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Abstract. In this article we study a novel method for improving the accuracy of density reconstructions
based on markers pushed forward by some available particle code. The method relies on the backward
Lagrangian representation of the transported density, and it evaluates the backward flow using the current
position of point particles seen as flow markers. Compared to existing smooth particle methods with either
fixed or transformed shapes, the proposed reconstruction achieves higher locality and accuracy. This is
confirmed by our error analysis which shows a theoretical gain of one convergence order compared to the
LTP/QTP methods introduced in [8], and by numerical experiments that demonstrate significant CPU gains
and an improved robustness relative to the remapping period.

1. Introduction

Particle methods are a popular and efficient tool for the approximation of transport problems. Unfor-
tunately they suffer from weak convergence properties which often prevent an accurate representation
of the transported density.

To formalize the problem we consider an abstract transport equation
∂tf(t, x) + u(t, x) · ∇f(t, x) = 0, t ∈ [0, T ], x ∈ Rd (1.1)

associated with an initial data f0 : Rd → R, a final time T and a velocity field u : [0, T ] × Rd → Rd.
In most cases of interest, the velocity u depends on f through some self-consistent coupling and the
problem is non-linear. Here we shall leave this issue aside and assume that u is given and smooth, e.g.
L∞(0, T ;W 1;∞(Rd)), [32], so that there exist characteristic trajectories X(t) = X(t; s, x) solutions to

X ′(t) = u(t,X(t)), X(s) = x (1.2)
on [0, T ], for all x ∈ Rd and s ∈ [0, T ]. The corresponding flow Fs,t : x 7→ X(t) is then invertible and
satisfies (Fs,t)−1 = Ft,s. In particular, the solution to (1.1) reads

f(t, x) = f0((F0,t)−1(x)) for t ∈ [0, T ], x ∈ Rd. (1.3)
Specifically, as reliable particle solvers do exist for many specific problems, see e.g. [16, 6], we may

place ourself in the situation where we are given an accurate solver to push forward arbitrary sets of
markers along the forward flow. For simplicity we will assume that the computed flow is exact, and
we consider particles centers initially arranged on a Cartesian grid of step size h,

x0
k = hk, k ∈ Zd. (1.4)

Thus, at time tn = n∆t, n ∈ N, we have at our disposal an unstructured set of particles of the form
xnk = F 0,n

ex (x0
k), k ∈ Zd, with F 0,n

ex = F0,tn

and we consider the problem of designing an accurate representation of the transported density f(tn).
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In the standard approach [21, 3, 32], the initial density is first approximated by a weighted collection
of smooth “shape functions” centered on the particle positions, of the form

f0
h,ε(x) =

∑
k∈Zd

w0
kϕε(x− x0

k). (1.5)

Here ϕε(x) := ε−dϕ(ε−1x) is a smooth function with compact support (such as a B-spline or some
convolution kernel with vanishing moments [28]) and ε is a smoothing scale which may or may not
coincide with h. The weights are defined so that f0

h,ε approximates f0 in a measure sense, for instance
as w0

k = hdf0(x0
k), see [32, Sec. I.4], and they evolve according to the differential equation

w′k(t)− (∇ · u)
(
t, F0,t(x0

k)
)
wk(t) = 0, wk(0) = w0

k.

The smooth particle approximation to f(tn) is then given by

fn,sph,ε (x) =
∑
k∈Zd

wnkϕε(x− xnk) (1.6)

with wnk = wk(tn). Provided some r-th order moment condition on the smoothing kernel ϕ and
assuming h . ε (meaning that h ≤ Cε for some constant independent of the expressed quantities),
the classical error estimate [32, Th. I.5.1] reads

‖f(tn)− fn,sph,ε ‖Lq . εr‖f0‖W r,q + (h/ε)m‖f0‖Wm,q , 1 ≤ q ≤ ∞. (1.7)
Here we have denoted

‖v‖W r,q(ω) := ‖v‖Lq(ω) +
r∑
s=1
|v|W s,q(ω) |v|W r,q(ω) := max

i

{ d∑
l1=1
· · ·

d∑
lr=1
‖∂l1 · · · ∂lrvi‖Lq(ω)

}
(1.8)

for functions in Sobolev spaces W r,q(ω) with ω ⊂ Rd, and for conciseness we drop the domain when
ω = Rd. For vectors it will be convenient to use the maximum norm ‖x‖∞ := maxi|xi| and the
associated ‖A‖∞ := maxi

∑
j |Ai,j | for matrices.

One can improve (1.7) by changing the initial weights w0
k using better quadrature formulas [12],

but in any case such kind of estimates show a weakness of the reconstruction (1.6), namely the need
to set ε � h as ε, h → 0, to guarantee the strong convergence of the approximated densities. As
this would lead to a computationally expensive overlapping of particles, in practice many particle
codes implement limited values of ε that appear to suffice for the accuracy of the trajectories. In the
case where the particles trajectories are exact, the theory indeed guarantees the weak convergence
of the approximated densities, independent of ε. Thus in the codes the lack of a sufficient particle
overlapping typically translates into strong oscillations in the numerical approximations, the so-called
particle noise, see e.g. [30, 11].

To mitigate these oscillations many authors have proposed to use remapping techniques where
new weighted particles are periodically computed to approximate the transported density (1.6). The
resulting schemes are often referred to as forward semi-Lagrangian (FSL) [18, 24, 29, 14, 17, 27]
and they have shown improved convergence rates based essentially on the fact that the frequent
reinitializations prevent the particles to become too irregularly distributed. However this has a cost.
On the computational level, reinitializing the particles can be expensive and it may introduce numerical
diffusion, which conflicts with the conservative essence of the particle method. Advanced techniques
have been used to reduce this diffusion, such as high-order non-oscillatory remeshing schemes [27] or
multiscale methods, see e.g. [4, 5, 37].

In this article we take a different route to compute non-oscillatory density reconstructions. Following
a series of previous works [1, 8, 10, 9], we study a new Lagrangian method that implements in the
framework of forward particle methods an improved locality principle proposed by Colombi and Alard
in [13] to design highly accurate semi-Lagrangian schemes.
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The outline is as follows. In Section 2 we remind how transforming the smooth particle shapes to
better follow the characteristic flow allows to reconstruct accurate approximations to the density, at
the price of extended particle supports. In Section 3 we then present our new method, for which we
provide a priori error estimates in Section 4, and numerical results in Section 5.

2. Accurate particle transport with LTP and QTP approximations

In this section we present the linearly-transformed particle method (LTP) and its second-order exten-
sion the quadratically-transformed particle method (QTP) introduced in [8, 10], in order to highlight
some of their strengths and drawbacks.

2.1. Using particle shapes with polynomial transformations

Following a natural idea investigated by several authors [23, 2, 20, 12, 15, 1] who considered trans-
forming the smooth particle shapes according to the local variations of the flow, a numerical method
to improve the accuracy of the density reconstruction has been proposed and analyzed in [8]. Again
the approximated density is obtained as a superposition of weighted smooth particles and (1.5) is used
for the initial density, with ε = h. Then, each particle has its own shape ϕnh,k that is transported from
the initial one ϕ0

h,k = ϕh using a polynomial flow that is defined as a local expansion of the exact
backward flow

B0,n
ex = (F0,tn)−1.

Thus, at the first order the method uses a linearization of B0,n
ex around the k-th particle,

B0,n
h,k,(1) : x 7→ x0

k +Dn
k (x− xnk)

with Dn
k an approximation to the (d× d) backward Jacobian matrix

J
B0,n

ex
(xnk) =

(
∂j(B0,n

ex )i(xnk)
)

1≤i,j≤d . (2.1)

This matrix can be computed from the current position of the neighboring particles xnk′ , ‖k′−k‖∞ ≤ 1,
in two steps: using a finite difference formula on the initial Cartesian particle grid one first obtains an
approximation of the forward Jacobian matrix,

Jnk :=
((
xnk+ej

− xnk−ej

)
i

2h

)
1≤i,j≤d

≈ J
F 0,n

ex
(x0
k) (2.2)

which is then inverted to compute Dn
k . We refer to Appendix A and [8] for details and a priori

error estimates for this procedure. The particle shapes are then obtained by applying the Lagrangian
formula (1.3) to the initial shape, using the linearized flow. On time step n this gives

ϕnh,k(x) = ϕh(B0,n
h,k(x)− x0

k) = ϕh(Dn
k (x− xnk)) (2.3)

and the density is reconstructed as a superposition of the resulting linearly transformed particle shapes,

fn,ltph (x) =
∑
k∈Zd

wnkϕh(Dn
k (x− xnk)). (2.4)

A drawback of this representation is that the matrices Dn
k may have small eigenvalues, which leads to

large diameters for the associated particle supports. In practice this means that on a given point the
density fn,ltph can have contributions from particles with distant centers xnk , as evidenced below on the
simple example of the free streaming transport, see Figure 2.1. Clearly this feature deteriorates the
locality of the density evaluations and increases their computational cost.
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At the second order the local expansion of the backward flow B0,n
h,k,(2) takes the form(

B0,n
h,k,(2)(x)

)
i

= (x0
k)i + (Dn

k (x− xnk))i + 1
2(x− xnk)tQnk,i(x− xnk) (2.5)

with Qnk,i an approximation to the (d×d) Hessian matrix of the i-th component of the backward flow,

H(B0,n
ex )i

(xnk) =
(
∂j1∂j2(B0,n

ex )i(xnk)
)

1≤j1,j2≤d, 1 ≤ i ≤ d, (2.6)

Again these matrices can be computed using only the current position of the neighboring particles,
xnk′ , ‖k′ − k‖∞ ≤ 1, see Appendix B. The quadratically transported particle shapes are then defined
with the same principle.

