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Abstract. This article is the second of a series where we develop and analyze structure-preserving finite
element discretizations for the time-dependent 2D Maxwell system with long-time stability properties, and
propose a charge-conserving deposition scheme to extend the stability properties in the case where the current
source is provided by a particle method. The schemes proposed here derive from a previous study where a
generalized commuting diagram was identified as an abstract compatibility criterion in the design of stable
schemes for the Maxwell system alone, and applied to build a series of conforming and non-conforming
schemes in the 3D case. Here the theory is extended to account for approximate sources, and specific charge-
conserving schemes are provided for the 2D case. In this second article we study two schemes which include
a strong discretization of the Faraday law. The first one is based on a standard conforming mixed finite
element discretization and the long-time stability is ensured by the natural L2 projection for the current,
also standard. The second one is a new non-conforming variant where the numerical fields are sought in
fully discontinuous spaces. In this 2D setting it is shown that the associated discrete curl operator coincides
with that of a classical DG formulation with centered fluxes, and our analysis shows that a non-standard
current approximation operator must be used to yield a charge-conserving scheme with long-time stability
properties, while retaining the local nature of L2 projections in discontinuous spaces. Numerical experiments
involving Maxwell and Maxwell-Vlasov problems are then provided to validate the stability of the proposed
methods.
Math. classification. 35Q61, 65M12, 65M60, 65M75.
Keywords. Maxwell equations, Gauss laws, structure-preserving, PIC, charge-conserving current deposi-
tion, conforming finite elements, discontinuous Galerkin, Conga method.

1. Introduction

Like its companion article [10], this work addresses the issue of long-time stability in time-dependent
Maxwell solvers, either considered alone or coupled with an additional scheme for the current sources.
It is known that this issue is strongly related to the good preservation of the divergence constraints
at the discrete level. We refer to the introduction of [10] for a review of the literature on which our
work is based, and for a presentation of its main guiding lines.

In this article we pursue this study and propose two compatible schemes that include discrete
Faraday laws in strong form for the 2D Maxwell system

∂tB + curlE = 0

∂tE − c2 curlB = − 1
ε0
J .

(1.1)

The first scheme is a standard curl-conforming mixed finite element method for which we verify that
a standard Galerkin (L2) projection provides a Gauss-compatible approximation for the current J ,
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in the sense of [11]. The second scheme extends this construction to spaces of fully discontinuous
fields as in standard DG methods, in order to avoid inverting global mass matrices. It belongs to the
class of conforming/non-conforming (Conga) methods designed in [11] to preserve the mixed form of
conforming Galerkin approximations, and it also comes with a compatible approximation operator for
the current. An interesting feature of this particular method is that, in 2D, the associated discrete
curl operator coincides with that of a classical DG method with centered fluxes. However, the current
approximation operator is non-standard.

We then complete these two schemes by identifying for each of them the discrete divergence operators
that form a complete structure-preserving discretizations in the sense of [10]. In the case where the
Maxwell system (1.1) is coupled with an additional equation for the source, such as a Vlasov equation

∂tf + v ·∇xf + q

m
(E + v ×B) ·∇vf = 0 (1.2)

describing the collisionless evolution of one or several particle species with charge q and massm through
their distribution function f = f(t,x,v), this framework allows us to show that the approximation
operators identified as Gauss-compatible for the Maxwell system alone can also be used to deposit the
associated current density

J :=
ˆ
vf dv (1.3)

(or better, its approximation by numerical particles) on the finite element spaces in a stable, charge-
conserving way, be it for the conforming or the non-conforming Galerkin discretization.

Finally, we provide numerical experiments that validate the approach and the numerical convergence
of the proposed schemes (established by theoretical means for the Maxwell system alone), using a pure
Maxwell problem and an academic Maxwell-Vlasov test case.

The outline is as follows: In Section 2 we briefly recall the main criterion identified by the stability
analysis developped in our previous works [11, 10] to the case considered here of a 2D Maxwell
equations with a strong Faraday law. Then in Section 3 we introduce the needed discrete function
spaces for a conforming Finite Element approximation and verify that they fit into our abstract
framework. We next consider in Section 4 the case of discontinuous non conforming Finite Elements
where our framework enables in a non trivial way to construct long time stable discretizations. We
also show that in 2D, this new scheme can be formulated as a Discontinuous Galerkin (DG) scheme
with a non-standard current approximation method. In Section 5 we then show how to construct an
approximation of the current from the particles that yields a stable scheme, which in the DG case
can be seen as a standard deposition method with a local correction. All this is finally validated in
Section 6 on two simple but relevant test cases.

2. Theoretical framework

To analyze the conforming and non-conforming methods described in the following sections we rely
on the tools provided in Section 2 of our companion article [10]. There the 2D Maxwell equations on
a bounded domain Ω were reformulated using a sequence of operators

V 0 d0=ι // V 1 d1=curl // V 2 d2=div // V 3 0 // {0} (2.1)

with ι the canonical injection from R to L2(Ω), and respective domains V 0 = R, V 1 = H(curl,Ω),
V 2 = H(div,Ω) and V 3 = L2(Ω). If Ω is a bounded and simply-connected Lipschitz domain then the
sequence (2.1) is exact, and so is the dual sequence of adjoint operators

{0} 0 // V ∗3
(d2)∗=−grad // V ∗2

(d1)∗=curl // V ∗1
(d1)∗=curl // V ∗0 (2.2)
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with domains V ∗3 = H1
0 (Ω), V ∗2 = H0(curl,Ω), V ∗1 = L2(Ω) and V ∗0 = R. Letting then A be defined by

A = c

(
0 −(d1)∗
d1 0

)
= c

(
0 − curl

curl 0

)
on V = V 1 × V ∗2 = H(curl,Ω)×H0(curl,Ω),

the time-dependent Maxwell equations (1.1) with metallic boundary conditions can be rewritten as

∂tU −AU = −F (2.3)

with U = (cB,E)T , F = (0, ε−1
0 J)T , and the Gauss laws in the reduced 2D setting can be recast as

DU = R (2.4)

where R := (
ffl

ΩcB
0, ε−1

0 ρ)T represents the charge density in this 2D model, and D is a composite
divergence operator defined by

D =
(

(d0)∗ 0
0 d2

)
=
(ffl

Ω 0
0 div

)
on V ∗1 × V 2 = L2(Ω)×H(div,Ω).

For completeness we recall the following definitions from Section 2 of [10], as they are central in
our stability and error analysis. First a notion of Gauss-compatible approximation was derived from
our previous work [11], which allows for long-stable schemes in the case of exact sources (see e.g.
Corollaries 2.6 and 2.7 in [10]).

Definition 2.1 (Def. 2.3 from [10]). We say that a discrete operator Ah : Vh → Vh forms a Gauss-
compatible approximation of A together with a mapping Πh on Vh if there exists an auxiliary
mapping Π̂h : V̂ → Vh that converges pointwise to the identity as h→ 0, and that is such that

ΠhA = AhΠ̂h (2.5)

holds on V̂.

Then, notions of structure-preserving and charge-conserving discretizations were introduced to guar-
antee long-time stability estimates in the case of approximate sources as detailed in Sections 2.1 and
2.4 of [10], see in particular Theorem 2.19. Since in this article we design schemes based on the second
sequence (2.2), the appropriate definition is as follows.

Definition 2.2 (Def. 2.10 and Lemma 2.13 from [10]). We say that a semi-discrete 2D Maxwell system
of the form

∂tBh + curlhEh = 0

∂tEh − c2 curlhBh = − 1
ε0
Jh

with

 curlh : V 1
h → V 2

h

curlh := (curlh)∗ : V 2
h → V 1

h

(2.6)

completed with discrete Gauss laws of the form divhEh = 1
ε0
ρh

(ιh)∗Bh = (ιh)∗B0
h

with

 divh : V 2
h → V 3

h

ιh : V 0
h → V 1

h

(2.7)

is structure-preserving if the following properties hold.

• Exact sequence property: with gradh := −(divh)∗, the sequence

V 3
h

gradh // V 2
h

curlh // V 1
h

(ιh)∗ // V 0
h (2.8)

is exact, in the sense that gradh V 3
h = ker curlh and curlh V 2

h = ker(ιh)∗.
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• Stability: the operators in the above sequence satisfy Poincaré estimates,
‖u‖ ≤ cP ‖gradh u‖, u ∈ V 3

h ∩ (ker grad)⊥

‖u‖ ≤ cP ‖curlh u‖, u ∈ V 2
h ∩ (ker curlh)⊥

‖u‖ ≤ cP ‖(ιh)∗u‖, u ∈ V 1
h ∩ (ker(ιh)∗)⊥.

(2.9)

with a constant cP independent of h.

In Lemma 2.14 from [10] it is observed that if the discrete system (2.6) is put under the form{
∂tUh −AhUh = −Fh

DhUh = Rh
(2.10)

with

Ah := c

(
0 − curlh

curlh 0

)
: (V 1

h × V 2
h )→ (V 1

h × V 2
h ), Dh :=

(
(ιh)∗ 0

0 divh

)
: (V 1

h × V 2
h )→ (V 0

h × V 3
h )

then properties (2.8)-(2.9) hold if and only if the composite curl and divergence operators satisfy:
(i) ‖Z‖ ≤ cP ‖AhZ‖, Z ∈ (kerAh)⊥ (unif. stability of Ah) (2.11)
(ii) ‖Z‖ ≤ cP ‖DhZ‖, Z ∈ (kerDh)⊥ (unif. stability of Dh) (2.12)
(iii) kerDh = (kerAh)⊥ (compatibility of the kernels). (2.13)

The purpose of Definition 2.2 is to guarantee the long-time stability of the solutions to the full dis-
crete Maxwell system (2.10). A criterion on the discrete sources is then introduced to guarantee that
solutions to the discrete Ampère and Faraday equations also satisfy the proper discrete Gauss law.

