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Abstract. We consider the spatially inhomogeneous and nonlinear Boltzmann equation for the variable hard
spheres model. The distribution function is discretized by a tensor-product ansatz by combining Maxwellian
modulated Laguerre polynomials in velocity with continuous, linear finite elements in the spatial domain.
The advection problem in phase space is discretized through a Galerkin least squares technique and yields
an implicit formulation in time. The discrete collision operator can be evaluated with an asymptotic effort
of O(K5), where K is the number of velocity degrees of freedom in a single direction. Numerical results in
2D are presented for rarefied gases with different Mach and Knudsen numbers.

Math. classification. 76J20, 76H05, 76P05, 82C40, 82D05, 65Y05, 65M60.

1. Introduction

The Boltzmann equation offers a mesoscopic description of rarefied gases and is a typical representative
of a class of integro partial differential equations that model interacting particle systems. The binary
particle interactions in d-dimensional space are modeled by a collision operator which involves a 2d−1
fold integral. Due to its non-linearity and the high dimension, the evaluation of the collision operator
is computationally challenging. Stochastic simulation methods are widely used. A well-known example
is the direct simulation Monte Carlo (DSMC) method developed by Bird and Nanbu in [3] and [23].
Among deterministic approaches Fourier methods are most popular. In [25] Pareschi et al. introduced
a Fourier based method, related approaches have been introduced in [4, 5, 15, 30]. Fourier methods are
fairly efficient and accurate for short-time simulations, but they suffer from aliasing errors caused by
the periodic truncation of the velocity domain. Another problem of the Fourier spectral method is that
it does not capture the correct long-time behaviour, unless the steady state preserving modification [12]
is employed.

To overcome these problems a spectral discretization in velocity based on Laguerre polynomials
has been developed in [13] for the spatially homogeneous Boltzmann equation extending the work
done in [9]. For this method, no truncation of the velocity domain is necessary and the natural
conserved quantities can be easily preserved by the numerical scheme. As a consequence, the velocity-
spectral method enjoys the correct long-term behaviour, while the aliasing effects incurred by the plain
Fourier spectral method will in general lead to unphysical solutions (see Section 6.1). Additionally,
this approach has the advantage that no periodic truncation is needed and the collision operator can
be represented as a tensor, which enjoys considerable sparsity and whose entries can be precomputed
with highly accurate quadrature.
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Closely related and conducted parallel to our investigations is the work by Kitzler and Schöberl [14,
22]. These authors also use a spectral polynomial discretization in velocity, but they rely on a Petrov-
Galerkin discretization. The velocity distribution function (VDF) is represented by polynomials times
a shifted Maxwellian, while the test functions are polynomials. The complexity for the evaluation of
the collision operator is reduced from O(K6) to O(K5) by exploiting its translation invariance. They
locally rescale the basis functions in velocity to fit macroscopic velocity and temperature. In physical
space Kitzler and Schöberl use a discontinuous Galerkin scheme. On the one hand this offers great
flexibility concerning the local choice of velocity spaces. On the other hand the DG method involves
evaluating interface fluxes and thus requires projection of the velocity distribution function between
adjacent elements. Then stability issues impose constraints on the temperature differences between
neighboring elements.

In this work, we extend this idea to the spatially inhomogeneous Boltzmann equation, combining
a truncation-free spectral Galerkin approximation in velocity with a least squares stabilized finite
element discretization in space. The tensor based local evaluation of the discrete collision operator in-
volves an asymptotic computational effort of O(K5), where K is the polynomial degree in one velocity
direction, see Section 4. We also explore ways to ensure discrete conservation of mass, momentum,
and energy, see Section 4.2. This can be achieved by direct enforcement of the constraints through
Lagrangian multipliers. For time-stepping we rely on a splitting scheme, which separately treats colli-
sions and advection. For the former we opt for explicit time-stepping, whereas the latter is tackled by
a time-implicit least squares formulation. This has the advantage, that for high Knudsen numbers we
are not restricted by a CFL condition. However one must note that for small Knudsen numbers, i.e.
small mean free path length, the problem is stiff and the time-step must be chosen sufficiently small.
Extensive numerical tests in various settings typical of flow problems for rarefied gases are reported
in Section 6.

The outline of the paper is as follows: In Section 2 we introduce the Boltzmann equation and
its properties that are used in the sequel. The conservative scheme for the homogeneous Boltzmann
equation is discussed in Section 4, followed by the extension to the spatially inhomogeneous case in
Section 5. Numerical results for a range of benchmark problems are reported in Section 6.

2. The Boltzmann equation

The time-dependent distribution function f = f(x,v, t) is sought on the 2+2-dimensional phase space
Ω = D × R2, where D ⊂ R2 denotes a bounded spatial domain with piecewise smooth boundary.

We consider the inhomogeneous and time dependent Boltzmann equation

∂tf + v · ∇xf = 1
ε
Q(f, f)(v), (x,v) ∈ Ω = D × R2, (2.1)

with initial distribution

f(x,v, t = 0) = f0(x,v), (2.2)

and the Boltzmann collision operator Q, which in 2D is represented by a 3 fold integral:

Q(f, h)(v) =
∫
R2

∫
S1
B(‖v− v?‖ , cos θ)(h′?f ′ − h?f) dσ dv?, (2.3)

where f = f(v), f ′ = f(v′), h? = h(v?), h′? = h(v′?) and S1 denotes the unit circle. For elastic
scattering, the post-collisional velocities v′,v′? are given by, see Fig. 2.1:

v′ = v + v?
2 + σ

‖v− v?‖
2 , v′? = v + v?

2 − σ‖v− v?‖
2

σ ∈ S1. (2.4)
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Given sufficient regularity of the collision kernel B, it is convenient to split Q into gain Q+ and loss
Q− part

Q+(f, h)(v) =
∫
R2

∫
S1
B(‖v− v?‖ , cos θ)h′?f ′ dσ dv? (2.5)

Q−(f, h)(v) =
∫
R2

∫
S1
B(‖v− v?‖ , cos θ)h?f dσ dv? . (2.6)

The Knudsen number ε represents the ratio of the mean free path to a representative physical
length scale. Boundary conditions are prescribed on the inflow boundary Γ−, Γ± := {(x,v) : x ∈
∂D ∧ ∓v · n < 0}, where n denotes the outward unit normal vector field. Common types of boundary
conditions are inflow, specular reflective, and diffusive reflective boundary conditions [28, Section 1.5]:

Inflow boundary conditions: f(t,x,v) = fin(t,x,v), (x,v) ∈ Γ− (2.7)
Specular reflective b.c.: f(t,x,v) = f(t,x,v− 2v · nn), (x,v) ∈ Γ− (2.8)
Diffusive reflective b.c.: f(t,x,v) = Mw(x,v) ρ+(f), (x,v) ∈ Γ−, (2.9)

where

Mw(x,v) :=
( 1

2π

) 1
2
T

3
2
w e
− ‖v‖

2
2Tw , (2.10)

is a Maxwellian distribution at the boundary, which may depend on x implicitly through the wall
temperature Tw(x), and

ρ+(f) :=
∫

Γ+
n ·wf(t,x,w) dw.

