
SMAI-JCM
SMAI Journal of
Computational Mathematics

Task-based adaptive multiresolution
for time-space multi-scale

reaction-diffusion systems on
multi-core architectures

Stéphane Descombes, Max Duarte, Thierry Dumont,
Thomas Guillet, Violaine Louvet & Marc Massot
Volume 3 (2017), p. 29-51.

<http://smai-jcm.cedram.org/item?id=SMAI-JCM_2017__3__29_0>
© Société de Mathématiques Appliquées et Industrielles, 2017

Certains droits réservés.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://smai-jcm.cedram.org/item?id=SMAI-JCM_2017__3__29_0
http://www.cedram.org/
http://www.cedram.org/

SMAI Journal of Computational Mathematics
Vol. 3, 29-51 (2017)

Task-based adaptive multiresolution for time-space multi-scale
reaction-diffusion systems on multi-core architectures

Stéphane Descombes 1

Max Duarte 2

Thierry Dumont 3

Thomas Guillet 4

Violaine Louvet 5

Marc Massot 6

1 Université Côte d’Azur, CNRS, Inria, LJAD, France
E-mail address: stephane.descombes@unice.fr
2 CCSE, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd. MS 50A-1148, Berkeley,
CA 94720, USA and CD-adapco, 200 Shepherds Bush Road, London W6 7NL, UK
E-mail address: max.duarte@cd-adapco.com
3 Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille
Jordan, 43 blvd. du 11 novembre 1918, F-69622 Villeurbanne Cedex, France
E-mail address: tdumont@math.univ-lyon1.fr
4 Intel, Les Montalets, 2 rue de Paris, 92196 Meudon, France, Exascale Computing Research,
Campus Teratec, 2 rue de la Piquetterie, 91680 Bruyères-le-Châtel, France
E-mail address: thomas.guillet@intel.com
5 Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille
Jordan, 43 blvd. du 11 novembre 1918, F-69622 Villeurbanne Cedex, France
E-mail address: louvet@math.univ-lyon1.fr
6 CNRS UPR 288, Laboratoire EM2C, CentraleSupélec, Fédération de Mathématiques de
l’École Centrale Paris, CNRS FR 3487, Grande Voie des Vignes, 92295 Chatenay-Malabry
Cedex, France
E-mail address: marc.massot@centralesupelec.fr.

Abstract. A new solver featuring time-space adaptation and error control has been recently introduced
to tackle the numerical solution of stiff reaction-diffusion systems. Based on operator splitting, finite volume
adaptive multiresolution and high order time integrators with specific stability properties for each opera-
tor, this strategy yields high computational efficiency for large multidimensional computations on standard
architectures such as powerful workstations. However, the data structure of the original implementation,
based on trees of pointers, provides limited opportunities for efficiency enhancements, while posing serious
challenges in terms of parallel programming and load balancing. The present contribution proposes a new
implementation of the whole set of numerical methods including Radau5 and ROCK4, relying on a fully
different data structure together with the use of a specific library, TBB, for shared-memory, task-based
parallelism with work-stealing. The performance of our implementation is assessed in a series of test-cases of
increasing difficulty in two and three dimensions on multi-core and many-core architectures, demonstrating
high scalability.

Math. classification. 65Y05, 65T60, 65M50, 65L04, 35K57.
Keywords. Task-based parallelism, multi-core architectures, multiresolution, adaptive grid, stiff reaction-
diffusion equations.

1. Introduction

Stiff reaction-diffusion systems model various complex phenomena across different disciplines such as
combustion, atmospheric sciences, plasma physics or biomedical engineering. Such models can also
involve the dynamics of moving fronts, usually very localized in space (see, e.g., [23] and references

29

mailto:stephane.descombes@unice.fr
mailto:max.duarte@cd-adapco.com
mailto:tdumont@math.univ-lyon1.fr
mailto:thomas.guillet@intel.com
mailto:louvet@math.univ-lyon1.fr
mailto:marc.massot@centralesupelec.fr

S. Descombes, M. Duarte, et al.

therein), and potentially entail a large number of unknowns. A general reaction-diffusion system can
be written as follows, for i = 1, 2, . . . ,m:

∂ui

∂t
(x, t)− div(εi(x) grad ui(x, t)) = fi(u(x, t)), x ∈ Ω ⊂ Rd, t > 0,

ui(x, 0) = u0
i (x), x ∈ Ω;

 (1.1)

with the compact notation: u = (u1, . . . , um)t. In particular we denote f(u) = (f1(u), . . . , fm(u))t.
With no loss of generality we restrict our presentation to homogeneous Neumann boundary conditions.

Two major difficulties need to be addressed when solving numerically this kind of problem in two
and three dimensions. First, a large spectrum of temporal scales in the nonlinear source terms yields
highly stiff equations1. Systems of stiff ordinary differential equations impose the use of numerical
methods with specific stability properties in order to achieve accuracy and stability within reasonable
memory and computing costs [36]. Secondly, steep fronts require a very fine discretization mesh, at
least locally, which leads to problems of large size if no mesh adaptation is used. Additionally, spatial
stiffness may arise as a consequence of these steep spatial gradients even with non-stiff source terms
and diffusion coefficients of relatively small value [17].

We have recently introduced in [27] a tailored numerical strategy to cope with the latter difficulties
using reasonable computing resources, that is, on a sufficiently powerful workstation, possibly exploit-
ing shared-memory parallelism [26]. It relies on time operator splitting2 with one-step, high order
integration schemes, namely, Radau53 [36] and Rock44 [1] for the time integration of the reaction
and diffusion sub-systems, respectively. The discretized equations are solved on a dynamically adapted
grid generated by multiresolution analysis (MRA) in a finite volume multi-dimensional framework in
the spirit of the original work of Harten [37] and then Cohen et al. and Müller [10, 46, 57]. MRA is
based on a wavelet decomposition and a multiresolution transform, yielding both highly compressed
representations for problems displaying localized fronts as well as a compression error control with re-
spect to the solution on the full grid. Let us emphasize that this property is a major difference with an
AMR (Adaptive Mesh Refinement) strategy where the refinement criterion rather relies on heuristics.
This MRA-operator splitting numerical strategy was implemented in the MBARETE code [23], us-
ing a tree-structured data with pointers and recursive navigation. However, the latter implementation
shows serious limitations in terms of parallel programming due to the lack of data locality and load
balancing. A new paradigm of parallelism together with a different and customized data structure is
thus needed to achieve more efficient MRA-operator splitting implementations.

A wide spectrum of techniques and runtime implementations are available for application developers
to express parallelism. For the problems we are interested in and using MRA, one single modern
compute node provides enough memory and computing power to run simulations with a reasonable
time-to-solution. Therefore, we have so far focused on parallelism over shared-memory architectures as
it provides a number of advantages well-adapted to MRA applications. Contrary to uniform Cartesian
grids for which arrays can be generally accessed following regular patterns within long loops, adaptive
meshing in general, that is both multiresolution and AMR codes, relies on fine-grained and dynamic
data structures. The corresponding algorithms can thus have intricate data dependencies, especially
for complex operations such as those associated with mesh adaptation. Hence, exposing parallelism

1The latter can be expected when the Jacobian matrices, (∂fi/∂uj)1≤i,j≤m, have eigenvalues whose real part varies
within a large negative interval or in the presence of strong attracting slow manifolds [36].

2High performance computing can be achieved by choosing dedicated schemes for each split sub-system [27, 28].
Operator splitting schemes also exhibit a large data-driven parallelism, and their mathematical analysis is well-established
for relatively large splitting time steps even when stiffness is present [19, 17, 15].

3An implicit, fifth order Runge-Kutta scheme with A- and L-stability properties and time step adaptation.
4A stabilized, explicit Runge-Kutta method of order four and time step adaptation.

30

Task-based adaptive multiresolution

in these methods is best done using programming techniques that combine both coarse- and fine-
grained parallel constructs, keeping in mind that maximizing parallel coverage is crucial to limiting
the impact of Amdahl’s law on scalability. As a consequence of the complex layouts of the resulting
adapted meshes, an efficient parallel implementation requires non-trivial balancing of the computations
across all available computing cores. Moreover, the load balancing needs to be frequently updated as
the mesh structure evolves during the simulation. Actually, many existing mesh refinement algorithms
and libraries address this issue in distributed-memory settings for both patch- and cell-based AMR [11,
50, 2, 53, 44, 64, 60, 13, 9, 14, 43, 22, 30]. However, even if MRA leads to compression error control, the
mesh adaptation relies on a multiresolution transform that involves recursive navigations throughout
the data sets [7]. The latter makes it much more difficult to parallelize than classic AMR approaches.
Some advances have been conducted recently into that direction but in a different framework [31, 42,
47].

