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Abstract. This article is the first of a series where we develop and analyze structure-preserving finite
element discretizations for the time-dependent 2D Maxwell system with long-time stability properties, and
propose a charge-conserving deposition scheme to extend the stability properties in the case where the current
source is provided by a particle method. The schemes proposed here derive from a previous study where a
generalized commuting diagram was identified as an abstract compatibility criterion in the design of stable
schemes for the Maxwell system alone, and applied to build a series of conforming and non-conforming
schemes in the 3D case. Here the theory is extended to account for approximate sources, and specific charge-
conserving schemes are provided for the 2D case. In this article we study two schemes which include a strong
discretization of the Ampere law. The first one is based on a standard conforming mixed finite element
discretization and the long-time stability is ensured by a Raviart-Thomas finite element interpolation for
the current source, thanks to its commuting diagram properties. The second one is a new non-conforming
variant where the numerical fields are sought in fully discontinuous spaces. Numerical experiments involving
Maxwell and Maxwell-Vlasov problems are then provided to validate the stability of the proposed methods.

Math. classification. 35Q61, 65M12, 65M60, 65M75.
Keywords. Maxwell equations, Gauss laws, structure-preserving, PIC, charge-conserving current deposi-
tion, conforming finite elements, discontinuous Galerkin, Conga method.

1. Introduction

As is well known, the issue of long-time stability in time-dependent Maxwell solvers is strongly related
to the good preservation of the divergence constraints at the discrete level. More precisely, numerical
approximations to the Faraday and Ampère equations

∂tB + curlE = 0

∂tE − c2 curlB = − 1
ε0
J

should preserve some proper versions of the Gauss laws
divE = 1

ε0
ρ

divB = 0
as is the case for the exact solutions. Indeed when they fail to do so, small errors are observed which
often accumulate into large deviations unless some dissipative processes are added to the simulation.
In a recent work [22], we have found that a generalized commuting diagram expressing a compatibility
property with respect to the Gauss laws could be used as a key criterion to guarantee the long-time
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stability of the approximate fields, and this criterion has then been applied to design conforming and
non-conforming Gauss-compatible solvers for the 3D Maxwell system.

Our work follows a vast literature aiming at understanding the key structures that are needed at
the discrete level for a good approximation of Maxwell’s equations in different settings as only the Yee
method [73] on staggered grids was able to achieve for a long time. Discretization techniques based on
an interpretation of Maxwell’s equations based on differential forms were pioneered by Bossavit [10,
11] and further developped by Hiptmair [39, 40, 41] who proposed a unifying framework for the
construction and analysis of conforming Finite Elements discretizations. After that, many authors
have underlined the central role of the de Rham diagram and its discrete version for the successful
derivation of solvers based on conforming Finite Elements, for time dependent solvers [71, 64, 72, 75]
as well as for the eigenvalue problem [6, 7, 56], where it proved crucial in order to prove convergence.
There also is a large amount of work on the numerical analysis of the commuting diagram involving
the projections from the continuous de Rham diagram to its discrete counterpart [27, 28]. The main
results concerning the curl-conforming Finite Element approximation of the time-dependent problem
can be found in the articles of Monk [52, 53, 54]. An extensive study of the time-harmonic problem
can be found in his book [55] which also reviews most functional analysis tools for the time-dependent
problem, for which [23] and [49] are important references. We also mention Joly [45] who pinpoints the
importance of a formally adjoint structure similar to ours, and [14] for a very interesting discrete de
Rham sequence based on B-splines. The general theory of Finite Element Exterior Calculus (FEEC)
for general applications including Maxwell was presented by Arnold, Falk and Whinter in [4]. As a key
tool in this analysis, we should also mention the works on smoothed polynomial projections [24, 65,
2, 25, 33], which allow to establish the stability of the associated finite element discretizations. This is
the context in which our work, starting in [22], should be placed. It underpins the structure which is
needed for the compatibility of the dynamical Maxwell equations with the divergence constraints. This
structure is already available in conforming Finite Elements based on a discrete De Rham sequence,
but fully understanding it permits us to design compatible schemes involving non-conforming Finite
Element spaces, such as fully discontinuous ones. This represents an interesting alternative to existing
Discontinuous Galerkin schemes for Maxwell’s equations [37, 38, 34, 13], indeed our non-conforming
schemes do not require dissipative or divergence cleaning techniques for long-time stability or spectral
correctness.

In the present work we extend our previous study [22] in two directions. On a theoretical level
first, we propose a stability analysis that allows to handle the case where the Maxwell discretization
is coupled with another numerical solver for the current J , such as a current obtained from a Vlasov
equation

∂tf + v ·∇xf + q

m
(E + v ×B) ·∇vf = 0 (1.1)

describing the collisionless evolution of one or several particle species with charge q and mass m,
through their distribution function f = f(t,x,v). Here the current density needed in Maxwell’s equa-
tions is defined from the particle distribution f as J := q

´
vf dv and the charge density appearing in

the Gauss law is ρ :=
´
f dv. Because the theoretical stability properties of Gauss-compatible schemes

rely on the ability to approximate the exact source with a well-designed approximation operator, they
are not readily applicable in the case of approximate sources. One must then make an explicit use
of the Gauss laws to derive long-time stability estimates. The exact preservation of a proper discrete
Gauss law then leads us to an additional criterion to couple the approximate current with the Maxwell
discretization, which is formulated as a discrete version of the continuity equation

∂tρ+ divJ = 0

since this is the relation that guarantees the preservation of the Gauss laws for the exact solutions to
the Faraday and Ampère equations.
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This approach follows the classical principles of charge-conserving deposition schemes that have been
developped in computational physics for several decades [30, 70, 32], so that our contribution can be
seen as a rigorous generalization of this approach to general discretizations. In particular, we show that
an abstract class of structure-preserving discretizations characterized by exact sequences of uniformly
stable operators yields long-time stability properties for the discrete fields. An important point is
that our criterion involves not only the discrete curl operators corresponding to the approximation
of the time-dependent Maxwell equations but also the discrete divergence operators corresponding to
the Gauss laws. As a consequence, this framework allows us to characterize proper discrete continuity
equations that should be satisfied by the approximate sources. This on the one hand provides a rigorous
analysis explaining why conforming Finite Element methods based on a de Rham diagram naturally
provide a stable coupling with discrete Vlasov solvers. On the other hand it provides a convenient
framework to define a stable, charge-conserving coupling for non-conforming Finite Element methods.

This is to our knowledge the first rigorous analysis of stable particle coupling for generic Maxwell
solvers with particles, which has been an ongoing problem since the first days of electromagnetic
Particle in Cell (PIC) simulations. The first remedies have been to correct the electric field by solving
exact [9] or approximate [51, 47] Poisson equations, until Eastwood, Villasenor and Buneman [30, 70]
noticed that stable solvers could be obtained by an adequate computation of the current from the
particles which would preserve a discrete Gauss law. In the framework of curl-conforming finite element
method, we have described a generic algorithm in [17], revisited in a geometric perspective in [66,
57]. More recently it was noticed that this algorithm fits in a semi-discrete Hamiltonian structure,
where the divergence constraints are identified as Casimirs and thus are automatically conserved [46].
For non-conforming Maxwell solvers such as Discontinuous Galerkin (DG) solvers, most numerical
methods rely on divergence cleaning techniques [59, 58, 43, 44, 68, 67] which essentially correct the
field with an hyperbolic method. There exists a large amount of literature on algorithms for solving
this problem, coming as well from the mathematics as from the physics community, and a recent
survey is available in [19]. However, despite some insightful studies on the proper discrete Gauss laws
that should be preserved by a DG-PIC scheme [36, 48], we believe that the problem of designing a
stable charge-conserving coupling for non-conforming solvers remained an open one. In this context
the non-conforming methods obtained with our structure-preserving approach may be seen as general
and satisfactory solution. Compared to existing DG-PIC schemes they offer an interesting alternative,
since they naturally preserve a proper discrete version of the Gauss law and do not require divergence
cleaning techniques for long-time stability.

The second contribution of this work is to specify such compatible and structure-preserving dis-
cretizations for the 2D Maxwell system


∂tB + curlE = 0

∂tE − c2 curlB = − 1
ε0
J

(1.2)

of either conforming or non-conforming type. Here the two curl operators resulting from the dimen-
sional reduction take the form curlu = ∂xuy − ∂yux for the scalar-valued operator and curlu =
(∂yu,−∂xu)T for the vector-valued one (using bold fonts to distinguish vector-valued entities).

By choice, the two methods proposed in this article include a discrete Ampère law in strong form. A
dual option is done in our companion article [21], where two compatible schemes are proposed that in-
clude discrete Faraday laws in strong form. Here the first scheme is a standard conforming mixed finite
element method involving discrete spaces of H(curl) (i.e., H1) and H(div) fields, for which we show
that a Raviart-Thomas interpolation provides a Gauss-compatible approximation for the current J .
Our second scheme extends this construction to spaces of fully discontinuous fields as in standard DG
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methods, in order to avoid inverting global mass matrices. It belongs to the class of Conforming/Non-
conforming Galerkin (Conga) methods designed in [22] to preserve the mixed structure of conforming
Galerkin approximations, and again we show that a compatible current approximation is provided by
a Raviart-Thomas interpolation.

We then complete these two schemes by identifying for each of them the discrete divergence operators
that form a complete structure-preserving discretizations in the sense defined above. In the case where
the Maxwell system (1.2) is coupled with an additional equation for the source, such as a Vlasov
equation, this framework allows us to show that the Raviart-Thomas finite element interpolation
operators previously identified as Gauss-compatible for the Maxwell system alone can also be used to
deposit the associated current J := q

´
vf dv (or better, its approximation by a moderate number of

numerical particles) on the finite element spaces in a charge-conserving way, be it for the conforming
or the non-conforming Galerkin discretization.

Finally, we provide numerical experiments that validate the approach and the numerical convergence
of the proposed schemes (established by theoretical means for the Maxwell system alone), using a pure
Maxwell problem and an academic Maxwell-Vlasov test case.

The outline is as follows: In Section 2 we present the theoretical framework and identify the dis-
crete structure that enables us to obtain long time stability for the numerical solution of the Maxwell
equations with exact or approximate sources. Then in Section 3 we introduce the Finite Element dis-
cretization and the appropriate conforming discretization framework for the Maxwell equations with a
strong Ampère law. In Section 4 this is extended to fully discontinuous non-conforming elements where
our framework enables us to construct compatible discretizations that are long time stable. To handle
the case where the sources are themselves computed numerically from an auxiliary equation such as
Vlasov, we then show in Section 5 that these Maxwell discretizations are structure-preserving when
equipped with a proper discrete divergence, which allows us to derive charge-conserving deposition
methods for the current. All these methods are finally validated and compared in Section 6 using a
couple of relevant test problems.

2. Theoretical framework

In this section we describe the theoretical tools that will guide us throughout the construction of
compatible and structure preserving Maxwell-PIC schemes with long-time stability properties. Over-
all, the idea of such methods is to reproduce at the discrete level the relations that guarantee the
preservation of the Gauss laws in the exact solutions.

2.1. Two approaches to long-time stability

Let us give a formal overview of our stability analysis. If we rewrite the time-dependent Maxwell
equations as

∂tU −AU = −F (2.1)

with A = c
(

0 − curl
curl 0

)
, and consider a space discretization of (2.1) under the form

∂tUh −AhUh = −Fh, (2.2)

the main stability problem that we address here can be stated as: Find a practical criterion to guarantee
that when the exact source F gives rise to a solution U that is bounded in time, the approximate solution
Uh is also bounded in time.

Here by practical we mean a criterion that can be used in the design of a numerical scheme, and
to have a more tractable problem we will first aim for stability with respect to constant sources.
We also restrict ourselves to smooth solutions. Our approach then essentially consists in designing
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proper approximation schemes for the source F , once a discrete curl operator Ah has been chosen
with well-identified properties.

To answer this problem our first step is to use a Duhamel formula and write

U(t) = etAU(0) +
ˆ t

0
e(t−s)AF (s) ds. (2.3)

Here A is skew-symmetric and with close range, so that one has (kerA)⊥ = ImA. We may then
decompose a given source F as

F = F (0) +AG ∈ kerA⊕ (kerA)⊥ = kerA⊕ ImA (2.4)

and if we assume that F is constant, plugging this expression in (2.3) gives

U(t)− etAU(0) =
ˆ t

0
e(t−s)AF (0) ds− [e(t−s)AG]t0 = tF (0) + (etA − I)G (2.5)

which highlights the different roles played by sources in kerA from those in its orthogogonal comple-
ment ImA: While the latter ones generate oscillating solutions that are bounded over time (due to
the skew-symmetry of A, etA is a contraction semi-group), the former ones give rise to solutions that
grow linearly in time.

