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Abstract. The use of a reference element on which a finite element basis is constructed once and mapped
to each cell in a mesh greatly expedites the structure and efficiency of finite element codes. However, many
famous finite elements such as Hermite, Morley, Argyris, and Bell, do not possess the kind of equivalence
needed to work with a reference element in the standard way. This paper gives a generalized approach to
mapping bases for such finite elements by means of studying relationships between the finite element nodes
under push-forward.

This approach, developed through a sequence of examples of increasing complexity, requires one to study
the relationship between the function space and degrees of freedom, or nodes, on a generic cell and the
transformation of the corresponding entities on a reference cell. When the function space is preserved under
mapping, one must be able to express the pushed-forward finite element nodes as linear combinations of the
reference element finite element nodes. The transpose of this linear transformation maps the pull-back of the
reference element basis functions to the desired finite element basis functions. Generically, developing this
transformation for elements such as Morley and Hermite involves completing the set of finite element nodes,
although the process is simplified in concrete ways when the finite elements form affine- or affine-interpolation
equivalent families such as Lagrange or Hermite. When the finite element function space is not preserved
under the pull-back, such as in the case of the Bell element, one applies the theory to an enriched finite
element with a larger (but preserved) function space and additional nodes.

2010 Mathematics Subject Classification. 65N30.
Keywords. Finite element method, basis function, pull-back.

1. Introduction

At the heart of any finite element implementation lies the evaluation of basis functions and their
derivatives on each cell in a mesh. These values are used to compute local integral contributions to
stiffness matrices and load vectors, which are assembled into a sparse matrix and then passed on to an
algebraic solver. While it is fairly easy to parametrize local integration routines over basis functions,
one must also provide an implementation of those basis functions. Frequently, finite element codes use
a reference element, on which a set of basis functions is constructed once and mapped via coordinate
change to each cell in a mesh. This has significant advantages in terms of code reuse and modularity.
For example, Jacobians can be computed centrally and shared among all finite element bases and
integration loops.

Alternately, many finite element bases can be expressed in terms of barycentric coordinates, in
which case one must simply convert between the physical and barycentric coordinates on each cell
in order to evaluate basis functions. Although we refer the reader to recent results on Bernstein
polynomials [1, 25] for interesting algorithms in the latter case, the prevelance of the reference element
paradigm in modern high-level finite element software [4, 8, 27, 28, 32, 33] we shall restrict ourselves
to the former.

The development of FIAT [24] has had a significant impact on finite element software, especially
through its adoption in high-level software projects such as FEniCS [27] and Firedrake [33]. FIAT
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(a) Cubic Lagrange (b) Cubic Hermite (c) Morley (d) Quintic Argyris (e) Bell

Figure 1.1. Some famous triangular elements. Solid dots represent point value degrees
of freedom, smaller circles represent gradients, and larger circles represent the collection
of second derivatives. The arrows indicate directional derivatives evaluated at the tail
of the arrow.

provides tools to describe and construct reference bases for arbitrary-order instances of many common
and unusual finite elements. Composed with a domain-specific language for variational problems like
UFL [2] and a form compiler mapping UFL into efficient code for element integrals [21, 26, 29] gives
a powerful, user-friendly tool chain.

However, any code based on the reference element paradigm operates under the assumption that
finite elements satisfy a certain kind of equivalence. Essentially, one must have a pull-back operation
that puts basis functions on each cell into one-to-one correspondence with the reference basis functions.
Hence, the original form of ffc [26] used only (arbitrary order) Lagrange finite elements, although this
was generalized to H(div) and H(curl) elements using Piola transforms in [34]. Current technology
captures the full simplicial discrete de Rham complex and certain other elements, but many famous
elements are not included. Although it is possible to construct reference elements in FIAT or some other
way, current form compilers or other high-level libraries do not provide correct code for mapping them.
A major goal of this paper is to describe such mappings in order to understand how the capabilities
of these high-level codes may be extended.