Definition 2.3 (Def. 2.15 from [10]). We say that a semi-discrete Maxwell system of the form (2.10)
with Ah a skew-symmetric operator, is charge-conserving if

(i) it is structure-preserving in the sense that properties (2.11), (2.12) and (2.13) hold,

(ii) and the approximate sources satisfy the corresponding discrete continuity equation
∂tRh +DhFh = 0. (2.14)

Finally we observe that with the notation of Definition 2.2, the first equation from (2.14) is trivial
and the second one rewrites as

∂tρh + divh Jh = 0. (2.15)

3. Conforming elements for the 2D Maxwell system with a strong Faraday law

Although it makes no difference on the continuous problem whether one takes the sequence (2.1) or
its dual version (2.2) for the primal complex, on the discrete level it leads to two different types of
Galerkin methods. In our companion article [10] we have described the first choice which leads to
a strong discretization of the Ampère equation with natural boundary conditions. In this article we
consider the second choice which leads to a strong discrete Faraday equation with essential boundary
conditions.

Because the construction of our new non-conforming method relies on a good understanding of the
conforming tools, we now verify that the structure of the Finite Element exterior calculus introduced
by Arnold, Falk and Winther [1, 2, 3], linking the conforming Galerkin approximations of the different
Hilbert spaces perfectly fits in the framework introduced in the previous sections. Specifically, this will
allow us to show in Section 3.4 that a standard sequence of Finite Element spaces can be equipped
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with a Gauss-compatible approximation operator in the sense of Definition 2.1, and in Section 5.1
we will verify that it naturally yields a structure-preserving discretization of Maxwell’s equations in
the sense of Definition 2.2. Our non-conforming approximation will consist in giving more freedom
in the choice of the discrete spaces, in particular to include discontinuous broken spaces, by carefully
choosing the projection operators and discrete differential operators so as to preserve the compatibility
and structure-preserving properties.

3.1. Mesh notations

For the mesh elements we use the same notations as in [10]. In particular, we assume that the domain
Ω is partitioned by a regular family of conforming simplicial meshes Th with maximal triangle diameter
h tending to zero. We denote by E(T ) the edges of a triangle T ∈ Th, and Eh := ∪T∈ThE(T ) the set
of all the edges in the mesh. Boundary edges are stored in EBh . Assuming that the triangles in Th are
given arbitrary indices i = 0, . . . ,#(Th)−1, we fix an orientation for the edges as follows. Given e ∈ Eh,
we let T−(e) be the triangle of minimum index for which e is an edge, and if e is not a boundary edge
we denote by T+(e) the other triangle sharing e. The edge e is then oriented by setting

ne := nT
−(e)

e ,

where nTe denotes the outward unit vector of T that is normal to e, for any e ∈ E(T ).

3.2. Conforming Finite Elements with a strong Faraday law

To derive finite element schemes with a strong Faraday equation we approximate the non-trivial spaces
in the dual sequence (2.2), i.e.,

V ∗3 = H1
0 (Ω)

(d2)∗=−grad // V ∗2 = H0(curl; Ω)
(d1)∗=curl // V ∗1 = L2(Ω) (3.1)

by a sequence of discrete spaces V 3
h

(d2
h)∗
−→ V 2

h

(d1
h)∗
−→ V 1

h . In this section we opt for a conforming sequence,
i.e., such that

V 3
h ⊂ H1

0 (Ω), V 2
h ⊂H0(curl; Ω), V 1

h ⊂ L2(Ω), (3.2)
so that (dlh)∗ can be defined as the restriction of (dl)∗ to V l+1

h . Observe that here we denote standard
(strong) differential operators as dual ones, and conversely the plain notation dlh : V l

h → V l+1
h will

be used to denote the discrete adjoint of (dlh)∗, which only makes sense in a weak form, using test
functions from V l+1

h . This rather unusual choice is motivated by our desire to use notations consistent
with our companion article [10] where the discretization is performed on the sequence (2.1) which
is seen as the primal one, but obviously the other choice could be made as well by calling (2.2) the
primal sequence.

Again, several options are possible for the conforming spaces in (3.2). Here we focus on a standard
strategy (see, e.g., [20]) where the spaces V l

h are respectively defined as a continuous Finite Element
space, a Nédélec Finite Element space of the first kind and a discontinuous Galerkin Finite Element
space, but we note that other choices are possible, see e.g. Remark 4.7 below. Specifically, given an
integer degree p ≥ 1 we take

V 3
h := Lp,0(Ω, Th)

(d2
h)∗:=−grad |

V 3
h // V 2

h := N p−1,0(Ω, Th)
(d1
h)∗:=curl |

V 2
h // V 1

h := Pp−1(Th) (3.3)

where
Pp−1(Th) := {v ∈ L2(Ω) : v|T ∈ Pp−1(T ), T ∈ Th} (3.4)
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denotes the space of piecewise polynomials of maximal degree p− 1 on the triangulation Th,

Lp,0(Ω, Th) := Pp(Th) ∩ C0(Ω) (3.5)

corresponds to the continuous “Lagrange” elements with homogeneous boundary conditions, and

N p−1,0(Ω, Th) := N p−1(Th) ∩H0(curl; Ω) with N p−1(T ) := Pp−1(T )2 +
(−y
x

)
Pp−1(T ) (3.6)

is the (first-kind) Nédélec Finite Element space of order p− 1 (thus of maximal degree p), again with
homogeneous boundary conditions, see e.g., [4].

Remark 3.1. To be conforming in H(curl; Ω), the piecewise polynomial space V 2
h must be composed

of vector fields that have no tangential discontinuities on the edges of the mesh, in the sense that for
any u ∈ V 2

h the tangential trace ne × u on an edge e must be the same when defined either from
T−(e) or from T+(e). In particular, every basis of V 2

h must contain some vector fields supported on
two adjacent cells at least.

For the sake of completeness we recall the following well-kown result which will be central to our
analysis. The proof is almost the same as the one of Lemma 3.2 in [10], up to the boundary conditions
which are treated by straightforward considerations, and will be skipped.

Lemma 3.2. The following sequence is exact, in the sense that the range of each operator coincides
with the kernel of the following operator,

{0} 0 // V 3
h = Lp,0(Ω, Th)

(d2
h)∗=−grad

// V 2
h = N p−1,0(Ω, Th)

(d1
h)∗=curl

// V 1
h = Pp−1(Th)

ffl
Ω // R

where we remind that
ffl

Ω : u 7→ |Ω|−1 ´
Ω u.

Based on the above spaces, a standard conforming Finite Element method consists in computing
the unique solution (Bh,Eh) ∈ C0([0, T ];V 1

h × V 2
h ) to 〈∂tBh, ϕ〉+ 〈curlEh, ϕ〉 = 0 ϕ ∈ V 1

h ⊂ L2(Ω)

〈∂tEh,ϕ〉 − c2〈Bh, curlϕ〉 = − 1
ε0
〈Jh,ϕ〉 ϕ ∈ V 2

h ⊂H0(curl; Ω)
(3.7)

where Jh ∈ C0([0, T ];V 2
h ) represents an approximation of the given current density J and 〈·, ·〉 stands

for the scalar product in L2(Ω). Note that using the embedding curlV 2
h ⊂ V 1

h the second equation
amounts to

∂tBh + curlEh = 0 (in V 1
h ) (3.8)

which justifies our “strong Faraday” terminology.
This space discretization is standard ans has been studied in, e.g., Ref. [20, 19, 25, 9] where the

source term J is approximated with a standard orthogonal projection on V 2
h , leading to define Jh by

〈Jh,ϕ〉 = 〈J ,ϕ〉 for ϕ ∈ V 2
h . We will see that this approximation of the source term gives a compatible

scheme. In the non-conforming case however, we will need to use a different approximation operator,
see Theorem 4.2.

3.3. Projection operators and commuting diagram properties

In the conforming Finite Element case the projection operators and commuting diagram properties
have been discussed and described in a series of papers by Arnold, Falk and Winther on what they
call the Finite Element Exterior Calculus (FEEC) [1, 2, 3]. For the present paper we shall only need
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to review the properties of πcurl
h , the canonical projection on the curl-conforming Nédélec space. In 2D

this projection uses edge and face based degrees of freedom, and it satisfies a commuting diagram

H1(Ω)2 ∩H0(curl; Ω) curl //

πcurl
h

��

L2(Ω)

P
V 1
h

��
V 2
h

curl // V 1
h

(3.9)

involving the orthogonal projection on the discontinuous space V 1
h , see Equation (3.12) below.