For the purpose of long-time accuracy we consider here discretizations that do not dissipate energy,
leading to skew-symmetric operators Ah = −A∗h. In particular a decomposition similar to (2.4) applies
at the discrete level, as well as a discrete version of (2.5). It follows that a first solution is obtained
by approximating F with an operator Πh that satisfies the compatibility property

F ∈ ImA =⇒ ΠhF ∈ ImAh. (2.6)

This approach has been followed in [22] where semi-discrete schemes of the form ∂tUh−AhUh = −ΠhF
satisfying (2.6) have been studied and shown to have very good stability properties, especially with
respect to steady-state solutions. In Section 2.3 we will recall the main properties of such schemes,
and show that long-time stability estimates actually hold for almost every time harmonic solution.

In many cases of physical interest, however, the exact source F is not known. When solving the
Maxwell-Vlasov system for example, the discrete current density Fh must be computed from an ap-
proximate density provided by some Vlasov solver, e.g. from numerical particles in the case of a PIC
method. In such cases the property (2.6) is of little help as one cannot use F to compute Fh, and we
must rely on another stability criterion.

For this purpose we propose an alternative stability analysis. Its starting point lies in the observation
that, despite being called Gauss-compatible in [22], Maxwell discretizations of the form ∂tUh−AhUh =
−ΠhF satisfying (2.6) do not make an explicit use of the Gauss laws which we may rewrite here as

DU = R (2.7)

with D =
(

div 0
0 div

)
. To derive a more robust analysis we then rely on two key properties that are

known to be important for stability purposes in general, namely: (i) a property of the kernels,

kerD = (kerA)⊥ (2.8)

that corresponds to an exact sequence property, and (ii) Poincaré estimates of the form{
‖Z‖ ≤ cP ‖AZ‖, Z ∈ (kerA)⊥

‖Z‖ ≤ cP ‖DZ‖, Z ∈ (kerD)⊥
(2.9)

(unless specified otherwise, ‖·‖ denotes L2 norms throughout the article). Property (2.8) then allows
us to decompose any solution of the full Maxwell system as U = UD⊥ + UA⊥ ∈ (kerA)⊥ ⊕ (kerD)⊥,
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and, assuming again a constant source F , estimate

‖U(t)‖ ≤ ‖UD⊥(t)‖+ ‖UA⊥(t)‖ ≤ cP
(
‖DU(t)‖+ ‖AU(t)‖

)
≤ cP

(
‖R(t)‖+ ‖AU(0)‖+ 2‖F‖

)
(2.10)

where we have used a computation similar to (2.5) in the last bound. A second solution to our numerical
stability problem is then obtained by reproducing these steps at the discrete level, as follows. Given
a stable discretization Ah of the curl operators, i.e., a skew-symmetric operator Ah which satisfies a
Poincaré estimate

‖Z‖ ≤ cP ‖AhZ‖, Z ∈ (kerAh)⊥ (2.11)
uniformly in h, we propose to:

(i) find a discrete divergence operator Dh that is also stable

‖Z‖ ≤ cP ‖DhZ‖, Z ∈ (kerDh)⊥ (2.12)

uniformly in h, and satisfies the discrete kernel property

kerDh = (kerAh)⊥, (2.13)

(ii) compute the discrete current Fh from the approximate solution provided by the coupled (e.g.,
Vlasov) solver in such a way that the discrete continuity equation

∂tRh +DhFh = 0 (2.14)

holds with Rh a reasonnable approximation of the charge density computed by the coupled
solver.

Indeed, it is easily verified that the steps above lead to the proper discrete Gauss law

DhUh = Rh (2.15)

to be preserved in time by the solutions to (2.2), and that a long-time stability estimate similar
to (2.10) holds for Uh. This solves our stability problem since Rh will be bounded in time if the Vlasov
solver is stable, even if no relation like (2.6) holds for Fh.

In Section 2.4 we will detail such a construction using more telling notations. Discretizations of
the original equations in terms of discrete operators Ah and Dh satisfying properties (2.11), (2.13)
and (2.12) above will be said structure-preserving. If in addition the approximate source is computed
in such a way that the proper continuity equation (2.14) is satisfied, then the schemes will be called
charge-conserving to follow the common terminology.

2.2. Time-dependent 2D Maxwell system in operator form

We now specify an operator form for the Maxwell system (1.2) that will allow us to perform the stability
analysis outlined above, and serve as a reference for the subsequent conforming and non-conforming
Galerkin schemes.

Throughout the article we assume that the domain Ω is bounded, simply connected and Lipschitz.
Moreover, to keep the presentation as simple as possible we restrict ourselves to the case of metallic
boundary conditions

E × n = 0 on ∂Ω (2.16)
and leave the case of absorbing boundary conditions for a future study. We note that in 2D the cross
product with a vector u maps vectors to scalars and vice-versa,

u× v = uxvy − uyvx and u× v =
(
uyv
−uxv

)
.

58



Compatible Maxwell solvers with particles, I

To highlight the functional structure of the subsequent constructions we borrow some notations from
Finite Element Exterior Calculus (FEEC), see e.g., [2, 3, 4]. We denote

W 0 := R, W 1 := L2(Ω), W 2 := L2(Ω)2, W 3 := L2(Ω) (2.17)
with standard notations for Hilbert spaces, see e.g. [35]. We next consider closed and densely-defined
operators dl from W l to W l+1, namely

d0 := ι, d1 := curl and d2 := div
where ι denotes the canonical injection from R to L2(Ω), with respective domains

V 0 := D(d0) = R, V 1 := D(d1) = H(curl,Ω) and V 2 := D(d2) = H(div,Ω). (2.18)
A word on the notation: our main motivation here for bold-face to denote vector-valued fields, operators
and spaces is to make a clear distinction between the two curl operators (one being the dual of the
other). Because the confusion cannot be made on the dl operators, we shall not use bold-face on the dl
or V l notation although some of them correspond to vector-valued fields. This also allows us to state
general definitions and results that readily extend to the 3D case, see Definition 2.12 and Remark 2.21
below.

Setting then V 3 := W 3 = L2(Ω) and using standard results we next observe that if Ω is a bounded
and simply-connected Lipschitz domain, then the following sequence is exact

V 0 d0=ι // V 1 d1=curl // V 2 d2=div // V 3 0 // {0} (2.19)

in the sense that the range of each operator coincides with the kernel of the following operator, see
e.g. [75, Cor. 3.16]. We then denote by (d2)∗, (d1)∗ and (d0)∗ the adjoints of d2, d1 and d0 respectively:
their domains are

V ∗3 := D((d2)∗) = H1
0 (Ω), V ∗2 := D((d1)∗) = H0(curl,Ω) V ∗1 := D((d0)∗) = L2(Ω)

and on these domains they coincide with the operators −grad, curl and
ffl

Ω : u 7→ |Ω|−1 ´
Ω u, respec-

tively. (Here the space numbering follows the standard convention [4, Sec. 3.1] and is motivated by
the fact that V ∗l+1 is then a subspace of W l+1.) Setting V ∗0 := W 0 = R and using duality arguments
based on the fact that all the operators are densely-defined and with a closed range in L2, we then
find that the following sequence is also exact,

{0} 0 // V ∗3
(d2)∗=−grad // V ∗2

(d1)∗=curl // V ∗1
(d0)∗=

ffl
Ω // V ∗0 (2.20)

Remark 2.1. Note that the V ∗l ’s are not dual to the V l’s. Indeed, the dual spaces involved in the
definition of the adjoint operators (dl)∗ are those of the W l’s, which (as L2 spaces) are identified with
themselves.

In this setting we define A as the unbounded operator from W := W 1 ×W 2 to itself defined by

A := c

(
0 −(d1)∗
d1 0

)
= c

(
0 − curl

curl 0

)
(2.21)

with domain
V := D(A) = V 1 × V ∗2 = H(curl,Ω)×H0(curl,Ω).

This “composite” operator is classical, see e.g., [1, 23, 76], and as seen above it allows to represent in a
unified way the action of the two curls involved in the Maxwell equations. Writing U = (cB,E)T and
F = (0, ε−1

0 J)T we can indeed reformulate the time-dependent Maxwell system (1.2) with metallic
boundary conditions (2.16) as

∂tU −AU = −F. (2.22)
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Standard arguments guarantee the well-posedness of the above equation complemented with an initial
condition and a smooth source term. Indeed, it can be verified that A is skew-symmetric in the sense
that A∗ = −A. In particular it generates a contraction semi-group of class C0 (see [74, Section IX.8])
and the following result is a direct application of Corollaries 2.2 (p. 106) and 2.5 (p. 107) in [62].

Lemma 2.2. If F ∈ C1([0, T ];W), then the Cauchy problem (2.22) complemented with an arbitrary
initial condition U0 ∈ V has a unique solution U ∈ C0([0, T [;V) that is continuously differentiable on
]0, T [.

Turning to the Gauss laws, we observe that even if the divergence of a magnetic field of the form
B = (0, 0, B) is always zero, there actually is a non-trivial constraint analogous to the electric Gauss
law

divE = 1
ε0
ρ (2.23)

that should be imposed on the magnetic field B in the 2D setting. It is obtained by considering that,
just as the relation div curlB = 0 guarantees the preservation of the electric Gauss law, the relation´

Ω curlE =
´
∂Ωn×E = 0, derived from the metallic boundary conditions, guarantees that

ˆ
Ω
B =

ˆ
Ω
B0 (2.24)

where B0 = B(t = 0), holds for all t ≥ 0. We may then see this equation as the relevant magnetic
Gauss law in the reduced 2D model, an interpretation that will be supported by the stability analysis
developed in this work.

The Gauss laws (2.23) and (2.24) can then be recast in the compact form

DU = R (2.25)

where the “composite” divergence D is the unbounded operator defined from W = W 1 × W 2 to
W 0 ×W 3 by

D :=
(

(d0)∗ 0
0 d2

)
=
(ffl

Ω 0
0 div

)
(2.26)

with domain
D(D) = V ∗1 × V 2 = L2(Ω)×H(div,Ω)

and where R := (
ffl

ΩcB
0, ε−1

0 ρ)T represents the composite charge density in this 2D model, consistent
with our interpretation of (2.24) as a generalized Gauss law for the scalar magnetic field. Using the
exact sequence (2.19) and a standard property of adjoint operators, see e.g., [12, Cor. 2.18], we see
that ker d2 = d1V 1 = Im d1 = (ker(d1)∗)⊥ (here and below, the ⊥ exponent denotes the orthogonal
complement in the natural Hilbert space) and it follows that

kerD = R⊥ × ker d2 = (ker d1)⊥ × (ker(d1)∗)⊥ = (kerA)⊥. (2.27)

Thus, in the absence of sources the Gauss law (2.25) can be seen as a constraint that forces the solutions
of the Ampère-Faraday system (2.22) to be orthogonal to the curl-free fields, which correspond to the
genuinely oscillating modes of the linear operator A. Indeed, using again the skew-symmetry of A we
can decompose the L2 space W = W 1 ×W 2 as

W = kerA ⊕ (kerA)⊥ with
{

kerA = {U ∈ S : ∂tU = 0}
(kerA)⊥ = Span({U ∈ S : ∂tU = iωU} : ω 6= 0)

(2.28)

where S denotes the solutions to the homogeneous Ampère-Faraday system (2.22).

60



Compatible Maxwell solvers with particles, I

2.3. Gauss-compatible solvers for the Maxwell equations with exact sources

In the case where the exact source F is known we may consider semi-discrete schemes for (2.22) of
the form

∂tUh −AhUh = −ΠhF (2.29)
where Ah : Vh → Vh is a skew-symmetric operator approximating A on a finite-dimensional space
Vh ⊂ W, and Πh is an approximation operator mapping on Vh.

As recalled above, a simple criterion has been proposed in [22] to characterize schemes of the
above form that are stable for constant sources. In the source-free case this criterion (2.6) amounts
to preserving the relation Uh ∈ (kerAh)⊥ which can be seen as a discrete analog of the orthogonal
constraint expressed by the Gauss laws (U ∈ kerD = (kerA)⊥), and for this reason the associated
schemes have been called Gauss-compatible. Since (kerA)⊥ and (kerAh)⊥ respectivelly coincide with
ImA and ImAh, the compatibility condition (2.6) is essentially expressed with a commuting diagram.
For the purpose of the current article we introduce the following definition in the spirit of [22].

Definition 2.3. We say that a discrete operator Ah : Vh → Vh forms a Gauss-compatible approx-
imation of A together with a mapping Πh on Vh if there exists an auxiliary mapping Π̂h : V̂ → Vh
that converges pointwise to the identity as h→ 0, and that is such that

ΠhA = AhΠ̂h (2.30)
holds on V̂.

Remark 2.4. The purpose of the pointwise convergence property in the above definition is to avoid
trivial operators. It will not be used in the subsequent error and stability estimates.