Elements such as Hermite [13], Argyris [3], Morley [31], and Bell [5], shown alongside the Lagrange
element in Figure 1.1, do not satisfy the proper equivalence properties to give a simple relationship
between the reference basis and nodal basis on a general cell. Typically, implementations of such
elements require special-purpose code for constructing the basis functions separately on each element.
Some older libraries, such as MODULEF [7] contain extensive sets of such elements. However, they
seem to have fallen out of use in more recent software projects, perhaps as a result of the widespread
use of the reference element paradigm. Although Bernadou gives a barycentric representation of the
Argyris basis [6], Domínguez and Sayas [16] give a technique for mapping bases for the Argyris element
and a separate computer implementation is available (https://github.com/VT-ICAM/ArgyrisPack),
and Jardin [22] gives a per-element construction technique for the Bell element, these represent the
exception rather than the rule. The literature contains no general approach for constructing and
mapping finite element bases in the absence of affine equivalence or a suitable generalization thereof.

In this paper we provide such a general theory for transforming finite elements that supplements the
theory on which FIAT is based for constructing those elements. This technique relies on constructing
a matrix transforming the push-forward of the physical finite element nodes into the reference element
nodes. The transpose of this matrix transforms the affine pull-back of the reference nodal basis into the
physical nodal basis. For affine equivalent elements, this matrix is the identity, so no special treatment
is required. For affine-interpolation equivalent families such as Hermite, there is a generally simple
(block-diagonal) transformation depending on the the cell geometry. For elements such as Morley
and Argyris that lack affine-interpolation equivalence, the transformation is more complicated. In
this case, we suggest a three-part process. First, one extends the sets of physical and reference finite
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General FEM transformations

element nodes so that the spans of the extended reference nodes and push-forwards of the extended
physical nodes coincide. Second, one must find a linear transformation relating the push-forward of
the extended physical nodes to the extended reference nodes. Finally, one must express the restrictions
of the extended physical nodes to the finite element space in terms of the original physical nodes by
means of an interpolation-theoretic construction. This technique finds its maximal generality when
extended to elements, such as Bell, for which the function space is not preserved under mapping. In
this case, one applies the established mapping technique to a slightly enriched finite element for which
a subset of the nodal basis functions turns out to be the correct nodal basis.

Our focus is on the case of scalar-valued elements in affine spaces, although we briefly discuss certain
generalizations on both counts. We begin the rest of the paper by recalling definitions in §2. The bulk
of the paper occurs in §3, where we show how to map finite element bases in the various situations
when the function space is preserved under pull-back. We also sketch briefly how the theory is adapted
to the case of more general pullbacks such as non-affine coordinate mappings or Piola transforms. In
§4, we give the extension of this theory, with special attention to the Bell element, to the case when the
function space is not preserved. Finally, in §5, we present some numerical results using these elements.

2. Definitions and preliminaries

Throughout, we let Ω ⊂ Rd for d = 2, 3 be a bounded domain and also we let Ckb (Ω) denote the space
of functions with continuous and bounded derivatives up to and including order k over Ω, and Ckb (Ω)′
its topological dual.
Definition 2.1. A finite element is a triple (K,P,N) such that

• K ⊂ Rd is a bounded domain.

• P ⊂ Ckb (K) for some integer k ≥ 0 is a finite-dimensional function space.

• N = {ni}νi=1 ⊂ Ckb (K)′ is a collection of linearly independent linear functionals whose actions
restricted to P form a basis for P ′.

The nodes in N are taken as objects in the full infinite-dimensional dual, although sometimes we
will only require their restrictions to members of P . For any n ∈ Ckb (K)′, define πn ∈ P ′ by restriction.
That is, define πn(p) = n(p) for any p ∈ P .

Further, with a slight abuse in notation, we will let N =
[
n1 n2 . . . nν

]T denote a functional
on P ν , or equivalently, a vector of ν members of the dual space.

As shorthand, we define these spaces consisting of vectors of functions or functionals by
X ≡ (P )ν ,

X† ≡
(
Ckb (K)′

)ν
.

