the

nonlinear system
n+1 _
Y ((vm )KEV ,y) =0 (3.30)

cannot reach OK. For v = 0, the system is monotone, so that the system (3.30) admits a unique
solution, whose topological degree is equal to 1 (we refer to [19, Proposition 3.1] for a proof of this

property). The topological degree being constant w.r.t. v € [0, 1], the system (3.30) admits at least

one solution for v = 1, concluding the proof of the existence of (v}?rl

Kevy'

The existence proof for (u?’{H)K . is similar but simpler since
€

i. the a priori estimate 0 < u’};rl

here;

< 1 is sufficient for the claim, and no energy estimate is needed

ii. the scheme (2.7) depends in a uniformly continuous way on (u}?l)Kev on the compact subset
[—1,2]#Y of R#V.

Therefore, we let to the reader the care of checking the proof for self-conviction. [ |
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4. Compactness estimates on the family of discrete solutions.

As a consequence of Lemmas 3.4 and 3.6, the sequences (upq,, Aty ),, 304 (VAt,,AL,),, are uni-
formly bounded w.r.t. m in L>(Qy,) and L>(0,t¢; L2(Q)) respectively. Moreover, as a consequence of
Lemma 3.6, the sequence (v7;,, Atm)m is uniformly bounded in L?(0,tr; H'(2)). Therefore, there exists
v € L%(0,t;; HY(Q)) such that, up to an unlabeled subsequence,

VT Aty 2V weakly in L?(0,tg; HY()).
we deduce from the following inequality (see for instance [6, Lemma 3.4] or [10, Lemma 6.5])
0T At = Wi At || 12y < COIVUT, At llz2@), YT At € HT At (4.1)
that (v7,, At,),, and (Uat,,,At,),, have the same limit, so that, up to an unlabeled subsequence,
UMy Aty 2 U0 the L>(0, ty; L*(Q))-weak-* sense.

On the other hand, the combination of Lemma 3.1 with Proposition 3.7 provides that

// IVET, At | dxdt < C
Qu

for some C' not depending on m, where {7, A, is the piecewise linear function with nodal values
Er = ¢(ul) for all K € Vy, and all n € {0, ..., Ny, + 1}. Therefore, there exists £* € L2(0,t¢; H(Q))N
L*>°(Q¢,) such that, up to an unlabeled subsequence,

Tty —2 & weakly in L(0,t; HY(Q)).

It follows from inequality (4.1) that (£7,, At,.),, and (Ea,.,At,),, Share the same limit, therefore, up
to an unlabeled subsequence,

* .
EMum Ay, —2 & in the L (Qy, )-weak-* sense.

Finally, since (u4,,,At,,),, is uniformly bounded in L>(Qy, ), then there exists u € L>(Qy,) such that,
up to an unlabeled subsequence,

UMy Aty 7 U D the L°°(Qy,)-weak- sense.
The goal of this section is to show that £* = £(u), and that
UMy Aty 2 U AL in Qy and UMy Aty 7 U AL in Qy,

As an alternative to the lengthy and technical proof that consists in estimating the time- and space-
translates of the discrete functions (see [3] for the continuous framework and [21] for the discrete
setting), we make use of the technical blackbox proposed in [5, Theorem 3.9]. We refer to [16, Lem-
mas 4.4 and 6.6], [17, §4.2, §C.1.6], and [23] for alternative but very close approaches.

Let m > 1 be fixed, then let us denote by (go’}(“) a set a nodal values such that
K€V ,0<n<Npm
Pt = 0 if xg € 99. We deduce the functions 7, Az, and @aq,, Ar,- We state now discrete

L' (0, te; (Hl(Q))/) estimates on the finite differences w.r.t. time of up4,, Az, and vag,, Az, -
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Lemma 4.1. There exists C not depending on m such that

§ > mi ( n+l _ u?() Pt < ClIVer, sz, (4.2)
n=0 K€V
Z Z mpg ( n+l U?{) QD?{Jrl < CHVSOTmAthLQ(Qtf)' (4.3)
n=0 K€V

Proof. We only establish (4 3) since the proof of (4.2) is similar. Multiplying (2.14) by Ate'it! and
summing over n € {0,..., N, } and K €V, yields

Nm
S5 5 e (o o) < A+ »
n=0 KeVy,
where
N,
ZAt Z DKLnn—H( (v n+1) p(vz+1)> (QOn—H 902+1)’
ok EE
m_iAt Z MK (au}?‘l 5v"+1) nrl
= KeVn