We observe that (2.30) indeed amounts to writing that the following diagram commutes:

V̂ A //

Π̂h

��

AV̂

Πh

��
Vh

Ah // Vh

(2.31)

and this commuting diagram yields an a priori error estimate leading to long-time stability properties,
as shown by the following results which slightly extend the a priori estimates from [22, Sec. 3].

Theorem 2.5. If the semi-discrete scheme (2.29) is Gauss-compatible in the sense of Definition 2.3,
then the approximate solution satisfies

‖(Uh − Π̂hU)(t)‖ ≤ ‖(Uh − Π̂hU)(0)‖+
∥∥∥ˆ t

0
e(t−s)Ah(Π̂h −Πh)∂tU(s) ds

∥∥∥ (2.32)

for any solution U ∈ C0([0, T ]; V̂) to the time-dependent Maxwell system (2.22).

Proof. Applying the projection Πh to the Maxwell system (2.22) and using the commuting diagram
property yields

∂tΠhU −AhΠ̂hU = Πh(∂tU −AU) = −ΠhF = ∂tUh −AhUh,
from which we see that Π̂hU − Uh satisfies an evolution equation with source term (Π̂h −Πh)∂tU ,

∂t(Π̂hU − Uh)−Ah(Π̂hU − Uh) = (Π̂h −Πh)∂tU.
Estimate (2.32) then follows by applying a discrete Duhamel formula and using the contraction prop-
erties of the semi-group generated by Ah.
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In Remark 2.10 below we summarize the main benefits of our error analysis, but before we derive
a couple of useful corollaries from the skew-symmetry of Ah.
Corollary 2.6 (standard error estimate). Using the contraction properties of the semi-group etAh,
one infers from (2.32) that

‖(Uh − Π̂hU)(t)‖ ≤ ‖(Uh − Π̂hU)(0)‖+
ˆ t

0
‖(Π̂h −Πh)∂tU(s)‖ ds. (2.33)

In Sections 3.4 and 4.2 we will use (2.33) to establish convergence estimates for the proposed
conforming and non-conforming schemes. In [22] we have emphasized that (2.33) implies a long-time
stability property with respect to steady-state solutions, and here we use (2.32) to further observe
that the Gauss-compatibility actually provide long-time stability with respect to almost every time-
harmonic solution.
Corollary 2.7 (long-time stability for time harmonic solutions). Let (2.29) be a Gauss-compatible
scheme in the sense of Definition 2.3, and let U(t, x) = eiωtU(0, x) be a time-harmonic solution
to (2.22) with U(0, ·) ∈ V̂ and iω /∈ σ∗(Ah) where σ∗(Ah) := σ(Ah) \ {0}. Then the semi-discrete
solution satisfies

‖(Uh − Π̂hU)(t)‖ ≤ ‖(Uh − Π̂hU)(0)‖+
(
1 +

∣∣∣ ω

dist(iω, σ∗(Ah))

∣∣∣)‖2(Π̂h −Πh)U(0)‖ (2.34)

for all t ≥ 0.
Proof. In the case where ω = 0, the result readily follows from (2.33). Otherwise we have iω /∈ σ(Ah).
Using the skew-symmetry of Ah we then equip Vh with an orthonormal basis of eigenvectors Zh,j ,
j = 1, . . . , Nh, associated with imaginary eigenvalues iωh,j ∈ iR. We then decompose

(Π̂h −Πh)U(t, x) = eiωt(Π̂h −Πh)U(0, x) = eiωt
∑
j

δh,jZh,j(x) (2.35)

and we compute thatˆ t

0
e(t−s)Ah(Π̂h −Πh)∂tU(s) ds = iω

∑
j

eiωh,jtδh,j

ˆ t

0
ei(ω−ωh,j)sZh,j ds = ω

∑
j

eiωt − eiωh,jt

ω − ωh,j
δh,jZh,j .

Observing that
∣∣ ω
ω−ωh,j

∣∣ ≤ 1 +
∣∣ ω
dist(iω,σ∗(Ah))

∣∣ for all j, we then find∥∥∥ˆ t

0
e(t−s)Ah(Π̂h −Πh)∂tU(s) ds

∥∥∥2
≤
(
1 +

∣∣∣ ω

dist(iω, σ∗(Ah))

∣∣∣)2∑
j

|2δh,j |2

and Estimate (2.34) follows by noting that
∑
j |2δh,j |2 = ‖2(Π̂h − Πh)U(0)‖2 holds thanks to the

orthonormal decomposition (2.35).

Remark 2.8. As noted above, our stability results cover the case of steady state solutions (ω = 0)
and in fact an important asset of (2.34) is that it is not affected by the large kernel of Ah. In addition,
we observe that if the eigenvalues of Ah converge towards those of A in the sense that for all η > 0
there exists h0 such that dist(iωh,j , σ∗(A)) ≤ η holds for all h ≤ h0 and iωh,j ∈ σ∗(Ah), where

σ∗(A) := σ(A) \ {0}
denotes the discrete spectrum of A, then by taking η = 1

2 dist(iω, σ∗(A)) we find that

‖(Uh − Π̂hU)(t)‖ ≤ ‖(Uh − Π̂hU)(0)‖+
(
1 +

∣∣∣ 2ω
dist(iω, σ∗(A))

∣∣∣)‖2(Π̂h −Πh)U(0)‖

holds for all h ≤ h0 and t ≥ 0. (Despite being close, we note however that this convergence property
is not guaranteed by the classical Definition 2.1 proposed in [7] for the spectral correctness.)
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Remark 2.9. In the case of time-harmonic solutions U oscillating with a frequency iω in the discrete
spectrum σ∗(A), we see that F cannot have a component along the eigenspace ker(iωI − A), but it
would be too strong to ask that a similar property holds also for its approximation Fh. Although this
prevents us from establishing long-time stability estimates for arbitrary frequencies, in practice such
kind of instabilities are not likely to be important, indeed they can only be triggered by a (residual)
contribution in ker(iωh,jI −Ah) that oscillates at the exact frequency ωh,j .
Remark 2.10 (benefits of this error analysis). Overall, the above results (combined with approxi-
mation error estimates for the operators Πh and Π̂h) gives a general tool to derive error estimates
with long-time stability properties when the source approximation scheme satisfies the compatibility
criterion (2.30). In the cases where the natural L2 projection is a compatible approximation operator,
we note that classical estimates leading to long-time stability are known already, see e.g. Th. 2.1 in [54]
under commuting assumptions that are similar to the ones involved in our compatibility Definition 2.3,
or Th. 3.1 in [50] and Th. 4.1 in [76]. The benefit of our analysis is twofold: first, it allows to extend sta-
ble estimates to conforming Maxwell solvers where the L2 projections may not lead to stable schemes,
see Section 6.1, and to easily identify a compatible approximation operator for the source. Second it
naturally applies to non-conforming discretizations, as will be verified with the Conga schemes studied
in Section 4.2 below and in our companion article [21], following the method proposed in [22] for the
3D Maxwell system.

As pointed in the introduction, a third benefit of our approach is to allow to derive stable estimates
in the case of approximate sources. This relies on the notion of structure-preserving and charge-
conserving schemes, and is the subject of the next section.

2.4. The case of approximate sources: stability through structure preservation

In the cases where the exact current density is not known the analysis of [22] does not apply, as
explained in Section 2.1 above. Indeed one needs to consider schemes of the form

∂tUh −AhUh = −Fh (2.36)
where Fh is a given approximation of the exact current source F = (0, ε−1

0 J)T that may not be
compatible in the sense of (2.6).

For such problems we rely on the second stability approach outlined in Section 2.1, which con-
sists of building discretizations that satisfy (2.11), (2.12) and (2.13). Using duality arguments (see
Lemma 2.15 below), these properties can be expressed on the discretization of one sequence only,
either the primal (2.19) or the dual one (2.20). We start with the primal one.
Definition 2.11. We say that a semi-discrete 2D Maxwell system of the form

∂tBh + curlhEh = 0

∂tEh − c2 curlhBh = − 1
ε0
Jh

with

 curlh : V 1
h → V 2

h

curlh := (curlh)∗ : V 2
h → V 1

h

(2.37)

completed with discrete Gauss laws of the form divhEh = 1
ε0
ρh

(ιh)∗Bh = (ιh)∗B0
h

with

 divh : V 2
h → V 3

h

ιh : V 0
h → V 1

h

(2.38)

is structure-preserving if the following properties hold.

• Exact sequence property: the sequence

V 0
h

ιh // V 1
h

curlh // V 2
h

divh // V 3
h (2.39)
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is exact, in the sense that ιhV 0
h = ker curlh and curlh V 1

h = ker divh.

• Stability: the operators in the above sequence satisfy Poincaré estimates,
‖u‖ ≤ cP ‖ιhu‖, u ∈ V 0

h ∩ (ker ιh)⊥

‖u‖ ≤ cP ‖curlh u‖, u ∈ V 1
h ∩ (ker curlh)⊥

‖u‖ ≤ cP ‖divh u‖, u ∈ V 2
h ∩ (ker divh)⊥

(2.40)

with a constant cP independent of h.

Here the presence of a discrete injection operator ιh is due to the 2D setting: for the 3D problem
it should be replaced by a discrete gradient operator. In fact our stability analysis readily applies to
other formulations such as the strong Faraday form of Maxwell’s equations studied in our companion
paper [21] or to the 3D model. To highlight its generality we reformulate Definition 2.11 in terms of
operators dlh approximating the dl’s on discrete spaces V l

h ⊂W l, see (2.17)-(2.18).

Definition 2.12. We say that a semi-discrete 2D Maxwell system of the form
∂tBh + (d1

h)∗Eh = 0

∂tEh − c2d1
hBh = − 1

ε0
Jh

with

d
1
h : V 1

h → V 2
h

(d1
h)∗ : V 2

h → V 1
h

(2.41)

completed with discrete Gauss laws of the form d2
hEh = 1

ε0
ρh

(d0
h)∗Bh = (d0

h)∗B0
h

with

d
2
h : V 2

h → V 3
h

d0
h : V 0

h → V 1
h

(2.42)

is structure-preserving if the following properties hold.

• Exact sequence property: the sequence

V 0
h

d0
h // V 1

h

d1
h // V 2

h

d2
h // V 2

h (2.43)

is exact, in the sense that d0
hV

0
h = ker d1

h and d1
hV

1
h = ker d2

h.

• Stability: the operators in the above sequence satisfy Poincaré estimates
‖u‖ ≤ cP ‖d0

hu‖, u ∈ V 0
h ∩ (ker d0

h)⊥

‖u‖ ≤ cP ‖d1
hu‖, u ∈ V 1

h ∩ (ker d1
h)⊥

‖u‖ ≤ cP ‖d2
hu‖, u ∈ V 2

h ∩ (ker d2
h)⊥

(2.44)

with a constant cP independent of h.

These properties can be equivalently stated on the discretization of the dual sequence (2.20).

Lemma 2.13. The exactness of the sequence (2.43) is equivalent to the one of

V 3
h

(d2
h)∗

// V 2
h

(d1
h)∗

// V 1
h

(d0
h)∗

// V 0
h (2.45)

and the stability estimates (2.44) hold if and only if the adoint operators satisfy
‖u‖ ≤ cP ‖(d2

h)∗u‖, u ∈ V 3
h ∩ (ker(d2

h)∗)⊥

‖u‖ ≤ cP ‖(d1
h)∗u‖, u ∈ V 2

h ∩ (ker(d1
h)∗)⊥

‖u‖ ≤ cP ‖(d0
h)∗u‖, u ∈ V 1

h ∩ (ker(d0
h)∗)⊥.

(2.46)
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Proof. The arguments are standard. The implication dl−1
h V l−1

h = ker dlh =⇒ (dlh)∗V l+1
h = ker(dl−1

h )∗
follows from the relations

(dlh)∗V l+1
h = V l

h ∩ (ker dlh)⊥ and ker(dl−1
h )∗ = V l

h ∩ (dl−1
h V l−1

h )⊥ (2.47)
which are easily inferred from the basic properties of the discrete adjoints, and the reverse implication
follows by symmetry. Next take u ∈ V l+1

h ∩ (ker(dlh)∗)⊥: using (2.47) we see that u ∈ dlhV l
h, so that

there exists v ∈ V l
h ∩ (ker dlh)⊥ such that dlhv = u. In particular, if dlh is stable in the sense of (2.44)

we have ‖v‖ ≤ cP ‖u‖, which allows to write

‖u‖ ≤ cP
‖u‖2

‖v‖
= cP

〈u, dlhv〉
‖v‖

= cP
〈(dlh)∗u, v〉
‖v‖

≤ cP ‖(dlh)∗u‖.

This shows that (dlh)∗ is stable in the sense of (2.46), and the proof is completed by symmetry.