(2.1)

We can “vectorize” the restriction operator π, so that for any N ∈ X†, πN ∈ (P ν)′ has (πN)i = πni.
Galerkin methods work in terms of a basis for the approximating space, and these are typically

built out of local bases for each element:
Definition 2.2. Let (K,P,N) be a finite element with dimP = ν. The nodal basis for P is the set
{ψi}νi=1 such that ni(ψj) = δi,j for each 1 ≤ i, j ≤ ν.

The nodal basis also can be written as X 3 Ψ =
[
ψ1 ψ2 . . . ψν

]
.

Traditionally, finite element codes construct the nodal basis for a reference finite element
(
K̂, P̂, N̂

)
and then map it into the basis for (K,P,N) for each K in the mesh. Let F : K → K̂ be the geometric
mapping, as in Figure 2.1. We let J denote the Jacobian matrix of this transformation.
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v̂1 v̂2

v̂3

v1

v2

v3
F : K → K̂

K̂

K

Figure 2.1. Affine mapping to a reference cell K̂ from a typical cell K. Note that
here F maps from the physical cell K to the reference cell K̂ rather than the other way
around. This leads to a more similar definition of the pull-back and push-forward.

Similarly to (2.1), we define the vector spaces relative to the reference cell:

X̂ ≡
(
P̂
)ν
,

X̂† ≡
(
Ckb (K̂)′

)ν
.

(2.2)

As with π, we define π̂n̂ as the restriction of n̂ to P̂ , and can vectorize it over X̂† accordingly.
This geometric mapping induces a mapping between spaces of functions over K and K̂ as well as

between the dual spaces. These are called the pull-back, and push-forward operations, respectively:

Definition 2.3. The pull-back operation mapping Ckb (K̂)→ Ckb (K) is defined by

F ∗
(
f̂
)

= f̂ ◦ F (2.3)

for each f̂ ∈ Ckb (K̂).

Definition 2.4. The push-forward operation mapping the dual space Ckb (K)′ into Ckb (K̂)′ is defined
by

F∗(n) = n ◦ F ∗ (2.4)
for each n ∈ Ckb (K)′.

It is easy to verify that the pull-back and push-forward are linear operations preserving the vector
space operations. Moreover, they are invertible iff F itself is. Therefore, we have

Proposition 2.5. Given finite elements (K,P,N) and (K̂, P̂, N̂) such that F (K) = K̂ and F ∗(P̂ ) =
P , F ∗ : P̂ → P and F∗ : P ′ → P̂ ′ are isomorphisms.

The pull-back and push-forward operations are also defined over the vector spaces X, X†, X̂, and
X̂†. If N is a vector of functionals and Φ a vector of functions, then the vector push-forward and
pull-back are, respectively

F∗(N) ∈ X̂†, (F∗(N))i = F∗(ni),

F ∗(Φ̂) ∈ X,
(
F ∗(Φ̂)

)
i

= F ∗(φ̂i).
(2.5)

It will also be useful to consider vectors of functionals acting on vectors of functions. We define
this to produce a matrix as follows. If N =

[
n1 n2 . . . nk

]T is a collection of functionals and
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Φ =
[
φ1 φ2 . . . φ`

]T a collection of functions, then we define the (outer) product N(Φ) to be the
k × ` matrix

(N(Φ))ij = ni(φj). (2.6)
For example, if N is the vector of nodes of a finite element and Ψ contains the nodal basis functions,
then the Kronecker delta property is expressed as N(Ψ) = I.

If M is a matrix of numbers of appropriate shape and Φ ∈ X members of a function space P ,
then MΦ is just defined by (MΦ)i =

∑ν
j=1MijΦj , according to the usual rule for matrix-vector

multiplication.

Lemma 2.6. Let N ∈ X† and Φ ∈ X and M ∈ Rν×ν . Then

N(MΦ) = N(Φ)MT . (2.7)

Proof. The proof is a simple calculation:

(N(MΦ))ij = ni
(
(MΦ)j

)
= ni

(
ν∑
k=1

Mjkφk

)
=

ν∑
k=1

niMjk (φk) =
ν∑
k=1

(N(Φ))ikMjk.