It follows from Cauchy—Schwarz inequality and from ||n]lcc = 1 that

A |? < (Z At Y |DKL\77KL( (v = p(op™) ) ) (ZAt 2. ‘DKL|< K- n+1) )

oxL€EE oK1EE
Combining Lemmas 3.3 and 3.5 provides

2
Z At > IDkelnxr (pith) = ppth)) < G,
O'KLES
whereas Lemma 3.2 imphes that

Nm
SoAt > |Dicrf (5 g07£+1) < CVer,amlizq.
n=0 ok €E

Therefore, we obtain that

|Am| < CHVQPTm,AthLQ(Qtf) (4.5)

On the other hand, Cauchy-Schwarz inequality provides
|B| < |locurd,, At — ﬁva,AthLz(Qtf) H‘PMW,AthLz(Qtf).
It results from Proposition 3.7 and Lemma 3.6 that
sty Aty = BUMp Al 12, ) < Cs

whereas the discrete Poincaré’s inequality [6, Lemma 3.3] ensures that

oM Al 20,y < CIVET ALl 12(0,,)
Gathering the previous inequalities, one gets that

|Bm| <C HVSOTm,AthL?(Qtf) . (4.6)

Putting (4.4), (4.5) and (4.6) together provides (4.3). [ |
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We have all the necessary estimates at hand to make use of [5, Theorem 3.9]. It allows us to claim
directly that £* = £(u), and that

UMy Aty =7 U a0 Qy; and UMy Aty 7 U A€ 00 Q-

5. Identification as a weak solution

It remains to be shown that (u,v) satisfies the weak formulation (1.6)—(1.7). To do this, we consider
a test function ¢ € D (ﬁ X [O,tf)), and denote by ¥} = ¢ (xx,t"), for all K € V,, and all n €
{0,..., N, }. Let us focus on the convergence of the first equation of scheme (2.7)-(2.14), i.e., we show
that equation (1.6) is verified when m — co. We note that the convergence of the second equation of
the scheme is similar and major difficulties that we can encounter are discussed hereafter.

Multiplying the first equation (2.7) by At} and summing over n € {0,..., Ny} and K € V,,
yields, after a reorganization of the sum,

Am + By + Co + Dy = Fum, (5.1)
where
N Nom
A = (wi =) Whomp,  Fu= Y At 0 f (i) v,
n=0 K€V, n=0 K€V
Nm
Bun=> At, Y Agr (d;jg (wpt? =) = Jagct (& (ui) — € (u n+1))) (W% — Y7,
n=0 oKL EEM
Nm
Cn=> Aty > AKL\/@(f (U}L(H) §( n+1)) (Vi —¥L),
n=0 OKLEEM
Z At 30 Axcpfep it (v —op ) Wk —vp).

OKLEEM

Accumulation term

Note that w%mﬂ = 0 for all K € V,,, then, performing summation by parts in time, the term 4,, can
be rewritten

NT'!L

A= >, U"“WmK—Z S ukiemi — Y ukwiemi
n—OKEVm n=1 K&V K€V,
— n+1¢n+1 1/}]( - 0 0
ZAtm Z U Z U YEmEi

K€V, bm KeEVm

//Q UM, Aty (X5 1) OV M, At (X, 1) dxdt — /QUMm,Atm (x,0) Y am,0, A8, (X,0) dx.

Thanks to the regularity of 1, and the convergence in L' (Qy,) of the sequence (upm,,, Atm)m towards
u, it follows that (see e.g. [20])

Ay — — //Q u(x,t) 0 (x,t) dx dt — /Qu(x,O)i/J(x,O)dx, as m — oo.
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Diffusion term

Let us first prove that lim B, = 0.
m—0o0

For all ok, € &, and all n € {0,..., N, }, we denote by 6}?21 the quantity defined by

<€< 7IL('+1) 5( n+1)> if un+1 #un—&—l’

—n+1 __

n+l n+1
gy =

Up ur
n+1 n+1 _ _ n+l
a (uK ) ifup™ =uy.