In the terms of Definition 2.11, this gives the following result.

Lemma 2.14. The space-discretization (2.37)-(2.38) is structure-preserving if and only if the following
properties hold:

• letting gradh := −(divh)∗, the dual discrete sequence

V 3
h

gradh // V 2
h

curlh // V 1
h

(ιh)∗ // V 0
h (2.48)

is exact, in the sense that gradh V 3
h = ker curlh and curlh V 2

h = ker(ιh)∗,

• the operators in the above sequence satisfy
‖u‖ ≤ cP ‖gradh u‖, u ∈ V 3

h ∩ (ker grad)⊥

‖u‖ ≤ cP ‖curlh u‖, u ∈ V 2
h ∩ (ker curlh)⊥

‖u‖ ≤ cP ‖(ιh)∗u‖, u ∈ V 1
h ∩ (ker(ιh)∗)⊥.

(2.49)

with a constant cP independent of h.

Finally, we verify that the above definition indeed corresponds to the key stability properties an-
nounced in Section 2.1.

Lemma 2.15. The properties (2.39)-(2.40), or equivalently (2.48)-(2.49), hold if and only if the com-
posite curl and divergence operators

Ah := c

(
0 − curlh

curlh 0

)
: (V 1

h ×V 2
h )→ (V 1

h ×V 2
h ), Dh :=

(
(ιh)∗ 0

0 divh

)
: (V 1

h ×V 2
h )→ (V 0

h ×V 3
h )

or

Ah := c

(
0 −(d1

h)∗
d1
h 0

)
: (V 1

h × V 2
h )→ (V 1

h × V 2
h ), Dh :=

(
(d0
h)∗ 0
0 d2

h

)
: (V 1

h × V 2
h )→ (V 0

h × V 3
h )

in the notation of Definition 2.12, satisfy (2.11), (2.12) and (2.13).

Proof. Since Ah is skew-symmetric by construction, we have (kerAh)⊥ = ImAh and the kernel
compatibility (2.13) is equivalent to a couple of exact sequence properties, namely

ker divh = curlh V 1
h and ker(ιh)∗ = curlh V 2

h . (2.50)
By duality (see Lemma 2.14) the latter is equivalent to Im ιh = ker curlh, so that (2.50) is indeed
equivalent to the exact sequence property (2.39). As for the uniform stability properties (2.11)-(2.12),
they can be restated as four estimates: the second and third ones in (2.40) and two more, namely
‖u‖ ≤ cP ‖curlh u‖, u ∈ (ker curlh)⊥ and ‖u‖ ≤ cP ‖(ιh)∗u‖, u ∈ (ker(ιh)∗)⊥ (2.51)
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which are equivalent to their primal counterparts as seen also in Lemma 2.14.

Definition 2.16. We say that a semi-discrete Maxwell system of the form{
∂tUh −AhUh = −Fh

DhUh = Rh
(2.52)

with Ah a skew-symmetric operator, is charge-conserving if

(i) it is structure-preserving in the sense that properties (2.11), (2.12) and (2.13) hold,

(ii) and the approximate sources satisfy the corresponding discrete continuity equation

∂tRh +DhFh = 0. (2.53)

Remark 2.17. If (2.52) corresponds to (2.37)-(2.38) or (2.41)-(2.42) with Uh = (cBh,Eh), then
Property (i) in Definition 2.16 is consistent with Definition 2.11 or 2.12, see Lemma 2.15.

Remark 2.18. With the notation of Definition 2.11, the first equation from (2.53) is trivial and the
second one rewrites as

∂tρh + divh Jh = 0. (2.54)

Remark 2.19. Given a semi-discrete scheme of the form (2.37), one could think of defining ρh from
ρ0
h and (2.54), but as outlined in Section 2.1 the whole point of charge-conserving schemes is to enforce

the stability of the field (Bh,Eh) through that of an approximate charge density ρh that is already
available as a good (i.e. stable) approximation of the exact charge density. Thus it is important to
see (2.54) as a condition to be satisfied by the discrete current density Jh.

Equipped with the above definitions we can state a long-time stability result and an error estimate
that behaves well on long time ranges.

Theorem 2.20. Let (2.37)-(2.38) be a charge-conserving space discretization of the Maxwell equations
in the sense of Def. 2.16. Then for any solution Bh,Eh of the discrete Ampère and Faraday laws (2.37),
the discrete Gauss laws (2.38) hold for all t ≥ 0 iff they hold at t = 0. Moreover, the following estimate
holds for Uh = (cBh,Eh),

‖Uh(t)‖ ≤ cP
(
‖Rh(t)‖+ ‖Fh(t)‖+ ‖AhUh(0)‖+ ‖Fh(0)‖+

∥∥∥ˆ t

0
e(t−s)Ah∂tFh(s) ds

∥∥∥) (2.55)

where Ah := c
( 0 − curlh

curlh 0
)
is the discrete evolution operator, Rh = ((ιh)∗cB0

h, ε
−1
0 ρh)T and Fh =

(0, ε−1
0 Jh)T represent the discrete sources and cP is the constant in the Poincaré estimates (2.40).

If in addition Ah forms a Gauss-compatible approximation of the exact operator (2.21) with a
mapping Πh on Vh = V 1

h × V 2
h , see Definition 2.3, then the error estimate

‖(Uh−Π̂hU)(t)‖ ≤ cP
(
‖(Rh−DhΠ̂hU)(t)‖+‖(Fh−ΠhF )(t)‖+‖Ah(Uh−Π̂hU)(0)‖+‖(Fh−ΠhF )(0)‖

+
∥∥∥ˆ t

0
e(t−s)Ah∂t(Fh −ΠhF )(s) ds

∥∥∥+
∥∥∥ˆ t

0
e(t−s)AhAh(Π̂h −Πh)∂tU(s) ds

∥∥∥) (2.56)

holds for any exact solution U = (cB,E) ∈ C0([0, T ]; V̂) of (2.22). Here Π̂h : V̂ → Vh is the auxiliary
mapping from Definition 2.3, and cP is again the constant from (2.40).
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Proof.
Using Lemma 2.15 we know that the composite operators Ah and Dh satisfy the key properties (2.11),
(2.12) and (2.13). Since ImAh = (kerAh)⊥ by skew-symmetry, this implies that DhAh = 0. Thus, by
applying Dh to the composite form (2.36) of the Maxwell scheme and using the discrete continuity
equation (2.53), we find that the discrete Gauss laws

DhUh = Rh =
(

(ιh)∗cB0
h

ε−1
0 ρh

)
(2.57)

i.e. (2.38), are preserved in time. By computing as in (2.10), using the properties (2.11), (2.12), (2.13)
and a discrete Duhamel formula for Uh (together with the contraction properties of etAh) we then find

‖Uh(t)‖ ≤ cP
(
‖Rh(t)‖+ ‖AhUh(0)‖+

∥∥∥ˆ t

0
e(t−s)AhAhFh(s) ds

∥∥∥) (2.58)

and the stability estimate (2.55) follows by integrating by parts,ˆ t

0
e(t−s)AhAhFh(s) ds =

ˆ t

0
e(t−s)Ah∂tFh(s) ds− [e(t−s)AhFh(s)]t0. (2.59)

To prove the error estimate we observe that, as a consequence of the commuting diagram ΠhA = AhΠ̂h,
the error term Ǔh := (Uh − Π̂hU) satisfies the discrete Maxwell system∂tǓh −AhǓh = −F̌h

DhUh = Řh
with source terms

 F̌h := (Fh −ΠhF ) + (Π̂h −Πh)∂tU

Řh := Rh −DhΠ̂hU.

Thus, the stability estimate (2.58) applies. By performing an integration by part similar to (2.59) for
the source term corresponding to (Fh −ΠhF ), we arrive at (2.56).

Again we observe that some simpler estimates can be derived from the skew-symmetry of Ah. For
instance, using the contraction properties of the semi-group etAh we can infer from (2.56) that

‖(Uh−Π̂hU)(t)‖ ≤ cP
(
‖(Rh−DhΠ̂hU)(t)‖+‖(Fh−ΠhF )(t)‖+‖Ah(Uh−Π̂hU)(0)‖+‖(Fh−ΠhF )(0)‖

+
ˆ t

0

(
‖∂t(Fh −ΠhF )(s)‖+ ‖Ah(Π̂h −Πh)∂tU(s)‖

)
ds
)
.

holds for any exact solution U ∈ C0([0, T ]; V̂) of (2.22). Moreover, reasonning as in Corollary 2.7 and
Remark 2.8 we can show that (i) the long-time stability holds for almost every time-harmonic solution
and (ii) for spectrally correct discretizations no long-time instability is likely to appear for frequencies
outside the discrete spectrum of A.

Remark 2.21. As noted above, Theorem 2.20 readily applies to more general models such as the 3D
Maxwell system as long as they can be put in the form (2.52).

Applications to specific Maxwell solvers will be described in Sections 3.4 and 4.2 below, as well as
in our companion article [21].

3. Conforming elements for the 2D Maxwell system with a strong Ampère law

Although it makes no difference on the continuous problem whether one takes (2.19) or (2.20) for the
primal complex, on the discrete level it leads to two different types of Galerkin methods. In this article
we describe the first choice which leads to a strong discretization of the Ampère equation with natural
boundary conditions. The second choice leading to a strong discrete Faraday equation with essential
boundary conditions is dealt with in our companion article [21].
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Because the construction of our new non-conforming method relies on a good understanding of the
conforming tools, we now verify that the structure of the Finite Element exterior calculus introduced
by Arnold, Falk and Winther [2, 3, 4], linking the conforming Galerkin approximations of the different
Hilbert spaces perfectly fits in the framework introduced in the previous sections. Specifically, this will
allow us to show in Section 3.4 that a standard sequence of Finite Element spaces can be equipped
with a Gauss-compatible approximation operator in the sense of Definition 2.3, and in Section 5.1 we
will verify that it naturally yields a structure-preserving discretization of Maxwell’s equations in the
sense of Definition 2.11. Our non-conforming approximation will consist in giving more freedom in
the choice of the discrete spaces, in particular to include discontinuous broken spaces, and in carefully
choosing the projection operators and discrete differential operators so as to preserve the commuting
diagram (2.31) and the exact sequence (2.39).

3.1. Mesh notations

We begin by specifying some notations for the mesh elements. We assume that the domain Ω is
partitioned by a regular family of conforming simplicial meshes Th with maximal triangle diameter h
tending to zero. We assume that the triangles in Th are numbered with integers i = 0, . . .#(Th) − 1,
and that the vertices X (T ) = {xT0 ,xT1 ,xT2 } of each triangle T ∈ Th are numbered counterclockwise.
We denote the corresponding edges by E(T ) = {eT0 , eT1 , eT2 }, so that eTk and xTk are facing each other.
We also let nTe be the outward unit vector of T that is normal to e, and τTe the associated tangent
vector obtained by rotating nTe through + 90 degrees as illustrated in Figure 3.1. Finally the sets
containing all the edges and vertices in the mesh are denoted by

Eh = ∪T∈Th
E(T ) and Xh = ∪T∈Th

X (T ).

We then fix an orientation for the edges as follows. For any e ∈ Eh, we let T−(e) be the triangle of
minimum index for which e is an edge. If e is shared by another triangle we denote the latter by T+(e).
Due to the conformity of the mesh, no more than 2 triangles can have e as an edge. The edge e is then
oriented by setting

xe0 := xT
−(e)

k+1 , xe1 := xT
−(e)

k+2 where k is such that e = e
T−(e)
k (3.1)

(and where for simplicity we have identified xT
−(e)

k and xT
−(e)

k+3 ). We also set

ne := nT
−(e)

e ,

and observe that if e is an interior edge then we have ne = −nT
+(e)

e .