Mw is normalized such that
∫

Γ+ n · vMw(x,v) dv = 1.
Macroscopic quantities of the gas can be computed in terms of moments of the distribution func-

tion f .

Mass density ρ(t,x) =
∫
R2
f(t,x,v) dv

Momentum density u(t,x) = 1
ρ

∫
R2

vf(t,x,v) dv

Energy density E(t,x) = 1
ρ

∫
R2
‖v‖2 f(t,x,v) dv

Temperature T (t,x) = 1
2(E(t,x)− ‖u(t,x)‖2)

We assume that the interaction potential governing collisions is described by a collision kernel B of
the form [28]:

B(‖v− v?‖ , cos θ) = C(cos θ) ‖v− v?‖λ , (2.11)

and that C(cos θ) satisfies Grad’s cutoff assumption [17]:
∫ 2π

0 C(cos θ) dθ <∞.
In the following, we will restrict ourselves to the variable hard spheres model, i.e. we set C ≡ 1

2π
and consider 0 ≤ λ ≤ 1. The case λ = 0 is known as Maxwellian molecules. In order to reduce
the computational complexity we will make use of the rotational and translational invariance of the
collision operator Q. The pullbacks induced by the translation τ∗(c) and rotation operator ρ∗(ω) act
on a function f : R2 → R as follows:

τ∗(c)f(v) := f(v + c), for c ∈ R2 (in Cartesian coordinates)
ρ∗(ω)f(ϕ, r) := f(ϕ+ ω, r), for ω ∈ [0, 2π[ (in polar coordinates)
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v′
?

v′

v?

v

θ1
2 (v? + v)

1
2 ‖v? − v‖

Figure 2.1. Pre- and post-collisional velocities v,v?,v′,v′? for elastic collisions.

It is easy to see that the collision operator enjoys the following covariance properties:
Q(ρ∗(ω)f, ρ∗(ω)g)(ϕ, r) = ρ∗(ω)Q(f, g)(ϕ, r), ∀(ϕ, r) (2.12)
Q(τ∗(c)f, τ∗(c)g)(v) = τ∗(c)Q(f, g)(v), ∀v (2.13)

for any ω ∈ [0, 2π[ and c ∈ R2.

3. Spectral Velocity Space

In the velocity coordinate, we use Maxwellian weighted tensor product polynomials and their repre-
sentation in the Polar-Laguerre basis developed in [14, Section 2.1]. It can be shown, that the basis
spans the space of weighted polynomials in R2 of total degree ≤ K, with weight e−r2/2. Throughout
we designate by (ϕ, r) polar coordinates in R2.

Definition 3.1 (Polar-Laguerre basis functions Ψa
k,j(ϕ, r)).

Ψξ
k,j(ϕ, r) :=


ξ(2jϕ) r2jL

(2j)
k
2−j

(r2)e−r2/2 k ∈ 2N

ξ((2j + 1)ϕ) r2j+1L
(2j+1)
k−1

2 −j
(r2)e−r2/2 k ∈ 2N + 1

(3.1)

where ξ = cos, sin and L(α)
n are the associated Laguerre polynomials [1].

The basis functions Ψξ
k,j are orthogonal in the inner product 〈f, g〉 :=

∫
R2 f(v)g(v) dv [1, Chap. 22].

Definition 3.2 (Polar-Laguerre basis BN
L ). The set

BN
L := {Lcos

k : k = 0, . . . ,K} ∪
{
Lsin
k : k = 0, . . . ,K

}
, (3.2)

where
Lcos
k :=

{
Ψcos
k,j : j = 0 . . . bk2c

}
, Lsin

k :=
{

Ψsin
k,j : j = 1− (kmod 2) . . . bk2c

}
. (3.3)

According [14, Lemma 5] BN
L is a basis for the space of polynomials in R2 of maximal degree K

weighted by e−r2/2. For later use we define also the function space V N
V := span {BN

L }. Throughout,
N := K(K + 1)/2 will always denote the number of basis functions used to discretize the velocity
domain and has therefore been included in the superscript of the symbols BN

L and V N
V . The structure
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of the Polar-Laguerre basis functions allows to exploit the rotation invariance (2.12) in order to obtain
a sparse discretization of the collision operator, cf. Section 4.1.

Whenever convenient, we will drop the double index (k, j) of Ψk,j and denote elements of BN
L by

bi, i = 0, . . . , N − 1. Thus we may formally write the expansion of a function f ∈ V N
V with Polar-

Laguerre coefficients cP
j , j = 0, . . . , N − 1:

fN (ϕ, r) :=
N−1∑
j=0

cP
j bj(ϕ, r). (3.4)

Figure 3.1. Polar-Laguerre basis functions Ψcos
k,j (v), v ∈ [−5, 5]2.

First row: j = 0, k = 0, 2, 6, Second row: k = 6, j = 1, 2, 3.

For some operations on the velocity distribution function it is more efficient, from an algorithmic
point of view, to switch to other bases: the nodal and the Hermite basis. The transformation between
Polar-Laguerre and nodal basis representation can be done in an efficient manner by using the Hermite
basis as an intermediate, see Sections 4.4, 6.2.

Definition 3.3 (Hermite basis). The set of functions R2 → R

BN
H :=

{
(x, y) 7→ hs(x)hk−s(y)e−

x2+y2
2 : 0 ≤ k ≤ K ∧ 0 ≤ s ≤ k

}
(3.5)

where hi(x) are suitably normalized Hermite polynomials [1], such that
∫
R hi(x)hj(x)e−x2 dx = δi,j , is

called Hermite basis, the functions hj(x)e−
x2
2 are Hermite basis functions.

Definition 3.4 (Nodal basis). The set of functions R2 → R

BN :=
{

(x, y) 7→ li(x)lj(y)e−
x2+y2

2 : 0 ≤ i, j ≤ K
}

(3.6)
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is called nodal basis. The `i denote the Lagrange polynomials at the Gauss-Hermite quadrature nodes
xi with weights wi [1].

`i(x) := 1
√
wi

∏
0≤m≤K
m 6=i

x− xm
xi − xm

.

The `i(x) are normalized such that
∫
R `i(x)`j(x)e−x2 dx = δi,j .

The nodal basis will be used in Section 6 to project the velocity distribution function to positive
values. It also plays a role in the code for the application of boundary conditions (details will be
discussed in a separate publication).
Lemma 3.5. [14, Lemma 5] The set of basis functions BN

L and BN
H (cf. (3.2), Definition 3.3)

span the same function space V N
V , that is the space of polynomials of maximal degree K with weight

function e−‖v‖2/2, see Definition 3.2. Also observe that V N
V ⊂ spanBN and dim spanBN = (K + 1)2.