In shared-memory architectures, the common memory address space enables dynamic load bal-
ancing while avoiding data transfers, but it also requires careful synchronizations between threads.
Starting from the original implementations on a single computer [11, 4], several authors have pro-
posed multithreaded implementations for adaptive gridding techniques [3, 20] with some focusing on
specialized grid structures for multi-core processors [29, 58]. Task-based parallelism provides an at-
tractive shared-memory solution to both granularity and dynamic load balancing requirements. In a
task-based approach the programmer introduces parallelism by specifying computations that can be
carried out in parallel. Expressing tasks can be done using different techniques, for example, rely-
ing on compiler directives or through library calls. Scheduling of the tasks is determined at runtime
based on the available computing resources, yielding dynamic load balancing using techniques such
as work-stealing [5, 6]. A key feature associated with tasks is that parallelism is not limited to flat
parallel iteration constructs, but can be introduced recursively by having tasks create other tasks.
This makes the task concept particularly suited to codes with complex hierarchical operations and
recursive navigation in the data set, such as MRA applications.

We have thus opted for a shared-memory parallel approach based on work-stealing, relying on the
Intel Threading Building Blocks (TBB) library [52, 39]. While other runtime libraries supporting task
parallelism are currently available, such as the OpenMP application programming interface (API),
and could have been used for our purposes with equivalent functionality, they would have required
a much more important programming effort. Shared-memory parallelism was hence introduced using
the task-based Intel Threading Building Blocks runtime library. The latter turns out to be particularly
well suited to the multiresolution algorithm in order to cope with nested parallel regions, which are
directly related to the MRA-splitting strategy.

Additionally, a completely new implementation of the original numerical strategy of MBARETE
code has been conducted, where a different and more efficient data structure has been introduced
as an alternative to the original pointer-based approach. Important performance enhancements due
to work-stealing techniques and in particular the use of TBB have already been shown in [38, 54]
for multiresolution schemes applied to non-stiff time-dependent PDEs, that is, using explicit time
integration schemes5.

In order to assess the new implementation and code performance we have chosen three reaction-
diffusion models with increasing complexity in two (d = 2) and three (d = 3) dimensions:

5These authors developed a data structure based on the definition of wavelet blocks, specifically a tree of wavelet
blocks, where each block contains a predefined number of cells at the same grid-level.

31

S. Descombes, M. Duarte, et al.

I. NAGUMO. A bistable, Nagumo-type reaction-diffusion equation6. Here we have m = 1 and
f1(u1) = ku2

1(1 − u1) in (1.1). We consider k = 10, ε1 = 0.1, and an initial condition satisfying
0 ≤ u0

1(x) ≤ 1 everywhere7.

II. BZ. The Belusov-Zhabotinsky reaction [49, 40]. This is a system of three (m = 3) equations,
where the reaction term is given by8 f1(u1, u2, u3) = 105 (−0.02 u1−u2u1+1.6 u3), f2(u1, u2, u3) =
102 (u2− u2

2− u1(u2− 0.02)), and f3(u1, u2, u3) = u2− u3. For the diffusion part, we set ε1(x) =
ε2(x) = 2.5× 10−3 and ε3(x) = 1.5× 10−3 in (1.1)9.

III. STROKE. An ischemic stroke model [21, 16]. This is a system of 21 (m = 21) equations with a
very stiff reaction term10. Its computation is performed by a quite complex and computationally
expensive program of about 400 instructions, containing many log-function evaluations.

The paper is organized as follows. After a brief description of the key aspects of the numerical
strategy in Section 2, we focus in Section 3 on the task-based parallel implementation developed in
this work. A performance analysis is then presented in Section 4, to end with some concluding remarks
and future developments related to this work.

2. Numerical strategy

We are interested in two- and three-dimensional simulations. Discretizing (1.1) in space yields a large
and stiff system of ordinary differential equations given by

dU

dt
= AεU + F (U), (2.1)

where Aε is a matrix corresponding to the discretization of the diffusion operator. Using a standard
centered second-order discretization on a Cartesian mesh, Aε is given by a matrix with five (resp.,
seven) non-zero elements per line in two (resp., three) dimensions. Following [27] a dedicated splitting
solver, briefly described in what follows, is implemented to advance system (2.1) in time.

6A bistable case of type A according to [61], which is a limit case of the Nagumo function, similar to what is found in
combustion models [65] or in nonlinear chemical dynamics when studying traveling waves due, for instance, to chemical
reactions with cubic auto-catalysis [33].

7In general the reaction term is not stiff as |df1(u1)/du1| ≤ 3k. However, with this setting, traveling waves develop
with a sharp spatial gradient yielding a space multi-scale configuration.

8This set describes a chemical reaction between HBrO2, Ce(IV) and Br−, also known as the Oregonator problem.
9The reaction term is stiff. The system of ordinary differential equations has a limit cycle along which the amplitude

of the eigenvalues of the Jacobian attains values of the order of 105. As a comparison, when computing in Ω = [0, 1]d
with a spatial discretization step of h = 1/1024, the largest negative eigenvalues in the diffusion term are about −2 ×
104. Propagating fronts with steep spatial gradients are also developed in this case yielding a time-space multi-scale
configuration.

10The right-hand side, f(u), incorporates an important amount of biological knowledge about ion channels (see [28] for
the model here considered). A numerical computation of the eigenvalues of the Jacobian near a stable equilibrium state,
f(u) = 0, shows real parts in the interval of [−108, 0[. Stiffness is due in part to the fact that f(u) models voltage-gated
ion channels that open or close when the difference of potential between a cell and the surrounding media attains a given
threshold. Gates are modeled through sigmoid functions, closely approximating a Heaviside function. Simulations show
steep spatial gradients, as well.

32

Task-based adaptive multiresolution

2.1. Dedicated splitting solver

Considering independently the two sub-problems coming from (2.1):
dV

dt
= AεV,

V (0) = V0,

dW

dt
= F (W),

W (0) = W0,

we denote by D∆tV0 and R∆tW0 the solution of the first and second sub-problem, respectively, after
a given splitting time step ∆t. Assuming in general stiff reaction terms, we consider without any loss
of generality the second-order Strang scheme11 [59], Un+1 = R∆t/2 ◦D∆t ◦R∆t/2Un.

The Radau5 method is used to solve each of the independent initial value problems coming from the
reaction term and defined at each grid-point, during the Reaction Steps, R∆t/2; whereas the Diffusion
Step, D∆t, uses the explicit ROCK4 method to globally advance the discrete diffusion sub-problem.
Notice that with the latter choice of solver, one only needs to evaluate matrix-vector products without
any need of preconditioning nor factorizing the diffusion matrices when the mesh has changed. In this
work we have chosen splitting time steps, ∆t, equal to 10−2, 10−3, and 1 for the NAGUMO, BZ, and
STROKE models, respectively.

Finally, in terms of parallelism the R∆t/2-step exhibits a high data-driven parallelism, for one has
as many independent problems as nodes in the spatial discretization. The situation is different for the
D∆t-step, which involves the whole computational domain. A simple and straightforward parallelism
consists in parallelizing the solution of the m independent parabolic linear equations in (1.1) [26].
However, an alternative that is not limited by the number of equations should be considered to
enhance the parallel performance of the diffusion solver. The latter is much simpler to achieve in the
case of an explicit scheme like ROCK4, since matrix-vector products are easier to parallelize than
linear solvers.

2.2. Adaptive multiresolution method

For the kind of problems we are interested in, featuring propagating localized fronts, an adaptive
meshing technique that reduces the number of grid-nodes over near-equilibrium zones can significantly
reduce the CPU time12 together with the required computer memory. In the following we describe
some basic features of the multiresolution method introduced in [10], and implemented in [27] with
the aforementioned dedicated splitting solver for reaction-diffusion problems13.

Without loss of generality we consider the computational domain Ω = [0, 1]d, d = 1, 2, 3. A recursive
dyadic subdivision of Ω is then performed, yielding 2dj cells (segments, squares or cubes) of equal
size at each grid-level j, from j = 1 to j = J . Levels 0 and J correspond, respectively, to the
whole computational domain Ω and the mesh at the finest spatial resolution. An adapted spatial
representation can be thus achieved by trimming the set of nested grids throughout the tree, as shown
in Figure 2.1 for a one-dimensional case. In particular the adapted grid is given by the leaves of the
tree. Finite volumes are associated with all cells of the tree, and throughout this paper we will refer
to all cells, including the leaves, and their corresponding finite volumes as nodes. The root of the tree
is the entire domain Ω. Even though the solution of problem (1.1) is only performed on the adapted

11It has been shown that better accuracies are expected by ending the splitting scheme with the substep involving
the fastest time scales [18, 19, 15]. Both theoretical and numerical results show that this method performs very well for
stiff reaction-diffusion systems [23, 27, 28].

12Since this is a key aspect, a numerical experimentation on uniform meshes is provided in Appendix A for the three
aforementioned models.

13More details on this particular multiresolution implementation can be found in [23].

33

S. Descombes, M. Duarte, et al.

Ω

j =

j

j

j

j

=

=

=

=

2

1

...

0

J

Figure 2.1. One-dimensional graded tree composed of nested grids. The resulting
adapted mesh is given by the leaves of the tree, indicated in bold.

mesh, that is on the leaf nodes, the solution is updated and stored at all nodes of the tree. The set
of values at nodes of level j is denoted as Uj . Data at different levels of discretization are related
by two inter-level transformations defined by the projection and prediction operators. The projection
operator, P j

j−1, which maps Uj to Uj−1, is obtained through exact averages computed at the finer
level; that is, for a given node at level j − 1 one computes the average of the 2d nested nodes at the
successive finer level j. The prediction operator, P j−1

j , maps Uj−1 to an approximation Ûj of Uj ;
that is, the value of a given node at level j is approximated based on the surrounding coarser nodes
at level j − 1.