3.2. Conforming Finite Elements with a strong Ampère law

In order to derive finite element schemes with a strong Ampère equation we approximate the non-trivial
spaces in the primal sequence (2.19), i.e.,

V 1 = H(curl; Ω) d1=curl // V 2 = H(div; Ω) d2=div // V 3 = L2(Ω)

by a sequence of discrete spaces V 1
h

d1
h−→ V 2

h

d2
h−→ V 3

h . If we opt for a conforming sequence, i.e., such
that V l

h ⊂ V l, then we can define dlh as the restriction of dl. Several options are then possible for
these spaces. Here we shall follow a common strategy (see, e.g., [1]) where the discrete spaces V l

h are
known as the continuous Finite Element space, the Raviart-Thomas Finite Element space and the
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T +

xT −
k−+1 = xe

0 = xT+
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1

Figure 3.1. Notations for vertices and edges in the triangles: here T± stand for T±(e),
and k± are the local indices of e in these respective triangles. The unit vectors ne
(normal to e) and τe (tangent to e) are oriented with respect to T−(e), see details in
the text.

discontinuous Galerkin Finite Element space. Specifically, given an integer degree p ≥ 1 we take

V 1
h := Lp(Ω, Th)

d1
h:=curl |

V 1
h // V 2

h := RT p−1(Ω, Th)
d2

h:=div |
V 2

h // V 3
h := Pp−1(Th) (3.2)

where
Pp−1(Th) := {v ∈ L2(Ω) : v|T ∈ Pp−1(T ), T ∈ Th} (3.3)

denotes the space of piecewise polynomials of maximal degree p− 1 on the triangulation Th,
Lp(Ω, Th) := Pp(Th) ∩H(curl; Ω) = Pp(Th) ∩ C(Ω) (3.4)

corresponds to the continuous “Lagrange” elements of maximal degree p and finally

RT p−1(Ω, Th) := RT p−1(Th) ∩H(div; Ω) with RT p−1(T ) := Pp−1(T )2 +
(x
y

)
Pp−1(T ) (3.5)

is the Raviart-Thomas Finite Element space of order p − 1 (thus of maximal degree p), see e.g., [63]
or [8].
Remark 3.1. To be conforming in H(div; Ω), the piecewise polynomial space V 2

h must be composed
of vector fields that have no normal discontinuities on the edges of the mesh, in the sense that for any
v ∈ V 2

h the normal trace ne ·v on an edge e must be the same when defined either from T−(e) or from
T+(e). In particular, every basis of V 2

h must contain some vector fields supported on two adjacent cells
at least.

For the sake of completeness we recall the following well-known result which will be central to our
analysis.
Lemma 3.2. The following sequence is exact, in the sense that the range of each operator coincides
with the kernel of the following operator,

R ι // Lp(Ω, Th)
d1

h=curl
// RT p−1(Ω, Th)

d2
h=div

// Pp−1(Th) 0 // {0}

where we remind that ι is the canonical injection in L2(Ω).
Proof. The arguments are standard (see, e.g., [11, 40, 55]) and we recall them here for completeness.
The first claimed equality (ker d1

h = R) is obvious since d1
h coincides with the 2D curl operator on V 1

h .
The second claimed equality is

ker d2
h = d1

hV
1
h
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i.e., ker(div |V 2
h

) = curlV 1
h . To verify it, write any u ∈RT p−1 as u = v + ( xy ) ṽ with v ∈ P2

p−1 and ṽ
a homogeneous polynomial (possibly zero) of total degree p− 1, so that divu = div v+ (p+ 1)ṽ. Now,
as div v clearly belongs to Pp−2, divu = 0 yields ṽ = 0 and hence u ∈ P2

p−1. Using this observation
with the continuous exact sequence property, we find u = curlφ for some φ ∈ Pp, hence the result.
Finally the last claimed equality is

V 3
h = d2

hV
2
h

i.e., Pp−1(Th) = divV 2
h , and it is easily proven by counting the dimensions of the different discrete

spaces, using Euler’s formula #(Xh)−#(Eh) + #(Th) = 1.

Based on the above spaces, a standard conforming Finite Element method consists in computing
the unique solution (Bh,Eh) ∈ C0([0, T ];V 1

h × V 2
h ) to 〈∂tBh, ϕ1〉+ 〈Eh, curlϕ1〉 = 0 ϕ1 ∈ V 1

h ⊂ H(curl; Ω)

〈∂tEh,ϕ2〉 − c2〈curlBh,ϕ2〉 = − 1
ε0
〈Jh,ϕ2〉 ϕ2 ∈ V 2

h ⊂H(div; Ω)
(3.6)

where Jh ∈ C0([0, T ];V 2
h ) represents an approximation of the given current density J and 〈·, ·〉 stands

for the scalar product in L2(Ω). Note that using the embedding curlV 1
h ⊂ V 2

h the second equation
amounts to

∂tEh − c2 curlBh = − 1
ε0
Jh (in V 2

h ) (3.7)
which justifies our “strong Ampère” terminology.

This space discretization has been studied in Ref. [1, 52] where the source term J is approximated
with a standard orthogonal projection on V 2

h , leading to define Jh by 〈Jh,ϕ2〉 = 〈J ,ϕ2〉 for ϕ2 ∈ V 2
h .

In order to obtain a compatible scheme we propose instead to approximate the source with a Raviart-
Thomas interpolation on the space V 2

h , see Theorem 3.5 below. To this end we first recall how this
projection is defined (see Equation (3.15) below) and what are its basic commutation properties. We
note that at the lowest order, the resulting formulation corresponds to the D/H formulation outlined
in Ref. [69], in the language of discrete differential forms.

3.3. Projection operators and commuting diagram properties

In the conforming Finite Element case the projection operators and commuting diagram properties
have been discussed and described in a series of papers by Arnold, Falk and Winther on what they call
the Finite Element Exterior Calculus (FEEC) [2, 3, 4]. For the discrete spaces (3.3)-(3.5) introduced
in the previous section, the commuting diagram properties are obtained when using the so-called
canonical projection operators, which are introduced in [2, p. 56]. Their main feature is to separate,
for the 2D case, vertex degrees of freedom, edge degrees of freedom and face degrees of freedom. The
first projection in the sequence, corresponding to projection of 0-forms has all three types, the second
corresponding to 1-forms has no vertex degrees of freedom and the third corresponding to 2-forms
has only face (or volume) based degrees of freedom, and thus simply corresponds to an orthogonal
projection in L2. This can be represented with the following commuting diagram:

H2(Ω) curl //

πcurl
h
��

H1(Ω)2 div //

πdiv
h
��

L2(Ω)
P

V 3
h

��
V 1
h

curl // V 2
h

div // V 3
h .

(3.8)

In order to avoid the formalism of differential forms, which is not necessary for our application, we
shall recall the canonical projections and discrete spaces and justify the commuting diagram with
elementary tools, see Equations (3.17) and (3.19) below.

70



Compatible Maxwell solvers with particles, I

On the curl-conforming space V 1
h the canonical projection of Arnold, Falk and Winther is the

following projection, which can also be seen as a restriction of the 3D projection of Nédélec [61]. Given
an arbitrary triangle T , we first define the following sets of moments (or degrees of freedoms),

M1
h(T, u) := {

´
T uϕ : ϕ ∈ Pp−3(T )}

M1
h(e, u) := {

´
e uϕ : ϕ ∈ Pp−2(e)} for every edge e ∈ E(T )

M1
h(x, u) := {u(x)} for every vertex x ∈ X (T ).

(3.9)

Lemma 3.3. The above degrees of freedom are unisolvent on Pp(T ) and curl-conforming.

The proof uses standard arguments [55] and is recalled in [20].
It is then possible to define a local projection r1

T on Pp(T ) by the relations
M1

h(T, r1
Tu− u) = {0}

M1
h(e, r1

Tu− u) = {0}, e ∈ E(T )
M1

h(x, r1
Tu− u) = {0}, x ∈ X (T ).

A global projection πcurl
h : C0(Ω) → H(curl; Ω) ∩ Pp(Th) is then obtained by stitching together the

individual pieces, i.e., by setting
πcurl
h u :=

∑
T∈Th

1T r
1
Tu. (3.10)

Using standard arguments (namely, the use of a reference element T̂ and the compact embedding
of H2(T̂ ) on L∞(T̂ )), one can verify that the following error estimate holds,

‖πcurl
h u− u‖ ≤ chm|u|m, 2 ≤ m ≤ p+ 1. (3.11)

When designing non-conforming approximations based on broken spaces in Section 4.1 it will be
convenient to follow [31] and use a basis for V 1

h that is dual to the above degrees of freedom. The
construction of such a basis is very classical in Finite Elements and can be summarized as follows.
Given some bases qe,i, i = 1, . . . p− 1 for the edge polynomials Pp−2(e), e ∈ Eh, and some others qT,i,
i = 1, . . . , (p−2)(p−1)

2 for the “volume” polynomials Pp−3(T ), T ∈ Th, we span the moment spaces listed
in (3.9) with the degrees of freedom

σ1
T,i(u) =

´
T qT,iu, T ∈ Th, i = 1, . . . , (p−2)(p−1)

2
σ1
e,i(u) =

´
e qe,iu, e ∈ Eh, i = 1, . . . , p− 1

σ1
x(u) = u(x), x ∈ Xh.

(3.12)

The following is then guaranteed by Lemma 3.3: First, Pp(T ) admits a unique basis ϕ1,T
λ with indices

in

Λ1(T ) := Λ1
vol(T ) ∪ Λ1

edge(T ) ∪ Λ1
vertex(T ) where


Λ1

vol(T ) := {(T, i) : i = 1, . . . , (p−2)(p−1)
2 }

Λ1
edge(T ) := {(e, i) : e ∈ E(T ), i = 1, . . . , p− 1}

Λ1
vertex(T ) := X (T )

that is dual to the associated degrees of freedom, in the sense that σ1
γ(ϕ1,T

λ ) = δγ,λ holds for γ, λ ∈
Λ1(T ). Second, if we set ϕ1,T

λ := 0 for λ ∈ Λ1
h \ Λ1(T ) with Λ1

h := ∪T∈Th
Λ1(T ) and if we extend ϕ1,T

λ

by 0 outside T for λ ∈ Λ1(T ), then the piecewise polynomials

ϕ1
λ :=

∑
T∈Th

1Tϕ
1,T
λ =

∑
T∈Th

ϕ1,T
λ (3.13)

are continuous and they form a basis for the global space V 1
h that is dual to the associated degrees

of freedom in the sense that σ1
γ(ϕ1

λ) = δγ,λ for all γ, λ ∈ Λ1
h. Moreover, if the polynomials qe,i and
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qT,i involved in (3.12) are defined as suitable affine maps of polynomial bases defined on a reference
element, the resulting local basis functions ϕ1,T

λ will also correspond to affine maps of the associated
reference basis. As a result, if the mesh Th is shape regular in the standard sense of, e.g., [35, Def. I-A.2],
it is possible to ask for normalized local basis functions satisfying, e.g.,

‖ϕ1,T
λ ‖ ∼ 1 for T ∈ Th, λ ∈ Λ1(T ). (3.14)

The second canonical projection in the sequence is the standard Raviart-Thomas interpolation.
Let us recall how it is defined. The usual degrees of freedom for the finite element space V 2

h =
RT p−1(Ω, Th) read (see, e.g., [35] or [8, Sec. 2.3.1 and Ex. 2.5.3]){

M2
h(T,v) := {

´
T v ·ϕ : ϕ ∈ Pp−2(T )2} for every triangle T ∈ Th,

M2
h(e,v) := {

´
e(ne · v)ϕ : ϕ ∈ Pp−1(e)} for every edge e ∈ Eh.

The Raviart-Thomas finite element interpolation

πdiv
h : H1(Ω)2 → V 2

h := RT p−1(Ω, Th)

see (3.5), is then defined by the relations

M2
h(T, πdiv

h v − v) = {0}, T ∈ Th and M2
h(e, πdiv

h v − v) = {0}, e ∈ Eh (3.15)

and classical arguments show that it satisfies the following error estimate (see, e.g., [8, Prop. (2.5.4)]),

‖πdiv
h v − v‖ ≤ chm|v|m, 1 ≤ m ≤ p. (3.16)

Moreover, as is well known (see, e.g., [8, Eq. (7.1.27)]) and easily checked using integration by parts,
πdiv
h satisfies a commuting diagram property,

div πdiv
h v = PV 3

h
div v, v ∈ H1(Ω)2 (3.17)

where PV 3
h
is the L2 projection on the discontinuous space V 3

h = Pp−1(Th). Note that this property
readily gives an additional error estimate, namely

‖div(πdiv
h v − v)‖ ≤ chm|div v|m, 0 ≤ m ≤ p . (3.18)

We also verify that πcurl
h defined by (3.10) satisfies a commuting diagram property.

Lemma 3.4. We have
curlπcurl

h u = πdiv
h curlu, u ∈ C0(Ω). (3.19)

Again the proof follows from standard computations using the above definition of the degrees of
freedom, it is given for completeness in [20].

3.4. Gauss-compatibility of the conforming FEM-Ampère scheme

In compact form, the conforming FEM-Ampère scheme (3.6) reads ∂tUh−AhUh = −Fh = −ΠhF with
Uh = (cBh,Eh)T , F = (0, ε−1

0 J)T and a composite curl operator defined on Vh := V 1
h × V 2

h by

Ah := c

(
0 − curlh

curlh 0

)
with

 curlh := curl |V 1
h

: V 1
h → V 2

h

curlh := (curlh)∗ : V 2
h → V 1

h .
(3.20)

Following Definition 2.3 and considering source and auxiliary approximation operators of the form

Πh =
(
π1
h 0

0 π2
h

)
and Π̂h =

(
π̂1
h 0

0 π̂2
h

)
(3.21)
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we then see that this scheme is Gauss-compatible on some product space V̂ 1 × V̂ 2 if for l = 1, 2 we
can find approximation operators πlh and π̂lh mapping on V l

h, such that

π2
h curlu = curl π̂1

hu, u ∈ V̂ 1 (3.22)
and

π1
h curlu = (curlh)∗π̂2

hu, u ∈ V̂ 2. (3.23)
Note that these relations read π2

hd
1u = d1

hπ̂
1
hu and π1

h(d1)∗u = (d1
h)∗π̂2

hu with the notations of Sec-
tion 2.2 and 3.2.