Notation. In the following, we will tag coefficient vectors c with a superscript P,H,N to indicate
that they belong to the Polar-Laguerre, Hermite or the nodal basis.

4. Treatment of the Collision Operator

In this section we will discuss the discretization of the collision operator.

4.1. Discretization in velocity coordinate

The following derivation is identical to the one presented in [13], except that we use a real valued basis
in ϕ. Consider the homogeneous Boltzmann equation

∂tf = Q(f, f). (4.1)

Multiplication of (4.1) with a test function g ∈ V N
V and integration over R2 gives

∂t

∫
R2
f(t,v)g(v) dv =

∫
R2
Q(f, f)g(v) dv. (4.2)

Expanding f in a basis {bl}Nl=1 of V N
V and choosing g = bi ∈ V N

V gives rise to a 3-dimensional tensor
QN . One may think of it as an array of N ×N matrices Si, i = 0, . . . , N −1, where slice Si is obtained
by testing with bi ∈ V N

V :

(Si)i1,i2 := 〈Q(bi1 , bi2), bi〉L2(R2) , bi, bi1 , bi2 ∈ BN
L (4.3)

We split Q(f, f) = Q+(f, f)−Q−(f, f), as in (2.5) and (2.6), and accordingly S = S+ − S−.

(S−i )i1,i2 =
〈
Q−(bi1 , bi2), bi

〉
=
∫
R2

∫
R2

∫
S1
B(‖v− v?‖ , cos θ)bi1(v)bi2(v?)bi(v) dσ dv? dv

=
∫
R2
bi1(v)bi(v)

∫
R2
bi2(v?)I−(v,v?) dv? dv ,

(4.4)

where the inner integral I− is given by

I− =
∫
S1
B(‖v− v?‖ , cos θ) dσ = ‖v− v?‖λ

∫
S1
C(cos θ) dσ, (4.5)

and as stated in the beginning, for Maxwellian molecules C ≡ 1
2π .
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[S+
i ](i1,i2) =

〈
Q+(bi1 , bi2), bi

〉
L2(R2)

=
∫
R2

∫
R2

∫
S1
B(‖v− v?‖ , cos θ)bi1(v′)bi2(v′?)bi(v) dσ dv? dv

=
∫
R2

∫
R2
bi1(v)bi2(v?)I(+)(v,v?; bi) dv? dv ,

(4.6)

with

I(+)(v′,v′?; bi) =
∫
S1
B(
∥∥v′ − v′?

∥∥ , cos θ)bi(v′) dσ, (4.7)

see (2.4) and Fig. 2.1 for the definition of θ and v′, v′?. Note that, in the second line of (4.6), we have
made the change of variables v,v? ↔ v′,v′?. Next, we substitute w′ = Rα v′ for α = − arg(v + v?).
Rα denotes the rotation by α around the origin in counter clockwise direction. Also note, that the test
functions bi from Definition 3.1 are of the form ξ(lϕ)φr(r), where ξ is either sin or cos.

I(+)(v′,v′?; bi) =
∥∥v′ − v′?

∥∥λC ∫
S1
bi(arg(w′) + α,

∥∥w′∥∥) dσ

=
∥∥v′ − v′?

∥∥λC ∫
S1
ξ(l (arg(w′) + α))φr(

∥∥w′∥∥) dσ
(4.8)

We simplify (4.8) for ξ = sin

I(+)(v′,v′?; bi) =
∥∥v′ − v′?

∥∥λC ∫
S1

[
sin(l arg(w′)) cos(lα) + cos(l arg(w′) sin(lα))

]
φr(
∥∥w′∥∥) dσ

= sin(lα)
∥∥v′ − v′?

∥∥λC ∫
S1

cos(l arg(w′))φr(
∥∥w′∥∥) dσ, (4.9)

and for ξ = cos

I(+)(v′,v′?; bi) =
∥∥v′ − v′?

∥∥λC ∫
S1

[
cos(l arg(w′)) cos(lα)− sin(l arg(w′) sin(lα))

]
φr(
∥∥w′∥∥) dσ

= cos(lα)
∥∥v′ − v′?

∥∥λC ∫
S1

cos(l arg(w′))φr(
∥∥w′∥∥) dσ. (4.10)

Thus we have found that, up to a factor, the integral I+(v′,v′?; bi), which is cheap to compute, de-
pends only on d := ‖v′ − v′?‖ and on c := ‖v′ + v′?‖. The 1-dimensional integrals in (4.9) and (4.10)
are evaluated numerically using the midpoint rule, details are given in Section 6. The extension to
collision kernels of the form (2.11) that depend on the angle θ and satisfy Grad’s cut-off assumption
is straightforward, but comes with the additional cost that the results for I(±) are no longer functions
of only d and c anymore, thus cannot be cached and have to be re-evaluated for all pairs of quad-
rature points (v′,v′?). The discretized collision operator QN has the following expansion into basis
functions (the conservative form will be discussed in Section 4.2):

QN (f, g)(v) =
N∑
i=1

[
M−1[cTSjd]Nj=1

]
i
bi(v), (4.11)

where [M]j,j′ = 〈bj , bj′〉, f, g ∈ V N
V with coefficient vectors c,d with respect to the basis {bl}Nl=1.
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4.2. Conservative discretization

An important property of (4.1) is that mass, momentum and energy are conserved. In particular it
holds that

∂t

 ρ(f)
ρu(f)
ρE(f)

 =
∫
R2
Q(f, f)

 1
v
‖v‖2

 dv ≡ 0, (4.12)

by fundamental properties of the Boltzmann collision operator [6, sec. 5].

Galerkin discretization with Lagrange multipliers. In order to enforce condition (4.12) we
use a Galerkin discretization and solve a L2 least squares problem such that mass, momentum and
energy are conserved. This has been proposed in [15] for the Fourier-spectral method. In the context
of a time-stepping method for the homogeneous Boltzmann equation, let ck be the coefficient vector
in the Polar-Laguerre basis at time tk.