However it is necessary to define an a priori support for these particles: because the quadratic
mapping x 7→ B0,n

h,k,(2)(x)−x0
k may vanish far away from xnk , the simple expression ϕh

(
B0,n
h,k,(2)(x)−x0

k

)
has a support that may contain some far away parts, which is obviously not desired since the quadratic
expansion (2.5) of B0,n

ex is only accurate close to xnk . For this reason it is necessary to restrict a-priori
the support of the quadratically transformed particles. In [8] these a-priori domains are defined by
transporting forward a small extension of the initial particle support using the approximate affine
flow. This technical choice allows to prove second-order convergence estimates for the resulting density
reconstructions, but it has the disadvantage of further extending the particle support radius as time
advances, which further deteriorates the method locality.

Overall, the LTP / QTP approach has resulted in a robust numerical method, and several L∞
convergence estimates have been derived for the transported densities [8, 9]. However, as noted above
it also has the downside that transported particles undergo a stretching of their support that may lead
to an important loss in the locality of the computations. Specifically, we see that as time increases the
diameter of the particle supports grows like

diam
(
supp(ϕnh,k)

)
≈ diam

(
F 0,n

ex (supp(ϕ0
h,k))

)
≈ h|F 0,n

ex |W 1,∞

in the LTP case, which may represent an exponential growth in n. In the QTP method the supports
grow even faster, to account for the additional deformations caused by the quadratic terms.

This effect has been experienced in the numerical simulations of higher-dimensional problems such
as the 2D2V Vlasov-Poisson system actually implemented in the Selalib platform [33]. It is already
visible in the 2D simulations using second order methods presented in this article.

2.2. The example of free streaming transport

As an illustration we describe how the above LTP method applies in the simple case of a free streaming
transport. Here the problem is posed in a 2D phase space with position and velocity coordinates
z = (x, v) ∈ R2 corresponding to a one-dimensional physical space. The generalized velocity field
associated to a zero acceleration is then u(x, v) = (v, 0), and the equation reads

∂tf(t, x, v) + v∂xf(t, x, v) = 0, t ∈ [0, T ], (x, v) ∈ R2, (2.7)
with an initial condition f(0, ·, ·) = f0. The initial particle approximation f0

h writes

f0
h(z) =

∑
k∈Z2

wkϕh(z − z0
k) (2.8)

with particles centers initially located on the Cartesian nodes z0
k = h(k1, k2) =: (x0

k, v
0
k), k ∈ Z2. These

centers evolve according to the free-streaming ODE
d

dt
xk(t) = vk(t), xk(0) = x0

k,

d

dt
vk(t) = 0, vk(0) = v0

k,
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hence znk = (xnk , vnk ) = (x0
k + tnv0

k, v
0
k). Here the exact flow F 0,n

ex (x, v) = (x + tnv, v) is affine so its
linearization around any center z0

k is exact: the finite difference approximations (2.2) compute the
exact Jacobian matrices Jnk = J

F 0,n
ex

(z0
k) =

( 1 tn
0 1

)
and the LTP approximation of the density f(tn)

reads

fn,ltph (z) =
∑
k∈Z2

wkϕh (Dn
k (z − znk )) , with Dn

k = (Jnk )−1 =
(

1 −tn
0 1

)
. (2.9)

We then verify that, just as the forward flows, the particle-wise backward flows are exact, i.e.,
B0,n
h,k(z) = B0,n

ex (z) for all k. In particular, (2.9) corresponds to an exact transport of the initial particle
approximation (2.8).

However, (2.9) also involves a loss of locality that is clearly visible on Figure 2.1: as time advances
the particle supports stretch in the x dimension so that the value of fn,ltph on any given point involves
contributions from particles whose centers are at distance on the order of tnh.

Of course, locality would be restored by taking ε = h in the standard particle approximation (1.6),

fn,sph (x, v) =
∑
k∈Z2

wkϕh(z − znk ),

but as discussed before, this would imply an important loss of accuracy. The gist of the Forward-
Backward Lagrangian method will be to allow for local reconstructions without giving up accuracy.

xx

vv

ξiz0k
znk

Figure 2.1. Free streaming transport: an initial grid of markers with size h is shown
on the left, and on the right at a later time tn. The shaded area indicates the support
of one smooth particle shape function with center represented by a black circle. In the
LTP method this shape function is transported along the (exact) linear flow: at t = tn

its support intersects the grid cell represented by a dashed line at a distance ≈ tnh
from its center, leading to a loss of locality in the reconstruction of the transported
density fn,ltph . In the FBL method the reconstruction of the density in the ictured cell
involves only nearby particles at distance . h, and locality is preserved.

2.3. Notations

We end this section by summarizing the notations used in the article for the different flows and their
derivatives:
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F 0,n
ex : exact forward flow on the time interval [0, tn]

B0,n
ex : exact backward flow on the time interval [0, tn]

J
B0,n

ex
(xnk) : Jacobian matrix of B0,n

ex evaluated at xnk , the position of the particle k at time tn

H(B0,n
ex )i

(xnk) : Hessian matrix of the component i of B0,n
ex , evaluated at xnk

B0,n
k,(1) : linear expansion of B0,n

ex around xnk (using the exact flow derivatives)

B0,n
k,(2) : quadratic expansion of B0,n

ex around xnk (using the exact flow derivatives)

Dn
k : particle-based approximation of J

B0,n
ex

(xnk)

Qnk,i : particle-based approximation of H(B0,n
ex )i

(xnk)

B0,n
h,k,(1) : linear expansion of B0,n

ex around xnk , using the matrix Dn
k

B0,n
h,k,(2) : quadratic expansion of B0,n

ex around xnk , using the matrices Dn
k and Qnk,i, 1 ≤ i ≤ d

B0,n
h : global approximation of B0,n

ex used in the FBL reconstruction.

In the remapped version of the methods, the above notations will be extended to time intervals of
the form [tm, tn] with m the last remapping time step preceding n (see, e.g. Section 3.3).

3. The Forward-Backward Lagrangian (FBL) approximation

Since it is the accurate transport of the smooth particle shapes that causes a loss of locality in the
computation of the approximated density, a natural option to restore locality is to follow the elegant
approach of [13] and abandon the forward description of f in terms of smooth particle shapes.

Specifically, we opt for a backward representation of f based on a forward description of the flow.
We can indeed recycle one central step of the method above, namely the local approximations to the
backward flow using the neighboring particles positions. Instead of using these accurate backward
flows to improve the transport of the particles shapes, we will combine them to derive an alternate
implementation of the Lagrangian representation of f that is at the basis of standard backward semi-
Lagrangian (BSL) methods, see e.g. [34].

The resulting method thus combines a forward part where point particles (markers) are pushed
along a standard numerical flow, and a backward part where the transported density is reconstructed
with a Lagrangian point of view and an accurate approximation of the backward flow.

3.1. Forward and backward approaches to transport approximation

Before describing in details the FBL method we summarize the main differences between forward and
backward approaches for the approximation of transport problems. As written above, forward methods
approximate the transported density by a superposition of numerical particles (either Dirac masses
or smooth shape functions) pushed forward. In the case of smooth particles the simplest option is to
translate the particles shapes along with the centers, which leads to a representation of the form (1.6),

fn,fwd
h,ε (x) =

∑
k∈Zd

wnkϕε(x− F 0,n
ex (x0

k)). (3.1)

The essence of the LTP and QTP methods described in Section 2 was to improve this approximation
by transforming each particle shape according to the local variations of the flow.
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On the other hand, the backward approach exploits the Lagrangian representation formula (1.3) of
the transported densities. Starting from an initial approximation f0

h , this representation reads

fn,bwd
h (x) = f0

h(B0,n
ex (x)) (3.2)

where B0,n
ex = (F 0,n

ex )−1 : Rd → Rd is the backward flow on the time interval [0, tn]. The principle of the
subsequent FBL method is then to provide an efficient approximation scheme for this backward flow,
given a collection of point markers that have been pushed forward by an accurate particle scheme.