Grid adaptation is performed based on local estimators of the spatial regularity of the solution at
a given simulation time. These local estimators are known as details, and for a given node at level j
its detail is defined as

dj,k = uj,k − ûj,k = uj,k − P j−1
j ◦ P j

j−1uj,k, (2.2)

where k ∈ Zd accounts for the location of the node at level j, and uj,k represents the cell-average of
u(x, t) there. From the theoretical point of view, the details correspond to the coefficients related to a
given discrete function when represented on a wavelet basis. This wavelet decomposition is a general
procedure, independent of any physical particularity of the problem. Introducing a tolerance parame-
ter, ε > 0, threshold values are defined level-wise as εj = 2

d
2 (j−J)ε, j = 0, 1, . . . , J . Data compression is

thus achieved by discarding nodes whose details are smaller than εj in a given norm; here we consider
an L2-norm [23]. Conversely, nodes whose details exceed εj must be refined. Grid adaptation is hence
driven by the local value of the details, while the tolerance parameter defines the level of approxima-
tion errors introduced by the data compression [10]. This is the main difference between MRA and
AMR strategies. In particular, while enabling compression error control, the multiresolution analysis
also leads to recursive navigation in the data set.

In this work the approximated values, Ûj , generated with the prediction operator, are obtained
using centered polynomial interpolations of accuracy order, o = 2l + 1, computed with the l nearest
neighboring cells in each direction including the diagonals in multi-dimensional configurations. For a
one-dimensional configuration with l = 1, the prediction operator is then given by [10]

ûj+1,2k = uj,k + 1
8(uj,k−1 − uj,k+1), ûj+1,2k+1 = uj,k + 1

8(uj,k+1 − uj,k−1). (2.3)

Extension to multi-dimensional Cartesian grids is easily obtained by a tensor product of the one-
dimensional operator (2.3) (see, e.g., [55]). The interpolation stencil is thus given by (2l+ 1)d cells at
the coarser level. Here we will only consider third-order interpolations with l = 1. Notice that these
local interpolation stencils must be available throughout the tree-structure during the simulation.
A tree-structure that complies with such a constraint is called a graded tree [10]. Hence, a graded
tree-structure must be always guaranteed after the refining and coarsening operations.

34

Task-based adaptive multiresolution

3. Task-based parallelism for MRA-splitting applications

We have introduced shared-memory parallelism using the task-based Intel Threading Building Blocks
runtime library [52, 39]. It turns out to be particularly well suited to the multiresolution algorithm in
order to cope with nested parallel regions, which are directly related to the MRA-splitting strategy.
Other than TBB, several runtime libraries supporting task parallelism are currently available, such
as the OpenMP API [51], XKaapi [32], among others. They could potentially have been used for our
purposes with equivalent functionality, but requiring a much more important programming effort. A
discussion clarifying the reasons why we have opted for TBB, in particular over OpenMP API, is
provided in Appendix B.

3.1. Parallel implementation of the multiresolution algorithm

One of the main constraints on parallel implementations of the multiresolution algorithm has to do
with the data locality required to efficiently perform the inter-level operations throughout the tree
data structure (quadtrees or octrees in two or three dimensions, respectively). More specifically, the
prediction operator needs to access all nodes in the interpolation stencil, meaning that for any given
node, one must access the parent-node at the successive coarser level and all its neighboring nodes,
as shown in Figure 3.1 in the case of quadtrees. On the other hand, the projection operator needs to
access the child-nodes of any given node that is not a leaf. Notice that it is very unlikely to achieve data
locality in standard pointer-based tree data structures, like the one considered in the MBARETE
code. In the latter case nodes are generated and linked recursively and even though pointers to the
neighboring nodes are introduced [23], nodes belonging to a given interpolation stencil will hardly
be stored contiguously in memory. Additionally, other the projection and prediction operators, the
refinement and coarsening operations, also performed on trees, should be executed in parallel as well,
in order to maximize parallel coverage and minimize the impact of Amdahl’s law.

Q1

Q2

P P

PP

Q3

Q4

Stencil nodes

Q

Q1 Q2

P P P P

Q3 Q4

Figure 3.1. Prediction stencil nodes to compute values at nodes P within a given
quadtree. The stencil comprises nodes belonging to four different quadtrees: Qi, i =
1, 2, 3, 4.

The data structure implemented in this work to support quadtrees and octrees, as well as the
computation of the key multiresolution operations are detailed in what follows.

3.1.1. Data structure and implementation of trees

Without loss of generality we consider again the computational domain Ω = [0, 1]d, d = 2, 3. The
dyadic refinement of cells allows us to define the coordinates of a given node, (x1, . . . , xi), i = 1, d,
using the binary numeral system. That is, for each dimension i, the xi-coordinate of a given node P

35

S. Descombes, M. Duarte, et al.

at the grid-level j is given by xi = 0.xi,1xi,2 · · ·xi,j−1xi,j , where xi,j−1 is equal to 0 or 1 depending on
which of the two possible nodes at grid-level j−1 generated the node P ; and the same follows for xi,j−2,
up to xi,1. Using this convention one can easily define a space-filling curve [56] throughout all nodes
of the tree; a powerful tool already employed in multiresolution [8, 12] and AMR [9, 62] applications.
In our particular case we use a Morton order space-filling curve [45], also known as Z-order or Morton
code. For instance, in two dimensions, for a given node (x1 = 0.x1,1x1,2 · · ·x1,j , x2 = 0.x2,1x2,2 · · ·x2,j),
its Morton abscissa is constructed by alternating the digits of x1 and x2:

s = x1,1x2,1x1,2x2,2 · · ·x1,jx2,j ;

and the same follows in three dimensions. In this way each node of the tree is uniquely defined by
an integer. For each node of the tree we can then store in a 64-bit integer, its abscissa s and its
corresponding grid-level j. In our implementation the first 48 bits are intended to contain the abscissa
and the following four, the grid-level, leaving the remaining bits available for tagging purposes during
the multiresolution operations, as shown in Figure 3.2. In the case of three-dimensional problems, the
latter choice allows one to encode nodes of trees with up to 16 grid-levels.

abscissa
(48 bits)

level
(4 bits)

free
(12 bits)

Figure 3.2. Representation of a node using a 64-bit integer.

This representation of nodes is similar to the so-called CSAMR data structure introduced in [41],
which then uses hash tables for efficient node lookup. In our implementation we also employ hash
tables, but over clustered nodes, in what follows denoted as blocks, which enables further control on
lookup granularity, and eases the operations for shared-memory parallelism. Taking into account that
r = 0.s belongs to [0, 1[, we partition [0, 1[into intervals. The data structure is thus given by blocks and
collections of blocks. A block is then a structure that contains data related to a given interval, namely,
the interval bounds: smin and smax; a vector containing all nodes such that s belongs to [smin, smax[;
and the size of the vector. A collection of blocks is given by pointers to the blocks, ordered according
to their smin values. In practice, based on preliminary tests, we operate with two collections of blocks,
one for the leaf nodes and another one for the non-leaf nodes.

Abscissas are not necessary ordered inside blocks, and binary search is used to locate the block
where the abscissa of a given node is possibly stored, followed by a sequential search within that
block. In our implementation the latter strategy has proven to be the most efficient, in particular
compared with one based on a fully ordered storage. A system of caches keeps track of the last blocks
accessed, effectively decreasing the number of binary searches. These caches are local to TBB tasks.

Additionally, five auxiliary operations are implemented to properly handle this data structure. Two
of them aim at maintaining the size of the blocks within a predefined range, by splitting into two
a relatively large block or merging two neighboring blocks of relatively small size. The complexity
of the search is hence of O(log2Nb), where Nb is the number of blocks in the collection. The next
two operations are used to enlarge or reduce the size of the vectors contained in the blocks. These
are performed by allocating a new vector of suitable size, copying the content of the original vector,
and finally, deleting the original vector. The fifth operation is implemented as a garbage collector, for
instance, to effectively delete previously tagged nodes. Notice that all these five operations are such

36

Task-based adaptive multiresolution

that can be performed in parallel, by using the parallel_for structure of the TBB library while
looping over blocks.

Finally, the refinement process entails adding the abscissas of the new nodes at the end of the vector
of the block that contains the abscissa of the original node. On the contrary, the coarsening process
is performed using a lazy approach; that is, all nodes that need to be deleted are first tagged, using
the free space in their 64-bit representation, while in a second stage the garbage collector effectively
remove them from their corresponding blocks. Further details are given in the following.

3.1.2. Parallel implementation of the key multiresolution operations

Grid adaptation in the multiresolution algorithm is essentially driven by the value of details (2.2),
which in turn is computed using the projection and prediction operators. In practice, details are
computed in two stages, as follows.

I. Projection. Data is propagated from the leaf nodes to the root of the tree, an operation easily
cast as a recursive computation. Based on preliminary tests, we came out with the following im-
plementation. Identifying a relatively low, fully populated level, jmin, two recursive computation
are performed. First, for every node P at grid-level jmin, data is recursively transferred from the
corresponding leaves down to P . These are independent computations, hence performed in par-
allel by using recursive parallel_for constructions. In a second step, a sequential computation
propagates recursively data from level jmin to the root of the tree. In this work, jmin was taken
equal to 3 and 5, respectively, for three- and two-dimensional applications. It is worth noticing
that often the sequential computational, although inexpensive, needs not be performed, as in
general no grid adaptation is present at those low grid-levels.