(1) Compute coefficients at the next time-step by a single step of an explicit time-stepping scheme,
here explicit Euler:

c̃k+1 = ck + 1
ε

∆tk QN (ck, ck)

(2) Solve the saddle point problem:

ck+1 = arg min
ck+1

? ∈RN

∥∥∥ck+1
? − c̃k+1

∥∥∥2
+ λTHT (ck+1

? − ck)︸ ︷︷ ︸
conservation of mass, momentum and energy

, (4.13)

where HT ∈ R2+2×N , HT c = (ρ, ρu, ρE)T , with Lagrange multiplier λ ∈ R2+2. The entries of
HT are given by:[

HT
]

1,i
=
∫
R2
bi(v) dv[

HT
]

2,i
=
∫
R2

vxbi(v) dv[
HT

]
3,i

=
∫
R2

vybi(v) dv[
HT

]
4,i

=
∫
R2
‖v‖2 bi(v) dv.


for bi ∈ BN

L , i = 1, . . . , N (4.14)

The solution of (4.13) is

ck+1 = c̃k+1 − 1
2Hλ, (4.15)

with

λ = 2(HTH)−1HT (c̃k+1 − ck). (4.16)

Also note that HTH is positive definite. For the space inhomogeneous case we use a Lie-Trotter
splitting to separate the advection and collision part (cf. Section 5 for details). The Lie-Trotter splitting
is consistent for evolution problems [20]. Therefore, the procedure described above to conserve moments
can be applied independently and in the same way for each degree of freedom in the spatial domain.
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4.3. Computational aspects

We repeat Definition 3.1 of the Polar-Laguerre basis functions Ψk,j , and, for the sake of simplicity in
the current discussion, replace the real valued Fourier modes by their complex counterparts:

Ψk,j(ϕ, r) :=


ei 2jϕ r2jL

(2j)
k
2−j

(r2)e−r2/2 k ∈ 2N

ei (2j+1)ϕ r2j+1L
(2j+1)
k−1

2 −j
(r2)e−r2/2 k ∈ 2N + 1

(4.17)

First, we observe that the Ψk,j ’s are of the form fϕ(lϕ) fr(r) with angular frequency l ∈ Z.

Corollary 4.1. Let f and g be represented in polar coordinates as
f(r, ϕ) = fr(r)ei kϕ, g(r, ϕ) = gr(r)ei lϕ

for some functions fr, gr and l, k ∈ Z. Then,
Q(f, g)(r, ϕ) = C(r)e− i(k+l)ϕ (4.18)

Proof. [13] We get ρ∗(ω)f = ei kωf , and correspondingly for g. Using (2.12) and the bilinearity of Q
we obtain

ρ∗(ω)Q(f, g)(r, ϕ) = ei(k+l)ωQ(f, g)(r, ϕ). (4.19)
Choose ω = −ϕ and rearrange to find

Q(f, g)(r, ϕ) = e− i(k+l)ϕρ∗(ϕ)Q(f, g)(r, ϕ).
The result follows since ρ∗(ϕ)Q(f, g)(r, ϕ) = Q(f, g)(r, 0) is independent of ϕ.

As a direct consequence of Corollary 4.1, in the complex Fourier basis, the collision tensor contains
nonzero entries for l+k = j only, where l, k and j are the angular frequencies of the trial function and
the test function respectively. In the real valued Fourier basis, we have nonzero entries for k + l = j
or |k − l| = j only, the derivation can be found in [18, Appendix].

Corollary 4.2. The consequence of Corollary 4.1 is that each Si ∈ RN×N from (4.11) only has O(K3)
nonzero entries, and therefore the tensor representation of QN has O(K5) nonzero entries.

Remark 4.3. Using similar ideas for spherical harmonics as in Corollary 4.1, it can be shown that
the cost of the application of QN in 3 dimensions can be reduced from O(K9) to O(K8), see [29] for
details. Also the closely related method pursued in [14] would cost O(K8).

Quadrature is carried out in polar coordinates. We use Gauss quadrature nodes and weights in the
radial direction r on the interval [0,∞] with weight r e−r2/2, which are computed via the Golub-Welsch
algorithm [16]. Recursion formulas for the coefficients contained in the Jacobi matrix can be found
in [27]. Due to numerical instabilities, both the recursion formulas and the eigenvalue problem have to
be computed with extended precision. We compute the quadrature nodes and weights with 128 digit
accuracy, which is sufficient for degrees up to order ≈ 100, and store them in tables.

4.4. Exploiting the translational invariance of Q

We have used the rotational invariance of the collision operator for efficient computation and storage
of its discrete analogue. According to (2.13), Q is also invariant to translation. A Maxwellian at
temperature T = 1 with momentum u = 0 is represented in the polar basis by a single non-zero
coefficient. In order to represented the same Maxwellian with momentum u 6= 0 with same accuracy,
the required polynomial degree K grows with ‖u‖, cf. Section 4.4.1. If one wants to apply the collision
operator to a given function, it would be beneficial to perform first a change of variables such that it
has zero momentum, apply the collision operator and then shift it back to the original position. This
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Figure 4.1. Nonzero entries for a few slices Si defined in (4.3) of the collision tensor
for K = 16. The plots are labeled by the angular part of the test function bi, since the
location of the nonzero entries depend on it solely. The basis functions are lexicograph-
ically sorted by the tuple (l, cos / sin, k), where l is the angular frequency of sin / cos
and k denotes the polynomial degree in radial direction.

has the advantage that a given function with zero momentum will have faster decaying coefficients
compared to its nonzero momentum counterpart and thus one might truncate at a lower K without
loss of accuracy. The straightforward way to translate a given function in its polar representation
to zero momentum is to compute the expansion of f(v + u) in the Polar-Laguerre basis, where u
denotes the momentum. This entails the evaluation of f , which costs O(K2), at O(K2) quadrature
points, resulting in a total cost of O(K4). In the following, we will show that this can be done with
complexity O(K3) if we temporarily switch to the Hermite basis, cf. Definition 3.3. As a consequence
of [14, Lemma 5], any function in the Polar-Laguerre basis of degree K has an exact representation
through Hermite polynomials of total degree K. Let us formally define the coefficient transformations
matrices TP→H, TH→P used to transform Polar-Laguerre to Hermite coefficients and vice versa:

cH = TP→HcP, cP = TH→PcH,

where TP→H,TH→P ∈ RN×N . Because of their block-diagonal structure with dense blocks of size k+1,
k=0, . . . ,K − 1, the cost to transform the coefficients from the Polar-Laguerre to the Hermite basis is
O(K3). The derivation of the Polar-Laguerre to Hermite transformation matrices can be found in [22,
Section 3.2].

Let ck denote the coefficients of a 1-dimensional Hermite expansion g with maximal polynomial
degree K and momentum x̄. We are looking for the Hermite expansion of ḡ(x) = g(x+ x̄).