As a matter of fact, the canonical projection on the Nédélec space can be derived from the standard
Raviart-Thomas interpolation (recalled in our companion article [10]) by a rotation of π/2. Specifically,
the degrees of freedom for the finite element space V 2

h = N p−1,0(Ω, Th) read (see, e.g., [21] or [15]){
M2

h(T,u) := {
´
T u · q : q ∈ Pp−2(T )2} for every triangle T ∈ Th,

M2
h(e,u) := {

´
e(ne × u) q : q ∈ Pp−1(e)} for every edge e ∈ Eh \ EBh

(3.10)

where EBh denotes the set of boundary edges. The Nédélec finite element interpolation

πcurl
h : H1(Ω)2 → V 2

h := N p−1,0(Ω, Th)
is then defined by the relations
M2

h(T, πcurl
h u− u) = {0}, T ∈ Th and M2

h(e, πcurl
h u− u) = {0}, e ∈ Eh \ EBh . (3.11)

Again, this interpolation satisfies a commuting diagram property which is easily verified using inte-
gration by parts,

curl πcurl
h u = PV 1

h
curlu, u ∈ H1(Ω)2 ∩H0(curl; Ω) (3.12)

where PV 1
h
denotes the L2 projection on the discontinuous space V 1

h = Pp−1(Th), and a classical error
estimate

‖πcurl
h u− u‖ ≤ chm|u|m, 1 ≤ m ≤ p, u ∈H0(curl; Ω). (3.13)

Remark 3.3. As is well known, in 2D the Nédélec finite element space N p−1 can be obtained by
rotating the Raviart-Thomas space RT p−1 by an angle of π/2: we have N p−1(T ) = RRT p−1(T )
where R : u 7→ (−uy, ux). Up to the boundary conditions (for which the degrees of freedom need to
be added or substracted from the respective bases), it is then easily verified that πcurl

h = Rπdiv
h R−1,

so that the properties listed here for the Nédélec interpolation can be derived from those of the
Raviart-Thomas interpolation recalled in [10], using the identity curl = divR−1.

When designing non-conforming approximations based on broken spaces in Section 4.1 it will be
convenient to follow [13] as we have done in [10] for the non-conforming strong Ampère scheme, and
use a basis for V 2

h that is dual to the above degrees of freedom. Its construction goes as follows. Given
scalar-valued bases qe,i, i = 1, . . . p for the edge polynomials Pp−1(e), e ∈ Eh \ EBh , and vector-valued
bases qT,i, i = 1, . . . , p(p − 1) for the “volume” polynomials Pp−2(T )2, T ∈ Th, we span the moment
spaces listed in (3.10) with the degrees of freedom{

σ2
T,i(u) =

´
T u · qT,i, T ∈ Th, i = 1, . . . , p(p− 1)

σ2
e,i(u) =

´
e(ne × u)qe,i, e ∈ Eh \ EBh , i = 1, . . . , p.

(3.14)

It follows from the unisolvence of (3.10) that N p−1(T ) admits a unique basis ϕ2,T
λ with indices in

Λ2(T ) := Λ2
vol(T ) ∪ Λ2

edge(T ) where
{

Λ2
vol(T ) := {(T, i) : i = 1, . . . , p(p− 1)}

Λ2
edge(T ) := {(e, i) : e ∈ E(T ), i = 1, . . . , p}
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that is dual to the associated degrees of freedom, in the sense that we have σ2
γ(ϕ2,T

λ ) = δγ,λ for
γ, λ ∈ Λ2(T ). To form a basis of the global space V 2

h we then gather all the indices, except for those
attached to boundary edges, into

Λ2
h :=

(
∪T∈Th Λ2(T )

)
\ {(e, i) : e ∈ EBh , i = 1, . . . p}.

The curl-conformity of (3.10) then guarantees that if we set ϕ2,T
λ := 0 for λ ∈ Λ2

h \ Λ2(T ) and if we
extend ϕ2,T

λ by 0 outside T for λ ∈ Λ2(T ), then the piecewise polynomials

ϕ2
λ :=

∑
T∈Th

1Tϕ
2,T
λ =

∑
T∈Th

ϕ2,T
λ (3.15)

are in H0(curl; Ω) and they form a basis for the space V 2
h that is dual to the associated degrees of

freedom in the sense that
σ2
γ(ϕ2

λ) = δγ,λ for γ, λ ∈ Λ2
h.

Moreover, if the polynomials qe,i and qT,i involved in (3.14) are defined as suitable affine maps of
polynomial bases defined on a reference element, the resulting local basis functions ϕ2,T

λ will also
correspond to affine maps of the associated reference basis. As a result, if the mesh Th is shape regular
in the standard sense of, e.g., [15, Def. I-A.2], it is possible to ask for normalized local basis functions
satisfying, e.g.,

‖ϕ2,T
λ ‖ ∼ 1 for T ∈ Th, λ ∈ Λ2(T ). (3.16)

3.4. Gauss-compatibility of the conforming FEM-Faraday scheme

In compact form, the conforming scheme (3.7) reads ∂tUh −AhUh = −Fh with Uh = (cBh,Eh)T and
Fh = (0, ε−1

0 Jh)T . The composite curl operator is defined on Vh := V 1
h × V 2

h by

Ah := c

(
0 − curlh

curlh 0

)
with

 curlh := curl |V 2
h

: V 2
h → V 1

h

curlh := (curlh)∗ : V 1
h → V 2

h .
(3.17)

Following Definition 2.1 and considering source and auxiliary approximation operators of the form

Πh =
(
π1
h 0

0 π2
h

)
and Π̂h =

(
π̂1
h 0

0 π̂2
h

)
(3.18)

we then see that this scheme is Gauss-compatible on some product space V̂ 1 × V̂ 2 if for l = 1, 2 we
can find approximation operators πlh and π̂lh mapping on V l

h, such that

π2
h curlu = (curlh)∗π̂1

hu, u ∈ V̂ 1 (3.19)

and
π1
h curlu = curl π̂2

hu, u ∈ V̂ 2. (3.20)
Note that these relations read π2

hd
1u = d1

hπ̂
1
hu and π1

h(d1)∗u = (d1
h)∗π̂2

hu with the notations of Section 2
and 3.2.

Theorem 3.4. The conforming FEM-Faraday scheme (3.7) associated with an orthogonal projection
for the current, namely

π2
h := PV 2

h
: L2(Ω)2 → V 2

h = N p−1,0(Ω, Th), (3.21)

see (3.6), is Gauss-compatible on the product space

V̂ 1 × V̂ 2 := V 1 × (H1(Ω) ∩ V ∗2 )
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where V 1 = H(curl; Ω) and V ∗2 = H0(curl; Ω), see Section 2. In particular, Equation (3.19) holds with
an L2-projection π̂1

h := PV 1
h
and Equation (3.20) holds with π1

h := PV 1
h
and π̂2

h := πcurl
h the canonical

(Nédélec) interpolation on V 2
h defined in (3.11). Moreover, these mappings satisfy

‖π̂1
hu− u‖ . hm|u|m, 0 ≤ m ≤ p (3.22)

‖π̂2
hu− u‖ . hm|u|m, 1 ≤ m ≤ p, u ∈H0(curl; Ω) (3.23)

‖π1
hu− u‖ . hm|u|m, 0 ≤ m ≤ p (3.24)

‖π2
hu− u‖ . hm|u|m, 0 ≤ m ≤ p. (3.25)

Proof. Let us first show that the relation (3.19) holds as claimed, that is,
PV 2

h
d1u = d1

hPV 1
h
u, u ∈ V 1. (3.26)

Since both sides belong to V 2
h by construction, one can test this equality against an arbitrary v ∈ V 2

h ,
which is in V ∗2 by conformity (3.2). Using the definition of the various operators, in particular the fact
that (d1

h)∗ is defined as the restriction of (d1)∗ to V 2
h , we compute

〈PV 2
h
d1u,v〉 = 〈d1u,v〉 = 〈u, (d1)∗v〉 = 〈u, (d1

h)∗v〉 = 〈PV 1
h
u, (d1

h)∗v〉 = 〈d1
hPV 1

h
u,v〉,

which proves (3.19). On the other hand, (3.20) is nothing but the commuting diagram (3.12). Finally
the error estimates are standard for L2 projections, and (3.22) is (3.13).

If one is solving the Maxwell equations with exact sources, Theorem 2.5 from [10] applies and gives
the following a priori estimate.

Corollary 3.5. Let (B,E) be the exact solution to the Maxwell system (2.3). The semi-discrete
solution to the FEM-Faraday scheme (3.7) coupled with the orthogonal projection (3.21) for the current
satisfies

‖(B −Bh)(t)‖+ ‖(E −Eh)(t)‖ . ‖Bh(0)− π̂1
hB(0)‖+ ‖Eh(0)− π̂2

hE(0)‖

+ hm
(
|B(0)|m +

ˆ t

0
|∂tB(s)|m ds

)
+ hm

′(|E(0)|m′ +
ˆ t

0
|∂tE(s)|m′ ds

)
for 0 ≤ m ≤ p, 1 ≤ m′ ≤ p, and with a constant independent of h and t.

Remark 3.6. A priori estimates leading to long-time stability are known already for the strong
Faraday scheme (3.7), see [20, 19, 25]. The main benefit of our analysis is that it readily applies to
Maxwell solvers for which the L2 projection is not a compatible approximation operator, and non-
conforming discretizations, see e.g. Section 4.2.

Remark 3.7. In the case of approximate sources, one must resort to the analysis developped in
Section 2.4 of [10] to be able to derive long-time stability estimates. This will be done in Section 5.1
by showing that the FEM-Faraday scheme (3.7) is naturally structure-preserving.