Theorem 3.5. The conforming FEM-Ampère scheme (3.6) associated with the Raviart-Thomas in-
terpolation (3.15) for the current, namely

π2
h := πdiv

h : H1(Ω)2 → V 2
h = RT p−1(Ω, Th),

is Gauss-compatible on the product space

V̂ 1 × V̂ 2 := C0(Ω)× V ∗2
where V ∗2 = H0(curl; Ω), see Section 2.2. Specifically, Equation (3.22) holds with π̂1

h := πcurl
h defined

in (3.10) and Equation (3.23) holds with the L2-projections π1
h := PV 1

h
and π̂2

h := PV 2
h
. Moreover, these

mappings satisfy
‖π̂1

hu− u‖ . hm|u|m, 2 ≤ m ≤ p+ 1 (3.24)
‖π̂2

hu− u‖ . hm|u|m, 0 ≤ m ≤ p (3.25)
‖π1

hu− u‖ . hm|u|m, 0 ≤ m ≤ p+ 1 (3.26)
‖π2

hu− u‖ . hm|u|m, 1 ≤ m ≤ p. (3.27)

Proof. The fact that Relation (3.22) holds with π2
h = πdiv

h and π̂1
h = πcurl

h follows from Lemma 3.4.
As for (3.23), we can test it against an arbitrary v ∈ V 1

h ⊂ V 1 since both sides belong to V 1
h by

construction. Using the definition of the various operators we compute
〈PV 1

h
(d1)∗u, v〉 = 〈(d1)∗u, v〉 = 〈u, d1v〉 = 〈u, d1

hv〉 = 〈PV 2
h
u, d1

hv〉 = 〈(d1
h)∗PV 2

h
u, v〉,

which proves (3.23). Estimates (3.25) and (3.26) are standard for L2 projections, whereas (3.24)
and (3.27) are just (3.11) and (3.16), respectively.

If one is solving the Maxwell equations with exact sources, Theorem 2.5 applies and gives the
following a priori estimate.

Corollary 3.6. Let (B,E) be the exact solution to the Maxwell system (2.22). The semi-discrete
solution to the FEM-Ampère scheme (3.6) coupled with the Raviart-Thomas interpolation (3.15) for
the current satisfies

‖(B −Bh)(t)‖+ ‖(E −Eh)(t)‖ . ‖Bh(0)− π̂1
hB(0)‖+ ‖Eh(0)− π̂2

hE(0)‖

+ hm
(
|B(0)|m +

ˆ t

0
|∂tB(s)|m ds

)
+ hm

′(|E(0)|m′ +
ˆ t

0
|∂tE(s)|m′ ds

)
for 2 ≤ m ≤ p+ 1, 1 ≤ m′ ≤ p, and with a constant independent of h and t.

Remark 3.7. In Section 6 we will see that approximating the source with an L2 projection operator
does not give a long-time stable scheme. In addition to yield better stability properties, the use of a
Raviart-Thomas interpolation rather than an L2 projection to define the approximate source Jh has
the advantage to result in local computations.
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Remark 3.8. In the case of approximate sources, one must resort to the analysis developped in
Section 2.4 to be able to derive long-time stability estimates. This will be done in Section 5.1 by
showing that the FEM-Ampère scheme (3.6) is naturally structure-preserving.

Remark 3.9. Using the Raviart-Thomas interpolation (3.15) requires a smooth (H1(Ω)2) current
density, and we note that the charge-conserving deposition method described in [69], for a conforming
Finite Element scheme corresponding to a low-order version of the strong Ampère scheme expressed in
terms of discrete differential forms, also involves some smoothing of the particles. For source terms with
less regularity one could think of using the local smoothed projections constructed in [33] following [24,
65, 2, 25], indeed they are well-defined on minimal regularity spaces (e.g. H(div; Ω) for J) and they
satisfy the desired commuting diagram (3.22). We note however that their implementation might be
delicate in practice.

4. Discontinuous elements for the 2D Maxwell system with a strong Ampère law

Because of its weak formulation, discretizing in time the Faraday law from (3.6) requires to invert
a mass matrix associated with the space V 1

h , and due to the curl-conformity of the latter space the
resulting inversion can not be performed locally. This can of course become a computational burden
when the meshes become very fine and when parallel algorithms come into play. For this reason we
propose a non-conforming method where the solution is approximated in the fully discontinuous space

Ṽ 1
h := Pp(Th) 6⊂ V 1 = H(curl; Ω),

see (3.3). Although the common way for designing non-conforming discretizations is to follow the
discontinuous Galerkin methodology (see e.g. [34, 43]), in this work we aim at preserving a strong
Ampère equation like (3.7). For this purpose we follow a different path and apply to the 2D setting
the ideas of the Conga discretization proposed and studied in [22] for the 3D Maxwell system (the name
standing for “Conforming/Non-conforming Galerkin”). In particular our non-conforming discretization
will be derived from the conforming one (3.2), and we note that this restricts the analysis to positive
degrees p ≥ 1.

As we did for the conforming case, and following our 3D study [22], we will show that this non-
conforming discretization can be equipped with a Gauss-compatible approximation operator in the
sense of Definition 2.3. In Section 5.2 we will extend this analysis by further verifying that it is
essentially a structure-preserving discretization of Maxwell’s equations in the sense of Definition 2.11,
once associated with a nonstandard discrete divergence.

4.1. Non-conforming “Conga” discretization

To extend the conforming method (3.6) on the non-conforming space Ṽ 1
h we consider a smoothing

projection
P1
h : L2(Ω)2 → V 1

h (4.1)
(which is not required to satisfy a commuting diagram) and we define the associated Conga approxi-
mation (Bh,Eh) ∈ C0([0, T ]; Ṽ 1

h × V 2
h ) by the system〈∂tBh, ϕ̃

1〉+ 〈Eh, curlP1
hϕ̃

1〉 = 0 ϕ̃1 ∈ Ṽ 1
h 6⊂ H(curl; Ω)

∂tEh − c2 curlP1
hBh = − 1

ε0
Jh in V 2

h ⊂H(div; Ω)
(4.2)

where again Jh denotes an appropriate approximation of the current density J . Below we will see that
Gauss-compatible and charge-conserving schemes are obtained with Raviart-Thomas interpolations,
as in the conforming case.
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For the smoothing projection P1
h one may think of using the L2 projection on the conforming space

V 1
h , but this would have the downside of requiring to invert a V 1

h mass matrix, a global computation
that we precisely whish to avoid. Similarly as in [22] we thus use an averaging procedure based on
the canonical degrees of freedom for the curl-conforming space V 1

h , here (3.9). To obtain a stable
projection in L2 we can recycle the elegant construction proposed in [31], where on each mesh triangle
T the authors use the local basis that is dual to the broken basis functions built in Section 3.3, namely
the basis ψ1,T

λ , λ ∈ Λ1(T ), of Pp(T ) that is defined by the relations

〈ψ1,T
λ , ϕ1,T

γ 〉 = σ1
λ(ϕ1,T

γ |T ) = δλ,γ for λ, γ ∈ Λ1(T ). (4.3)

A convenient projection operator P1
h : L2(Ω)→ V 1

h is then defined by

P1
hu :=

∑
T∈Th

∑
λ∈Λ1(T )

´
ϕ1,T
λ´
ϕ1
λ

〈u, ψ1,T
λ 〉ϕ

1
λ. (4.4)

We note that this is indeed a projection thanks to ϕ1
λ =

∑
T ϕ

1,T
λ , see (3.13), and on Ṽ 1

h it amounts
to averaging the broken version of the degrees of freedom (3.12). Indeed, decomposing ũ ∈ Ṽ 1

h as
ũ =

∑
T∈Th

∑
λ∈Λ1(T ) c

T
λϕ

1,T
λ we infer from the local duality (4.3) that cTλ = σ1

γ(ũ|T ). Using the duality
relation (3.12) we then find

σ1
γ(P1

hũ) = σ1
γ

∑
T∈Th

∑
λ∈Λ1(T )

´
ϕ1,T
λ´
ϕ1
λ

cTλϕ
1
λ

 =
∑
T∈Th

σ1
γ(ũ|T )

´
ϕ1,T
γ´

ϕ1
γ

for γ ∈ Λ1
h, (4.5)

which is indeed an average since ϕ1
γ =

∑
T ϕ

1,T
γ .

Remark 4.1. The projection (4.4) slightly differs from the one constructed in [31] where the average
is unweighted. Here the choice of the weights allows to preserve the first moments of the functions.
Indeed, by writing 1Ω =

∑
T,λ c

T
λψ

1,T
λ and integrating the latter against an arbitrary ϕ1,T

λ yields
cTλ =

´
ϕ1,T
λ . Therefore,ˆ
P1
hu =

∑
T∈Th

∑
λ∈Λ1(T )

ˆ
ϕ1,T
λ 〈u, ψ

1,T
λ 〉 = 〈u,

∑
T∈Th

∑
λ∈Λ1(T )

ψ1,T
λ

ˆ
ϕ1,T
λ 〉 = 〈u,1Ω〉 =

ˆ
u (4.6)

holds for all u ∈ L2(Ω).

Just as the basis functions ϕ1,T
λ can be obtained as affine maps of reference basis functions with an

L2 normalization (3.14), it is possible to design the dual basis functions with the same property,

‖ψ1,T
λ ‖ ∼ 1 for T ∈ Th, λ ∈ Λ1(T ). (4.7)

In particular it is easily seen that P1
h is locally bounded in L2, and since it is a projection on V 1

h it
satisfies

‖(I − P1
h)u‖ ≤ Chm|u|m, 0 ≤ m ≤ p+ 1 (4.8)

with a constant independent of h. In the analysis of the structure-preserving Conga scheme, an im-
portant tool is the adjoint operator (P1

h)∗ which is bounded on L2 like P1
h, and has the form

(P1
h)∗u =

∑
T∈Th

∑
λ∈Λ1(T )

´
T ϕ

1,T
λ´
ϕ1
λ

〈u, ϕ1
λ〉ψ

1,T
λ . (4.9)

Lemma 4.2. The operator (P1
h)∗ maps on Ṽ 1

h , it is locally bounded in L2 and it preserves the piecewise
polynomials of Pp−3(Th) as well as the constants. In particular, if the mesh Th is shape regular we have

‖(I − (P1
h)∗)u‖ ≤ Chm|u|m, 0 ≤ m ≤ max(1, p− 2) (4.10)
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with a constant independent of h.

Proof. The fact that (P1
h)∗ maps on Ṽ 1

h is a direct consequence of the definition Ṽ 1
h = Pp(Th), and

the local L2 bound is easily derived using the localized supports of the basis functions ϕ1
λ and the

normalization of the primal ϕ1,T
λ ’s and the dual ψ1,T

λ ’s, see (3.14) and (4.7). The fact that (P1
h)∗ pre-

serves the constants follows from (4.6). Finally to show that (P1
h)∗ preserve the piecewise polynomials

of Pp−3(Th), we observe that due to the form of the degrees of freedom of volume type in (3.9), the
polynomials ψ1,T

λ , λ ∈ Λ1
vol(T ) are in fact of degree not greater than p − 3 and they form a basis of

Pp−3(T ) (actually they coincide with the polynomials qT,i in (3.12)). Since the associated primal basis
functions ϕ1

λ vanish outside T , they satisfy ϕ1
λ = ϕ1,T

λ and it is easily seen that (P1
h)∗ψ1,T

λ = ψ1,T
λ

for all λ ∈ Λ1
vol(T ). Estimate (4.10) is then a straightforward consequence of these properties and the

Bramble-Hilbert Lemma. Note that the preservation of global constants is enough for the first-order
estimate (m = 1): indeed letting ΩT be the union of the cells which boundary intersects that of T and
writing ū = |ΩT |−1 ´

ΩT
u, we infer from the locality of (P1

h)∗, see (4.9), that
‖(I− (P1

h)∗)u‖L2(T ) ≤ ‖u− ū‖L2(T ) +‖(P1
h)∗(u− ū)‖L2(T ) ≤ (1+‖(P1

h)∗‖)‖u− ū‖L2(ΩT ) ≤ Ch|u|H1(ΩT )
and the global estimate follows from the regularity of the mesh Th.