Then, the term B, rewrites

Bm:%mm > AKL\/a’}le <\/a?§; \/a7;<+Ll> (u’;(“ "H) (P — 7).
n=0

OKLEEM

Now, using the Cauchy-Schwarz inequality, we get

1
N, 2
m 2
\Bmhg(E:Aml > kel afd! (it - ugﬂ)) X Ron?,

n=0 OKLEEM

where, R, is given by

Rm = %Wf Aty |AkLl <\/ i \/nH) (W —¢7)?
n=0

O'KLES

Using Lemma 3.3 and Proposition 3.7, one has |B,,| < CR,, 3 . Hence, in order to prove that lgn B, =
m—0o0

0, it suffices to prove that lgn Rm = 0.
m oo
For all T' € 7T,,, we denote by

& = max (5 (P)7r,, At <X7tn+1)) . gt = min (5 (P)7;,, At (Xath)) )

and for all (x,t) € T x (t",¢"T1), by

—-n—+1

A, (1) =E&7 §r A, (x,t) = §;+1.

Consider the uniform continuous function \/a o {~! defined on the closed bounded interval [0, & (1)],
and let p be its modulus of continuity, then we have

‘ / n+1 /—n—i—l

Therefore, using this inequality in the definition of R,,, we get

( Pl f"“) for all oy, € Er. (5.2)

0< Ry < Qm (5.3)
where,
Nm
On=30tm 3 (& -g)" X ko] @k - up?, (5.4)
n=0 TETm okLEET

and AL, is the constant defined by (3.3).
Thanks to Lemma 3.2, one can deduce that the inequality (5.3) implies that

0< Rn < C// (Ernan, (5 =& A, (1)) dxdt,
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where C' is independent of h,,, and At,,. Therefore, it suffices to show that ng,Atm (x,t) —
§T At (x,t) — 0 a.e. in @y, to consequently prove that n}gnoo R, = 0. By a simple generalization

of [9, Lemma A.1] and by the help of Lemma 3.1 and Proposition 3.7, it follows that

//Qtf A, (1) =& 5, (x, 1) dxdt < Ch (//tf

As a consequence, up to a subsequence, one has
lim B,, = lim R,, = lim Q,, =0.
m—0o0 m—0o0

m—00

We now focus on the term C,, and prove that

Tim_C = / [ MG (w)VE) - Vixar

To do this, we introduce the term C/,, defined by

C’I’TL = /Q @ﬁrnAth(X)vg (U)Tm,Atm ’ vamaAt'm (.7 t - Atm) dX dt?
tf

1
2 5
()7, At (5:1) dxdt) < Ch.

where ©7; Ay, is a piecewise constant function (on the triangular mesh) function given by
07, At (X,8) = \[ao & (Y ar (X,1)),  Vx €T, Vte (", t"™), VT € Ty,
where T7. A, is defined by
Y7 At (5,1) = € (W), ap, (X751), Vx €T, Vt € (t", "1, VT € Tp,.
Using again a slight generalization of [9, Lemma A.1] as well as the boundedness of the continuous
function v/a o €1, we obtain
Y7, At, — & (u) in L? (Qy,) as m — oo,
O, Aty — \/m in L? (Qq,) as m — oo. (55)

It remains to verify that |C,, — C,,| — 0, when m tends to infinity.
We denote by

2
it = (O, a0, (x0,"1))", VT € T, Vn € {0, Nyu}.
The discretization of the term C/, is written as

ZAtm > a0 Nk (e () — e (uptt)) ik - w).

TETm ok €EET

Similar arguments as for obtaining inequality (5.2) yield

n+1 n+1
Ve - o <

Therefore, using the Cauchy-Schwarz inequality, Lemma 3.1, Lemma 3.2, and Proposition 3.7, we
deduce that there exists a constant C does not depend on h,, such that

2
- (zmmz o7 -67) 5 Palle(or) ¢ ) i - o)

T€Tm oxLEET

( n+1 §;+1) , for all oir, € E7.

<meZAth Z ‘/\ Hf(u"}(H)—{(uzﬂ)‘ZSCQmHO as m — oo.

T€Tm ok LEET
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Convection term
For all T' € T, we define the piecewise constant function k7., a¢,, by
KT Aty (X, 1) = X © ¢t (Y7, A, (x,1)), Vx T, Vte (t",t”“].
Using the same guidelines as for the convergence results (5.5), one has
KT At — X (1) in L (Qy,) as m — oo.