II. Prediction and detail computation.Details are computed for every node P according to (2.2),
after applying the prediction operator by means of interpolation, in the following schematic
manner.
for P ∈ {Nodes} do

Define the list L of Nodes in the prediction stencil associated with P (see, e.g., Figure 3.1);
Get values of Nodes in L;
Compute the predicted value and the detail;
Store the detail.

end for

All these computations are easily implemented within a parallel_for structure, looping over
blocks.

Once the details have been computed, the adapted grid is updated, also in parallel, in two stages by
means of the refinement and coarsening procedures, detailed in what follows. Notice that in all cases
a lazy strategy was again implemented.

I. Refinement. Based on the detail values, nodes that need to be refined are first tagged in parallel.
Then, all tagged cells are refined. The resulting tree will not necessary be a graded one. Therefore,
additional nodes must be tagged for refinement in order to guarantee a graded tree-structure.
The process of tagging and refining is thus repeated until a graded tree-structure is achieved.
The task-based refinement operation is implemented in the following way. Each available task
considers a given set of consecutive blocks, that is blocks of nodes within a given abscissa interval,
say [si, sf [. Whenever a node is created by refinement, it is directly stored in the corresponding
block that contains its abscissa, as previously explained. However, if necessary, two new blocks

37

S. Descombes, M. Duarte, et al.

are created by each task to temporarily store those new nodes whose abscissas are not contained
in [si, sf [(one for abscissas smaller than si, and another one for those larger than or equal to
sf). These operations can be safely done in parallel because no task will be writing into any
set or temporary block belonging to another task. Once all tagged nodes were refined, a new
task-based operation starts, again over consecutive sets of blocks, to move the previously created
nodes from the temporary blocks to the corresponding block actually containing its abscissa.
The latter process can be also safely performed in parallel because it only considers read-only
accesses.

II. Coarsening. At this point, leaf nodes that are no longer necessary can be eliminated. The latter
applies to leaf nodes whose parent-nodes were not tagged for refinement in the previous stage,
and that can be deleted without compromising the graded tree-structure.
The task-based coarsening operation is implemented in the following way. Each available task
considers a given set of consecutive blocks, and tags the leaf nodes that need to be deleted. Once
the tagging phase is over, parent-nodes of tagged nodes are moved to the collection corresponding
to leaf nodes, using the same task-based techniques described for the refinement. Finally, a
parallel call to the garbage collector effectively deletes the tagged nodes. These three operations
are repeated until no node deletion is needed. Again these computations are safely performed in
parallel using parallel_for over blocks.

3.2. Parallel implementation of the splitting solver

Before considering the parallel implementation itself, we have to define the way of storing the unknowns
of system (1.1) in memory. This set of unknowns needs to be solved in every leaf node of the tree,
and there are basically two options to store them in memory, following either an array of structures
or structure of arrays approach. The first option consists in storing all data related to a given node,
in particular the unknowns, in a common structure, thus achieving node-wise memory contiguity. On
the other hand, the second option consists in storing each unknown in its own array, thus achieving
variable-wise memory contiguity.

In general, within a splitting framework, the first layout turns out to be the most appropriate for
the reaction solver, as it computes local reaction rates using all the unknowns at the current node. The
diffusion problem, on the other hand, is solved for each unknown independently, hence a structure of
arrays would provide better data locality. Nevertheless, the reaction solver is highly compute-intensive
and therefore, largely insensitive to the memory layout, whereas the diffusion step displays very low
compute-intensity. Consequently, we have opted to store each unknown in its own contiguous array.
As we will later see, a large fraction of the runtime is spent in the reaction and diffusion steps; having
such a memory layout proves then to be very relevant, especially when the variables are not coupled
in the diffusion operator. The Morton order defines the order of the unknowns, which are stored in
vectors. Additionally, the sparse matrices used during the diffusion steps can be stored according to
a classical CSR storage [48]. However, an even more compact format was developed in this work for
diffusion problems with constant diffusion coefficients (see details in Appendix C).

As previously mentioned, the parallel implementation of the reaction solver is quite straightforward.
Once the access to the values of the unknowns u at a given node is defined, the reaction solver
operates over the N leaf nodes present in the adapted grid as follows. The reaction solver class is
such that computes the solution for a given number of nodes, defined as a blocked_range<size_t>
within the TBB framework. Then, a call to parallel_for(blocked_range<size_t>(0,N),Reaction)
parallelizes the computation, where Reaction corresponds to the solver class.

For the diffusion solver, two levels of parallelism is implemented. Other the aforementioned parallel
computation of the m unknowns in system (1.1), the matrix-vector products performed by ROCK4

38

Task-based adaptive multiresolution

are also parallelized, using two parallel_for constructions. Further details on this ROCK4 imple-
mentation is described in what follows

3.2.1. Implementation of ROCK4

ROCK4 is an explicit time integration method, which can be viewed as the composition of two
methods that are successively performed [1]. The first one is based on orthogonal polynomials and
uses a three-term recurrence formula where the number of function evaluations, hence stages of the
method, depends on the spectral radius of the Jacobian of the system. The second one is an explicit
four-stage Runge-Kutta scheme. For a system dy/dt = f(y) and a time step δt, the latter is given by

ki = f

yn + δt
i−1∑
j=1

ai,jkj

 , i = 1, 2, 3, 4,

yn+1 = yn + δt
4∑

i=1
biki,

(3.1)

where ai,j and bi correspond to the coefficients of the Runge-Kutta scheme.
Computing linear combinations of large vectors of double type, as in (3.1), is characterized by a

rather low arithmetic intensity14, less than 1/4, because of the multiple memory accesses associated
with reading and writing temporary arrays in memory. Nevertheless, achieving a high arithmetic
intensity is fundamental to obtain a high FLOP/s efficiency (see, e.g., [63]). In our implementation,
the arithmetic intensity is largely improved by exploiting the fact that an explicit Runge-Kutta scheme
applied to a linear problem dy/dt = Ay is given by yn+1 = π(δtA)yn, where π is a polynomial whose
coefficients are a function of the ai,j ’s and ki’s coefficients [35], which are known and precomputed. In
this way, we use the Horner’s method to compute the four-stage Runge-Kutta formula, thus reducing
considerably the aforementioned memory traffic. Notice that a factorization of π is not feasible because
this polynomial has complex roots. Finally, the spectral radius ρ(A) of A, used to determine the number
of stages of the method, is estimated using the Gershgorin circle theorem.

4. Code performance and scalability

We have developed a C++ code, named Z-code, which operates on multi-dimensional configurations;
the dimension d is a template parameter for most classes and methods. It runs successfully on modern
Linux systems, and has been tested with both gcc (version 4.8 and higher) and the Intel C++ (version
14.0.1 and higher) compilers. Figure 4.1 shows some results for the BZ problem.

Regarding the methods considered for the dedicated splitting solver, codes for the Radau5 and
ROCK4 methods are publicly available on the Internet [34]. These codes, albeit very efficiently coded
in Fortran 77, can be substantially improved. For Radau5 we have carefully rewritten its imple-
mentation in C++, thus removing a significant amount of branching. The latter yields an enhanced
performance between 20 to 30%. In the case of ROCK4, we have developed a completely new imple-
mentation, efficiently adapted to linear problems, that reduces memory accesses, as described before15.

Numerical performance can be measured from many points of view. In what follows we first present
some comparisons between computations on uniform Cartesian and multiresolution adapted meshes.
We then focus on the scalability attained for a given problem with increasing thread count (strong

14The arithmetic intensity is a measure of floating-point operations (FLOPs) performed by a given code (or code
section) relative to the amount of memory accesses (Bytes) that are required to support those operations.

15The sources of Z-code and related software can be provided by contacting T. Dumont, the corresponding author of
the present contribution. All codes are distributable under CeCILL-B licence (http://www.cecill.info/licences.en.
html).

39

http://www.cecill.info/licences.en.html
http://www.cecill.info/licences.en.html

S. Descombes, M. Duarte, et al.

Figure 4.1. BZ model, two-dimensional simulation over 9 grid-levels. Variable u1
(left) with the corresponding adapted grid defined at different grid-levels (right).

scaling). The following tests were performed on an Intel E5-2650 v3 platform (2 Haswell CPUs with
20 cores in total and 40 threads with hyperthreading) and on a Xeon Phi (MIC) 5110P (60 cores, 240
threads with simultaneous multithreading, and 8 GB of main memory) using the Intel icpc compiler.

4.1. Uniform Cartesian meshes versus multiresolution computations

Grid adaptation results in significant data compression. However, it is worth verifying whether the
latter effectively leads to performance enhancement in terms of runtime, given the additional compu-
tations required to dynamically adapt the grid and the more elaborate implementation.