4.2. Gauss-compatibility of the non-conforming Maxwell solver

We now establish that the above scheme can be made Gauss-compatible and give a priori error
estimates leading to long-time stability. Again we denote Uh = (cBh,Eh)T and F = (0, ε−1

0 J)T . In
compact form, the non-conforming Conga-Ampère scheme (4.2) reads ∂tUh −AhUh = −Fh = −ΠhF
with a composite curl operator that takes a form similar to (3.20) but involves additional projection
operators. Specifically, it is defined on Vh := Ṽ 1

h × V 2
h by

Ah := c

(
0 − curlh

curlh 0

)
with


curlh := curlP1

h|Ṽ 1
h

: Ṽ 1
h → V 2

h

curlh := (curlh)∗ : V 2
h → Ṽ 1

h .
(4.11)

According to Definition 2.3 and using approximation projection operators of the form (3.21), we then
see that this scheme is Gauss-compatible on some product space V̂ 1 × V̂ 2 if for l = 1, 2 we can find
approximation operators πlh and π̂lh mapping on V l

h, such that

π2
h curlu = curlP1

hπ̂
1
hu, u ∈ V̂ 1 (4.12)

and

π1
h curlu = (curlh)∗π̂2

hu, u ∈ V̂ 2. (4.13)

The following compatibility result is then easy to verify.

Theorem 4.3. The Conga-Ampère scheme (4.2) associated with the Raviart-Thomas interpo-
lation (3.15) for the current, π2

h := πdiv
h , is Gauss-compatible on the product space

V̂ 1 × V̂ 2 := C(Ω)×H0(curl; Ω).
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Specifically, Equation (4.12) holds with the operator π̂1
h := πcurl

h defined in (3.10), and Equation (4.13)
holds on H0(curl; Ω) with π1

h := (P1
h)∗ and π̂2

h := PV 2
h
. Moreover, these mappings satisfy

‖π̂1
hu− u‖ . hm|u|m, 2 ≤ m ≤ p+ 1 (4.14)

‖π̂2
hu− u‖ . hm|u|m, 0 ≤ m ≤ p (4.15)

‖π1
hu− u‖ . hm|u|m, 0 ≤ m ≤ max(1, p− 2) (4.16)

‖π2
hu− u‖ . hm|u|m, 1 ≤ m ≤ p. (4.17)

Proof. Equation (4.12) is obtained by applying again the standard commuting diagram recalled in
Lemma 3.4 and using the fact that P1

h = I on V 1
h . To show next that (4.13) holds as stated, i.e.,

(P1
h)∗ curlu = (curlh)∗PV 2

h
u, u ∈ V ∗2 = H0(curl; Ω), (4.18)

we observe that both sides belong to Ṽ 1
h by construction, so that we can test this equality against an

arbitrary v ∈ Ṽ 1
h and use the definition of the various operators to compute

〈(P1
h)∗ curlu, v〉 = 〈curlu,P1

hv〉 = 〈u, curlP1
hv〉 = 〈PV 2

h
u, curlP1

hv〉 = 〈(curlh)∗PV 2
h
u, v〉

which proves (4.18). Estimates (4.14), (4.15), (4.16) and (4.17) are then just (3.24), (3.25), (4.10)
and (3.16) respectively.

If one is solving the Maxwell equations with exact sources, Theorem 2.5 applies and gives the
following a priori estimate.

Corollary 4.4. Let (B,E) be the exact solution to the Maxwell system (2.22). The semi-discrete
solution to the non-conforming Conga-Ampère scheme (4.2) coupled with the Raviart-Thomas inter-
polation (3.15) for the current satisfies

‖(B −Bh)(t)‖+ ‖(E −Eh)(t)‖ . ‖Bh(0)− π̂1
hB(0)‖+ ‖Eh(0)− π̂2

hE(0)‖

+ hm̂
(
|B(0)|m̂ +

ˆ t

0
|∂tB(s)|m̂ ds

)
+ hm

ˆ t

0
|∂tB(s)|m ds+ hm

′(|E(0)|m′ +
ˆ t

0
|∂tE(s)|m′ ds

)
for 2 ≤ m̂ ≤ p+ 1, 0 ≤ m ≤ max(1, p− 2), 1 ≤ m′ ≤ p and with a constant independent of h and t.

Remark 4.5. In the case of approximate sources, one must resort to the analysis developped in
Section 2.4 to be able to derive long-time stability estimates. This will be done in Section 5.2 by
showing that the Conga-Ampère scheme (3.6) can be equipped with a non-standard divergence that
makes it structure-preserving.

5. Application to coupled problems

In this section we apply the new stability analysis proposed in Section 2.1 and 2.4 for approximate
sources: in Section 5.1 we begin by verifying that the conforming Finite Element discretization studied
in Section 3 is naturally structure-preserving in the sense of Definition 2.11, and in Section 5.2 we
show that our new non-conforming Conga discretization of Section 4 is also structure-preserving, once
associated with a nonstandard discrete divergence. Assuming next a discrete particle representation
of the approximate current density, we provide a current deposition method that makes both Maxwell
schemes charge-conserving in the sense of Definition 2.16.

To specify the problem we consider the case where the Maxwell system is coupled with a Vlasov
equation such as (1.1) involving a species of charged particles with phase space distribution function

77



M. Campos Pinto & E. Sonnendrücker

f = f(t,x,v). The charge and current densities are then given by the first moments of f ,

ρ(t,x) := q

ˆ
f(t,x,v) dv and J(t,x) := q

ˆ
vf(t,x,v) dv. (5.1)

5.1. Structure-preserving discretization with conforming Finite Elements

The structure-preserving properties of the conforming Maxwell scheme (3.6) essentially follow from
the fact that R ι−−→ V 1

h
curl−−−→ V 2

h
div−−→ V 3

h is an exact sequence, as recalled in Lemma 3.2. The Poincaré
estimates (2.40) are also standard to verify. Since ιh is just the canonical injection ι the first estimate
is trivial. The second one

‖u‖ ≤ cP ‖curlu‖, u ∈ V 1
h ∩ (ker curl)⊥ (5.2)

is just the Poincaré-Wirtinger inequality (indeed in 2D we have ‖curlu‖ = ‖gradu‖ and (ker curl)⊥
contains only zero-average functions). As for the third one

‖u‖ ≤ cP ‖divu‖, u ∈ V 2
h ∩ (ker div)⊥ (5.3)

it can be derived from the classical stability estimates established for the Raviart-Thomas elements
(use for instance [63, Th. 4] which states that for each v ∈ V 3

h there exists w ∈ V 2
h such that divw = v

and ‖w‖ ≤ C‖v‖ with a constant independent of h, and observe that u in (ker div)⊥ has the smallest
L2 norm among all the w ∈ V 2

h such that divw = divu). Hence we have the following Lemma.

Lemma 5.1. The conforming scheme (3.6) associated with the discrete Gauss laws (2.38) defined byιh = ι : R→ V 1
h

divh = div |V 2
h

: V 2
h → V 3

h

(5.4)

see (3.2)-(3.5), is structure preserving in the sense of Definition 2.11.

5.2. Structure-preserving discretization with the discontinuous Conga method

In order to study the structure-preserving properties of the Conga method, and identify the proper
discrete divergence operators, we first characterize the kernel and the image of the non-conforming
curl operator following the method introduced in [15].

Lemma 5.2. The non-conforming curl operator (4.11), curlh := curlP1
h|Ṽ 1

h
: Ṽ 1

h 7→ V 2
h , satisfies

ker(curlh) = R⊕ (I − P1
h)Ṽ 1

h and Im(curlh) = ker divh .

Proof. Starting with the first identity, the inclusion ⊃ is easily verified by applying curlP1
h. To

verify the inclusion ⊂ we take u ∈ ker(curlh) = Ṽ 1
h ∩ker(curlP1

h). Then P1
hu is in V 1

h ∩ker curl which
coincides with R. Hence we have

u = P1
hu+ (I − P1

h)u ∈ R⊕ (I − P1
h)Ṽ 1

h ,

and we note that this is an orthogonal sum since (P1
h)∗ preserves the constants, see Lemma 4.2. The

second identity follows from Lemma 3.2 and the fact that P1
hṼ

1
h = V 1

h .

We are then in position to establish that the Conga-Ampère scheme is structure preserving when
associated with the proper discrete operators for the Gauss laws.
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Lemma 5.3. The non-conforming Conga scheme (4.2) associated with the discrete Gauss laws (2.38)
defined by ιh : (R× Ṽ 1

h ) 3 (a, ũ) 7→ a+ (I − P1
h)ũ ∈ Ṽ 1

h

divh = div |V 2
h

: V 2
h → V 3

h

(5.5)

see (3.2)-(3.5), is structure preserving in the sense of Definition 2.11.

Remark 5.4. With the proposed operator ιh, the discrete Gauss laws (2.38) read divEh(t) = 1
ε0
ρh(t) in V 3

h

〈Bh(t), a+ (I − P1
h)ũ〉 = 〈B0

h, a+ (I − P1
h)ũ〉 for (a, ũ) ∈ R× Ṽ 1

h .

Proof. Here the exact sequence property (2.39), namely

R× Ṽ 1
h

ιh // Ṽ 1
h

curlh=curlP1
h // V 2

h
div // V 3

h (5.6)
with ιh defined in (5.5), follows from Lemma 5.2. To prove the stability estimates in (2.40) we follow
the proof of Theorem 4.1 from [16].
We begin by observing that

ker ιh = {0} × V 1
h ,

indeed (a, ũ) ∈ ker ιh satisfies (I−P1
h)ũ ∈ R ⊂ V 1

h , hence ũ ∈ V 1
h and a = 0, and the converse inclusion

is straightforward. Considering then ũ ∈ Ṽ 1
h ∩ (V 1

h )⊥, we write
‖(a, ũ)‖2 := |Ω||a|2 + ‖ũ‖2 ≤ 2‖a− P1

hũ‖2 + 2‖P1
hũ‖2 + ‖ũ‖2

≤ 2(‖P1
h‖2 + 1)(‖a− P1

hũ‖2 + ‖ũ‖2) = 2(‖P1
h‖2 + 1)‖a+ (I − P1

h)ũ‖2

where the last equality uses that a− P1
hũ is in V 1

h and hence is orthogonal to ũ. Thus we have
‖(a, ũ)‖ ≤ (2(‖P1

h‖2 + 1))
1
2 ‖ιh(a, ũ)‖, (a, ũ) ∈ (R× Ṽ 1

h ) ∩ (ker ιh)⊥,
which is the first stability estimate in (2.40). For the second estimate we use again the identity
ker curlh = R⊕ (I − P1

h)Ṽ 1
h and consider now
ũ ∈ Ṽ 1

h ∩ (ker curlh)⊥ = Ṽ 1
h ∩ R⊥ ∩ ((I − P1

h)Ṽ 1
h )⊥

and let u ∈ V 1
h ∩ (ker curl)⊥ = V 1

h ∩ R⊥ be defined by curlu = curlP1
hũ. This implies that the

difference u−P1
hũ is in ker curl = R, hence it is orthogonal to ũ. Because the latter is also orthogonal

to (I−P1
h)ũ, we find that it is orthogonal to ũ−u. Using this and the conforming Poincaré estimate (5.2)

for u we compute
‖ũ‖ ≤ (‖ũ‖2 + ‖u− ũ‖2)

1
2 = ‖u‖ ≤ cP ‖curlu‖ = cP ‖curlP1

hũ‖
which proves the second stability estimate in (2.40) for the non-conforming sequence (5.6). Finally the
third estimate is just (5.3) as in the conforming case, and the proof is complete.

5.3. Charge-conserving coupling with smooth particles

In the particle method the phase-space distribution function f solution to (1.1) is approached by a
sum of N (macro) particles with positions xκ(t) and velocities vκ(t) = x′κ(t), κ = 1, . . . N , that are
pushed forward along the integral curves of the semi-discrete force field computed by the Maxwell
scheme, using some given ODE solver. The approximated density is then

fN (t,x,v) =
N∑
κ=1

qκζε(x− xκ(t))ζε(v − vκ(t)) (5.7)
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where qκ is the numerical charge associated with the κ-th (macro) particle and ζε is a shape function
supported in the Ball B(0, ε) of center 0 and radius ε ≥ 0, which can either be a smooth approximation
of the Dirac measure if ε > 0 (typically a spline with unit mass, see e.g. [43]) or the Dirac measure
itself if ε = 0. The corresponding approximations for the charge and current densities read then

ρN (t,x) :=
N∑
κ=1

qκζε(x− xκ(t)) and JN (t,x) :=
N∑
κ=1

qκvκ(t)ζε(x− xκ(t)). (5.8)

We observe that since vκ(t) = x′κ(t), these particle densities satisfy an exact continuity equation,

divJN =
N∑
κ=1

qκ div
(
vκζε(· −xκ)

)
=

N∑
κ=1

qκvκ ·grad ζε(· −xκ) = −
N∑
κ=1

qκ∂tζε(· −xκ) = −∂tρN . (5.9)

In the case where ε = 0 we note that the above equalities hold in the sense of distributions. In this
paper we restrict ourselves to the case of smooth particles (ε > 0) and leave the case of Dirac particles
for a future study, see Remark 3.9.