We introduce the term

- //Q KT At MX)VUT, At - VT At (5t — Aty,) dxdt.
tf

Thanks to the weak convergence in L? (Qy;) of the sequence Vur, Ay, towards Vo, and to the uniform
convergence of Vi A towards Vi), we obtain

- — // x)Vou - Vipdx dt as m — oo.
Qt;

Let us prove, using the same guidelines as before, that |D,,, — D.,,| — 0, when m tends to infinity.
We denote by

X%—‘rl = HTM7Atm (XTytn+1) ’ vT € Tmavn € {O’ e 7Nm}’

M’,'Il:‘rl - ILLTmyAtm (XT,tn+1>7 VT € T’fl’wvn € {07 cety Nm}

Therefore,

m =Dy = ZAt S (et - ) M (0 - op ) (0 — v).
Te€Tm ok EET

Thanks to the the triangle inequality and to the existence of a continuity moduli n and § of the
continuous functions v/a o €1 and o £~ respectively, one has

n+1, n+1 n+1, n+1 n+1l| n+1 n+1 n+1 n+1 n+1
‘aKL:“KL —ar fir ’<N ‘aKL ‘+a (:“KL o )

+1 +1
<Cfe(& gt ro(a" - ).
where the constant C does not depend on h,,. Therefore, using the Cauchy-Schwarz inequality,

Lemma 3.1, Lemma 3.2, and Proposition 3.7, we deduce that there exists a constant C' independent
of h,, such that

Dy = D} [* < C(Qun + W) ZAth S N[t ot

TETm ok EET

9

where Q,, is given by equation (5.4), and W,), is given by

N,
W= 30t 3 (5(E - &)’ X ke - v

Now, using the same proof as for the diffusion term, one can deuce that W,, < C'h,,. Therefore

lim ’D -7 ’—O

m— 00

and consequently,

lim D,, = // x)Vv - Vipdx dt.
m—ro0 Q
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Reaction term

We would now like to show that

me/Q F(u(x,0) 0 (x,£) dxdt as m — oo.

For this purpose, we denote, for all K € V,, and for all n > 1, by fi = f (u), and by fa,, A, the
piecewise constant reconstruction in Xy, a¢,,. Thus we have

Fo= ] M 80 80 (= )t — /l, S0 v dxds asm o,

since f (u) Mo At,, CODVErges strongly in L?(Q,) towards f (u), and as ¥, A¢,, converges uniformly
towards . This ends the proof of Theorem 2.2.

6. Numerical results

In this section, we establish various 2-D numerical results provided by the mnonlinear CVFE
scheme (2.7), (2.14). Newton’s algorithm is carried out for the implementation of the scheme, coupled
with a biconjugate gradient method to solve linear systems arising from the Newton algorithm. We
provide three tests to show the effectiveness of the nonlinear CVFE scheme (2.7), (2.14). For these
tests, we consider the following data: Ly = 1, Ly = 1 (the length and the width of the domain). We fix:
At = 0.002, a = 0.01, § = 0.05, a (u) = dyu (1 — u), d, = 0.0005, x (u) = ¢ x (u(1—u))? ¢ =0.05.
By definition, we have u (u) = éu (1 — u) then, the numerical flux function ,u}l;}} is given using the
following functions:

pr (2) = p (min{z, ;}) , and py(2) =p (max{z, ;}) — (;) , Vze(0,1)x(0,1).

Unless stated otherwise and throughout the tests, we assume that f (u) = 0, that the initial conditions
are defined by regions, and we assume zero-flux boundary conditions. For instance, the cell density is
initially defined by ug (x,y) = 1 in the square region given by (x,y) € [0.45, 0.55] and 0 otherwise.
The initial chemeoattractant concentration is defined by vy (x,y) = 5 in the space region given by
(x,y) € [0.2, 0.3] x [0.45, 0.55]U[0.45, 0.55] x [0.2, 0.3]U[0.45, 0.55] x [0.7, 0.8]U[0.7, 0.8] x [0.45, 0.55].

Test 1 (Weak anisotropic case). In this test, we assume that the diffusion tensors are given by

Ax) = ((1) 2) . Dx)=d ((1) ‘D . d=0.0001.