4. Discontinuous elements for the 2D Maxwell system with a strong Faraday law

Because of its weak formulation, discretizing in time the Ampère law from (3.7) requires to invert
a mass matrix associated with the space V 2

h , and due to the curl-conformity of the latter space the
resulting inversion can not be performed locally. This can of course become a computational burden
when the meshes become very fine and when parallel algorithms come into play. For this reason we
study a non-conforming method where the solution is approximated in a fully discontinuous space,

Ṽ 2
h 6⊂ V ∗2 = H0(curl; Ω).
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It turns out from our analysis that a natural choice corresponds to using the broken Nédélec space

Ṽ 2
h := N p−1(Th) = {u ∈ L2(Ω) : u|T ∈N p−1(T ), T ∈ Th} (4.1)

see (3.6). Standard polynomial spaces are also a possible choice, as discussed in Remark 4.7 below.
Although the common way for designing non-conforming discretizations is to follow the discontin-

uous Galerkin methodology (see e.g. [14, 18]), in this work we aim at preserving a strong Faraday
equation like (3.8). For that purpose we experiment a different path and apply to the 2D problem
the ideas of the Conga discretization proposed and studied in [11] for the 3D Maxwell system (the
name standing for “Conforming/Non-conforming Galerkin”). In particular, our non-conforming dis-
cretization will be derived from the conforming one (3.3). As we did for the conforming case, and
following our 3D study [11], we will show that this non-conforming discretization can be equipped
with a Gauss-compatible approximation operator in the sense of Definition 2.1. In Section 5.2 we will
extend this analysis by further verifying that it is essentially a structure-preserving discretization of
Maxwell’s equations in the sense of Definition 2.2, once associated with a nonstandard discrete diver-
gence. Interestingly, we will see that in the 2D setting the resulting method can be interpreted as a
centered DG method, see Section 4.3.

4.1. Non-conforming “Conga” discretization

To extend the conforming method (3.7) on the non-conforming space Ṽ 2
h we consider a smoothing

operator
P2
h : L2(Ω)2 → V 2

h (4.2)
(which is not required to satisfy a commuting diagram) and we define the associated Conga approxi-
mation (Bh,Eh) ∈ C0([0, T ];V 1

h × Ṽ 2
h ) by the system ∂tBh + curlP2

hEh = 0 in V 1
h

〈∂tEh, ϕ̃〉 − c2〈Bh, curlP2
hϕ̃〉 = − 1

ε0
〈Jh, ϕ̃〉 ϕ̃ ∈ Ṽ 2

h 6⊂H0(curl; Ω)
(4.3)

where again Jh represents an appropriate approximation (in Ṽ 2
h ) of the current density J . Below we will

see that Gauss-compatible and charge-conserving schemes cannot be obtained with a straightforward
L2 projection as in the conforming case.

For the smoothing projection P2
h one may think of using the L2 projection on the conforming space

V 2
h , but this would have the downside of requiring to invert a V 2

h mass matrix, a global computation
that we precisely whish to avoid. Similarly as in [11, 10] we thus use an averaging procedure based
on the canonical degrees of freedom for the curl-conforming space V 2

h , here (3.10). To obtain a stable
projection in L2 we can recycle the elegant construction proposed in [13], where on each mesh triangle
T the authors use the local basis that is dual to the broken basis built in Section 3.3, namely the basis
ψ2,T
λ , λ ∈ Λ2(T ), of N p−1(T ) that is defined by the relations

〈ψ2,T
λ ,ϕ2,T

γ 〉 = σ2
λ(ϕ2,T

γ |T ) = δλ,γ for λ, γ ∈ Λ2(T ). (4.4)

A convenient projection operator P2
h : L2(Ω)2 → V 2

h is then given by

P2
hu :=

∑
λ∈Λ2

h

∑
T∈Th(λ)

〈u,ψ2,T
λ 〉

#(Th(λ))ϕ
2
λ (4.5)

where Th(λ) := {T ∈ Th : λ ∈ Λ2(T )} denotes the cells for which λ is an active index. Using (3.15)
and (4.4) we verify easily that this is indeed a projection on V 2

h = Span({ϕ2
λ : λ ∈ Λ2

h}). More
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precisely, on the broken Nédélec space it amounts to averaging the broken version of the degrees of
freedom (3.14):

u ∈N p−1(Th) =⇒
{
σ2
T,i(P2

hu) = σ2
T,i(u|T ) = σ2

T,i(u), T ∈ Th, i = 1, . . . , p(p− 1)
σ2
e,i(P2

hu) = 1
2(σ2

e,i(u|T−(e)) + σ2
e,i(u|T+(e))), e ∈ Eh \ EBh , i = 1, . . . , p

(4.6)
where we remind that T±(e) are the two triangles that share the interior edge e. Indeed, decomposing
u =

∑
T∈Th, λ∈Λ2(T ) c

T
λϕ

2,T
λ , we infer from (4.4) that cTλ = σ2

γ(u|T ). The duality (3.14) gives then

σ2
γ(P2

hu) = σ2
γ

∑
λ∈Λ2

h

∑
T∈Th(λ)

cTλ
#(Th(λ))ϕ

2
λ

 =
∑
T∈Th(γ) σ

2
γ(u|T )

#(Th(γ)) , for γ ∈ Λ2
h, (4.7)

hence (4.6). Now, just as the basis functions ϕ2,T
λ can be obtained as affine maps of reference basis

functions with an L2 normalization (3.16), it is possible to design the dual basis functions with the
same property,

‖ψ2,T
λ ‖ ∼ 1 for T ∈ Th, λ ∈ Λ2(T ). (4.8)

In particular, P2
h is locally bounded in L2 and since it is a projection on the conforming space V 2

h it
satisfies an error estimate similar to (3.13).

In the analysis of the structure-preserving Conga scheme, an important tool is the adjoint operator
(P2

h)∗ which is bounded on L2 like P2
h, and has the form

(P2
h)∗u =

∑
λ∈Λ2

h

∑
T∈Th(λ)

〈u,ϕ2
λ〉

#(Th(λ))ψ
2,T
λ . (4.9)

Lemma 4.1. The operator (P2
h)∗ maps on the non-conforming space N p−1(Th), it is locally bounded

in L2 and it preserves the piecewise polynomials of Pp−2(Th)2. In particular, if the mesh Th is shape
regular we have

‖(I − (P2
h)∗)u‖ ≤ Chm|u|m, 0 ≤ m ≤ p− 1 (4.10)

with a constant independent of h.

Proof. The fact that (P2
h)∗ maps on N p−1(Th) is obvious as everyψ2,T

λ is in this space, and the local L2

bound is easily derived using the localized supports of the basis functions ϕ2
λ and the normalization of

the primal ϕ2,T
λ ’s and the dual ψ2,T

λ ’s, see (3.16) and (4.8). To show that (P2
h)∗ preserves the piecewise

polynomials of Pp−2(Th)2 we observe that due to the form of the volume-based degrees of freedom
in (3.10), the functions ψ2,T

λ , λ = (T, i) ∈ Λ2
vol(T ), coincide with the polynomials qT,i in (3.14), hence

they form a basis of Pp−2(T )2. Since the associated ϕ2
λ vanish outside T , they satisfy ϕ2

λ = ϕ2,T
λ

and it is easily seen that (P2
h)∗ψ2,T

λ = ψ2,T
λ for all λ ∈ Λ2

vol(T ) (note that every such λ is in Λ2
h).

Estimate (4.10) is then a straightforward consequence of these properties and the Bramble-Hilbert
Lemma.

4.2. Gauss-compatibility of the non-conforming Maxwell solver

We now establish that the above scheme can be made Gauss-compatible and give a priori error
estimates leading to long-time stability. Again we denote Uh = (cBh,Eh)T and Fh = (0, ε−1

0 Jh)T . In
compact form, the non-conforming Conga-Faraday scheme (4.3) reads ∂tUh − AhUh = −Fh with a
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composite curl operator that takes a form similar to (3.17) but also involves the smoothing projection
P2
h. Specifically, it is defined on Vh := V 1

h × Ṽ 2
h by

Ah := c

(
0 − curlh

curlh 0

)
with


curlh := curlP2

h|Ṽ 2
h

: Ṽ 2
h → V 1

h

curlh := (curlh)∗ : V 1
h → Ṽ 2

h .
(4.11)

According to Definition 2.1 and using approximation projection operators of the form (3.18), we then
see that this scheme is Gauss-compatible on some product space V̂ 1 × V̂ 2 if for l = 1, 2 we can find
approximation operators πlh and π̂lh mapping on V l

h, such that

π2
h curlu = (curlh)∗π̂1

hu, u ∈ V̂ 1 (4.12)
and

π1
h curlu = curlP2

hπ̂
2
hu, u ∈ V̂ 2. (4.13)

The following compatibility result is then easy to verify.

Theorem 4.2. The Conga-Faraday scheme (4.3) associated with the corrected projection operator
π2
h := (P2

h)∗ : L2(Ω)2 → Ṽ 2
h

for the current, see (4.9), is Gauss-compatible on the product space
V̂ 1 × V̂ 2 := H(curl; Ω)×

(
H1(Ω)2 ∩H0(curl; Ω)

)
.

In particular, Equation (4.12) holds with the L2 projection π̂1
h := PV 1

h
and Equation (4.13) holds with

π1
h := PV 1

h
and π̂2

h := πcurl
h the Nédélec interpolation defined in (3.11). Moreover, these mappings satisfy

‖π̂1
hu− u‖ . hm|u|m, 0 ≤ m ≤ p (4.14)

‖π̂2
hu− u‖ . hm|u|m, 1 ≤ m ≤ p, u ∈H0(curl; Ω) (4.15)

‖π1
hu− u‖ . hm|u|m, 0 ≤ m ≤ p (4.16)

‖π2
hu− u‖ . hm|u|m, 0 ≤ m ≤ p− 1. (4.17)

Proof. Since both sides of Equation (4.12) are in Ṽ 2
h , we can test it against an arbitrary v ∈ Ṽ 2

h . We
thus compute for u ∈ V̂ 1 = H(curl; Ω)
〈π2
h curlu,v〉 = 〈(P2

h)∗ curlu,v〉 = 〈curlu,P2
hv〉 = 〈u, curlP2

hv〉 = 〈PV 1
h
u, curlh v〉 = 〈curlh PV 1

h
u,v〉

where we have used the equality curlh = curlP2
h = (curlh)∗ : Ṽ 2

h → V 1
h , and this proves (4.12) with

π̂1
h = PV 1

h
. As for Equation (4.13), it simply follows from the commuting diagram (3.12) and the fact

that we have curlh πcurl
h = curlP2

hπ
curl
h = curl πcurl

h since P2
h is a projection on V 2

h . Estimates (4.14)
and (4.16) are then standard for the L2 projection on V 1

h and (4.15), (4.17) are (3.13) and (4.10),
respectively.