ḡ(x) = g(x+ x̄) =
K−1∑
k=0

ckhk(x+ x̄)e−
(x+x̄)2

2 ≈
K−1∑
k=0

c̄khk(x)e−
x2
2 (4.20)

Note that ḡ(x) has zero momentum. The coefficients c̄i are computed by forming L2-inner products.

c̄i =
∫
R

K−1∑
k=0

ckhk(x+ x̄)e−
(x+x̄)2

2 hi(x)e−
x2
2 dx

=
K−1∑
k=0

ck

∫
R
hk(x+ x̄)hi(x)e−

(x+x̄)2
2 e−

x2
2 dx =:

K−1∑
k=0

[Sx̄]i,k ck, (4.21)
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The above can be written as a matrix-vector-product c̄ = Sx̄c, where Sx̄ ∈ RK,K . To further simplify
the expression for the matrix entries [Sx̄]i,j , we substitute x = x− x̄

2

[Sx̄]i,j =
∫
R
hj(x+ x̄

2 )hi(x− x̄
2 )e−x2

e−
x̄2

4 dx (4.22)

and use the identity

hn(x+ x̄) =
n∑
k=0

(
n

k

)
(2x̄)n−khk(x), (4.23)

to expand hk(x+ x̄
2 ), hi(x− x̄

2 ), and find

[Sx̄]i,j = 1√
i! j!2(i+j)/2

i∑
s=0

j∑
t=0

(
i

s

)(
j

t

)
(−x̄)i−s(x̄)j−te−

x̄2

4 δt,s2tt!

= 1√
i! j!2(i+j)/2 e

− x̄2
4

min(i,j)∑
t=0

(
i

t

)(
j

t

)
(−x̄)i−t(x̄)j−t2tt! ,

(4.24)

where we have used the orthogonality of the Hermite polynomials.
To carry out the shifting in 2D, we rearrange the Hermite coefficient vectors c, c̄ into lower triangular

matrices C, C̄ ∈ RK,K :

f(x, y) =
K∑
i=1

K∑
j=1

[C]i,jhi(x)e−
x2
2 hj(y)e−

y2
2 , (4.25)

The matrix Sx̄ applied along the columns of C performs the shift in x-direction, subsequent row-wise
application of Sȳ shifts in y-direction:

C̄T = Sȳ(Sx̄C)T ⇔ C̄ = Sx̄ C Sȳ,T . (4.26)
We use orthonormal Hermite polynomials in the implementation to avoid numerical overflow. The
procedure described above is summarized in Algorithm 1, whose total cost without evaluating the
collision operator is O(K3). The coefficients cP are sorted by (k, l), e.g. by increasing polynomial and
angular degree, applying the truncated collision operator then means taking only the first n < N rows
and columns of each Si, i = 0, . . . , N in (4.11). The index n is determined such that |cP

i | < tol ∀i > n.

Algorithm 1
Collision operator in re-centered basis via Hermite representation. (Superscripts P,H denote

coefficients in Polar-Laguerre / Hermite basis. )
1: procedure Apply QN in re-centered basis(cP)
2: cH ← TP→HcP . Transform to Hermite basis
3: c̄H ← Sx̄cH . Transform to zero momentum
4: c̄P ← TH→Pc̄H . Go back to Polar-Laguerre basis
5: c̄P ← update with QN in truncated basis
6: c̄H ← TP→Hc̄P . Transform to Hermite basis
7: cH ← S−x̄c̄H . Shift back
8: cP ← TH→PcH . Transform to Polar-Laguerre basis
9: end procedure

Fig. 4.2 displays timings for the shifting procedure (tshift) and the application of the collision op-
erator (tcollision) for varying polynomial degree K. The slopes in the loglog-plot match the predicted
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tim
e

[m
s] 4.76

2.6

tcollision

tshift K tshift[ms] tcollision[ms]

10 0.08 0.04
12 0.13 0.04
16 0.3 0.15
20 0.55 0.42
26 1.12 1.51
30 1.61 2.99
36 2.52 7.08
40 3.25 11.4
50 6.04 33.6
80 18.2 337

Figure 4.2. CPU-time: Intel Core i7 4790K (4GHz, single threaded), Linux 4.2.3,
GCC 5.2.0, relevant compiler flags: -O3 -msse2 -mavx2. tshift is the time for the exe-
cution of Algorithm 1 except the application of the collision operator.

computational complexity of O(K5) and O(K3) for the collision operator, resp. the shifting proce-
dure. For K < 26 shifting cannot not pay off, because we observe that it is more time consuming
than the application of the collision operator. How much can be gained in terms of wall-clock time by
the shifting to zero momentum depends on the number of coefficients that can be neglected for the
zero-centered velocity distribution.

4.4.1. Example: Decay of coefficients

The following example is to demonstrate that the Polar-Laguerre coefficients decay fastest if the
approximand is centered such that it has zero momentum.

f(v) = exp(−vTWv) + exp(−‖v‖
2

2 ), (4.27)

where

W = 1
8

[
7
√

3√
3 5

]
, vc = [1

5 , 0] . (4.28)

The decay of the absolute values of the Polar-Laguerre coefficients |c| with respect to angular index
l := 2j + k mod 2 and radial index k is shown in Fig. 4.3.

5. Discretization in Physical Space

In this section we present the spatial discretization in D ⊂ R2. It is well known that the advection
part in (2.1) requires stabilization. We use a least squares formulation[24, Ch. 10.3.1], which has the
advantage that, after partial integration, the term 〈v · nΦ, f〉Γ appears in the variational formulation,
which comes handy to include inflow-type boundary conditions. The advection part of (2.1) reads

∂tf + v · ∇xf = 0. (5.1)
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Figure 4.3. Decay of Polar-Laguerre coefficients cl,k for f(v−vc), defined in (4.27),
with respect to angular index l and radial index k.

We replace ∂tf in (5.1) by a backwards difference quotient (∆tk)−1(f (n) − f (n−1))and write down the
least squares functional J(f (n); f (n−1)) for the pure transport problem [24, Ch. 10.3.1]:

J(f (n); f (n−1)) :=
∥∥∥∥ 1

∆t
(
f (n) − f (n−1)

)
+ v · ∇xf

(n)
∥∥∥∥2

L2(Ω)
(5.2)

The bilinear form a and right hand side linear form b of the associated variational problem are given
by

a(Φ, f (n)) = 1
∆t2

〈
Φ, f (n)

〉
Ω

+ 1
∆t
〈
v · n Φ, f (n)

〉
Γ

+
〈
v · ∇xΦ,v · ∇xf

(n)
〉
Ω
, (5.3)
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where have used partial integration in x to obtain the boundary term, and

b(Φ, f (n−1)) := 1
∆t2

〈
Φ, f (n−1)

〉
Ω

+ 1
∆t
〈
v · ∇xΦ, f (n−1)

〉
Ω
, (5.4)

where n is the unit outward normal vector on ∂D and Γ := ∂D × R2. In the following we use 〈·, ·〉
to denote the L2-inner product. V L

D is the space of linear, piecewise continuous finite elements on
quadrilateral triangulations of D ⊂ R2. The VDF on phase space Ω = D×R2 is approximated in the
tensor product space V L,N = V L

D ⊗ V N
V . The test functions Φ are also taken from V L,N . We arrive at

the following linear system:

a(Φ, f (n)) = b(Φ, f (n−1)) ∀Φ ∈ V L,N . (5.5)
The superscript L will denote the number of degrees of freedom in the spatial domain. The system
matrix associated to the bilinear form a is sparse and of size L × N . The inclusion of boundary
conditions is done in a weak sense, details will be discussed in the next section. When inflow boundary
conditions are present, the corresponding parts of 〈v · nΦ, f〉Γ enter the right hand side.