The relationship between pull-back and push-forward also leads to the vectorized relation

Lemma 2.7. Let N ∈ X† and Φ̂ ∈ X̂. Then

N(F ∗(Φ̂)) = F∗(N)(Φ̂) (2.8)

Definition 2.8. Let (K,P,N) and (K̂, P̂, N̂) be finite elements and F an affine mapping on K. Then
(K,P,N) and (K̂, P̂, N̂) are affine equivalent if

• F (K) = K̂,

• The pullback maps F ∗(P̂ ) = P (in the sense of equality of vector spaces),

• F∗(N) = N̂ (in the sense of equality of finite sets).

Definition 2.9. Let (K,P,N) be a finite element of class Ck and Ψ ∈ X its nodal basis. The nodal
interpolant IN : Ckb (K)→ P is defined by

I(f) =
ν∑
i=1

ni(f)ψi. (2.9)

This interpolant plays a fundamental role in establishing approximation properties of finite elements
via the Bramble-Hilbert Lemma [9, 17]. The homogeneity arguments in fact go through for the following
generalized notion of element equivalence:

Definition 2.10. Two finite elements (K,P,N) and (K,P, Ñ) are interpolation equivalent if IN = IÑ .

Definition 2.11. If (K,P, Ñ) is affine equivalent to (K̂, P̂, N̂) and interpolation equivalent to
(K,P,N), then (K,P,N) and (K̂, P̂, N̂) are affine-interpolation equivalent.

Brenner and Scott [10] give the following result, of which we shall make use:

Proposition 2.12. Finite elements (K,P,N) and (K,P, Ñ) are interpolation equivalent iff the spans
of N and Ñ , (viewed as subsets of Ckb (K)′), are equal.
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For Lagrange and certain other finite elements, one simply has that F ∗(Ψ̂) = Ψ, which allows for
the traditional use of reference elements used in FEniCS, Firedrake, and countless other codes. In fact,
this property holds for Lagrange elements regardless of whether traditional equispaced points or some
other more optimized point distribution [20] is used. It also holds for Bernstein polynomials, but for
many other elements this is not the case. It is our goal in this paper to give a general approach that
expresses Ψ as a linear transformation M applied to F ∗(Ψ̂), allowing the use of a reference element
paradigm for a much broader class of elements.

Before proceeding, we note that approximation theory for Argyris and other families without affine-
interpolation equivalence can proceed by means of establishing the almost-affine property [12]. Such
proofs can involve embedding the inequivalent element family into an equivalent one with the requisite
approximation properties. For example, the Argyris element is proved almost-affine by comparison to
the “type (5)” quintic Hermite element. Although we see definite computational consequences of affine-
equivalence, affine-interpolation equivalence, and neither among our element families, our approach to
transforming inequivalent families does not make use of any almost-affine properties.

3. Transformation theory

For now, we assume that the pull-back operation (2.3) appropriately converts the reference element
function space into the physical function space and discuss the construction of nodal bases based on
relationships between the reference nodes N̂ and the pushed-forward physical nodes F∗(N).

We focus on the simplicial case, although generalizations do not have a major effect, as we note
later. Throughout, we will use the following convention, developed in [34] for handling facet orientation
in mixed methods but also useful in ordering higher-order Lagrange degrees of freedom. Since our
examples are triangles (2-simplices), it is not necessary to expand on the entire convention. Given a
triangle with vertices (v1,v2,v3), we define edge γi of the triangle to connect the vertices other than
vi. The (unit) tangent vector ti =

[
txi tyi

]T , points in the direction from the lower- to the higher-
numbered vertex. When triangles share an edge, then, they agree on its orientation. The normal to

an edge is defined by rotating the tangent by applying the matrix R =
[

0 1
−1 0

]
so that ni = Rti =[

nx
i ny

i

]T We also let ei denote the midpoint of γi.
Now, we fix some notation for describing nodes. First, we define δx acting on any continuous function

by pointwise evaluation:
δx(p) = p(x). (3.1)

We let δs
x denote the directional derivative in direction some direction s at a point x, so that