If one is solving the Maxwell equations with exact sources, Theorem 2.5 from [10] applies and gives
the following a priori estimate.

Corollary 4.3. Let (B,E) be the exact solution to the Maxwell system (2.3). The semi-discrete
solution to the non-conforming Conga-Faraday scheme (4.3) coupled with the corrected projection (4.9)
for the current satisfies

‖(B −Bh)(t)‖+ ‖(E −Eh)(t)‖ . ‖Bh(0)− π̂1
hB(0)‖+ ‖Eh(0)− π̂2

hE(0)‖

+ hm
(
|B(0)|m +

ˆ t

0
|∂tB(s)|m ds

)
+ hm

′(|E(0)|m′ +
ˆ t

0
(|∂tE(s)|m′) ds

)
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for 0 ≤ m ≤ p, 1 ≤ m′ ≤ p− 1, and with a constant independent of h and t.

Remark 4.4. In the case of approximate sources, one must resort to the analysis developped in
Section 2.4 of [10] to be able to derive long-time stability estimates. This will be done in Section 5.2
by showing that the Conga-Faraday scheme (4.3) can be equipped with a non-standard divergence
that makes it structure-preserving.

4.3. Reformulation as a standard discontinuous Galerkin scheme

Because our smoothing projection P2
h is defined as an averaged interpolation on the Nédélec elements

V 2
h , it is possible to reformulate the Conga-Faraday scheme (4.3) as a standard DG scheme. To verify

this claim we remind that a centered-flux DG approximation (see, e.g., [14]) based on the discontinuous
spaces V 1

h and Ṽ 2
h defines (Bh,Eh) ∈ C0([0, T ];V 1

h × Ṽ 2
h ) as the solution to

〈∂tBh, ϕ〉+
∑
T∈Th

〈Eh, curlϕ〉T −
∑

e∈Eh\EBh

〈{{Eh}}, [[ϕ]]〉e = 0, ϕ ∈ V 1
h

〈∂tEh,ϕ〉 −
∑
T∈Th

c2〈Bh, curlϕ〉T +
∑
e∈Eh

c2〈{{Bh}}, [[ϕ]]〉e = − 1
ε0
〈Jh,ϕ〉, ϕ ∈ Ṽ 2

h .

(4.18)

Here we have used standard notations for tangential jumps and averages (see, e.g., [6]): for interior
edges (shared by two cells T± = T±(e), and writing n±e = nT

±
e for simplicity ) we denote

[[u]]e := (n−e ×u|T− +n+
e ×u|T+)|e and {{u}}e := 1

2(u|T− +u|T+))|e for e ∈ Eh \ EBh (4.19)

and for boundary edges (in the boundary of a single cell T− = T−(e)),

[[u]]e := (n−e × u|T−)|e and {{u}}e := (u|T−)|e for e ∈ EBh . (4.20)

For a scalar-valued u the definitions are formally the same, keeping in mind that with the 2D convention
the product n× u is the vector (nyu,−nxu)T . To write (4.18) in an operator form we then let

curlDG
h : Ṽ 2

h → V 1
h and curlDG

h : V 1
h → Ṽ 2

h (4.21)

be defined by the relations
〈curlDG

h u, v〉 :=
∑
T∈Th

〈u, curl v〉T −
∑

e∈Eh\EBh

〈{{u}}, [[v]]〉e

〈curlDG
h v,u〉 :=

∑
T∈Th

〈v, curlu〉T −
∑
e∈Eh

〈{{v}}, [[u]]〉e
for v ∈ V 1

h , u ∈ Ṽ 2
h . (4.22)

Hence writing again Uh = (cBh,Eh)T and Fh = (0, ε−1
0 Jh)T , the DG formulation (4.18) reads

∂tUh −AhUh = −Fh with Ah := c

(
0 − curlDG

h

curlDG
h 0

)
.

The following results establishes that this approximation is equivalent with the Conga method (4.3).

Theorem 4.5. The DG curl operators defined above satisfy

curlDG
h = curlP2

h on Ṽ 2
h , and curlDG

h = (curlDG
h )∗.

In particular, the Conga-Faraday scheme (4.3) is equivalent with the centered-flux DG scheme (4.18).
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Remark 4.6. This result is specific to the 2D setting, for several reasons. First, the different degrees
involved in the edge and face degrees of freedom prevent similar computations to be carried out in
3D. In particular, it is not true that in 3D the centered DG scheme involves a strong Faraday law, as
this would imply that the divergence of the magnetic field remains constant in time, a property known
to be false in general [24]. Another indication is offered by considering the spectral properties of the
respective methods: whereas the 3D Conga method has been proved to be spectrally correct in [11],
numerical and theoretical evidences [16] show that this is not the case for the centered DG scheme.

Proof. To prove the first equality we compute for v ∈ V 1
h and u ∈ Ṽ 2

h ,
〈curlP2

hu, v〉 =
∑
T∈Th

(
〈P2

hu, curl v〉T + 〈n× P2
hu, v〉∂T

)
=
∑
T∈Th

(
〈u, curl v〉T + 〈n× {{u}}, v〉∂T\∂Ω

)
=
∑
T∈Th

〈u, curl v〉T −
∑

e∈Eh\EBh

〈{{u}}, [[v]]〉e

= 〈curlDG
h u, v〉.

Here the second equality follows from the property (4.6) of P2
h and the form (3.14) of the Nédélec

degrees of freedom, together with the fact that v|T ∈ Pp−1(T ) which gives curl v|T ∈ Pp−2(T )2 and
v|e ∈ Pp−1(e) for e ∈ E(T ). The desired equality curlDG

h = curlP2
h then follows from the fact that

curlP2
h maps on V 1

h . Starting next from the second line of (4.22) and integrating by parts we compute
〈curlDG

h v,u〉 =
∑
T∈Th

〈v, curlu〉T −
∑
e∈Eh

〈{{v}}, [[u]]〉e

=
∑
T∈Th

(
〈curl v,u〉T + 〈v,n× u〉∂T

)
−
∑
e∈Eh

〈{{v}}, [[u]]〉e

=
∑
T∈Th

〈u, curl v〉T +
∑

e∈Eh\EBh

(
〈v−,n− × u−〉e + 〈v+,n+ × u+〉e − 〈{{v}}, [[u]]〉e

)
=
∑
T∈Th

〈u, curl v〉T −
∑

e∈Eh\EBh

〈{{u}}, [[v]]〉e = 〈curlDG
h u, v〉

and the desired equality follows from the definition of the adjoint. Note that in the third equality we
have used the fact that 〈{{v}}, [[u]]〉e = 〈v−,n− × u−〉e on every boundary edge e ∈ EBh .

Remark 4.7. Discontinuous Galerkin schemes are more commonly used with standard polynomials
spaces, such as

Ṽ 2
h := Pp−1(Th)2 = {u ∈ L2(Ω) : u|T ∈ Pp−1(T )2, T ∈ Th}. (4.23)

To apply our analysis to that case the most natural path consists in replacing the conforming se-
quence (3.3) by the following one

V 3
h = Lp,0(Ω, Th)

(d2
h)∗ = −grad

−−−−−−−−−−−−−→ V 2
h = Pp−1(Th)2 ∩H0(curl; Ω)

(d1
h)∗ = curl

−−−−−−−−−−→ V 1
h = Pp−2(Th)

which is also exact. Here the space V 2
h corresponds to the Nédélec elements of second type. Accordingly

one replaces the degrees of freedom (3.10) by
M2

h(T,u) :=
{ˆ

T
u · q : q ∈ Pp−3(T )2 +

(x
y

)
Pp−3(T )

}
for every triangle T ∈ Th,

M2
h(e,u) :=

{ˆ
e
(ne × u) q : q ∈ Pp−1(e)

}
for every edge e ∈ Eh \ EBh

(4.24)
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see, e.g., [22, 4] and a new smoothing projection P2
h based on these degrees of freedom can be designed

following the same steps as before. One can verify that the resulting Conga scheme is equivalent with
the associated DG method. Namely, Theorem 4.5 holds with Ṽ 2

h = Pp−1(Th)2 and V 1
h = Pp−2(Th). In

this article we have worked with the first Nédélec space because it has better convergence properties
than the second one (see e.g. [5]), but we believe that a proper theoretical and numerical study of the
other option should also be performed.

5. Application to the coupled Vlasov-Maxwell problem

In this section we apply the new stability analysis proposed in Section 2.1 and 2.4 of [10] for approxi-
mate sources: in Section 5.1 we begin by verifying that the conforming Finite Element discretization
studied in Section 3 is naturally structure-preserving in the sense of Definition 2.2, and in Section 5.2
we show that our new non-conforming Conga discretization of Section 4 is also structure-preserving,
once associated with a nonstandard discrete divergence. Assuming next a discrete particle represen-
tation of the approximate current density, for each Maxwell solver we provide a charge-conserving
current deposition method in the sense of Definition 2.3.