For integration in time we separate (2.1) into advection and collision part and use a first order split
time-stepping:

(1) Advection ∂tf + v · ∇xf = 0 (implicit Euler)

1
∆t2k

〈
Φ, f (n+1/2)

〉
Ω

+ 1
∆tk

〈
v · n Φ, f (n+1/2)

〉
Γ

+
〈
v · ∇xΦ,v · ∇xf

(n+1/2)
〉
Ω

= 1
∆t2k

〈
Φ, f (n)

〉
Ω

+ 1
∆tk

〈
v · ∇xΦ, f (n)

〉
Ω

(5.6)

(2) Collision operator (explicit Euler)

f (n+1) = f (n+1/2) + ∆tk
ε
Q(f (n+1/2), f (n+1/2)) (5.7)

Remark 5.1. The discrete formulation does not conserve mass for diffusive reflective boundary con-
ditions, because in general, the velocity distribution function will have jumps across the line v ·n ≡ 0.
Discontinuous functions cannot be represented exactly in the Polar-Laguerre basis and therefore mass
only is conserved asymptotically. In the case of specular reflective mass is conserved, also in our discrete
scheme. The proofs can be found in [18].

6. Numerical Experiments

We have implemented all the techniques discussed in C++. The finite element part is taken from the
deal.II library [2]. The collision operator is independent of x and it is thus natural to parallelize via
domain decomposition in the spatial domain. The system matrix arising from the advection problem
is assembled once and reused in every time-step. We use a block-diagonal, incomplete LU-factorization
as preconditioner. Often it is observed that the ILU-preconditioned 1 GMRES solver converges in less
than 5 iterations. We use the distributed vectors, sparse matrices, iterative solvers and preconditioners
offered by Trilinos v12.2.1 [19].

The numerical experiments in this section are carried out for Maxwellian molecules. The entries
of the collision tensor were computed with 81, 131 quadrature points in radial direction and angular
direction. For the inner integral (4.7) 131 quadrature points were used. It can thus be assumed that
the quadrature error is negligible.

1Block-diagonal ILU preconditioner with zero fill-in from Trilinos IFPACK.
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6.1. Homogeneous case

In order to validate the implementation of the collision operator and to study the approximation
properties of the Polar-Laguerre basis, we consider the homogeneous Boltzmann equation

∂tf = Q(f, f), (6.1)
for which a non-stationary, analytical solution is available. This is the so-called BKW solution:

f(t,v;T ) = e−
‖v‖2
2T s
‖v‖2 − s((2− 4s)T + ‖v‖2)

2Ts3 , t > 0 (6.2)

where s = 1− exp(−πT
4 t− log 2) and T denotes the temperature. It is valid for Maxwellian molecules.

For t→∞ it converges to

lim
t→∞

f(t,v;T ) = e−
‖v‖2
2T . (6.3)

For T = 1, it can be represented by a single non-zero coefficient in the Polar-Laguerre basis. The time
evolution of the BKW solution is shown in Figure 6.1 using the normalized time t̂ = Tt.
Theorem 6.1. [13] Let f(t,v) be a solution to ∂tf = Q(f, f) with a collision kernel of the form (2.11).
Let α, γ > 0 be given, and define η = α/γλ+2. Then

h(t,v) = αf(ηt, γv)
is also a solution to (4.1).

In the homogeneous setting, every initial condition can be rescaled to unit temperature using the
above theorem. Because of the tensor-product ansatz this is not possible in the inhomogeneous case. In
order to demonstrate the approximation properties of the Polar-Laguerre basis, we integrate 4.1 using
4th-order Runge-Kutta timestepping for various BKW initial conditions f(0,v;T ) with temperatures
T ∈ [1

2 , . . . , 4] and ∆t = 2.5 × 10−3/T . The results are given for the Lagrange-multiplier method
described in Section 4.2. Relative L2-errors are reported in Fig. 6.2, we observe exponential convergence
in K. For K = 48, 56 and temperatures in 1 ≤ T ≤ 2, we obtain errors of the order of the machine
precision. For T = 0.5, K = 14, cf. Fig. 6.2a, we observe numerical blow-up, this is because the
L2-projection of the BKW solution at t = 0 attains negative values.
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(a) BKW solution at different times t̂ := T t, v̂ :=√
T−1v. The dashed line (eq) shows equilibrium solu-
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Figure 6.1. Time evolution of the BKW solution.
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nf Nf K N

10 100 14 105
18 324 25 325
24 576 33 561
28 784 39 780
34 1,156 48 1,176
40 1,600 56 1,596

Table 6.1. Comparison with the Fourier spectral method: Degrees of freedom for
Fourier Nf = n2

f (left) and Polar-Laguerre basis N = K(K + 1)/2 (right).

Comparison with the Fourier spectral method. The classical Fourier spectral method [26, 11]
is known to converge to a constant distribution in velocity for long times [7, Rem. 5.13]. This behaviour
can be avoided by the steady state preserving scheme [12], it makes use of the decomposition

f = M + g , (6.4)

whereM is a local Maxwellian equilibrium and g such that
∫
R2 gφdv = 0, φ(v) := 0,v, ‖v‖2. Inserting

this into the collision operator gives
Q(f, f) = L(M, g) +Q(g, g) +Q(M,M) , (6.5)

where L(M, g) = Q(g,M) +Q(M, g). The steady state preserving (SSP) scheme then reads
∂g

∂t
= L(M, g) +Q(g, g) ,

f = M + g .
(6.6)

Note that this is identical to the classical Fourier method, except that the constant in time term
Q(M,M) has been removed, which is zero in the continuous case and spectrally small in the Fourier
representation. As the original scheme it conserves mass and momentum. In order to conserve energy
the Lagrange multiplier, cf. Section 4.2, method can be used for both formulations. For the Fourier
spectral method we truncate the velocity distribution to a box of size L = 2

√
T−1 [−1, 1]2. The domain

of the collision operator is restricted to [−R,R]2, where R = λL, λ = 2
3+
√

2 .
Fig. 6.3 shows L2-errors computed for the BKW solution using the Polar-Laguerre and the Fourier

spectral method using both the classical and the SSP variant. The number of Polar-Laguerre basis
functions is chosen such that the number of total degrees of freedom for both methods are roughly
equal, cf. Table 6.1. For t→∞ the Polar-Laguerre method converges to a Maxwellian determined by
ρ(t=0), u(t=0), E(t=0), whereas the classical Fourier method converges to a constant distribution in
velocity [7, Rem. 5.13] due to aliasing errors. Indeed, increasing errors for long times are observed for
nf < 40 Fourier modes using the classical Fourier method. Applying the Lagrange multiplier method
to conserve energy does not help to reduce this effect. The SSP scheme gives the same accuracy, but
errors do not increase over time.