We note in passing that it is also a Lagrangian formula that is at the basis of the improved particle
transport in the LTP/QTP method. Indeed if f0

h is a collection of smooth particles of scale ε = h,
then (3.2) becomes

fn,bwd
h (x) =

∑
k∈Zd

wnkϕh(B0,n
ex (x)− x0

k) (3.3)

and the LTP/QTP method essentially consists in implementing this formula with approximate back-
ward flows, one per numerical particle.

Finally we observe that in the case of a constant velocity u(t, x) = u, the forward flow reads
F 0,n

ex (y) = y + utn and its inverse is B0,n
ex (y) = y − utn, so that (3.1) and (3.3) are equivalent.

3.2. Description of the method

The FBL approximation to the exact solution f(tn, x) = f0(B0,n
ex (x)) consists of the following steps.

(i) To every particle xnk we associate a polynomial backward flow B0,n
h,k which approximates the

exact one close to xnk , as in the LTP and QTP methods. We remind that at the first order this
flow reads

B0,n
h,k = B0,n

h,k,(1) : x 7→ x0
k +Dn

k (x− xnk) with Dn
k ≈ JB0,n

ex
(xnk) (3.4)

see Appendix A, and at the second order it takes the form

B0,n
h,k = B0,n

h,k,(2) : x 7→ x0
k +Dn

k (x− xnk) + 1
2
(
(x− xnk)tQnk,i(x− xnk)

)
1≤i≤d (3.5)

with Qnk,i ≈ H(B0,n
ex )i

(xnk), 1 ≤ i ≤ d, see Appendix B.

(ii) To smoothly patch these local flows together we then consider a partition of unity∑
i∈Zd

S(x− i) = 1, x ∈ Rd (3.6)

involving a compactly supported, non-negative shape function S (for instance a B-spline), and
a grid of step size h. Writing the corresponding nodes as ξi = ih to avoid a confusion with the
particles positions, the scaled formula reads

∑
i∈Zd Sh,i(x) = 1 where Sh,i(x) = S

(
(x− ξi)/h

)
.

A global approximation to the backward flow is then defined as

B0,n
h (x) :=

∑
i∈Zd

B0,n
h,k∗(n,i)(x)Sh,i(x) (3.7)

where k∗(n, i) is the index of the closest marker to the node ξi,

k∗(n, i) := argmink∈Zd‖xnk − ξi‖∞.

(iii) The approximate solution is finally obtained by a standard Lagrangian formula involving the
initial density

fn,fbl
h (x) := f0(B0,n

h (x)
)
. (3.8)
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Remark 3.1 (improved locality). By comparison with the LTP/QTP method, we see that locality is
recovered in the above procedure by using only the closest particle to the nodes of the reconstruction
grid. In the case of the free streaming transport illustrated on Figure 2.1, we verify that evaluating
the approximated FBL density at an arbitrary point only involves nearby markers, unlike what was
observed with the LTP method.

Remark 3.2 (second order flow reconstructions). In the second order case we observe that this
scheme is also simpler as the QTP method, as it does not require to estimate the a priori supports of
transformed particles.

Remark 3.3 (conservative transport). The FBL approximation can be extended with little extra cost
to the case of a transport equation in conservation form

∂tf(t, x) +∇ · (uf) (t, x) = 0. (3.9)
In the case of an incompressible flow (∇ · u = 0), this form is equivalent with (1.1). Otherwise the
exact solution to (3.9) reads

f(t, x) = f0((B0,n
ex (x)) det(J

B0,n
ex

(x)).

Consistent with the spirit of the reconstruction (3.8), an approximation j0,n
h (x) to det(J

B0,n
ex

(x)) is
defined by

j0,n
h (x) =

∑
i∈Zd

j0,n
h,i Sh,i(x) with j0,n

h,i = det
(
Dn
k∗(n,i)

)
,

and we define the corresponding FBL approximation to the transported density by

fn,fbl
h (x) := f0(B0,n

h (x)
)
j0,n
h (x). (3.10)

Remark 3.4. Unlike in the LTP case, we can define the FBL approximate density without an initial
discretization of f0, which corresponds to (3.8). It is also possible to use a grid approximation of the
initial density, and this case is considered with the remapped version in Section 3.3 below.

3.3. Remapped FBL method

Because the regularity of the characteristic flow deteriorates over time, it is important to remap the
particles before the approximated flow becomes too inaccurate. Remapping essentially consists of using
the density transported up to some time tm as the initial data of a new transport problem, so that the
relevant flow map is reset to the identity. Specifically we replace the approximate density (3.8) given
by the FBL method with a new nodal representation on the grid,

fmh (x) =
∑
k

wmk ϕh(x− x0
k) ≈ f

m,fbl
h (x) (3.11)

and for the subsequent time steps we follow a new set of particles arranged on the Cartesian grid (1.4).
To project on the grid we may use tensor products of univariate B-splines defined recursively by

Bp(x) =
∫ x+ 1

2
x−1

2
Bp−1, B0 := χ

[−1
2 ,

1
2 ]
. The approximation reads then

Ahg(x) :=
∑
k∈Zd

ah,k(g)ϕh(x− x0
k), ϕh(x) =

∏
1≤i≤d

1
h
Bp
(
xi
h

)
where ah,k(g) is a coefficient that depends on the values of g on a local stencil around x0

k, such that
polynomials of degree ≥ p are exactly reproduced by Ah, see [36, 8], but many other approximations
are possible. Here we simply assume that Ah satisfies

‖Ahg − g‖W s,∞ ≤ CAhq−s|g|W q,∞ , for 0 ≤ s ≤ q ≤ p+ 1 (3.12)
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for some constant cA.
Thus, if we denote the remapping steps by m1, . . .mR and let m0 = 0 be the initial step where the

initial data f0 is also projected, the remapped-FBL approximation reads
fn,fbl
h (x) = fmh

(
Bm,n
h (x)

)
, m = max

{
mr < n : r ∈ {0, . . . , R}

}
(3.13)

with

• a numerical flow
Bm,n
h =

∑
i∈Zd

Bm,n
h,k∗(n,i)Sh,i (3.14)

computed with the FBL method (3.7), using the current particles xnk = Fm,nex (x0
k),

• a numerical density fmh which is either the approximation of the initial data, or that of an
approximated solution transported with the FBL method if m is a remapping step, that is,

fmh =
{
Ahf

0 if m = m0 = 0
Ahf

m,fbl
h if m = mr > 0.

(3.15)

We note that if we only consider the remapping time steps the proposed method is formally a backward
semi-Lagrangian scheme [35, 34]

f
mr+1
h = Ah

(
fmr
h ◦Bmr,mr+1

h

)
(3.16)

where the approximated backward flow is computed using the forward-pushed markers. Here an in-
teresting feature of the remapped FBL scheme is that the approximate backward flow relies on a
forward particles pusher, which in many cases is simpler to implement than backward approximations
of characteristic trajectories.

4. A priori error analysis

Following the error analysis established in [8] for the LTP and QTP methods, it is possible to derive
a priori convergence rates for the proposed method. Here we take into account the error induced by
the particle-based approximation of the Jacobian matrices, and estimates are available provided h is
small enough to guarantee that these matrices are invertible, see Appendix. We first consider the case
where no remappings are performed.

4.1. A priori estimates for the FBL method without remappings

In the case without remappings we establish a priori estimates for the approximation of the transport
alone.
Theorem 4.1. Let h ≤ h∗(F 0,n

ex ) as in (A.5) and assume B0,n
ex and F 0,n

ex ∈W 2,∞(Rd). The first order
FBL approximation (3.8), i.e. with local flows (3.4), satisfies

‖fn,fbl
h − f(tn)‖L∞ ≤ Ch2 (4.1)

with a constant independent of h that is specified in the proof.
Remark 4.2 (improved accuracy). Compared to the error estimates established in [8] for the LTP
and QTP methods, Theorems 4.1 above and 4.3 below represent a gain of one order in the convergence
rates. The main reason for this gain is the fact that in the LTP and QTP methods, the accuracy of
the reconstruction is estimated separately on each of the transported particles shapes, whose Lipschitz
constants grow like h−1 as h goes to 0. In the FBL method the accuracy of the reconstruction relies
instead on the global Lipschitz constant of the remapped densities, which is bounded uniformly in h.
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Proof. By direct application of a Taylor expansion we see that the (exact) linearization of the
backward flow around some particle xnk , namely

B0,n
k,(1) : x 7→ x0

k +
(
J
B0,n

ex (xn
k

)
)
(x− xnk)

satisfies an priori estimate

‖B0,n
k,(1)(x)−B0,n

ex (x)‖∞ ≤
1
2 |B

0,n
ex |W 2,∞‖x− xnk‖2∞. (4.2)