To specify the problem we consider the case where the Maxwell system is coupled with a Vlasov
equation such as (1.2) involving a species of charged particles with phase space distribution function
f = f(t,x,v). The charge and current densities are then given by the first moments of f ,

ρ(t,x) := q

ˆ
f(t,x,v) dv and J(t,x) := q

ˆ
vf(t,x,v) dv. (5.1)

5.1. Structure-preserving discretization with conforming Finite Elements

The structure-preserving properties of the conforming Maxwell scheme (3.7) essentially follow from

the fact that V 3
h

grad−−−−→ V 2
h

curl−−→ V 1
h

ffl
Ω−−→ R is an exact sequence, as recalled in Lemma 3.2. The

Poincaré estimates (2.9) are also standard to verify. The first one reads
‖u‖ ≤ cP ‖gradu‖, u ∈ V 3

h (5.2)
and is a standard Poincaré inequality, given the homogeneous boundary condition. The second one

‖u‖ ≤ cP ‖curlu‖, u ∈ V 2
h ∩ (ker curl)⊥ (5.3)

can be derived, e.g. from the similar stability estimate [23, Th. 4] recalled in [10, Eq. (5.3)] for the
Raviart-Thomas elements, using the standard rotation argument of Remark 3.3. Finally the third one
involves the integral operator

ffl
Ω and trivially holds on V 1

h ∩ (ker
ffl

Ω)⊥ ≡ R. Hence the Lemma.
Lemma 5.1. The conforming scheme (3.7) associated with the discrete Gauss laws (2.7) defined by

(ιh)∗ :=
 

Ω
: V 1

h → R

gradh := −grad |V 3
h

: V 3
h → V 2

h

divh := −(gradh)∗ : V 2
h → V 3

h

(5.4)

see (3.3), is structure preserving in the sense of Definition 2.2.
Remark 5.2. With the operators (5.4), the discrete Gauss laws (2.7) read

− 〈Eh(t),gradφ〉 = 1
ε0
〈ρh(t), φ〉 for φ ∈ V 3

h 
Ω
Bh(t) =

 
Ω
B0
h.

(5.5)
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5.2. Structure-preserving discretization with the discontinuous Conga method

To study the structure-preserving properties of the Conga method, and identify a proper discrete
divergence, we first characterize the kernel and the image of the non-conforming curl operator, following
the method introduced in [7].

Lemma 5.3. The non-conforming curl operator (4.11), curlh = curlP2
h|Ṽ 2

h
: Ṽ 2

h → V 1
h , satisfies

ker(curlh) = gradV 3
h ⊕ (I − P2

h)Ṽ 2
h and Im(curlh) = V 1

h ∩ R⊥.

Proof. Starting with the first identity, the inclusion ⊃ is verified by applying curlP2
h and the fact

that gradV 3
h is a subset of V 2

h where P2
h = I. To verify the inclusion ⊂ we take u ∈ Ṽ 2

h ∩ker(curlP2
h).

Then P2
hu is in V 2

h ∩ ker curl which coincides with gradV 3
h thanks to Lemma 3.2. Hence we have

u = P2
hu+ (I − P2

h)u ∈ gradV 3
h ⊕ (I − P2

h)Ṽ 2
h ,

and we easily verify that this is an orthogonal sum. The second identity follows from Lemma 3.2 and
the fact that Ṽ 2

h contains V 2
h , hence P2

hṼ
2
h = V 2

h .

We are then in position to establish that the Conga-Faraday scheme is structure preserving when
associated with the proper discrete operators for the Gauss laws.

Lemma 5.4. The non-conforming Conga scheme (4.3) associated with the discrete Gauss laws (2.7)
defined by 

(ιh)∗ :=
 

Ω
: V 1

h → R

gradh : (V 3
h × Ṽ 2

h ) 3 (φ, ũ) 7→ gradφ+ (I − P2
h)ũ ∈ Ṽ 2

h

divh := −(gradh)∗ : Ṽ 2
h → (V 3

h × Ṽ 2
h )

(5.6)

see (3.3), is structure preserving in the sense of Definition 2.2.

Remark 5.5. With the proposed operators (5.6), the discrete Gauss laws (2.7) read
− 〈Eh(t), (gradφ+ (I − P2

h)ũ)〉 = 1
ε0
〈ρh(t), φ〉 for (φ, ũ) ∈ V 3

h × Ṽ 2
h 

Ω
Bh(t) =

 
Ω
B0
h.

(5.7)

Proof. Here the exact sequence property (2.8) reads

V 3
h × Ṽ 2

h

gradh // Ṽ 2
h

curlh=curlP2
h // V 1

h

ffl
Ω // R (5.8)

and it follows from Lemma 5.3. To prove the stability estimates in (2.9) we follow the proof of The-
orem 4.1 from [8]. We begin by observing that since gradV 3

h ⊕ (I − P2
h)Ṽ 2

h is a direct sum, one
has

ker gradh = (V 3
h ∩ ker grad)× (Ṽ 2

h ∩ ker(I − P2
h)) = {0} × V 2

h .

Considering then φ ∈ V 3
h , ũ ∈ Ṽ 2

h ∩ (V 2
h )⊥ and using (5.2) we compute

‖(φ, ũ)‖2 ≤ cP ‖gradφ‖2 + ‖ũ‖2 . ‖gradφ− P2
hũ‖2 + ‖P2

hũ‖2 + ‖ũ‖2

. ‖gradφ− P2
hũ‖2 + ‖ũ‖2 = ‖gradφ+ (I − P2

h)ũ‖2

where the last equality uses that gradφ−P2
hũ is in V 2

h and hence is orthogonal to ũ. This is the first
estimate in (2.9). For the second estimate, we use again the identity ker curlh = gradV 3

h ⊕ (I−P2
h)Ṽ 2

h
and consider now

ũ ∈ Ṽ 2
h ∩ (ker curlh)⊥ = Ṽ 2

h ∩ (gradV 3
h )⊥ ∩ ((I − P2

h)Ṽ 2
h )⊥
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and let u ∈ V 2
h ∩ (ker curl)⊥ be defined by curlu = curlP2

hũ. This implies that the difference u−P2
hũ

is in V 2
h ∩ ker curl = gradV 3

h , hence it is orthogonal to ũ. Because the latter is also orthogonal to
(I−P2

h)ũ, we find that it is orthogonal to ũ−u. Using this and the conforming Poincaré estimate (5.3)
for u we compute

‖ũ‖ ≤ (‖ũ‖2 + ‖u− ũ‖2)
1
2 = ‖u‖ ≤ cP ‖curlu‖ = cP ‖curlP2

hũ‖
which proves the non-conforming Poincaré estimate. Finally the third estimate is the same as in the
conforming case, and the proof is complete.

5.3. Charge-conserving coupling with smooth particles

In the particle method the phase-space distribution function f solution to (1.2) is approached by a
sum of N (macro) particles with positions xκ(t) and velocities vκ(t) = x′κ(t), κ = 1, . . . N , that are
pushed forward along the integral curves of the semi-discrete force field computed by the Maxwell
scheme, using some given ODE solver. The approximated density is then

fN (t,x,v) =
N∑
κ=1

qκζε(x− xκ(t))ζε(v − vκ(t)) (5.9)

where qκ is the numerical charge associated with the κ-th (macro) particle and ζε is a shape function
supported in the Ball B(0, ε) of center 0 and radius ε ≥ 0, which can either be a smooth approximation
of the Dirac measure if ε > 0 (typically a spline with unit mass, see e.g. [18]) or the Dirac measure
itself if ε = 0. The corresponding approximations for the charge and current densities read then

ρN (t,x) :=
N∑
κ=1

qκζε(x− xκ(t)) and JN (t,x) :=
N∑
κ=1

qκvκ(t)ζε(x− xκ(t)). (5.10)

We observe that since vκ(t) = x′κ(t), these particle densities satisfy an exact continuity equation,

divJN =
N∑
κ=1

qκ div
(
vκζε(·−xκ)

)
=

N∑
κ=1

qκvκ ·grad ζε(·−xκ) = −
N∑
κ=1

qκ∂tζε(·−xκ) = −∂tρN . (5.11)

Note that in the case where ε = 0 these equalities hold in a weak sense, as we have

〈JN ,gradφ〉 =
N∑
κ=1

qκvκ(t)·gradφ(xκ(t)) =
N∑
κ=1

qκ∂tφ(xκ(t)) =
N∑
κ=1

qκ〈∂tδxκ(t), φ〉 = 〈∂tρN , φ〉 (5.12)

for φ ∈ C2(Ω)
In order to make both the conforming and the non-conforming schemes charge conserving in the

sense of Definition 2.3 we must then find proper approximations Jh for the particle current JN . The
following result shows that for this task we can use the orthogonal projection in the conforming case
and the corrected projection in the non-conforming case, just as for the compatibility results stated
in Sections 3.4 and 4.2.

Theorem 5.6. Let ε > 0. The respective conforming (FEM) and non-conforming (Conga)
schemes (3.7) and (4.3), associated with the discrete Gauss laws (2.7) defined by the discrete di-
vergence operators (5.4) and (5.6) respectively, are charge conserving in the sense of Definition 2.3
when the discrete sources are defined from the particle charge and current densities (5.10) by

ρh(t) := PV 3
h
ρN (t) ∈ V 3

h and Jh(t) := PV 2
h
JN (t) ∈ V 2

h (5.13)

in the conforming case and
ρh(t) := PV 3

h
ρN (t) ∈ V 3

h and Jh(t) := (P2
h)∗JN (t) ∈ Ṽ 2

h (5.14)
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in the non-conforming case. Here PV 3
h
and PV 2

h
are the L2 (orthogonal) projections on the continuous

and Nédélec spaces respectively, and (P2
h)∗ is the discrete adjoint of the smoothing projector, see (4.9).

Remark 5.7. As will be explained in Section 5.5, the compatible current deposition proposed here for
the Conga method only involves local computations. This is a significant difference with the conforming
case where the L2 projection requires to invert a mass matrix in the curl-conforming space V 2

h , which
is a global operation.