6.2. Supersonic flow in a wind tunnel

We show numerical results for a supersonic flow in the hydrodynamic regime, ε = 2.5 × 10−3,
over a forward facing step in 2D. The experiment was first introduced in [8]. The computational
domain describes a wind tunnel with a step at position x = 0.6 with height 0.2. The gas is initially
in equilibrium with temperature T0=1,v=[3, 0], ρ = 1.4. At x=0 inflow boundary conditions with
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T=1, v=[3, 0], ρ=1.4 are imposed and outflow (zero inflow) boundary conditions at x=3, the other
walls are specularly reflective. In Fig. 6.5 the pressure is shown at different times t ∈ [0, 1]. We have used
a time-step of length ∆t=2.5×10−5. Fig. 6.6 displays the comparison of the macroscopic density with
the reference solution obtained from a high-order finite volume solver for the Euler equations (FVM
MUSCL scheme) [21]. The positions of the shock waves are accurately reproduced by the Boltzmann
solver. The contour lines in the rarefaction wave differ, this can be explained by the huge difference
in the degrees of freedom, the Euler solver uses 3 × 106 cells in the spatial domain versus 3.5 × 103

DoFs for the Boltzmann solver. Additionally, the choice of continuous finite elements in the spatial
domain makes it impossible to satisfy the boundary conditions at the corners. On coarse meshes, we
have observed that the distribution function can become negative at the re-entrant corner. Especially
for small Knudsen numbers, for example ε=2.5 × 10−3, this can cause the solution to diverge when
the collision operator is applied. A possible remedy is to project onto positive distribution values in v,
see discussion below. The projection step was not required for the results reported here. The relative
L2-errors for two different spatial resolutions and K = 20, . . . , 40 are shown Figure 6.4.

Ensuring positivity. We have observed that in the vicinity of singularities, for example near re-
entrant corners, the distribution function might become negative locally. In combination with a low
Knudsen number this can cause numerical blow-up of the solution by the collision operator. A possible
remedy is to evaluate the distribution function after each time-step at the quadrature nodes, set neg-
ative values to zero and project back onto the Polar-Laguerre basis. A naive implementation requires
the evaluation of f(v) at O(K2) quadrature nodes, whereas the evaluation requires O(K2) operations
per node and thus has a total cost of O(K4). The algorithms developed in [14] provide an elegant solu-
tion by transforming first to the Hermite and then to the nodal basis. As already noted in Section 4.4,
the transformation between the Polar-Laguerre and the Hermite basis can be done with effort O(K3).
The transformation between the Hermite and nodal basis again costs O(K3), this time because it can
be performed separately along each coordinate axis and therefore the transformation matrices are of
size K ×K only. The entries of the Hermite to nodal transformation matrix TH→N ∈ RK,K are given
by:

(TH→N)i,j =
∫
R
hj(x)e−

x2

2 `i(x)e−
x2

2 dx =
K∑
k=0

hj(xk)`i(xk)wk =
K∑
k=0

hj(xk)
δi,k√
wk
wk = hj(xi)

√
wi,

(6.7)

where xi, wi, i = 0, . . . ,K are the Gauss-Hermite quadrature nodes and weights. We have that
(TN→H)−1 := TT

H→N, since TH→N is an orthonormal matrix:

(TH→N)TTH→N =
K∑
k=0

(hi(xk)
√
wk) (hj(xk)

√
wk) =

K∑
k=0

hi(xk)hj(xk)wk

=
∫
R2
hi(x)hj(x)e−x2 dx = δi,j (6.8)

6.3. Nozzle flow

We consider the flow of a rarefied gas with ε = 0.1 in a nozzle, see Fig. 6.7. Inflow boundary conditions
are placed at the left boundary with T = 1, v0 = [2.5, 0], ρ0 = 1.4, and outflow b.c. at x = 4, the
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Algorithm 2 Project to positive velocity distribution values
1: procedure Apply the collision op. in re-centered basis(cP)
2: cH ← TP→HcP . Transform to Hermite basis
3: cN ← TH→N . Transform to Nodal basis
4: for all

(
cN
)
i
< 0 do

5:
(
cN
)
i
← 0 . Set negative coefficients to zero

6: end for
7: cH ← TN→HcN . Transform to Hermite basis
8: cP ← TH→PcH . Transform to Polar-Laguerre basis
9: end procedure

other walls are specularly reflecting. The initial distribution was

f(t = 0,x,v) = ρ0
2π exp

(
−1

2 ‖v− v0‖2
)
. (6.9)

Convergence plots for the L2-errors are reported in Fig. 6.8, the reference solution was computed on
a mesh with 18 500 vertices and for polynomial degree K=40. For the lowest resolution in space, i.e.
L=1200 and for K > 26, we find that the error is dominated by the mesh size, whereas for L=4700
the errors mainly depend on K. Compared to the supersonic flow experiment in Section 6.2, we obtain
smaller errors and faster convergence with respect to K, which is attributed to the absence of shocks.

6.4. Shock tube

A gas is filled into a tube of unit length. Initially the gas is at equilibrium in the left and right half
with densities ρl, ρr and temperatures Tl, Tr:

fl(t=0,x,v) = ρl
2πTl

exp
(
−‖v‖

2

2Tl

)
, x < 0.5

fr(t=0,x,v) = ρr
2πTr

exp
(
−‖v‖

2

2Tr

)
, x ≥ 0.5,

(6.10)

where ρl=1, ρr=1 and Tl=1.25, Tr=1. Specular reflective boundary conditions are imposed on the top
and bottom wall, at x=0, x=1 we use inflow boundary conditions with densities ρl, ρr and temperatures
Tl, Tr. The calculations were carried out on a structured grid with element size hx=1.48 × 10−3 in
x-direction for different ε=0.01, 0.1, 1, and with polynomial degrees K=16, 20, 26, 30, 36, 40. The
calculation with K=40 is used as reference to compute L2-errors in the VDF f(v,x) and for the
macroscopic quantities ρ, |u| and E. L2-errors are shown in Fig. 6.9, the errors for ε=0.01 are an
order of magnitude smaller compared to the calculations with ε=0.1. This is because for ε=0.01,
the smoothing by the collision operator is stronger and therefore better approximation in the velocity
domain is obtained. In Fig. 6.10, the density and momentum ux are compared forK=30, 40 at different
times along the line x(s)=s, s ∈ [0, 1]. Note that the sluggish convergence observed in Fig. 6.9 is due
to the Gibbs phenomenon.
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6.5. Propagation of discontinuities

We consider the Boltzmann equation in one space dimension, x ∈ [0, 1]:
∂f

∂t
+ vx

∂f

∂x
= 1
ε
Q(f, f)

f(t = 0, x,v) = 1
2π T0

exp
(
− |v|

2

2T0

) (6.11)

At time t = 0, a sudden change in the wall temperature Tw = 2T0 is imposed in x = 0, where
T0 = 1, ε = 0.1. Specular reflective boundary conditions are used at the right wall in x = 1. The
numerical experiments were performed for various polynomial degrees and 1024 grid points in x using
a timestep ∆t = 10−3. The distribution function f(v) close to the left wall at x = 0.04 is shown
Fig. 6.11, results for the macroscopic velocity vx and density ρ are depicted in Fig. 6.12. We observe
good qualitative agreement in the distribution function and macroscopic quantities for polynomial
degrees K = 20, . . . , 60. The same numerical experiment for the Fourier spectral method can be found
in [10], where n = 32, 128 Fourier modes in each direction were used. For the Fourier spectral method,
there is no difference visible (between n = 32 and 128) in the plots of the macroscopic quantities,
which is not the case for our method.