Thanks to the assumption h ≤ h∗(F 0,n
ex ) we can next use Lemma A.1 (specifically, estimate (A.6) with

q = 1) to estimate the finite difference approximation on the backward flow Jacobian matrix. For the
local numerical flow (3.4), we thus have

‖B0,n
h,k,(1)(x)−B0,n

ex (x)‖∞ ≤ ‖(Dn
k − JB0,n

ex (xn
k

))(x− x
n
k)‖∞ + ‖B0,n

k,(1)(x)−B0,n
ex (x)‖∞

≤ CF ‖x− xnk‖∞
(
d2|F 0,n

ex |
2(d−1)
1 h+ 1

2‖x− x
n
k‖∞

) (4.3)

with CF = max
(
|B0,n

ex |W 2,∞ , |F 0,n
ex |W 2,∞

)
. Our estimate for the global flow B0,n

h will gather bounds of
this form for k = k∗(n, i) with i ∈ Zd, and x ∈ supp(Sh,i) where Sh,i(x) := S

(
1
h(x− ξi)

)
. In particular,

we need to evaluate the distance between a node ξi and its associated particle xnk∗(n,i), and to this end
we note that for an arbitrary k ∈ Zd we have

‖xnk − ξi‖∞ = ‖F 0,n
ex (x0

k)− F 0,n
ex (B0,n

ex (ξi))‖∞ ≤ |F 0,n
ex |W 1,∞‖x0

k −B0,n
ex (ξi)‖∞.

By definition of k∗(n, i) and using the fact that the markers x0
k are on a Cartesian grid of step h, this

yields

‖xnk∗(n,i) − ξi‖∞ ≤ |F
0,n
ex |W 1,∞ min

k∈Zd
‖x0

k −B0,n
ex (ξi)‖∞ ≤

h

2 |F
0,n
ex |W 1,∞ .

Writing then ρS = 1
2 diam(supp(S)) we see that the support of Sh,i is an `∞ ball of center ξi and

radius hρS . Thus,
x ∈ supp(Sh,i) =⇒ ‖x− xnk∗(n,i)‖∞ ≤ ‖x− ξi‖∞ + ‖ξi − xnk∗(n,i)‖∞ ≤ hρ(S, n)

with

ρ(S, n) := ρS + 1
2 |F

0,n
ex |W 1,∞ . (4.4)

In particular, the bound (4.3) evaluated for k = k∗(n, i) gives
‖B0,n

h,k∗(n,i),(1) −B
0,n
ex ‖L∞(supp(Sh,i)) ≤ C1h

2, i ∈ Zd (4.5)
with

C1 = CFρ(S, n)
(
d2|F 0,n

ex |
2(d−1)
1 + 1

2ρ(S, n)
)
. (4.6)

Using the partition unity properties of the shape function S, we then write for the global flow
(B0,n

h −B0,n
ex )(x) =

∑
i∈Zd

(B0,n
h,k∗(n,i),(1) −B

0,n
ex )(x)Sh,i(x) ≤ C1h

2 ∑
i∈Zd

Sh,i(x) = C1h
2, x ∈ Rd. (4.7)

Using the smoothness of f0 completes the proof, with C = C1|f0|W 1,∞ .

Theorem 4.3. Let h ≤ h∗(F 0,n
ex ) as in (A.5) and assume B0,n

ex and F 0,n
ex ∈ W 3,∞(Rd). The second

order FBL approximation (3.8), ı.e. with local flows (3.5), satisfies

‖fn,fbl
h − f(tn)‖L∞ ≤ Ch3

with a constant that depends on the exact flow F 0,n
ex and its inverse B0,n

ex , but not on h.
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Proof. The proof is similar to that of Theorem 4.1. We first observe that the (exact) quadratic
expansion of the backward flow around some particle xnk , namely

B0,n
k,(2) : x 7→ x0

k +
(
J
B0,n

ex
(xnk)

)
(x− xnk) + 1

2
(
(x− xnk)t

(
H(B0,n

ex )i
(xnk)

)
(x− xnk)

)
1≤i≤d

satisfies an priori estimate

‖B0,n
k,(2)(x)−B0,n

ex (x)‖∞ ≤
1
6 |B

0,n
ex |W 3,∞‖x− xnk‖3∞. (4.8)

Thanks to the assumption h ≤ h∗(F 0,n
ex ) we can next use Lemma A.1 (specifically, estimate (A.6) with

q = 2) and B.1 to estimate the finite difference approximations for the backward flow Jacobian and
Hessian matrices. For the local numerical flow (3.5), we thus have
‖B0,n

h,k,(2)(x)−B0,n
ex (x)‖∞ ≤ ‖B0,n

k,(2)(x)−B0,n
ex (x)‖∞ + ‖Dn

k − JB0,n
ex

(xnk)‖∞‖(x− xnk)‖∞
+ C max

i
‖Qnk,i −H(B0,n

ex )i
(xnk)‖∞‖(x− xnk)‖2∞

≤ C(F 0,n
ex )

(
‖x− xnk‖3∞ + h‖x− xnk‖2∞ + ‖x− xnk‖∞h2) (4.9)

with a constant depending on the exact flow. The rest of the proof is the same.

Remark 4.4. In the case of the FBL approximation (3.10) of the conservative transport equation, it
is possible to prove using the same arguments that if B0,n

ex and F 0,n
ex ∈ W 3,∞(Rd) then the first order

FBL approximation (3.8) satisfies, under a modified condition on h of the form h ≤ h∗∗(F 0,n
ex ),

‖fn,fbl
h − f(tn)‖L∞ ≤ Ch2

with a constant independent of h.

4.2. A priori estimates for the FBL method with remappings

Let us denote by ‖A‖L∞ = infg∈C ‖Ahg‖L∞
‖g‖L∞

the L∞ norm of the approximation operator Ah. We have
the following estimate for the remapped method described in Section 3.3.

Theorem 4.5. Assume that f0, F 0,n
ex and B0,n

ex ∈W 2,∞(Rd). If the remapping time steps are such that
h ≤ h∗(Fmr−1,mr ) for r = 1, . . . , R, as in (A.5), then the (first order) remapped FBL scheme (3.13)-
(3.15) satisfies

‖fn,fbl
h − f(tn)‖L∞ ≤ Ch2 (4.10)

with a constant specified in the proof, that may depend on the number of remappings R but not on h.

Proof. Writing m the last remapping step before n, the remapped FBL approximation reads
fn,fbl
h (x) = fmh (Bm,n

h (x)), whereas the exact solution fn = f(tn) satisfies fn(x) = fm(Bm,n
ex (x)).

Thus, we have
‖fn,fbl
h − fn‖L∞ ≤ ‖fmh (Bm,n

h )− fm(Bm,n
h )‖L∞ + ‖fm(Bm,n

h )− fm(Bm,n
ex )‖L∞

≤ ‖fmh − fm‖L∞ + |fm|W 1,∞‖Bm,n
h −Bm,n

ex ‖L∞ .
(4.11)

Since the flow Bm,n
h is obtained by applying the FBL method on the particles transported from tm to

tn, the arguments used above to establish the bound (4.7) give here
‖Bm,n

h −Bm,n
ex ‖L∞ ≤ Cm,nh2

with Cm,n = |Fm,n|W 2,∞ρ(S, n−m)
(
d2|Fm,nex |

2(d−1)
1 + 1

2ρ(S, n−m)
)
and ρ(S, ·) is defined in (4.4). As

for the remapped approximation error at time tm, it satisfies
‖fmh − fm‖L∞ ≤ ‖Ah(fm,fbl

h − fm)‖L∞ + ‖(Ah − I)fm‖L∞

≤ ‖Ah‖L∞‖fm,fbl
h − fm‖L∞ + CA|fm|W 2,∞h2.
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Gathering the above estimates thus yields
‖fn,fbl
h − f(tn)‖L∞ ≤ ‖Ah‖L∞‖fm,fbl

h − fm‖L∞ + h2
(
CA|fm|W 2,∞ + Cm,n|fm|W 1,∞

)
.

Denoting for convenience by mR+1 = N the last time step (where no remapping is actually performed)
we then observe that the error term defined by er := maxmr−1<n≤mr‖f

n,fbl
h − f(tn)‖L∞ for r ≥ 1 and

e0 := 0 satisfies a recursive bound
er ≤ ‖Ah‖L∞er−1 + βh2, r = 1, . . . R+ 1,

where we have denoted
β = CA‖f‖L∞([0,T ];W 2,∞) + max

1≤r≤R+1
max

mr−1<n≤mr

(
|fmr−1 |W 1,∞Cmr−1,n

)
.

This gives er ≤ αrβh2 with αr = (‖Ah‖rL∞−1)/(‖Ah‖L∞−1) if ‖Ah‖L∞ > 1 and αr = r if ‖Ah‖L∞ = 1.
In particular this implies

‖fn,fbl
h − fn‖L∞ ≤ αR+1βh

2

for all n ≤ N = mR+1, which ends the proof.