Proof. Since we already know that (3.7) and (4.3) are structure preserving when associated with
the respective operators (5.4) and (5.6), it suffices to verify that the resulting discrete continuity
equation (2.15) indeed holds in both cases. In the conforming case where divh is defined by its adjoint
(divh)∗ = grad : V 3

h → V 2
h the discrete continuity equation reads

〈Jh,gradφ〉 = 〈∂tρh, φ〉 for φ ∈ V 3
h (5.15)

and is easily verified for ε > 0 by computing as in (5.12) with φ ∈ V 3
h , since then both JN (t) and

ρN (t) are in L2(Ω). In the non-conforming case the discrete operator divh is defined by its adjoint
(divh)∗ = gradh : V 3

h × Ṽ 2
h → Ṽ 2

h as in (5.6), and the discrete continuity equation reads
〈Jh,gradh(φ, ũ)〉 = 〈Jh,gradφ+ (I − P2

h)ũ〉 = 〈∂tρh, φ〉 for (φ, ũ) ∈ V 3
h × Ṽ 2

h . (5.16)
In particular, plugging Jh = (P2

h)∗JN in the above formula and using the fact that gradV 3
h ⊂ V 2

h

yields 〈Jh,gradh(φ, ũ)〉 = 〈JN ,P2
h gradφ〉 = 〈JN ,gradφ〉, so that the desired equality follows as in

the conforming case.

5.4. Charge-conserving coupling with point particles

To extend our results to the case of point particles (ε = 0) it is convenient to consider a fully discrete
version of the proposed Maxwell solvers. For simplicity we assume an explicit leap-frog time scheme.
For the conforming (FEM) method (3.7) the approximate fields (Bn+1/2

h ,En
h ) ∈ V 1

h × V 2
h are then

given by 
B
n+ 1

2
h −Bn− 1

2
h + ∆t curlEn

h = 0 (in V 1
h )

〈En+1
h −En

h ,ϕ〉 − c2∆t〈Bn+ 1
2

h , curlϕ〉 = −∆t
ε0
〈Jn+ 1

2
h ,ϕ〉 ϕ ∈ V 2

h

(5.17)

and for the non-conforming (Conga) method (4.3) the discrete fields (Bn+1/2
h ,En

h ) ∈ V 1
h × Ṽ 2

h are
updated with

B
n+ 1

2
h −Bn− 1

2
h + ∆t curlP2

hE
n
h = 0 (in V 1

h )

〈En+1
h −En

h , ϕ̃〉 − c2∆t〈Bn+ 1
2

h , curlP2
hϕ̃〉 = −∆t

ε0
〈Jn+ 1

2
h , ϕ̃〉 ϕ̃ ∈ Ṽ 2

h .

(5.18)

In both cases we thus need to define Jn+1/2
h from the current density JN carried by the moving

particles. Following our stability analysis we would like that the resulting solutions satisfy the proper
discrete Gauss laws which involve the structure-preserving divergence operators identified in this work,
namely (5.5) and (5.7) respectively. In [9] this construction was described for the conforming FEM
method, using a time averaging and an extension of the L2 projection (5.13) for current densities
carried by Dirac particles. Specifically, it was shown that the quantities

〈Jn+ 1
2

h ,ϕ〉 =
〈ˆ tn+1

tn
JN (τ) dτ

∆t ,ϕ
〉

=
N∑
κ=1

qκ

ˆ tn+1

tn
vκ(τ) ·ϕ(xκ(τ)) dτ

∆t , ϕ ∈ V 2
h , (5.19)
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are well defined for point particles, and allow to define a current Jn+1/2
h ∈ V 2

h which satisfies a
time-discrete version of the proper continuity equation (5.15) in the conforming case, i.e.,

〈Jn+ 1
2

h ,gradφ〉 = 1
ε0
〈 1
∆t(ρ

n+1
h − ρnh), φ〉 φ ∈ V 3

h . (5.20)

Here ρnh ∈ V 3
h is defined by the relations

〈ρnh, φ〉 = 〈ρN (tn), φ〉 =
N∑
κ=1

qκφ(xκ(tn)), φ ∈ V 3
h . (5.21)

Essentially, the reason why (5.19) makes sense (and is stable with respect to the particle trajectories)
is that the test functions ϕ in the curl-conforming space V 2

h have their tangential components that are
continuous across interelement edges. In particular, we observe that in the last integral the disconti-
nuities of ϕ may only pose a problem when the particle trajectory xκ runs along an edge during some
non-zero time interval. But in this case the particle velocity is tangent to the edge and the function
vκ(τ) ·ϕ(xκ(τ)) is well defined, i.e., stable with respect to the trajectory.

For the same reason, it is possible to extend the corrected projection (P2
h)∗ in (5.14) when the

current is carried by point particles. Specifically, for the fully discrete Conga scheme (5.18) we define
a charge-conserving current Jn+1/2

h ∈ Ṽ 2
h by the relations

〈Jn+ 1
2

h , ϕ̃〉 =
〈ˆ tn+1

tn
JN (τ) dτ

∆t ,P
2
hϕ̃

〉
=

N∑
κ=1

qκ

ˆ tn+1

tn
vκ(τ) · (P2

hϕ̃)(xκ(τ)) dτ
∆t , ϕ̃ ∈ Ṽ 2

h (5.22)

since then P2
hϕ̃ is curl-conforming although ϕ̃ was fully discontinuous. Notice that an orthogonal

projection on the fully discontinuous space Ṽ 2
h would involve products of the form

´
vκ(τ)·ϕ̃(xκ(τ)) dτ

which are not well-defined for particles running along the edges of the mesh. Arguing next as in the
proof of Theorem 5.6, one easily verifies that the resulting sources satisfy indeed the proper continuity
equation (5.16), namely

〈Jn+ 1
2

h ,gradφ+ (I − P2
h)ũ〉 = 1

ε0
〈 1
∆t(ρ

n+1
h − ρnh), φ〉 (φ, ũ) ∈ V 3

h × Ṽ 2
h (5.23)

with ρnh ∈ V 3
h defined again by (5.21).

Remark 5.8. When the particle trajectories are piecewise polynomials as is usually the case, it is
possible to compute exactly the time integrals in (5.19) and (5.22) using Gauss quadratures that involve
a few points within each cell travelled by the particles. We refer to [9] for the detailed algorithms.

5.5. Compatible current deposition seen as a correction method

Before turning to the numerical experiments, let us make two simple but important observations.
First, given a cell-wise basis for Ṽ 2

h that we may denote as ϕT,λ with T ∈ Th and λ ∈ Λ2(T ), we find
that the coefficients JT,λ of the compatible current Jh := (P2

h)∗JN are determined by the relations∑
λ∈Λ2(T )

JT,λ〈ϕT,λ,ϕT,γ〉 = 〈Jh,ϕT,γ〉 = 〈JN ,P2
hϕT,γ〉 for T ∈ Th, γ ∈ Λ2(T ). (5.24)

Thus, the proposed deposition method involves (i) computing the products of the smooth particle
current against the averaged basis functions, and (ii) inverting the local mass matrices associated with
the discontinuous basis, namely

MT =
(
〈ϕT,λ,ϕT,γ〉

)
λ,γ∈Λ2(T )

.
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In particular we see that these two steps can be performed locally, unlike in the conforming case (5.13)
where the inversion of a mass matrix of V 2

h is always a global operation over the mesh.
Second, we observe that step (i) above is easily obtained from the standard DG current coefficients

when they are available in an existing code. Here we refer to the current defined by a standard L2

projection on the fully discontinuous space, namely

Jnc
h := PṼ 2

h
JN

where the exponent “nc” stands for “non-compatible” as this projection does not satisfy the discrete
continuity equation that we have identified in the non-conforming case. The coefficients Jnc

T,λ of the
latter in the cell-wise basis are then determined by the relations∑

λ∈Λ2(T )
Jnc
T,λ〈ϕT,λ,ϕT,γ〉 = 〈Jnc

h ,ϕT,γ〉 = 〈JN ,ϕT,γ〉. (5.25)

Now, since the averaging projection P2
h maps on V 2

h which is a subspace of Ṽ 2
h by construction, it can

be represented by a matrix P satisfying

P2
hϕT,λ =

∑
T ′∈Th,γ∈Λ2(T ′)

P(T,λ),(T ′,γ)ϕT ′,γ

so that the compatible moments mT,λ(JN ) := 〈JN ,P2
hϕT,γ〉 are easily derived from their standard

(non-compatible) counterparts mnc
T,λ(JN ) := 〈JN ,ϕT,γ〉 as

mT,λ(JN ) =
∑
T ′,γ

P(T,λ),(T ′,γ)m
nc
T ′,γ(JN ). (5.26)

If the standard momentsmnc of the particle current are available, the above formula suffices to perform
step (i) and deposit the current in a compatible way. We may also verify that the coefficients of the
compatible current can be expressed as a local correction of the non-compatible ones, without referring
to the moments themselves: using global notations for arrays and matrices defined over the whole mesh,
Equation (5.25) reads MJnc = mnc(JN ), whereas (5.24) and (5.26) give MJ = m(JN ) = Pmnc(JN ).
Therefore we have

J = M−1PMJnc.

Here the matrix M has a block diagonal structure corresponding to the mesh cells, whereas P has
entries corresponding to couples of adjacent cells, in addition to those on the diagonal. In particular
its application is indeed a local operation, with coefficients easily given by (4.5): using local bases for
the broken Nédélec spaces that derive from the curl-conforming ones as described in Section 3.3, the
non-zero entries of P are simply 1 for the volume-based degrees of freedom and 1

2 for the adjacent
edge-based degrees of freedom.