Nevertheless, in order to guarantee a fair comparison, we have replaced the diffusion implementation
in the Z-code with one more suited to uniform meshes, for all runs performed on a uniform grid.
Specifically, the matrix-vector products were replaced with a more efficient procedure for five- and
seven-point stencils, using two- and three-dimensional arrays, respectively, and cache blocking. The
latter avoids the additional cost of manipulating more complicated data structures and reduces the
bandwidth of the computation. The following results were obtained on the Haswell machine, using 40
threads over 20 cores.

Recalling that J stands for the maximum grid-level allowed for mesh refinement, Tables 4.1 and 4.2
gather the wall-clock computing times in seconds, for various grid-levels J and the aforementioned three
problems in two and three dimensions. Additionally, we can define a compression ratio in percentage,
CR, as

CR =
(

1− N

NJ

)
× 100,

where N and NJ correspond to the number of nodes in the adapted grid and at the finest level,
respectively. In particular NJ is given by 2dJ and is equal to the number of nodes in the corresponding
uniform Cartesian mesh. During all these computations, the compression ratio remained between 80%
and 83%.

These results clearly highlight the advantage of using the multiresolution algorithm to solve stiff
problems disclosing localized reaction fronts with an appropriate grid resolution. As a matter of fact,
looking at the previous results we see that computations on a uniform grid are more efficient only for the
two-dimensional, non-stiff NAGUMO problem on a rather coarse grid. In general the additional cost
related to mesh adaptation and more complex data structures is counterbalanced by the computing
savings achieved with a compressed representation. The latter is even more relevant for problems with
very stiff reaction terms, confirming the findings and forecasts previously described in Appendix A.

40

Task-based adaptive multiresolution

J

8 9 10

NAGUMO MR 2.51 × 10−3 (1.7) 3.02× 10−3 4.97× 10−3

CM 1.49× 10−3 8.27 × 10−3 (2.7) 2.09 × 10−2 (4.2)

BZ MR 1.14× 10−2 2.51× 10−2 4.06× 10−2

CM 1.31 × 10−2 (1.2) 4.06 × 10−2 (1.6) 1.78 × 10−1 (4.4)

STROKE MR 2.4× 10−2 4.03× 10−2 1.03× 10−1

CM 3.2 × 10−1 (13.3) 1.21 (30.0) 4.80 (46.6)

Table 4.1. Wall-clock times in seconds for two-dimensional multiresolution (MR) and
uniform Cartesian mesh (CM) computations. Largest values are indicated in bold with
the corresponding ratio in parenthesis.

J

8 9

NAGUMO MR 0.13 0.31
CM 0.54 (2.5) 2.47 (4.5)

BZ MR 0.97 5.75
CM 3.05 (3.1) 23.60 (4.1)

STROKE MR 1.53 10.81
CM 76.68 (50.0) 610.50 (56.5)

Table 4.2. Wall-clock times in seconds for three-dimensional multiresolution (MR)
and uniform Cartesian mesh (CM) computations. Largest values are indicated in bold
with the corresponding ratio in parenthesis.

4.2. Analysis of scalability

We investigate the strong scaling behavior of Z-code by timing one single simulation time step, and
breaking down the total step time (S) into the mesh adaptation (A), reaction solver (R), and diffusion
solver (D). Notice that the adapted grid is updated at every time step, the detail computation is hence
included in the mesh adaptation process, and the diffusion solver must also construct the matrices
used in the linear systems.

The three reference problems probe different regimes of compute-intensity. The NAGUMO problem
is characterized by a rather inexpensive, non-stiff reaction term, whereas the computing effort for the
BZ problem is roughly balanced between the reaction solver and the other two procedures; that for
the STROKE problem, on the other hand, is completely dominated by a very expensive, stiff reaction
term. Table 4.3 shows the percentages of wall-clock time spent on each of the three major code phases,
for three-dimensional simulations performed over 10 grid-levels (J = 10) and 40 threads on the Haswell
platform.

We now discuss scalability in terms of parallel efficiency. Let Tk be the wall-clock computing time
in seconds when running on k threads. We define the parallel efficiency on k threads by

sk = T1
nkTk

,

41

S. Descombes, M. Duarte, et al.

NAGUMO BZ STROKE
Mesh Adaptation 68.00 19.23 7.20
Reaction Solver 0.92 56.23 88.89
Diffusion Solver 31.08 24.54 3.91

Table 4.3. Percentages of wall-clock time for three-dimensional simulations with max-
imum grid-level J = 10 and 40 threads on the Haswell platform. Dominant contribu-
tions are indicated in bold.

where nk corresponds to the number of cores used when computing over k threads. In particular
because of the simultaneous multithreading, that is, running more than one thread per core, nk is
taken either as

nk = min(k, 20),

for the Haswell platform, or
nk = min(k, 60),

for the Xeon Phi. In this way we compute the efficiency based on the number of CPU cores, not the
number of available hardware threads. The motivation for this choice is that cores, unlike hardware
threads, constitute independent compute units. The scalability plots therefore present scaling results
as a function of independent hardware resources, i.e. cores, participating in the computation. An
important consequence is that, when using hyperthreading, efficiencies may well exceed one. This
simply means that running more than one thread per core may result in a more efficient execution
at the core level than what can be achieved with a single thread. We will discuss hyperthreading in
more detail in the following. Figure 4.2 illustrates the parallel efficiency, sk, for all three problems, on
Haswell and Xeon Phi, in three-dimensional simulations.

Overall, the code achieves good shared-memory scalability on compute-intensive problems (BZ and
STROKE), with efficiencies over 80% over 2 Haswell sockets. The scaling of the reaction step is very
good mainly because of its embarrassingly parallel nature and the dynamic load balancing provided
by TBB; there is actually no shortage of parallelism in this part of the time step. In addition, since
the reaction step is strongly compute bound, cores do not compete for shared resources, allowing for
linear scaling. Only for the NAGUMO problem, whose reaction computation is quite inexpensive, does
the reaction efficiency drop below 90%.

The diffusion and adaptation steps achieve lower parallel efficiencies than the reaction one. A first
reason for this is that both phases are more memory-intensive than the reaction; therefore, more
pressure is put on the memory controllers, which are shared between cores of a given socket. This results
in less-than-ideal scaling, as memory accesses become a bottleneck. Note that for the diffusion operator,
we have used the compact structure described in Appendix C, which effectively improved performance
over a classical CSR structure for the problems studied here. Other the considerations on memory access,
parallelization of the diffusion solver and multiresolution operations is intrinsically more complex than
that of the reaction solver, yielding slightly less exposed parallelism and a degradation of parallel
performance due to Amdahl’s law. This highlights the importance of exposing as much parallelism as
possible, in particular in complicated algorithms such as mesh adaptation via multiresolution.

We now discuss the impact of simultaneous multithreading (hyperthreading) on the performance of
Z-Code on the Haswell Xeon and Xeon Phi platforms. Hyperthreading allows the cores’ execution units
to be used by a second application thread whenever the core stalls executing an instruction stream
from the first thread. Typically, it is beneficial for applications that have good thread scalability, and

42

Task-based adaptive multiresolution

1 2 4 8 10 20 40

Number k of TBB worker threads

0.5

0.6

0.7

0.8

0.9

1.0

1.1
P

ar
al

le
l

effi
ci

en
cy

s k

1 socket 2 sockets 2 sockets with hyperthreading

NAGUMO, level J = 10, Haswell

A

D

R

S

1 30 60 120 180 240

Number k of TBB worker threads

0.5

1.0

1.5

2.0

2.5

3.0

P
ar

al
le

l
effi

ci
en

cy
s k

NAGUMO, level J = 10, Xeon Phi

A

D

R

S

1 2 4 8 10 20 40

Number k of TBB worker threads

0.5

0.6

0.7

0.8

0.9

1.0

1.1

P
ar

al
le

l
effi

ci
en

cy
s k

1 socket 2 sockets 2 sockets with hyperthreading

BZ, level J = 9, Haswell

A

D

R

S

1 30 60 120 180 240

Number k of TBB worker threads

0.5

1.0

1.5

2.0

2.5

3.0

P
ar

al
le

l
effi

ci
en

cy
s k

BZ, level J = 9, Xeon Phi

A

D

R

S

1 2 4 8 10 20 40

Number k of TBB worker threads

0.5

0.6

0.7

0.8

0.9

1.0

1.1

P
ar

al
le

l
effi

ci
en

cy
s k

1 socket 2 sockets 2 sockets with hyperthreading

STROKE, level J = 9, Haswell

A

D

R

S

1 30 60 120 180 240

Number k of TBB worker threads

0.5

1.0

1.5

2.0

2.5

3.0

P
ar

al
le

l
effi

ci
en

cy
s k

STROKE, level J = 9, Xeon Phi

A

D

R

S

Figure 4.2. Parallel efficiency sk in terms of number k of TBB worker threads for
the NAGUMO (top), BZ (middle), and STROKE (bottom) problems on Haswell (left)
and Xeon Phi (right) architectures, for mesh adaptation (A), diffusion (D), reaction
(R), and total time step (S). The blue-shaded areas highlight thread counts with more
than one TBB worker thread per CPU core (2 threads/core on Xeon Haswell and 2–4
threads/core on Xeon Phi).

where the execution is frequently stalled by latency-related events such as cache misses, branches, or
bad pipelining.