Remark 4.6. For stable approximation operators (such as iecewise affine interpolations) we have
‖A‖L∞ = 1 and the constant C in (4.10) depends linearly of the number of remappings. In any case,
this number should not vary much with h when the latter is small, indeed the remapping frequency
should essentially reflect the smoothness of the exact characteristic flow.

4.3. Transport of smoothness

In the above analysis we did not take advantage of the fact that the reconstructed flow was obtained
with a smooth patching procedure (3.7). Nevertheless, this feature of the FBL method allows to
estimate the smoothness of the transported solutions as time evolves, and this may yield enhanced
error bounds in the remapped version of the scheme, since remapping errors strongly depend on the
solution smoothness. We illustrate this property with the following result.

Theorem 4.7. The density transported with the FBL scheme (3.8) of order r ∈ {1, 2} satisfies

‖fn,fbl
h ‖W q,∞ ≤ C‖f0‖W q,∞ , 1 ≤ q ≤ r + 1,

with a constant C that depends on the exact flow F 0,n
ex and its inverse B0,n

ex , but not on h.

Remark 4.8. With Lagrangian methods such as (1.6), stability estimates require strong constraints
on the small parameters h and ε to avoid the well-known oscillation (the so-called particle noise) issue,
see [30]. These constraints are demanding already for Lp stability as discussed in the introduction, and
they are even stronger for higher order norms. In standard semi-Lagrangian methods where remappings
are performed at each time step, the grid projection operators usually have stability constants higher
than 1, which results in a priori constants of the form Cn at time tn, with C > 1. With the FBL
approach the situation is more favorable, since remappings are meant to be performed less frequently,
as discussed in Remark 4.6.

Proof. We only give the proof in the case of the first order method (r = 1), as that of the second
order is similar. By differentiating the transported density fn,fbl

h = f0(B0,n
h ) one obtains

∂jf
n,fbl
h (x) =

d∑
l=1

∂lf
0(B0,n

h (x))∂j(B0,n
h )l(x), 1 ≤ j ≤ d,
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and

∂j2∂j1f
n,fbl
h (x) =

d∑
l1,l2=1

∂l2∂l1f
0(B0,n

h (x))∂j1
(
B0,n
h

)
l1

(x)∂j2
(
B0,n
h

)
l2

(x)

+
d∑
l=1

∂lf
0(B0,n

h (x))∂j2∂j1
(
B0,n
h

)
l
(x), 1 ≤ j1, j2 ≤ d.

This yields

|fn,fbl
h |W 1,∞ ≤ C|B0,n

h |W 1,∞ |f0|W 1,∞

and

|fn,fbl
h |W 2,∞ ≤ C

(
|B0,n

h |
2
W 1,∞ |f0|W 2,∞ + |B0,n

h |W 2,∞ |f0|W 1,∞
)

with constants depending only on d. We are then left to estimate the smoothness of the reconstructed
flow B0,n

h =
∑
i∈Zd B

0,n
h,k∗(n,i)Sh,i, whose partial derivative reads

∂j
(
B0,n
h

)
l

=
∑
i∈Zd

(
∂j
(
B0,n
h,k∗(n,i)

)
l
Sh,i +

(
B0,n
h,k∗(n,i)

)
l
∂jSh,i

)
. (4.12)

Here the first term is easily taken care of by using the fact that the Jacobian matrix of the local
affine flow B0,n

h,k is the matrix Dn
k , see (3.4), for which an a priori bound is given in the Appendix,

see (A.12). Bounding the second term is less obvious since an 1/h factor appears in the derivative
of Sh,i(x) = S((x − ξ)/h). To handle this term we then observe that the sum

∑
i∈Zd ∂jSh,i vanishes,

thanks to the unity partition property (3.6). Hence we can write, for all x ∈ Rd,∣∣∣ ∑
i∈Zd

(
B0,n
h,k∗(n,i)

)
l
∂jSh,i

∣∣∣(x) =
∣∣∣ ∑
i∈Zd

(
B0,n
h,k∗(n,i) −B

0,n
ex

)
l
∂jSh,i

∣∣∣(x)

≤
∑
i∈Zd

‖B0,n
h,k∗(n,i) −B

0,n
ex ‖L∞(supp(Sh,i))|∂jSh,i|(x) ≤ Ch

where we have used the local flow error estimate (4.5) and the bounded overlapping of the shapes
Sh,i (here the constant depends on the shape S and the flow F 0,n

ex ). This allows us to bound the first
derivatives of B0,n

h ,

|B0,n
h |W 1,∞ ≤ C(F 0,n

ex ).

For the second derivatives we proceed similarly. Differentiating (4.12) and using the affine nature of
the local flows, we write

∂j2∂j1
(
B0,n
h

)
l

=
∑
i∈Zd

(
∂j1

(
B0,n
h,k∗(n,i)

)
l
∂j2Sh,i + ∂j2

(
B0,n
h,k∗(n,i)

)
l
∂j1Sh,i +

(
B0,n
h,k∗(n,i)

)
l
∂j2∂j1Sh,i

)
.

Again we can use the above trick and replace the local flows by local flow errors. In the last term the
estimate (4.5) gives an h2 factor that allows to take care of the 1/h2 term coming from the second
derivatives of the scaled shape Sh,i, and in the derivatives we are lead to consider the local error on
the backward Jacobian matrix, namely Dn

k∗(n,i) − JB0,n(x) for x ∈ supp(Sh,i), which is shown to be
controlled by Ch by reasoning just as in the proof of Theorem 4.1. Thus, we finally have that

|B0,n
h |W 2,∞ ≤ C

which completes the proof for the first-order method. The case of the second-order FBL method is
completely similar, using the fact that the local flow errors are estimated with one higher order of
accuracy in the proof of Theorem 4.3.
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5. Numerical results

We now investigate the numerical efficiency of the proposed FBL method and compare it with sev-
eral other methods, using either passive problems with given velocity fields or non-linear transport
problems. Our comparisons involve a forward semi-Lagrangian (FSL) scheme [18, 17], a backward
semi-Lagrangian (BSL) scheme [35, 34] and also the LTP and QTP methods described in Section 2.
Here we do not show comparisons with fully Lagrangian methods involving smooth particle recon-
structions (1.6) since the performances of LTP and QTP schemes have already been compared with
such methods in previous works, see e.g. [8] for passive transport problems and [10] for Vlasov-Poisson
problems where comparisons are done with a particle-in-cell (PIC) and high-order BSL schemes.

In all the numerical tests the particle shape functions are defined as two dimensional tensor products
cubic B-splines ϕh(x) =

( 1
h

)2B3
(x1
h

)
B3
(x2
h

)
, with

B3(s) = 1
6


(2− |s|)3 if 1 ≤ |s| < 2,
4− 6s2 + 3|s|3 if 0 ≤ |s| < 1,
0 elsewhere.

The computational domain is the square [0, 1] × [0, 1] hence the number of particles Np and the
remapping grid size h are linked by h2Np = 1.

5.1. Passive transport problems

As in [8] we consider several passive transport problems in 2d. The corresponding velocity fields are
• the reversible “swirling” velocity field proposed by LeVeque [26] to study the accuracy of
high-resolution schemes for multidimensional advection problems,

uSW(t, x;T ) := cos
(πt
T

)
curlφSW(x) with φSW(x) := −sin2(πx1) sin2(πx2)

π

• another reversible velocity field emulating a Raylegh-Benard convection cell,

uRB(t, x;T ) := cos
(πt
T

)
curlφRB(x)

with φRB(x) :=
(
x1 − 1

2
)
(x1 − x2

1)(x2 − x2
2) ;

• and finally a constant non-linear rotation field derived from Example 2 in [7],

uNLR(x) := α(x)
(1

2 − x2

x1 − 1
2

)
with α(x) :=

(
1−
‖x− (1

2 ,
1
2)‖2

0.4
)3

+
.

Here the form of uSW and uRB yields reversible problems: at t = T/2 the solutions reach a maximum
stretching, and they revert to their initial value at t = T . As for the non-linear rotation field uNLR, it
is associated with the exact backward flow

B0,n(x) =
(1

2
1
2

)
+
(

cos(α(x)tn) sin(α(x)tn)
− sin(α(x)tn) cos(α(x)tn)

)(
x1 − 1

2
x2 − 1

2

)
, (5.1)

and the exact solutions are given by f(tn, x) = f0(B0,n(x)). In addition to the above velocity fields
we consider the following initial data:

• smooth humps of approximate radius 0.2 given by

f0
hump(x; x̄) := 1

2
(
1 + erf

(
1
3(11− 100‖x− x̄‖2)

))
and centered on x̄ = (0.5, 0.4) or (0.5, 0.7), depending on the cases ;

134



From particles to forward-backward Lagrangian schemes

• and for the non-linear rotation field uNLR we take an initial data corresponding to Example 2
from [7], i.e.,

f0(x) := x2 − 1
2 .