Further, we consider an admissible triangular primary mesh made of 14 336 triangles, the corresponding
Donald dual mesh consists of 7 297 dual control volumes. In a admissible triangular mesh, all the
angles of triangles are acute, then one can deduce that the maximum principle is verified for v since
the transmissibility coefficients are nonnegative, which it is not the case for w. In Tab. 6.1, we present
minimum and maximum values obtained with each of the scheme (2.7)-(2.8), the nonlinear CVFE
scheme (2.7),(2.14), and the finite volume scheme.
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scheme (2.7)—(2.8) | scheme (2.7),(2.14) | FV scheme
After 1 iteration | Min. Val. u 0.0 0.0 0.0
=1 Max. Val. u 1.0 1.0 1.0
After 10 iterations | Min. Val. u 0.0 0.0 0.0
=1 Max. Val. u 0.971110 1.0 1.0
After 1 iteration | Min. Val. w | —1.73001 x 1073 | 8.68789 x 10~2Y |
=5 Max. Val. u 0.99722922 1.0 |
After 10 iterations | Min. Val. u | —1.62500 x 102 0.00 |
=5 Max. Val. u 0.9715705 1.0 ]
After 1 iteration | Min. Val. u | —4.46953 x 103 | 6.30555 x 10~ 1° y
6 =10 Max. Val. u 1.00018368 1.0 ]
After 10 iterations | Min. Val. v | —3.91245 x 10~ 6.30554 x 10716 |
6 =10 Max. Val. u 0.98342428 0.9999999 |

TABLE 6.1. Numerical results after 1 and 10 iterations.

FIGURE 6.1. Meshes: admissible mesh for Test 1(left), initial primal mesh for Test 2

and 3 (center) and barycentric dual mesh for Test 2 and 3 (right).

Test 2 (Weak anisotropic case/obtuse angles). In this test, we consider a general unstructured
mesh that contains obtuse angles, this mesh is made of 5 193 triangles and 2 665 dual control volumes.
The discrete maximum principle is not guarantied for v, hence we cannot expect the maximum principle
for u since the computation of u depends on the values of v, for that we consider the nonlinear
discretization (2.14) of v.

FIGURE 6.2. Initial condition for the cell density u (left) with 0 < u < 1 and for the
chemeoattractant concentration v (right) with 0 < v <5.
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The diffusion tensors are defined, for all x € (0,1) x (0,1), by

A(x) = (; 120), D(x) = d (é (1’) d = 0.0001.

Figure 6.2 represents initial distributions of the cell density u and the chemeoattractant concentra-
tion v over the initial triangular mesh as well as the corresponding dual mesh.

FIGURE 6.3. Evolution of the cell density u at time ¢t = 0.4 with 0 < u < 0.667 (left),
and at time ¢ = 1.4 with 0 < u < 0.632(right).

FIGURE 6.4. Evolution of the cell density u at time ¢t = 2.4 with 0 < u < 0.972 (left),
and at time ¢ =4 with 0 < wu < 0.987(right).

Figures 6.3-6.4 represent the evolution of the cell density at time ¢t = 0.4, t = 1.4, t = 2.4,
and ¢ = 4. At moment ¢ = 0.4, it is clear that the cell density diffuses in the space without any
interactions with the chemeoattractant which diffuses uniformly in the space. Then, after a while, and
when the chemeoattractant diffusion reaches the cell density location, we see that the latter changes
its direction to be absorbed by the chemeoattractant located vertically. This process continues and
the cells accumulate into the location of the chemeoattractant and finally we obtain the cell density
aggregations as shown at ¢t = 4.

Test 3 (Anisotropic case/obtuse angles). In this test, we consider an unstructured mesh consisting
of 15 568 primal triangles and 7 912 dual control dual volumes. Further, we assume that the diffusion
tensors are anisotropic and are given by:

A(x) = <_87 ;g) D(x)=d <(1) g) d = 0.0001.

Table 6.2 provides a comparison between the nonlinear CVFE scheme coupled on the one hand
with the discretization (2.8) of v and with the discretization (2.14) of v on the other hand. We see
that the discretization (2.14) carries out a better approximation than the discretization (2.8) in terms
of ensuring the discrete maximum principle property.
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CVFE scheme: (2.7)-(2.8) | CVFE scheme: (2.7),(2.14)
Min. Val. u 0.0 0.0
After 1 iteration Max. Val. u 1.0 1.0
Min. Val. v -1.141912E-002 1.922764E-051
Max. Val. v 5.012383 4.999982
Min. Val. u 0.0 0.0
After 200 iterations | Max. Val. u 0.5298226 0.5312562
Min. Val. v -1.731068E-003 1.297192E-080
Max. Val. v 4.8053827 4.8018742
Min. Val. u 0.0 0.0
After 1000 iterations | Max. Val. u 0.9957580 0.9974757
Min. Val. v 6.265859E-023 3.171769E-080
Max. Val. v 2.961761 2.910828

TABLE 6.2. Numerical results
mesh with obtuse angles.

after 1, 200 and 1000 iterations over an unstructured
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