43

S. Descombes, M. Duarte, et al.

For Z-Code on Haswell, moving from 1 to 2 threads per core (20 to 40 TBB worker threads) provides
significant performance improvements, especially in the reaction solver where hyperthreading gains up
to 1.25 speedup, with a geomean across problems of 1.20. The reaction solver features a very complex
control flow in the Radau5 algorithm, together with BLAS function calls and operations on small
matrices. All these contribute to core stalls due to bad instruction pipelining and complex branching.
These latencies, together with the good thread scalability of the reaction solver, explain the significant
performance gains attained by hyperthreading.

By contrast, still on Haswell, the gains are more modest for the multiresolution algorithm (geomean
1.13) and even more so for the diffusion solver (geomean 1.05). The diffusion step features simpler con-
trol flow and, as previously discussed, its performance is dominated by memory controller bottlenecks,
which hyperthreading cannot alleviate because they lie outside of the CPU core.

In regard to the Xeon Phi, on our Knights Corner coprocessor, simultaneous multithreading is
crucial to enhancing performance. Specifically, it allows hiding some of the execution latencies that
cannot be overlapped by the in-order architecture. In addition, because the Xeon Phi features two
pipelines per core, it cannot reach its peak performance at less than 2 threads per core. Just like on
the Haswell architecture, we find the largest performance gains on the reaction solver, with a geomean
speedup of 1.80 across problems between 60 and 240 threads (1 and 4 threads/core). On Xeon Phi,
however, hyperthreading is also beneficial to multiresolution mesh adaptation (geomean 1.32) and
diffusion (geomean 1.33), highlighting the importance of also overlapping the latencies of memory
accesses.

5. Concluding remarks and prospects

The main purpose of the present work was to introduce shared-memory parallelism in a thoughtful
way, to a tailored numerical strategy previously developed to tackle the simulation of stiff reaction-
diffusion models disclosing propagating fronts [27]. In order to achieve this, a new data structure was
conceived along with parallel-friendly implementations of the key algorithms into play, including the
ROCK4 and Radau5 solvers. Shared-memory parallelism was introduced using the task-based TBB
runtime library, which turned out to be particularly well suited to our purposes.

The numerical performance of the resulting implementation was assessed for three reaction-diffusion
models, reaching a very satisfactory level of efficiency on shared-memory architectures such as the Intel
E5-2650 and the Xeon Phi (MIC) 5110P. For models involving a certain level of modeling complexity
such as BZ or STROKE, high scalability is achieved mainly because of the very efficient performance of
the reaction solver within a splitting context. In addition to that, the present parallel implementation
of the diffusion solver and the multiresolution algorithm shows also to perform reasonably well, given
the limitations commonly encountered in standard computing architectures, as previously discussed.
Finally, simultaneous multithreading is shown to improve considerably the computational performance,
in particular on many-core architectures.

The proposed strategy is thus suitable for the simulation of multi-dimensional time-space multi-scale
problems, which would be out of reach using classical approaches on standard computing resources.
In particular these reaction-diffusion problems are representative building blocks of more complex and
realistic applications, encountered, for instance, in biomedical engineering [28], combustion [25], or
plasma physics [24]. In this context ongoing work encompasses the extension to arbitrary domains,
taking into account, for example, that the STROKE model applies to the human brain [28]; and
to more general diffusion problems, as used, for example, in multi-component transport modeling
for combustion problems [15]. A key extension of the present work deals with the implementation of
hybrid parallelism using both shared- and distributed-memory formalisms. In this regard we believe the
implementations and findings of this work are relevant to distributed-memory codes as well. Achieving

44

Task-based adaptive multiresolution

strong scaling is particularly challenging for multiresolution and AMR codes, because of load imbalance
and fine-grain communications. For some applications, shared-memory parallelism with dynamic load
balancing may allow distributing work evenly between the CPU cores within an MPI rank, thereby
helping reduce total imbalance. We thus expect shared-memory parallelism to gain in relevance for
complex and imbalanced MPI applications. These are topics of our current research.

Acknowledgments

This development was funded by grants from the ANR project (French National Research Agency -
ANR Blancs) Séchelles (2009-2013) and from the French AMIES Peps program. Part of this work was
conducted by the Exascale Computing Research laboratory, thanks to the support of CEA, GENCI,
Intel, UVSQ. Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of CEA, GENCI, Intel or UVSQ.

Appendix A. Numerical experimentation on uniform Cartesian meshes

Let us consider the numerical performance of the dedicated Strang scheme introduced in §2.1, to
solve (1.1) on a uniform Cartesian grid. Table A.1 shows the percentages of total wall-clock time spent
in the diffusion step of the splitting strategy.

Grid size NAGUMO BZ STROKE
5123 92.5 34.5 1.6
10242 88.5 20.1 1.0

Table A.1. Percentages of wall-clock time employed to solve the diffusion problem.

Notice that for the models of higher complexity, that is, BZ and STROKE, most of the simulation
time is spent in the reaction step. Consequently, as a measure of the computational complexity, we
use the number of evaluations of the right-hand side performed by the Radau5 program on a given
grid-node during the R∆t/2-step. This complexity measure may considerably vary throughout the
computational domain, given that the splitting time step ∆t/2 can be further split according to the
time-stepping procedure and that an iterative, simplified Newton method is implemented to solve the
nonlinear systems. In particular the minimum complexity corresponds to grid-nodes where only one
reaction sub-step is required during a given ∆t/2, as well as one iteration of the Newton method.

Considering a uniform mesh of 10242 grid-nodes, Figures A.1 and A.2 show the computational
complexity measured for a given ∆t/2 for the BZ and STROKE models, respectively. For the BZ
problem the Jacobian is computed analytically involving three right-hand side evaluations. In this case
87% of the CPU time is spent over regions where the complexity is less than 17. These are the regions
where the solution is close to the reaction equilibrium and therefore, the complexity remains also close
to its minimum value. Similarly, about 90% of the reaction CPU time is spent in regions where the
complexity is less than 60 for the STROKE model. Here the Jacobian is computed numerically.

Appendix B. Choice of TBB for multiresolution applications

In this work we have initially focused our attention on OpenMP API and TBB, both well-established
options for shared-memory parallelism.

45

S. Descombes, M. Duarte, et al.

 0

 10

 20

 30

 40

 50

 60

 10 20 30 40 50 60

%

Complexity

Figure A.1. BZ problem. Histogram of computational complexity (left). In the right
picture, white zones correspond to points where the complexity is greater than 17.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600

%

Complexity

Figure A.2. STROKE problem. Histogram of computational complexity (left). In the
right picture, white zones correspond to points where the complexity is greater than
80.

The OpenMP standard is a widely supported and popular choice, especially for high-performance
computing (HPC) codes. It relies on compiler directives to introduce parallel regions and work-sharing
constructs and tasks, which are executed in parallel by a runtime library component. OpenMP has
been supporting tasking since version 3, and has recently introduced more sophisticated task constructs
with version 4, with the taskgroup and depend constructs.

A key design characteristic of the OpenMP API is the reliance on a thread-based approach. That
is, parallelism is defined explicitly by parallel regions which enforce parallel execution, and work and
tasks are scheduled across threads participating in their containing parallel region. The set of threads
taking part in a region is determined when entering the region, and fixed for its entire duration.
Unfortunately, this severely limits opportunities for exploiting nested parallelism with OpenMP, even
though the standard supports nested parallel regions. Actually, due to the fact that threads are assigned
to a region for its whole duration, there can be no dynamic load balancing or work-sharing across
parallel regions. In addition, creating an OpenMP region requires knowing about the outside parallel
execution context. That is, since OpenMP parallelism is mandatory, nesting parallel regions may
lead to exponential creation of OpenMP worker threads for some runtime implementations, resulting
in oversubscription. Finally, since all threads of a parallel region are required to enter an OpenMP
work-sharing construct, one cannot arbitrarily nest OpenMP tasks and work-sharing constructs. In
particular one cannot introduce parallelism by nesting omp for constructs within task constructs.

46

Task-based adaptive multiresolution

Because of the aforementioned points, OpenMP parallelism is not composable, that is, it is not pos-
sible to expose parallelism in an opportunistic way, regardless of the outer context from which a piece
of code may be called. For the development of a C++ multiresolution code, we found composability to
be a desirable property, as it allows introducing parallelism at any level in the code, without knowledge
or constraint on the outside calling context. This is particularly important for codes with complex call
graphs and multiple call paths, as often found in C++ when using classes for code reuse.

Intel TBB, on the other hand, relies on a different approach to parallel programming. It is an
open-source C++ template library for task parallelism, and requires no special support in the com-
piler. In addition to task-based parallel constructs, TBB also provides concurrent data structures and
memory allocators. The library implements a composable task-based runtime, meaning that any C++
function can expose parallelism with (potentially arbitrarily nested) constructs such as parallel_for
or parallel_reduce, irrespective of the calling context. Dynamic load balancing is achieved through
a work-stealing runtime. Since both tasks and constructs such as parallel_for rely on the same
task-based scheduler, TBB parallel idioms may be combined and nested arbitrarily, as long as the
programmer avoids races through appropriate synchronizations. In particular, TBB’s composability
allows us to achieve good scalability with the adaptive multiresolution algorithm (see §3.1.2) by recur-
sively nesting parallel_for constructs to expose parallelism in a way that follows the tree structure.
In addition to a composable task runtime, TBB provides a parallel algorithm library with support for
parallel reduction and sorting.