By combining the above values we obtain the three test-cases in Table 5.1, and accurate solutions are
shown in Figures 5.1-5.3 for the purpose of illustration. In Table 5.1 we also give the respective time
steps ∆t used in the time integration of the particle trajectories. In every case indeed, the numerical
flow Fn is computed with a RK4 scheme, and the time steps have been taken small enough to have
no significant effect on the final accuracy. It happens that in every case we have ∆t = T/100, but this
is unintended.

Table 5.1. Definition of the benchmark test-cases

name u(t, x) f0(x) T ∆t
SW uSW(t, x;T ) f0

hump(x; x̄) with x̄ = (0.5, 0.7) 5 0.05
RB uRB(t, x;T ) f0

hump(x; x̄) with x̄ = (0.5, 0.4) 3 0.03

NLR uNLR(x) x2 − 1
2 50 0.5

From the convergence curves shown in Figures 5.1 to 5.4 we can draw the following observations:

• Overall, the two approaches (LTP/QTP and L/Q-FBL) reach similar accuracies, as there are
no striking differences in the global behavior of the top and bottom curves in Figures 5.1 to 5.3.

• A look at the cpu numbers displayed in parenthesis, however, provides an important assess-
ment: whereas the computational cost of the second order QTP scheme increases dramatically
for growing remapping periods (which is caused by the stretching of the particle supports), for
Q-FBL scheme it remains virtually equal to that of the first order methods (LTP and L-FBL).
Thus the main objective of the new scheme is achieved.

• The theoretical gain of one convergence order of the FBL method noticed in Remark 4.2
is better seen in Figure 5.4 where the errors are measured in the less stringent L2 norm.
By increasing the remapping period one observes that the accuracy of the LTP simulations
deteriorate from second to first order, whereas that of the L-FBL ones remain essentially of
second order, which is consistent with our a priori estimate (4.1) for the transport error.

Remark 5.1 (on the convergence order). As noticed above, the theoretical gain of one convergence
order achieved by the FBL method compared to LTP/QTP approximations is hardly visible in Fig-
ures 5.1 to 5.3. Our explanation for this fact is that two errors are present in the convergence curves,
namely transport errors and remapping errors. Because these curves show errors in L∞, the steep
gradients of the transported densities make the remapping errors dominate over most of the transport
ones, and since all the methods shown here use the same remapping tool (cubic spline approxima-
tions), the remapping errors do not differ much between the various plots. We note however that
when the remapping period increases the transport errors tend to become dominant (as there are less
remappings and the transport approximations involve less regular characteristic flows), and the results
tend to improve with the FBL method. This effect is clearly visible with the second-order runs (QTP
vs. Q-FBL) in Figures 5.1 and 5.3, and this diagnosis is also confirmed by the L2 convergence curves
shown in Figure 5.4.
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Figure 5.1. (Color) Convergence curves (relative L∞ errors at t = T vs. number
of particles) for the reversible SW test case defined in Table 5.1, solved with differ-
ent methods and different remapping periods ∆tr (for the BSL method which uses no
particles, ∆tr is the standard time step). Numbers in parenthesis indicate the approxi-
mate cpu times (in seconds) for these runs. The first row shows the profile of the exact
solution.
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Figure 5.2. (Color) Convergence curves (relative L∞ errors at t = T vs. number of
particles) for the reversible RB test case defined in Table 5.1, solved with different meth-
ods and different remapping periods ∆tr (for the BSL method which uses no particles,
∆tr is the standard time step). Numbers in parenthesis indicate the approximate cpu
times (in seconds) for these runs. The first row shows the profile of the exact solution.

137



M. Campos Pinto & F. Charles

Figure 5.3. (Color) Convergence curves (relative L∞ errors at t = T vs. number of
particles) for the NLR test case defined in Table 5.1, solved with different methods and
different remapping periods ∆tr (for the BSL method which uses no particles, ∆tr is
the standard time step). Numbers in parenthesis indicate the approximate cpu times
(in seconds) for these runs. The first row shows the exact solution.
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Figure 5.4. (Color) Convergence curves (relative L2 errors at t = T vs. h) for the
reversible SW test case defined in Table 5.1, solved by the first order LTP and the
L-FBL methods. Here the gain of one convergence order appears rather clearly when
the remapping period is increased.

5.2. Application to the 1D1V Vlasov-Poisson system

In this section and the following one, we show some preliminary results obtained by applying our
Forward-Backward Lagrangian approximation method to a couple of non-linear problems. As we aim at
a minimal amount of modifications to existing particle codes, here we only use the FBL reconstruction
formula (3.8) to re-initialize the particles with a given remapping frequency, in the spirit of (3.16).
Specifically, we consider a 1D1V Vlasov-Poisson system

{∂t + v∂x + E(x, t)∂v} f(t, x, v) = 0

∂xE(t, x) =
∫
R
f(t, x, v) dv − nb

(x, v) ∈ R2, (5.2)

which models the evolution of a normalized plasma of charged particles in a uniform neutralizing
background cloud of density nb.

To compute numerical approximations to the electric field E and the associated particle trajectories,
we employ a standard particle-in-cell (PIC) method [22] which only sees point particles through
the iecewise affine shape functions attached to the finite-difference 1D grid used for the field. On
the remapping steps we then compute new particles using a cubic spline approximation to the FBL
representation of the transported phase-space density f as in (3.11).

To assess our method we use the standard “weak” two-stream instability test-case [19, 31, 10] where
the initial distribution reads

f0(x, v) = 2(1 + 5v2)
7
√

2π
e−

v2
2

(
1 +A

(cos(2kx) + cos(3kx)
1.2 + cos(kx)

))
with k = 1

2 and a weak amplitude A = 0.01 for the perturbation. This test case is known to develop
very thin filaments in the phase space that are difficult to resolve numerically.

In Figure 5.5 we compare the results of simulations where the particles have been pushed with
a standard PIC method as described above, and remapped using either the first order LTP or the
first order FBL reconstruction for the transported densities. The approximated densities are shown
at t = 53 and the remapping period is always set to ∆tR = 3, which amounts to remapping every
15 time steps, which seemed to be a good value for virtually every run here. The simulations shown
on the first line use a grid of 128 × 128 particles, whereas those on the second line use 512 × 512
particles. Again, the results show a similar accuracy for both methods, also similar to some high order
semi-Lagrangian methods in the recent literature: here the 128 × 128 runs have small oscillations
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compared to the right panel in Fig. 11 from Ref. [31] obtained with a conservative third order WENO
BSL scheme using a 256× 512 phase-space mesh, but our 512× 512 run shows more features and has
virtually no oscillations. As for the cpu times, FBL is less expensive than LTP (16 s. versus 10 s. for
the high-resolution runs) due to the enhanced locality of the density reconstructions. We predict that
in higher dimensions the gain will be much more significant.

Figure 5.5. Vlasov-Poisson simulations of the two-stream instability described in Sec-
tion 5.2. The approximated densities shown here have been computed up to t = 53 with
a standard PIC scheme using 128 × 128 or 512 × 512 particles as indicated. On the
left plots the particles are periodically remapped using an LTP reconstruction of the
density, whereas on the right plots an L-FBL reconstruction is used. The approximated
CPU times are close to 3 s. for the low-resolution runs (top row), 16 s. for the high
resolution LTP run and 10 s. for the high resolution L-FBL run.
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5.3. Application to the 2D Euler equation

We then consider the inviscid evolution of an elliptical vortex of compact support. The 2D incom-
pressible Euler equations in vorticity-velocity form write:

∂ω

∂t
+ u · ∇ω = 0,

∇× u = ω,

∇ · u = 0,
lim

|x|→+∞
|u| = 0,

(5.3)

and for the initial condition we take (like in [25] and [4])

ω0(x) = ω0
I (
√

(x1/0.8)2 + (x2/1.6)2), ω0
I (r) = 20(1− exp(−(2.56085/r) exp(1/(r − 1)))). (5.4)

Here the vorticity ω plays the role of a transported density and is approximated by a particle repre-
sentation. The velocity field can be related to ω using a Green’s function formulation (see [16])

u = K ∗ ω where K(x) = 1
2π|x|2 (−x2, x1). (5.5)

This example has been used as a test case in [25] and in [4] to investigate Smooth Particle (Vortex)
methods using adaptive and multilevel remapping techniques.