6. Numerical results

In this section we illustrate the proposed FEM and Conga methods on the two test cases already
used in our companion article [10]. For the time discretization we use the explicit leap-frog scheme
described in Section 5.4.

Remark 6.1. When studying the Conga method we have observed that the smoothed field P2
hE

n
h

was more accurate than the discontinuous field En
h itself: for the studied cases, it had smaller errors

and higher convergence rates. Therefore we have decided to use the smoothing projection P2
h as a

systematic post-processing filter. Since this is a local operation on the discrete fields, its effect on the
overall computational time is not significant.
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6.1. A Pure Maxwell problem: the 2D Issautier test case

To assess the basic convergence and stability properties of the proposed schemes we use the analytical
current source proposed in [17, 12] to study the charge conservation properties of a penalized finite
volume scheme. The problem is posed in a metallic cavity Ω = [0, 1]2 with articifial permittivity ε0
and light speed c equal to one, and the current density is given as

J(t, x, y) = (cos(t)− 1)
(
π cos(πx) + π2x sin(πy)
π cos(πy) + π2y sin(πx)

)
− cos(t)

(
x sin(πy)
y sin(πx)

)
. (6.1)

We consider initial fields E0 = 0 and B0 = 0, so that the exact solution isE(t, x, y) = sin(t)
(
x sin(πy)
y sin(πx)

)
B(t, x, y) = (cos(t)− 1)

(
πy cos(πx)− πx cos(πy)

)
.

(6.2)

We note that the associated charge density reads then ρ(t, x, y) = sin(t)
(

sin(πx) + sin(πy)
)
.

In Figure 6.1 we first assess the convergence properties of the two proposed methods by plotting
the relative L2 errors eh := max

(
‖E−Eh‖/‖E‖, ‖B−Bh‖/‖B‖

)
at time t = 0.2π. In the left plot we

show the results obtained with the conforming FEM (3.7) using different degrees and in the right plot
we show the errors corresponding to the non-conforming Conga method (4.3). The convergence rates
of both the FEM and Conga solutions is in agreement with Corollary 3.5 and 4.3. More precisely, we
observe that the Conga solutions of degree p+1 (smoothed as described in Remark 6.1) converge with
a similar rate than the conforming solutions of degree p, close to hp. We also note that the former has
higher accuracy.

Time wise, we have observed that with our straightforward implementation the Conga simulations
were more efficient than the FEM ones when the meshes became finer, which is not surprising since the
former is purely local and does not require any global matrix inversion. Specifically, our simulations
have shown that for p > 1, the computational time of the FEM method with degree p becomes higher
than that of the Conga method with degree p + 1, as soon as the mesh has more than about 6000
triangles (which corresponds to h ≤ 0.06 for the meshes used here).

In order to assess the long-time properties of the Conga scheme (4.3) associated with a corrected
projection for the current density,

Jh = (P2
h)∗J ∈ Ṽ 2

h (6.3)

as supported by our analysis, we have plotted in the left panel of Figure 6.2 the L2 norm of an electric
field computed with that method. On the right panel we have shown the norm of the electric field
obtained with the same scheme (4.3) but with a discrete current density computed by an orthogonal
projection on the broken Nédélec space Ṽ 2

h , namely

Jh = PṼ 2
h
J ∈ Ṽ 2

h . (6.4)

In both cases the broken Nédélec space (4.1) is defined with p = 2, using a mesh with about 250
triangles (h ≈ 0.3).

In the latter case a rapid (linear in time) deterioration of the solution is visible, but with the Gauss-
compatible scheme the solution is stable, as predicted by Corollaries 2.6 and 2.7 in [10], applied to the
constant and time-harmonic parts of the Issautier field (6.2). Note that here we have only shown the
curves of the electric field, as those of the magnetic field were always on top of the reference curves
(dashed) computed from the exact solutions.
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Figure 6.1. Convergence curves (relative errors vs. maximal triangle diameter h) for
the Issautier problem with analytical source (6.1). Results obtained with the conforming
FEM discretization are shown left, and those obtained with the non-conforming Conga
discretization are shown right.
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Figure 6.2. Evolution of the L2 norm of the electric field for the Issautier problem.
On the left plot the numerical solution is obtained by approximating the current density
with a corrected projection on the fully discontinuous space Ṽ 2

h , see (6.3), whereas on
the right plot the current density is approximated using a standard L2 projection (6.4).
For comparison, the norm of the exact solution is shown in dashed lines (on the left
plot it is on top of the solid line).

6.2. A Vlasov-Maxwell problem: an academic diode test case

Turning to the coupled FEM-PIC and Conga-PIC schemes, we use again the academic diode test case
employed in [10] to test particle schemes coupled with Maxwell solvers with a strong Ampère law. Here
the domain is a square Ω = [0, 0.1m]2 with metallic boundary ΓM = {0, 0.1m}×[0, 0.1m] and absorbing
boundary ΓA =]0, 0.1m[×{0, 0.1m}. On the left boundary a beam of electrons is steadily injected and
accelerated by a constant external field which derives from the electric potential imposed on both the
cathode (φext = 0 on the left boundary) and the anode (φext = 105V on the right boundary). Due
to the propagation of the beam into the domain (initially empty of charges) a self-consistent electro-
magnetic field develops and is added to this constant external field, and in turn the trajectories of
the electrons are no longer straight lines. However this modification is of small relative amplitude and
the resulting solution tends towards a smooth steady state, so that the convergence of the numerical
approximations can be easily assessed. In Figure 6.3 we show the typical profile of the solution in the
steady state regime (self-consistent electric field on the left and particles on the right), together with
the mesh used in the simulations.
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To avoid using expensive numerical quadratures in space we consider a coupling with point particles,
as described in Section 5.4. The numerical algorithms tested here may then be seen as an extension
of those proposed in [9] to the case of fully discontinuous elements.

Figure 6.3. Academic beam test case. The self-consistent E field (left plot) and the
numerical particles accelerated towards the right boundary (right plot) show the typical
profile of the solution in the steady state regime. For the considered geometry the
external field is constant Eext = (−106, 0)Vm−1.

To finally assess the numerical stability properties of the proposed FEM and Conga methods over
long time ranges we plot in Figure 6.4 the profiles of several fields using a final time chosen so that
the particles have travelled approximatively five diode lengths.

On the left column of Figure 6.4 we plot the profiles of the electro-magnetic field computed with
the conforming FEM-PIC scheme (5.17) using a standard L2 projection for the particle current, which
consists in defining Jn+1/2

h := PV 2
h
J
n+1/2
N through products of the form (5.19). The stability of such a

coupling is supported by Theorem 5.6, and indeed the numerical results show a very good preservation
of the smooth steady state, both for the electric field (top and center row) and the magnetic field
(bottom row). On the center and right columns of Figure 6.4 we then plot the fields computed with
the non-conforming Conga-PIC scheme (5.18) using two different deposition methods for the current,
similarly as what was done (starting from an analytical expression for J) in Figure 6.2.

On the center column the DG current is obtained with a standard L2 projection of the particle
current, i.e., Jn+1/2

h := PṼ 2
h
J
n+1/2
N , and on the right column it is defined as Jn+1/2

h := (P2
h)∗Jn+1/2

N .
Note that in practice this may be done either by computing terms of the form (5.19) and inverting
the block-diagonal DG mass matrix of Ṽ 2

h , or by correcting locally the array of coefficients computed
with the standard method, as described in Section 5.5. Again, the enhanced stability of the former
coupling is supported by Theorem 5.6. This is clearly confirmed by our numerical simulation. Whereas
the charge-conserving Conga scheme yields results comparable to the conforming method, the electric
field resulting from the standard DG deposition scheme has erratic oscillations that grow linearly in
time and reach, in the test done here, values about four times greater than the maximum amplitude
of the correct solution.

7. Conclusion

In this series of papers we have provided a rigorous solution to the longstanding problem of charge-
conserving coupling between general Maxwell solvers and particle methods, following the classical
approach developped by plasma physicists over the last decades. Our stability analysis extends a re-
cent work on compatible source approximation operators for pure Maxwell solvers, and it is based on
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Figure 6.4. Academic beam test-case. Snapshots of the self-consistent fields (Ex on
the top row, Ey on the center row and B on the bottom row) obtained by depositing the
conservative current density carried by the particles with either the conforming FEM-
PIC scheme with standard L2 projection for the particle current (left), the DG-PIC
scheme with standard L2 projection for the current (center) and the DG-PIC scheme
with the corrected projection (6.3) for the particle current (right).

the notion of discrete de Rham structure. This abstract setting allows us to design charge-conserving
deposition schemes for general conforming but also non-conforming Maxwell discretizations, thus of-
fering an interesting alternative to divergence cleaning methods to stabilize Discontinuous Galerkin
(DG) Particle-in-Cell solvers.

The framework of de Rham sequences also allows the choice of discretizing either the Ampère or
the Faraday equation strongly, the other being handled by duality. In this paper we provided the
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discrete framework for a strong Faraday equation and verified that it can be applied to a classical
curl-conforming (Nédélec) Finite Element discretization, and also to a new hybrid non-conforming
discretization based on broken Nédélec elements, having the advantage of avoiding global coupling.
In 2D this discretization can be interpreted as a DG-PIC discretization with a corrected deposition
scheme.

Numerical experiments using a pure Maxwell problem and a simple diode configuration allowed
us to validate the theoretical stability of the proposed methods. Future studies should now address
more elaborate test-cases to better understand the benefits of these structure-preserving and charge-
conserving solvers with a strong Faraday law. Another open problem of interest is the study of dis-
continuous solvers based on different polynomial spaces, such as standard ones.
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