6.6. Flow generated by a temperature gradient

We consider an infinite slab with thickness d = 1 and diffusive reflective boundary conditions with
temperatures Tl=1, Tu=1.44 at the lower and upper wall. We choose the initial condition as follows
in order to avoid the Gibbs phenomenon from the previous example:

f(t = 0, y,v) = 1
2πT (y)e

− ‖v‖
2

2T (y) ,

T (y) = 1 + 1.44y .
(6.12)

The simulations were carried out for Knudsen numbers ε = 0.025, 0.1, 1, until a stationary state
was reached with time-step ∆t = 10−3. We observe good agreement in the temperature profiles for
K = 20, . . . , 40 and with results obtained in [10].
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Figure 6.2. BKW solution rescaled to different temperatures T : Squared L2-errors
for different polynomial degreesK. (Temperature) normalized time t̂ := T t. The curves
represented by a star suffer from numerical blow up due to locally negative distribution
values in the initial projection.
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Figure 6.3. Comparison of the Fourier spectral (left) and Polar-Laguerre (right)
method: squared relative L2-errors for the BKW solution at temperature T = 1. FS:
plain Fourier spectral method, SSP: steady state preserving Fourier spectral method.
c: conservation of energy enforced by Lagrange multipliers, nc: without Lagrange mul-
tipliers for conservation of energy.
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Figure 6.4. Supersonic flow in a wind tunnel: relative L2-errors vs. polynomial degree
K for two spatial grids with different numbers of vertices. The solution on the finest grid
with highest polynomial degree K=40 was used as reference. Errors are shown for the
velocity distribution function f and the macroscopic observables: mass ρ, momentum u
and energy E. The errors are dominated by the polynomial degree K.

Figure 6.5. Supersonic flow in a wind tunnel: polynomial degreeK = 40, 35k vertices,
Maxwellian molecules, 28.9M total DoFs. Coloring: pressure, contour lines: density.
Computations were carried out on the Euler cluster of ETH Zurich (Xeon E5-2697 v2)
using 360 cores.
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(a) t = 0.1 (b) t = 0.3

(c) t = 0.4 (d) t = 0.5

Figure 6.6. Supersonic flow in a wind tunnel: Contour lines of the macroscopic
density ρ at different times. Dashed lines: reference solution for the Euler eqs. (FVM
MUSCL scheme) (1024 × 3072 cells). Solid lines: Boltzmann eq. (35k × 820 DoFs in
V L
D × V N

V ).

Figure 6.7. Nozzle domain: Inflow BC on the left boundary, outflow on the right.
hi = 1.4, ho = 0.4, l0 = 0.7, l1 = 1.8, l2 = 1.5
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Figure 6.8. Nozzle flow: relative L2-errors at time t = 3.75. Reference solution with
K = 40, L = 18 529, ∆t = 2.5× 10−4.
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Figure 6.9. Relative L2-errors for the shock tube with varying polynomial degree
K. Reference computation with K=40 at time t=0.1.
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Figure 6.10. Shock tube: Macroscopic density and momentum in x-direction plotted
along the line x = [0, 1]. Solid line: Polynomial degree K = 40, Dashed line: K = 30
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Figure 6.11. Propagation of discontinuities: Distribution function f(v, t) at x =
0.004 for different polynomial degrees K.
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(f) Density ρ, t = 0.08

Figure 6.12. Propagation of discontinuities: Macroscopic velocity and density for
different polynomial degrees K.

245



P. Grohs, R. Hiptmair, et al.

0.0 0.5 1.0
x

1.0

1.1

1.2

1.3

1.4

T K=20
K=26
K=30
K=36
K=40

0.00 0.01 0.02 0.03 0.04
x

1.148

1.150

1.152

1.154

1.156

T

(a) ε = 1

0.0 0.5 1.0
x

1.0

1.1

1.2

1.3

1.4

T K=20
K=26
K=30
K=36
K=40

0.000 0.025 0.050 0.075 0.100
x

1.08

1.09

1.10

1.11

1.12

T

(b) ε = 0.1

0.0 0.5 1.0
x

1.0

1.1

1.2

1.3

1.4

T K=20
K=26
K=30
K=36
K=40

0.00 0.02 0.04
x

1.03

1.04

1.05

1.06

1.07

T
(c) ε = 0.025

Figure 6.13. Flow generated by a temperature gradient: Temperature profiles for the
stationary states at time t = 6, 25, 75 for ε = 1, 1

10 ,
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40 . The lower row shows T (x)

close to the left boundary.
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Figure 6.14. Flow generated by a temperature gradient: Mass distribution function
at the upper wall: f(t=tend, y=1,v).

246



Tensor-Product Discretization for the Boltzmann Equation

7. Conclusion

We have presented a combined spectral polynomial and finite element method for the spatially inho-
mogeneous Boltzmann equation. It can be extended to conserve the lowest moments and include all
relevant boundary conditions. We have elaborated it for elastic collisions in the variable hard spheres
model. The simulations were carried out for Maxwellian molecules, but in general, any sufficiently
regular separable collision kernel of the form C(cos θ) ‖v− v?‖λ , λ ≥ 0 can be tackled by our scheme.
Conservation of mass, momentum and energy can be achieved by the Lagrange multiplier method. For
numerical testing we have implemented an extensive simulation framework in C++ which can deal with
different types of boundary conditions on realistic geometries in 2D. The code has been parallelized
using MPI, and provided that the spatial mesh is sufficiently fine, scales well up to a few hundred
processors. Details of this implementation will be published separately. We have reported numerical
results for low and high-speed flows from the hydrodynamic to the rarefied regime. The polar spec-
tral basis offers fast convergence for smooth solutions. For initial distributions with discontinuities we
observe a degradation in convergence with respect to the velocity degrees of freedom. The same holds
true for discontinuities in the velocity distribution function imposed by hot or cold walls.
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