In order to make both the conforming and non-conforming schemes charge-conserving in the sense
of Definition 2.16 we must then find a proper approximation Jh for the particle current JN . The
following result shows that for this task we can use the Raviart-Thomas interpolation, just as for the
compatibility results stated in Sections 3.4 and 4.2.

Theorem 5.5. The respective conforming (FEM) and non-conforming (Conga) schemes (3.6)
and (4.2), associated with the discrete Gauss laws (2.38) defined by the discrete divergence opera-
tors (5.4) and (5.5) respectively, are charge-conserving in the sense of Definition 2.16 when the discrete
sources are defined from the particle charge and current densities (5.8) by

ρh(t) := PV 3
h
ρN (t) ∈ V 3

h and Jh(t) := πdiv
h JN (t) ∈ V 2

h (5.10)

where PV 3
h
is the L2 (orthogonal) projection on the discontinuous space V 3

h and πdiv
h is the canonical

Raviart-Thomas interpolation recalled in Section 3.3.

Proof. Since we already know that (3.6) and (4.2) are structure preserving when associated with
the respective divergence operators (5.4) and (5.5), it suffices to note that in both cases the proper
discrete divergence is just the restriction of the exact div to the Raviart-Thomas space V 2

h , and to
observe that

divJh = div πdiv
h JN = PV 3

h
divJN = −PV 3

h
∂tρN = −∂tρh

follows from the commuting diagram (3.17) and the continuity equation (5.9) satisfied by the particle
sources.

6. Numerical results

In this section we illustrate the proposed FEM and Conga methods on a couple of simple but relevant
test cases. For this purpose we use an explicit leap-frog time discretization of the form

1
∆t(B

n+1/2
h −Bn−1/2

h ) + curlhEn
h = 0

1
∆t(E

n+1
h −En

h )− c2 curlhBn+1/2
h = − 1

ε0
J
n+1/2
h

(6.1)

in addition to the FEM or Conga discretization in space, defined in (3.6) and (4.2) respectively.
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Remark 6.1. When studying the Conga method we have observed that the smoothed field P1
hBh

was more accurate than the discontinuous field Bh itself: for the studied cases, it had smaller errors
and higher convergence rates. Therefore we have decided to use the smoothed projection P1

h as a
systematic post-processing filter. We remind that this is a local operation on the discrete fields, hence
its effect on the overall computational time is not significant.

6.1. A Pure Maxwell problem: the 2D Issautier test case

To assess the basic convergence and stability properties of the proposed schemes we use the analytical
current source proposed in [42, 29] to study the charge conservation properties of a penalized finite
volume scheme, and also considered in [68] to assess the stability of DG solvers with hyperbolic field
correction. The problem is posed in a metallic cavity Ω = [0, 1]2 with articifial permittivity ε0 and
light speed c equal to one, and the current density is given as

J(t, x, y) = (cos(t)− 1)
(
π cos(πx) + π2x sin(πy)
π cos(πy) + π2y sin(πx)

)
− cos(t)

(
x sin(πy)
y sin(πx)

)
. (6.2)

We consider initial fields E0 = 0 and B0 = 0, so that the exact solution isE(t, x, y) = sin(t)
(
x sin(πy)
y sin(πx)

)
B(t, x, y) = (cos(t)− 1)

(
πy cos(πx)− πx cos(πy)

)
.

(6.3)

We note that the associated charge density reads then ρ(t, x, y) = sin(t)
(

sin(πx) + sin(πy)
)
.

In Figure 6.1 we first assess the convergence properties of the two proposed methods by plotting the
relative L2 errors eh := max

(
‖E−Eh‖/‖E‖, ‖B−Bh‖/‖B‖

)
at time t = 0.2π. In the left plot we show

the results obtained with the conforming FEM (3.6) using different degrees and in the right plot we
show the errors corresponding to the non-conforming Conga method (4.2). We observe that the FEM
solutions converge at the expected rates, see Corollary 3.6. The good news is that the Conga solutions
converge at a rate close to max(1, p − 1) which is about one order better than the one announced in
Corollary 4.4. In particular, we have observed that the accuracy of both first order methods was very
comparable, and for p > 1 the accuracy of the Conga solutions (smoothed as described in Remark 6.1)
of degree p+ 1 was very similar, if not better, to that of the conforming solutions of degree p.

Time wise, we have observed that with our straightforward implementation the Conga simulations
were more efficient than the FEM ones when the meshes became finer, which is not surprising since the
former is purely local and does not require any global matrix inversion. Specifically, our simulations
have shown that for p > 1, the computational time of the FEM method with degree p becomes higher
than that of the Conga method with degree p + 1, as soon as the mesh has more than about 6000
triangles (which corresponds to h ≤ 0.06 for the meshes used here).

In order to assess the long-time properties of the solutions computed when the discrete current
density is obtained with the Raviart-Thomas interpolation operator

J
n+ 1

2
h = πdiv

h J(tn+ 1
2 ) (6.4)

as supported by our analysis, we have plotted in the left panel of Figure 6.2 the L2 norm of the solutions
computed with the FEMmethod (3.6) of degree p = 2, using a mesh with about 250 triangles (h ≈ 0.3).
For comparison we have plotted on the right panel the norm of the solutions obtained similarly, but
using a naive L2 projection on the Raviart-Thomas space for the current density, i.e.,

J
n+ 1

2
h = PV 2

h
J(tn+ 1

2 ). (6.5)

In the latter case a rapid (linear in time) deterioration of the solution is visible, but with the Gauss-
compatible scheme the solution is stable, as predicted by Corollaries 2.6 and 2.7, applied to the constant
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and time-harmonic parts of the Issautier field (6.3). Note that here we have only shown the curves of
the electric field, as those of the magnetic field were always on top of the reference curves (dashed)
computed from the exact solutions. We have also decided not to show the curves obtained with the
non-conforming Conga method, as they were very similar to those in Figure 6.2.
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Figure 6.1. Convergence curves (relative errors vs. maximal triangle diameter h) for
the Issautier problem with analytical source (6.2). Results obtained with the conforming
FEM discretization are shown left, and those obtained with the non-conforming Conga
discretization are shown right.

��

����

����

����

����

��

����

����

�� ���� ���� ���� ���� ����� ����� �����

�����
�
���

���������

��

��

��

��

��

��

��

�� ���� ���� ���� ���� ����� ����� �����

�����
�
���

��������

Figure 6.2. Evolution of the L2 norm of the electric field for the Issautier problem. On
the left plot the numerical solution is obtained by approximating the current density
with the Raviart-Thomas interpolation (6.4), whereas on the right plot the current
density is approximated using a standard L2 projection on the H(div)-conforming
Raviart-Thomas space V 2

h , see (6.5). For comparison, the norm of the exact solution is
shown in dashed lines (on the left plot it is on top of the solid line).

6.2. A Vlasov-Maxwell problem: an academic diode test case

Electromagnetic PIC schemes are a popular approach to model the propagation of charged particle
beams in vacuum devices, see for instance [44, 67, 26] demonstrating the numerical efficiency of DG-
PIC schemes using divergence cleaning techniques, or [60] where a conforming FEM scheme using low
order Nédélec elements (Whitney forms) is coupled with particles using a charge-conserving deposition
method.

To assess the accuracy and stability properties of the charge-conserving FEM-PIC and Conga-PIC
methods proposed in this article, we will use the academic diode test case described in [18].
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Although more advanced Vlasov-Maxwell test cases have been used in [69, 19] to show some benefits
of charge-conserving deposition schemes over divergence cleaning techniques, we note that simple
diodes are a standard test-case to validate the basic properties of charge-conserving particle methods,
see e.g. [5, 17, 66].

Here the domain is a square Ω = [0, 0.1m]2 with metallic boundary ΓM = {0, 0.1m} × [0, 0.1m] and
absorbing boundary ΓA =]0, 0.1m[×{0, 0.1m}. On the left boundary a beam of electrons is steadily
injected and accelerated by a constant external field which derives from the electric potential imposed
on both the cathode (φext = 0 on the left boundary) and the anode (φext = 105V on the right
boundary). Due to the propagation of the beam into the domain (initially empty of charges) a self-
consistent electro-magnetic field develops and is added to this constant external field, and in turn the
trajectories of the electrons are no longer straight lines. However this modification is of small relative
amplitude and the resulting solution tends towards a smooth steady state, so that the convergence of
the numerical approximations can be easily assessed. In Figure 6.3 we show the typical profile of the
solution in the steady state regime (self-consistent electric field on the left and particles on the right),
together with the mesh used in the simulations.

To deposit the current carried by the smooth particles we have implemented an approximated version
of the Raviart-Thomas interpolation operator πdiv

h using Fekete quadrature formulas. In addition to
having good interpolation properties, the Fekete points on a triangle have the convenient property to
contain the quadrature (Gauss-Lobatto) points on the edges, as a subset. It is then possible to reuse
the (quite expensive) current contributions computed on these points when computing the edge-based
degrees of freedom of the deposited current. For the smooth particles we have used second-order shapes
proposed by Jacobs and Hesthaven in [43]. These shapes have the advantage of being polynomial on
their support unlike spline particles which are made of several polynomial pieces. Because the long-
term charge conservation properties of the scheme require an accurate time-average of the particle
current in the deposition method as demonstrated in [30, 17], this feature actually simplifies the
involved algorithms. For more details on these algorithms we refer to [18].

Figure 6.3. Academic beam test case. The self-consistent E field (left plot) and the
numerical particles accelerated towards the right boundary (right plot) show the typical
profile of the solution in the steady state regime. For the considered geometry the
external field is constant Eext = (−106, 0)Vm−1.

To assess the numerical stability properties of the proposed FEM and Conga methods over long
time ranges we plot in Figure 6.4 the profiles of some fields computed with the Conga-PIC scheme,
using a final time chosen such that the particles have travelled approximatively five diode lengths.

On the left panels the fields have been computed by coupling the Conga scheme (4.2) with the charge-
conserving deposition (5.10). For comparison, we have shown the solutions obtained by coupling the
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same Conga scheme with a standard L2 deposition (projection) of the smooth particle current on
the Raviart-Thomas space V 2

h . Because this L2 projection does not satisfy a commuting diagram
similar to (3.17), the resulting coupled scheme is a priori not charge-conserving, and as expected
the simulations exhibit a deterioration of the electric field that grows linearly in time and is clearly
visible in the left panels of Figure 6.4. The very good stability of the solution computed with the
charge-conserving deposition (5.10) is a strong indication that our analysis has produced a better
scheme.

As for the conforming FEM method (coupled either with a standard L2 projection or with the
charge-conserving deposition (5.10)), very similar results have been obtained which are not shown
here, leading to a similar conclusion.

7. Conclusion

In this series of papers we have provided a rigorous solution to the longstanding problem of charge-
conserving coupling between general Maxwell solvers and particle methods, following the classical
approach developped by plasma physicists over the last decades. Our stability analysis extends a re-
cent work on compatible source approximation operators for pure Maxwell solvers, and it is based on
the notion of discrete de Rham structure. This abstract setting allows us to design charge-conserving
deposition schemes for general conforming but also non-conforming Maxwell discretizations, thus of-
fering an interesting alternative to divergence cleaning methods to stabilize discontinuous Galerkin
Particle-in-Cell solvers.

The framework of de Rham sequences also allows the choice of discretizing either the Ampère or the
Faraday equation strongly, the other being handled by duality. In this paper we provided the discrete
framework for a strong Ampère equation and verified that it can be applied to a classical conforming
Finite Element discretization, and also to a new hybrid non-conforming discretization having the
advantage of avoiding global coupling.

Numerical experiments using a pure Maxwell problem and a simple diode configuration allowed
us to validate the theoretical stability of the proposed methods. Future studies should now address
more elaborate test-cases to better understand the benefits of these structure-preserving and charge-
conserving solvers with a strong Ampère law. Another open problem of interest is the one of extending
the proposed deposition schemes for low-regularity current densities.
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Figure 6.4. Academic beam test-case. Snapshots of the self-consistent fields (Ex on
the top row, Ey on the center row and B on the bottom row) obtained by deposing the
conservative current density carried by the particles either with the charge-conserving
scheme implementing the Raviart-Thomas interpolation operator πdiv

h on V 2
h (left plots)

or with an L2 projection on the div-conforming space V 2
h (right plots). In both cases

the scheme is a non-conforming Conga scheme (4.2) with degree p = 2, using a mesh
of approximately 1000 triangles and 10 smooth particles per cell.
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