We chose TBB over an OpenMP implementation mainly because the former provides an efficient
task runtime with dynamic load balancing, composability of parallel codes, and a set of parallel data
structures and algorithms. Equivalent functionality could have been achieved using OpenMP tasks,
but more effort would have been necessary to circumvent some of the aforementioned shortcomings.

Appendix C. A compact data structure for diffusion sparse matrices

When the diffusion coefficients, εi(x) in (1.1), are constant, it is possible to further reduce the amount
of memory necessary to store the matrix entries associated with the diffusion problem, leading to lower
memory bandwidth requirements for the program. Notice that for a given node, the matrix entries
defined by the spatial discretization of the Laplace operator can have three possible values, depending
on whether the neighboring nodes belong to the same, upper or lower grid-level. We therefore use the
data structure shown in Figure C.1. It consists of two arrays; the array A contains pointers to the
beginning of lines in the second array K, where each line corresponds to one node in the adapted
grid. The array K contains line descriptors, one for each node in the adapted grid, defined as follows.
The first integer of a line descriptor is a 32-bit integer, containing the grid-level j of the current node,
followed by the number of neighboring nodes at grid-level j, j+1, and j−1, as shown in Figure C.1. The
following integers then indicate the corresponding neighboring nodes. As an illustration, Figure C.2
shows a typical line descriptor.

A

i i+1

K Line i j n1n2n3

n1 ints n2 ints n3 ints

Figure C.1. Compact data structure for diffusion matrices. The right part shows the
structure of a line descriptor.

47

S. Descombes, M. Duarte, et al.

n

a

b

e

d c

2 2 1 e c d bj a

Figure C.2. Illustration of a line descriptor for a given node n at grid-level j.

Haswell Xeon Phi
d = 2, J = 10 d = 3, J = 10 d = 2, J = 10 d = 3, J = 9

Ratio 0.98 0.67 0.97 0.86

Table C.1. Ratio between wall-clock times using the compact and CSR storages. BZ
model simulated in dimension d and with maximum grid-level J

Table C.1 compares the wall-clock times obtained when computing one diffusion step with the
classical CSR data structure and the aforementioned compact storage, for the BZ model. Simulations on
the Haswell platform were performed using 20 cores and 40 threads, whereas for Xeon Phi, 60 cores and
240 threads were considered. Computational gains are rather weak for two-dimensional simulations,
for which the matrices remain relatively small. However, better performances are obtained with the
compact structure when dealing with three-dimensional matrices.

References

[1] A. Abdulle. Fourth order Chebyshev methods with recurrence relation. SIAM J. Sci. Comput., 23(6):2041–
2054 (electronic), 2002.

[2] S.B. Baden, N.P. Chrisochoides, D.B. Gannon, and M.L. Norman, editors. Structured adaptive mesh re-
finement (SAMR) grid methods, volume 117 of The IMA Volumes in Mathematics and its Applications.
Springer-Verlag, New York, 2000. Papers from the IMA Workshop held at the University of Minnesota,
Minneapolis, MN, March 12–13, 1997.

[3] D.S. Balsara and C.D. Norton. Highly parallel structured adaptive mesh refinement using parallel language-
based approaches. Parallel Comput., 27(1–2):37–70, 2001.

[4] J. Bell, M. Berger, J. Saltzman, and M. Welcome. Three-dimensional adaptive mesh refinement for hyper-
bolic conservation laws. SIAM J. Sci. Comput., 15(1):127–138, 1994.

[5] R.D. Blumofe, C.F. Joerg, B.C. Kuszmaul, C.E. Leiserson, K.H. Randall, and Y. Zhou. Cilk: An efficient
multithreaded runtime system. J. Parallel Distr. Com., 37(1):55–69, 1996.

[6] R.D. Blumofe and C.E. Leiserson. Scheduling multithreaded computations by work stealing. J. ACM,
46(5):720–748, 1999.

[7] K. Brix, S. Melian, S. Müller, and M. Bachmann. Adaptive multiresolution methods: Practical issues on
data structures, implementation and parallelization. In Summer School on Multiresolution and Adaptive
Mesh Refinement Methods, volume 34 of ESAIM Proc., pages 151–183. EDP Sci., Les Ulis, 2011.

[8] K. Brix, S.S. Melian, S. Müller, and G. Schieffer. Parallelisation of multiscale-based grid adaptation using
space-filling curves. In ESAIM: Proc., volume 29, pages 108–129. EDP Sciences, 2009.

48

Task-based adaptive multiresolution

[9] C. Burstedde, L. Wilcox, and O. Ghattas. p4est: Scalable algorithms for parallel adaptive mesh refinement
on forests of octrees. SIAM J. Sci. Comput., 33(3):1103–1133, 2011.

[10] A. Cohen, S. M. Kaber, S. Müller, and M. Postel. Fully adaptive multiresolution finite volume schemes for
conservation laws. Math. Comput., 72:183–225, 2003.

[11] W. Crutchfield and M.L. Welcome. Object-oriented implementation of adaptive mesh refinement algo-
rithms. J. Sci. Program., pages 145–156, 1993.

[12] W. Dahmen, T. Gotzen, S.S. Melian-Flamand, and S. Müller. Numerical Simulation of Cooling Gas Injec-
tion using Adaptive Multiscale Techniques. Inst. für Geometrie und Praktische Mathematik, 2011.

[13] R. Deiterding. A generic framework for block-structured adaptive mesh refinement in object-oriented C++.
Technical report, available at http://amroc.sourceforge.net, 2003.

[14] R. Deiterding. Block-structured adaptive mesh refinement - Theory, implementation and application. In
Summer School on Multiresolution and Adaptive Mesh Refinement Methods, volume 34 of ESAIM Proc.,
pages 97–150. EDP Sci., Les Ulis, 2011.

[15] S. Descombes, M. Duarte, T. Dumont, F. Laurent, V. Louvet, and M. Massot. Analysis of operator splitting
in the nonasymptotic regime for nonlinear reaction-diffusion equations. Application to the dynamics of
premixed flames. SIAM J. Numer. Anal., 52(3):1311–1334, 2014.

[16] S. Descombes and T. Dumont. Numerical simulation of a stroke: Computational problems and methodology.
Prog. Biophys. Mol. Bio., 97(1):40–53, 2008.

[17] S. Descombes, T. Dumont, V. Louvet, and M. Massot. On the local and global errors of splitting approxi-
mations of reaction-diffusion equations with high spatial gradients. Int. J. Comput. Math., 84(6):749–765,
2007.

[18] S. Descombes, T. Dumont, and M. Massot. Operator splitting for stiff nonlinear reaction-diffusion systems:
Order reduction and application to spiral waves. In Patterns and waves (Saint Petersburg, 2002), pages
386–482. AkademPrint, St. Petersburg, 2003.

[19] S. Descombes and M. Massot. Operator splitting for nonlinear reaction-diffusion systems with an entropic
structure: Singular perturbation and order reduction. Numer. Math., 97(4):667–698, 2004.

[20] J. Dreher and R. Grauer. Racoon: A parallel mesh-adaptive framework for hyperbolic conservation laws.
Parallel Comput., 31(8–9):913–932, August 2005.

[21] M.-A. Dronne, J.-P. Boissel, and E. Grenier. A mathematical model of ion movements in grey matter during
a stroke. J. Theor. Biol., 240(4):599–615, 2006.

[22] F. Drui, A. Fikl, P. Kestener, S. Kokh, A. Larat, V. Le Chenadec, and M. Massot. Experimenting with the
p4est library for AMR simulations of two-phase flows. ESAIM: Proc. Surv., 53:232–247, 2016.

[23] M. Duarte. Adaptive numerical methods in time and space for the simulation of multi-scale reaction fronts.
PhD thesis, Ecole Centrale Paris, 2011.

[24] M. Duarte, Z. Bonaventura, M. Massot, A. Bourdon, S. Descombes, and T. Dumont. A new numerical
strategy with space-time adaptivity and error control for multi-scale streamer discharge simulations. J.
Comput. Phys., 231(3):1002–1019, 2012.

[25] M. Duarte, S. Descombes, C. Tenaud, S. Candel, and M. Massot. Time-space adaptive numerical methods
for the simulation of combustion fronts. Combust. Flame, 160(6):1083–1101, 2013.

[26] M. Duarte, M. Massot, S. Descombes, C. Tenaud, T. Dumont, V. Louvet, and F. Laurent. New resolution
strategy for multi-scale reaction waves using time operator splitting and space adaptive multiresolution:
Application to human ischemic stroke. In Summer School on Multiresolution and Adaptive Mesh Refinement
Methods, volume 34 of ESAIM Proc., pages 277–290. EDP Sci., Les Ulis, 2011.

[27] M. Duarte, M. Massot, S. Descombes, C. Tenaud, T. Dumont, V. Louvet, and F. Laurent. New resolution
strategy for multiscale reaction waves using time operator splitting, space adaptive multiresolution, and
dedicated high order implicit/explicit time integrators. SIAM J. Sci. Comput., 34(1):A76–A104, 2012.