As we did for the Vlasov-Poisson system, we study here the combination of a standard method
to push forward the particles centers and an accurate representation of the density (either with an
LTP (2.4)-(2.3) or an FBL (3.8) reconstruction) to re-initialize the particles positions and weights at a
given remapping frequency. Since a particle representation of the vorticity ω with Dirac masses leads
to a velocity field that is singular on particles, it is classical to use a regularization Kε = K ∗ ζε of the
kernel K, with ζε a smooth approximation of the Dirac mass. One can also consider an approximation
of the vorticity with smoothed particles, that is

ωh,ε(t, x) =
∑
k

wkζε(x− xk(t)),

and use it directly in (5.5). In both cases, it leads to the regularized expression of the velocity of the
k-th particle

uh,ε(t, xk(t)) =
∑
j

wjKε(xk(t)− xj(t)). (5.6)

Some examples of smoothing functions ζε and resulting kernels Kε can be found in [21] and [16].
In Figure 5.6 we compare numerical vorticities obtained remapped with the first order LTP and FBL

reconstructions. We see that the FBL method achieves an improved precision when the remapping
period increases, which is reminiscent of the behavior already observed in Figure 5.4 for the Vlasov-
Poisson simulations. Here the simulations involve grids of 50×50 particles corresponding to an average
inter-particle distance of h = 0.08. In theses simulations the particle trajectories have been computed
by applying an RK4 scheme with time step ∆t = 0.01 to the above approximation (5.6) for the velocity,
and for the smoothing of the kernel K we have set ε = 0.01. We note that this smoothing scale is
much smaller than the inter-particle distance h, which is not sufficient to guarantee the convergence of
the reconstructed vorticity in view of the classical analysis [21, 3, 32]. The qualitatively good results
displayed in Figure 5.6 are thus a practical evidence of the beneficial influence of the accurate LTP
and FBL reconstructions involved in the remappings.
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LTP method, ∆tR = 0.1 L-FBL method, ∆tR = 0.1

LTP method, ∆tR = 0.15 L-FBL method, ∆tR = 0.15

LTP method, ∆tR = 0.2 L-FBL method, ∆tR = 0.2

Figure 5.6. Vorticity contours for equation (5.3)-(5.4) with LTP or L-FBL scheme at
time t = 1.5, using remapping periods ∆tR as indicated and with particles remapped
on a 50× 50 grid.
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6. Conclusion

In this article we have introduced a novel method to represent the solution of a transport equation
using an existing distribution of markers pushed forward. In standard smooth particle methods, the
density is reconstructed as a sum of weighted shape functions centered on the markers positions. In
the LTP and QTP methods recently developed by the authors, and in other similar methods proposed
in the literature, the shapes of the particles are transformed according to a local expansion of the
backward flow around each particle. These methods allow to obtain strong convergence properties,
but at the price of stretching the particles supports which leads to a loss of locality.

In the Forward-Backward Lagrangian (FBL) method proposed here, locality is preserved by adopt-
ing a backward Lagrangian point of view to reconstruct the solution, which relies on an accurate
representation of the initial density (or some reconstructed density at a the last remapping time) and
on a global approximation of the backward flow. The latter is obtained by smoothly patching together
local expansions of the flow with explicit formulas given in the appendix, around particles seen as
(unweighted) flow markers.

Our a priori error analysis shows improved convergence rates for the resulting FBL reconstructions,
compared with both standard smooth particles and LTP/QTP methods. Using first order (linear) flow
expansions the L-FBL densities converge in O(h2), and with second order (quadratic) expansions the
Q-FBL densities converge in O(h3), which represents a gain of one order compared to the LTP and
QTP methods. Moreover, the smoothness of the FBL densities is stable in W q,∞ norms, with q ≤ 1
for L-FBL and q ≤ 2 for Q-FBL.

At the numerical level it is possible to observe the improved accuracy of the FBL reconstructions
compared to the LTP ones, especially for increasing remapping periods. However, when remapping
errors dominate our convergence studies tend to show that the overall quality of both methods is
similar. From a CPU time point of view the LTP and L-FBL methods are quite comparable in two
dimensions; but due to its good locality the Q-FBL method is much more efficient than the QTP
one. Because of the stretching of particle supports the latter has indeed a large computational cost
compared to first order methods when the remapping period increases, which has not been observed
with the Q-FBL method. Based on this study we can advocate for quadratic FBL reconstructions and
large remapping periods, at least when the underlying characteristic flow is smooth enough to justify
a second order approximation. Both its implementation complexity and computational cost are close
to those of the first order FBL method, and in several of the test-cases shown here the results are
significantly better.

Additional results provided for non-linear problems such as the 1D1V Vlasov-Poisson system or
the 2D Euler equation in vorticity form highlight two attractive features of the proposed approach
compared to previous ones: on the one hand, its relative efficiency in terms of CPU time when the
number of particles increases; on the other hand, its relative accuracy when the remapping period
increases. These encouraging results call for more advanced comparisons with existing reconstruction
methods. They will be the subject of future articles, in particular for higher dimensional Vlasov-Poisson
codes currently under implementation.

Appendix A. Explicit approximation of the flow Jacobian from the particles

Using particles originally distributed on a Cartesian grid, i.e., x0
k = hk, k ∈ Zd, we compute the

deformation matrices Dn
k approximating the Jacobian matrices of the backward flow at the particles

positions (2.1), namely

J
B0,n

ex
(xnk) =

(
∂j(B0,n

ex )i(xnk)
)

1≤i,j≤d,
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as follows. We first approximate the derivatives of the forward flow F 0,n
ex by finite differences involving

the current particle positions xnk = F 0,n
ex (x0

k). With a centered formula we define

Jnk :=
(

(xnk+ej
− xnk−ej

)i
2h

)
1≤i,j≤d

≈ J
F 0,n

ex
(x0
k)

and using the relation
J
B0,n

ex
(xnk)J

F 0,n
ex

(x0
k) = Id (A.1)

which follows by differentiating the identity x = B0,n
ex (F 0,n

ex (x)) at x0
k, we approximate J

B0,n
ex

(xnk) with

Dn
k := (Jnk )−1. (A.2)

Since we consider a measure-preserving exact flow, we have det(J
F 0,n

ex
) = 1 on Rd and it is reasonable

to assume that the d × d matrix Jnk is invertible. In the following Lemma we establish a sufficient
condition for this, together with some a priori estimates for the resulting approximations.

Lemma A.1. The approximate forward Jacobian matrix satisfies the a priori estimate

‖Jnk − JF 0,n
ex

(x0
k)‖∞ ≤ hq

|F 0,n
ex |q+1

(q + 1)! , q ∈ {1, 2} (A.3)

and the determinant error is bounded as

|det(Jnk )− 1| ≤ γn(h) with γn(h) = 3d2|F 0,n
ex |1 min

q∈{1,2}

(
hq
|F 0,n

ex |q+1
(q + 1)!

)
. (A.4)

In particular, if h satisfies

h ≤ h∗(F 0,n
ex ) := max

q∈{1,2}

(3d2

2 |F
0,n
ex |1

|F 0,n
ex |q+1

(q + 1)!
)− 1

q (A.5)

then det(Jnk ) ≥ 1
2 so that Dn

k is well defined, and we have the a priori estimate

‖Dn
k − JB0,n

ex
(xnk)‖∞ ≤ min

q∈{1,2}

(
hq
|F 0,n

ex |q+1
(q + 1)!

)
2d2|F 0,n

ex |
2(d−1)
1 . (A.6)

Proof. For conciseness, we denote in this proof
Jn,ex
k = J

F 0,n
ex

(x0
k) and Dn,ex

k = J
B0,n

ex
(xnk)

and using the semi-norms (1.8) we observe that
max(‖Jn,ex

k ‖∞, ‖Jnk ‖∞) ≤ |F 0,n
ex |1. (A.7)

Next we write two Taylor formulas for s 7→ F 0,n
ex (x0

k + sej) with j = 1, . . . , d, namely

F 0,n
ex (x0

k + σhej) = F 0,n
ex (x0

k) + σh∂jF
0,n
ex (x0

k) +
∫ σh

0
(σh− s)∂2

jF
0,n
ex (x0

k + sej) ds, σ = ±1 (A.8)

and by taking their difference we obtain

(2h)−1[F 0,n
ex ]x

0
k+hej

x0
k
−hej

= ∂jF
0,n
ex (x0

k) + (2h)−1
∫ h

0
(h− s)

(
∂2
jF

0,n
ex (x0

k + sej)− ∂2
jF

0,n
ex (x0

k − sej)
)

ds.

This gives

‖Jnk − J
n,ex
k ‖∞ ≤ h

|F 0,n
ex |2
2 (A.9)

and also
‖Jnk − J

n,ex
k ‖∞ ≤ h2 |F 0,n

ex |3
6 (A.10)

which shows (A.3). Using next det(Jn,ex
k ) = 1 and Lemma A.2, we find
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|det(Jnk )− 1| ≤ d‖Jnk − J
n,ex
k ‖2(‖Jnk − J

n,ex
k ‖2 + ‖Jn,ex

k ‖2) ≤ 3d2|F 0,n
ex |1 min

q∈{1,2}

(
hq
|F 0,n

ex |q+1
(q + 1)!