49

S. Descombes, M. Duarte, et al.

[28] T. Dumont, M. Duarte, S. Descombes, M.-A. Dronne, M. Massot, and V. Louvet. Simulation of human
ischemic stroke in realistic 3D geometry. Commun. Nonlinear Sci. Numer. Simul., 18(6):1539–1557, 2013.

[29] W. Eckhardt and T. Weinzierl. A Blocking Strategy on Multicore Architectures for Dynamically Adaptive
PDE Solvers. In D. Hutchison et al., editors, Parallel Processing and Applied Mathematics, volume 6067,
pages 567–575. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[30] M. Essadki, S. de Chaisemartin, M. Massot, F. Laurent, and A. Larat. Adaptive mesh refinement and
high order geometrical moment method for the simulation of polydisperse evaporating sprays. Oil Gas Sci.
Technol., 71:1–25, 2016.

[31] C.J. Forster. Parallel wavelet-adaptive direct numerical simulation of multiphase flows with phase change.
PhD thesis, Georgia Institute of Technology, 2016.

[32] T. Gautier, J.V.F. Lima, N. Maillard, and B. Raffin. XKaapi: A Runtime System for Data-Flow Task
Programming on Heterogeneous Architectures. In Parallel Distributed Processing (IPDPS), 2013 IEEE
27th International Symposium on, pages 1299–1308, May 2013.

[33] P. Gray and S.K. Scott. Chemical Oscillations and Instabilities: Non-linear Chemical Kinetics, volume 21
of International Series of Monographs on Chemistry. Oxford University Press, 1994.

[34] E. Hairer. Fortran and Matlab Codes. http://www.unige.ch/~hairer/software.html.
[35] E. Hairer, S.P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations. I, volume 8 of Springer

Series in Computational Mathematics. Springer-Verlag, Berlin, second edition, 1993. Nonstiff problems.
[36] E. Hairer and G. Wanner. Solving Ordinary Differential Equations. II, volume 14 of Springer Series in

Computational Mathematics. Springer-Verlag, Berlin, second edition, 1996. Stiff and differential-algebraic
problems.

[37] A. Harten. Multiresolution algorithms for the numerical solution of hyperbolic conservation laws. Comm.
Pure Applied Math., 48:1305–1342, 1995.

[38] B. Hejazialhosseini, D. Rossinelli, M. Bergdorf, and P. Koumoutsakos. High order finite volume methods on
wavelet-adapted grids with local time-stepping on multicore architectures for the simulation of shock-bubble
interactions. J. Comput. Phys., 229(22):8364–8383, 2010.

[39] Intel Corporation. Intel Threading Building Blocks. https://www.threadingbuildingblocks.org/.
[40] W. Jahnke, W.E. Skaggs, and A.T. Winfree. Chemical vortex dynamics in the Belousov-Zhabotinskii

reaction and in the two-variable Oregonator model. J. Phys. Chem., 93(2):740–749, 1989.
[41] H. Ji, F.-S. Lien, and E. Yee. A new adaptive mesh refinement data structure with an application to

detonation. J. Comput. Phys., 229(23):8981–8993, 2010.
[42] S. Jones and A. Lichtl. GPUs to Mars, full scale simulation of SpaceX’s Mars Rocket Engine. In Proceedings

of the GPU Technology Conference, GPU Tech Conferences on demand, Silicon Valley, 2015. http://
on-demand.gputechconf.com/gtc/2015/video/S5398.html.

[43] R. Keppens, Z. Meliani, A. J. van Marle, P. Delmont, A. Vlasis, and B. van der Holst. Parallel, grid-adaptive
approaches for relativistic hydro and magnetohydrodynamics. J. Comput. Phys., 231(3):718–744, 2012.

[44] P. MacNeice, K.M. Olson, C. Mobarry, R. de Fainchtein, and C. Packer. PARAMESH: A parallel adaptive
mesh refinement community toolkit. Comput. Phys. Commun., 126(3):330–354, 2000.

[45] G.M. Morton. A computer oriented geodetic data base; and a new technique in file sequencing. Technical
report, IBM, Ottawa, Canada, 1966.

[46] S. Müller. Adaptive Multiscale Schemes for Conservation Laws, volume 27. Springer-Verlag, Heidelberg,
2003.

[47] A. Nejadmalayeri, A. Vezolainen, E. Brown-Dymkoski, and O.V. Vasilyev. Parallel adaptive wavelet collo-
cation method for PDEs. J. Comput. Phys., 298:237–253, 2015.

[48] Netlib. Compressed row storage (crs). http://netlib.org/linalg/html_templates/node91.html.

50

http://www.unige.ch/~hairer/software.html
https://www.threadingbuildingblocks.org/
http://on-demand.gputechconf.com/gtc/2015/video/S5398.html
http://on-demand.gputechconf.com/gtc/2015/video/S5398.html
http://netlib.org/linalg/html_templates/node91.html

Task-based adaptive multiresolution

[49] R.M. Noyes, R. Field, and E. Koros. Oscillations in chemical systems. I. Detailed mechanism in a system
showing temporal oscillations. J. Ame. Chem. Soc., 94(4):1394–1395, 1972.

[50] L. Oliker and R. Biswas. PLUM: Parallel load balancing for adaptive unstructured meshes. J. Parallel
Distr. Com., 52(2):150–177, 1998.

[51] OpenMP Architecture Review Board. OpenMP Application Program Interface. Version 3.1., July 2011.
Available at: http://www.openmp.org.

[52] J. Reinders. Intel Threading Building Blocks. O’Reilly & Associates, Inc., Sebastopol, CA, USA, first edition,
2007.

[53] C.A. Rendleman, V.E. Beckner, M. Lijewski, W. Crutchfield, and J.B. Bell. Parallelization of structured,
hierarchical adaptive mesh refinement algorithms. Comput. Vis. Sci., 3(3):147–157, 2000.

[54] D. Rossinelli, B. Hejazialhosseini, M. Bergdorf, and P. Koumoutsakos. Wavelet-adaptive solvers on multi-
core architectures for the simulation of complex systems. Concurr. Comput.: Pract. Exper., 23(2):172–186,
2011.

[55] O. Roussel, K. Schneider, A. Tsigulin, and H. Bockhorn. A conservative fully adaptive multiresolution
algorithm for parabolic PDEs. J. Comput. Phys., 188(2):493–523, 2003.

[56] H. Sagan. Space-filling curves. Universitext. Springer-Verlag, New York, 1994.
[57] K. Schneider and O.V. Vasilyev. Wavelet methods in computational fluid dynamics. Annu. Rev. Fluid

Mech., 42(1):473–503, 2010.
[58] M. Schreiber, T. Weinzierl, and H.-J. Bungartz. Cluster Optimization and Parallelization of Simulations

with Dynamically Adaptive Grids. In D. Hutchison et al., editors, Euro-Par 2013 Parallel Processing,
volume 8097, pages 484–496. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[59] G. Strang. On the construction and comparison of difference schemes. SIAM J. Numer. Anal., 5:506–517,
1968.

[60] R. Teyssier. Cosmological hydrodynamics with adaptive mesh refinement: A new high resolution code called
RAMSES. Astron. Astrophys., 385(1):337–364, 2002.

[61] A.I. Volpert, V.A. Volpert, and V.A. Volpert. Traveling Wave Solutions of Parabolic Systems. American
Mathematical Society, Providence, RI, 1994. Translated from the Russian manuscript by James F. Heyda.

[62] T. Weinzierl and M. Mehl. Peano-A traversal and storage scheme for octree-like adaptive Cartesian multi-
scale grids. SIAM J. Sci. Comput., 33(5):2732–2760, 2011.

[63] S. Williams, A. Waterman, and D. Patterson. Roofline: An insightful visual performance model for multicore
architectures. Commun. ACM, 52(4):65–76, April 2009.

[64] A.M. Wissink, R.D. Hornung, S.R. Kohn, S.S. Smith, and N. Elliott. Large Scale Parallel Structured AMR
Calculations Using the SAMRAI Framework. In Supercomputing, ACM/IEEE 2001 Conference, pages 22–
22, November 2001.

[65] Ya.B. Zel′dovich, G.I. Barenblatt, V.B. Librovich, and G.M. Makhviladze. The Mathematical Theory of
Combustion and Explosions. Consultants Bureau [Plenum], New York, 1985. Translated from the Russian
by Donald H. McNeill.

51

http://www.openmp.org

	1. Introduction
	2. Numerical strategy
	2.1. Dedicated splitting solver
	2.2. Adaptive multiresolution method

	3. Task-based parallelism for MRA-splitting applications
	3.1. Parallel implementation of the multiresolution algorithm
	3.1.1. Data structure and implementation of trees
	3.1.2. Parallel implementation of the key multiresolution operations

	3.2. Parallel implementation of the splitting solver
	3.2.1. Implementation of ROCK4

	4. Code performance and scalability
	4.1. Uniform Cartesian meshes versus multiresolution computations
	4.2. Analysis of scalability

	5. Concluding remarks and prospects
	Acknowledgments
	Appendix A. Numerical experimentation on uniform Cartesian meshes
	Appendix B. Choice of TBB for multiresolution applications
	Appendix C. A compact data structure for diffusion sparse matrices
	References