)
(A.11)

since ‖M‖2 ≤
√
d‖M‖∞ for M ∈ Md(R). Here the upper bound corresponds to γn(h), which

shows (A.4). From now on we assume that h is as in (A.5), so that γn(h) ≤ 1/2, det(Jnk ) ≥ 1/2
and Dn

k is well defined. Using the formula A−1 = det(A)−1C(A)t involving the cofactor matrix C(A)
we then write, with A = Dn

k = (Jnk )−1,

‖Dn
k‖∞ ≤ d

‖Jnk ‖d−1
∞

det(Jnk ) ≤ d(1− γn(h))−1|F 0,n|d−1
1 . (A.12)

With A = Dn,ex
k := (Jn,ex

k )−1, see (A.1), this also gives

‖Dn,ex
k ‖∞ ≤ d

‖Jn,ex
k ‖d−1

∞
det(Jn,ex

k ) ≤ d|F
0,n|d−1

1 . (A.13)

In particular, writing Dn
k −D

n,ex
k = Dn

k (Jn,ex
k − Jnk )Dn,ex

k gives

‖Dn
k −D

n,ex
k ‖∞ ≤ ‖Dn

k‖∞‖Jnk − J
n,ex
k ‖∞‖Dn,ex

k ‖∞ ≤ h
d2

2 (1− γn(h))−1|F 0,n|2(d−1)
1 |F 0,n|2

using the second order estimate (A.9), while the third order estimate (A.10) leads to

‖Dn
k −D

n,ex
k ‖∞ ≤ ‖Dn

k‖∞‖Jnk − J
n,ex
k ‖∞‖Dn,ex

k ‖∞ ≤ h2d
2

6 (1− γn(h))−1|F 0,n|2(d−1)
1 |F 0,n|3.

This ends the proof.

Lemma A.2. For all A, B ∈Md(C) we have

| det(A)− det(B)| ≤ d
[
‖A−B‖2 + ‖B‖2

]
‖A−B‖2

where ‖ · ‖2 denotes the induced `2 norm for square matrices.

Proof. Let φ : t 7→ tA+ (1− t)B. Using that the differential of the determinant is given by
D det(M)H = Tr(M∗H)

we can write
|det(A)− det(B)| = |det(φ(1))− det(φ(0))|

= Tr (φ(θ)∗(A−B)) , with θ ∈]0, 1[

= θTr((A−B)∗(A−B)) + 1
2Tr((A−B)∗B +B∗(A−B))

≤ θ d% ((A−B)∗(A−B)) + d

2% ((A−B)∗B +B∗(A−B))

≤ θ d‖A−B‖22 + d

2‖(A−B)∗B +B∗(A−B)‖2

≤ d‖A−B‖22 + d‖A−B‖2‖B‖2,
where %(M) is the spectral radius of a matrix M .
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Appendix B. Explicit approximation of the flow Hessian from the particles

To compute the quadratic deformation matrices Qnk,i which approximate the Hessian matrices of the
backward flow at the particles positions (2.6), namely

H(B0,n
ex )i

(xnk) =
(
∂j1∂j2(B0,n

ex )i(xnk)
)

1≤j1,j2≤d, 1 ≤ i ≤ d,

we follow the same principle as for the Jacobian matrices. First, using the current particles positions
xnk = F 0,n

ex (x0
k) we define approximate forward Hessian matrices as

Hn
k,i :=

(
(h)−2

1∑
α1,α2=0

(−1)α1+α2
(
xnk+α1ej1 +α2ej2

)
i

)
1≤j1,j2≤d

≈ H(F 0,n
ex )i

(x0
k) (B.1)

which corresponds to finite differences on the original grid nodes x0
k = hk, k ∈ Zd. Then, differentiating

twice the identity x = I(x) = B0,n
ex (F 0,n

ex (x)) we obtain

0 = ∂j1∂j2(I)i(x) =
d∑

l1,l2=1
∂l1∂l2(B0,n

ex )i(F 0,n
ex (x))∂j1(F 0,n

ex )l1(x)∂j2(F 0,n
ex )l2(x)

+
d∑
l=1

∂l(B0,n
ex )i(F 0,n

ex (x))∂j1∂j2(F 0,n
ex )l(x)


for

1 ≤ i,j1, j2 ≤ d.

At x = x0
k and denoting for conciseness the exact Hessian matrices by

Hn,ex
k,i = H(F 0,n

ex )i
(x0
k) and Qn,ex

k,i = H(B0,n
ex )i

(xnk), 1 ≤ i ≤ d, (B.2)

this gives 0 = (Jn,ex
k )tQn,ex

k,i J
n,ex
k +

∑d
l=1(Dn,ex

k )lHn,ex
k,l , hence with (A.1),

Qn,ex
k,i = −(Dn,ex

k )t
( d∑
l=1

(Dn,ex
k )i,lHn,ex

k,l

)
Dn,ex
k . (B.3)

For the approximate backward Hessian matrix at xnk we thus set

Qnk,i := −(Dn
k )t
( d∑
l=1

(Dn
k )i,lHn

k,l

)
Dn
k (B.4)

where the approximate backward Jacobian matrix Dn
k is computed as in Appendix A.

Lemma B.1. The approximate forward Hessian matrix defined in (B.1) satisfies the a priori estimate

‖Hn
k,i −H(F 0,n

ex )i
(x0
k)‖∞ ≤ C|F 0,n

ex |W 3,∞h (B.5)

with a constant C that depends only on the dimension d. Moreover if h ≤ h∗(F 0,n
ex ) as in (A.5), the

backward ones Qnk,i satisfy

‖Qnk,i −H(B0,n
ex )i

(xnk)‖∞ ≤ CQ(F 0,n
ex )h (B.6)

with a constant CQ(F 0,n
ex ) that depends on |F 0,n

ex |W q,∞ with 1 ≤ q ≤ 3.
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Proof. Expressing the finite differences in (B.1) as local averages of second derivatives of F 0,n
ex , one

easily verifies the estimate (B.5), as well as the bounds
‖Hn

k,i‖∞ ≤ C|F 0,n
ex |W 2,∞ , 1 ≤ i ≤ d (B.7)

also satisfied by the exact Hn,ex
k,i . To show (B.6) it then suffices to use the identities (B.3) and (B.4),

together with the estimates (B.5) on Hn
k , (A.6) on Dn

k (with q = 1) and the bounds (A.12), (A.13),
(B.7) satisfied by the exact and approximate (backward) Jacobian and (forward) Hessian matrices.

Appendix C. Main algorithms of the FBL method

We summarize here the algorithms that have been implemented to obtain the numerical results of
Section 5. We denote:

• GR the remapping grid, of step size h. Its nodes x0
k = hk, k ∈ Zd, correspond to the initial

positions of the particles.

• GF the flow grid on which the backward flow is reconstructed. In this paper we have chosen
the same grid for GF and GR for simplicity, but the nodes of GF are denoted ξi to avoid a
confusion with the initial particle positions.

• GV , an arbitrary grid on which the density fn,fbl
h is reconstructed for visualization.

Algorithm 1 global FBL simulation

• Initialization Particles are created with positions set to the nodes (x0
k)k∈Zd of the

remapping grid GR, and weights (w0
k)k∈Zd computed from the initial density f0.

• Time evolution For every time step n,
– particles are pushed forward with a standard pusher (for example an RK4 method

for the time scheme and a Particle-In-Cell method in the case of a non-linear
transport problem),

– if n is a visualization time step: fn,fbl
h is reconstructed on the grid GV ,

– if n is a remapping time step: particles positions are reset to (x0
k)k∈Zd the nodes

of GR, and new weights (wk)k∈Zd are computed from the reconstructed density
fn,fbl
h . Previous particles positions and weights are discarded.
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Algorithm 2 reconstruction of fn,fbl
h at an arbitrary point x, given m the last remapping

time step

• For every node ξi of the flow grid GF ,
– the index of the closest particle is founda

k∗(n, i) = argmink∈Zd ‖xnk − ξi‖∞
– the backward Jacobian matrix Dn

k∗(n,i) is computed and, in the case of second-
order flows, the backward Hessian matrices Qnk∗(n,i).

• At x, one then computes
– Bm,n

h (x) the approximate backward image of x, using the local flow matrices
computed previously, see (3.14),

– the approximate density value fn,fbl
h (x) = fmh (Bm,n

h (x)), following (3.13). This
involves the density fmh on the Cartesian grid GR = (x0

k)k∈Zd , i.e., the weights
(wmk )k∈Zd computed at the last remapping time step m, see (3.11).

a We do not detail here the algorithm to find the closest particle of a grid node. For our analysis it is sufficient
that the particle of index k∗(n, i) satisfies maxi∈Zd ‖xn

k∗(n,i) − ξi‖∞ ≤ Ch for some C > 0, see e.g. the proof
of Theorem 4.1.
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