δs
x(p) = sT∇p(x). (3.2)

We use repeated superscripts to indicate higher-order derivatives, so that δxx
x defines the second

directional derivative along the x-axis at point x, for example.
It will also be convenient to use block notation, with a single symbol representing two or more

items. For example, the gradient notation

∇x =
[
δx

x δy
x
]T

gives the pair of functionals evaluating the Cartesian derivatives at a point x. To denote a gradient in
a different basis, we append the directions as superscripts so that

∇nt
x =

[
δn

x δt
x
]T

contains the normal and tangential derivatives at a point x.
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Similarly, we let
4v =

[
δxx

x δxy
x δyy

x
]T

denote the vector of three functionals evaluating the unique (supposing sufficient smoothness) second
partials at x.

Let Ψ = {ψi}νi=1 be the nodal basis for a finite element (K,P,N) and Ψ̂ = {ψ̂i}νi=1 that for a
reference element

(
K̂, P̂, N̂

)
. We also assume that F (K) = K̂ and F ∗(P̂ ) = P . Because the pull-back

is invertible, it maps linearly independent sets to linearly independent sets. Therefore, F ∗(Ψ̂) must
also be a basis for P . There exists an invertible ν × ν matrix M such that

Ψ = MF ∗(Ψ̂), (3.3)

or equivalently, that each nodal basis function is some linear combination of the pull-backs of the
reference nodal basis functions.

Our theory for transforming the basis functions (i. e. computing the matrixM) will work via duality,
relating the matrix M to how the nodes (or at least their restrictions to the finite-dimensional spaces)
push forward.

It will be useful to define as an intermediate ν × ν matrix B = F∗(N)(Ψ̂). Recall from (2.6) that
its entries for 1 ≤ i, j ≤ ν are

Bij ≡ F∗(ni)(ψ̂j) = ni(F ∗(ψ̂j)) = ni(ψ̂j ◦ F ) (3.4)

This matrix, having nodes only applied to members of P , is indifferent to restrictions and so B =
F∗(πN)(Ψ̂) as well.

Because of Proposition 2.5 and finite-dimensionality, the the nodal sets π̂N̂ and F∗(πN) are both
bases for P̂ ′, and so there exists an invertible ν × ν matrix V such that

π̂N̂ = V F∗(πN). (3.5)

Frequently, it may be easier to express the pushed-forward nodes as a linear combination of the
reference nodes. In this case, one obtains the matrix V −1. At any rate, the matrices V and M are
closely related.

Theorem 3.1. For finite elements (K,P,N) and (K̂, P̂, N̂) with F (K) = K̂ and F∗(P̂ ) = P , the
matrices in (3.3) and (3.5) satisfy

M = V T . (3.6)

Proof. We proceed by relating both matrices to B defined in (3.4) via the Kronecker property of
nodal bases. First, we have

I = N(Ψ) = N(MF ∗(Ψ̂)) = N(F ∗(Ψ̂))MT = BMT .

so that
M = B−T . (3.7)

Similarly,
I = (V F∗(N)) (Ψ̂) = V F∗(N)(Ψ̂) = V B,

so that V = B−1 and the result follows.

To relate the pullback of the reference element basis functions to any element’s basis functions, it
is sufficient to determine the relationship between the nodes.
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3.1. Affine equivalence: The Lagrange element

When elements form affine-equivalent families, the matrix M has a particularly simple form.

Theorem 3.2. If (K,P,N) and (K̂, P̂, N̂) are affine-equivalent finite elements then the transformation
matrix M is the identity.

Proof. Suppose the two elements are affine-equivalent, so that F∗(N) = N̂ . Then, a direct calculation
gives

N(F ∗(Ψ̂)) = F∗(N)(Ψ̂) = N̂(Ψ̂) = I,

so that M = I.

The Lagrange elements are the most widely used finite elements and form the prototypical affine-
equivalent family [10]. For a simplex K in dimension d and integer r ≥ 1, one defines P = Pr(K) to
be the space of polynomials over K of total degree no greater than r, which has dimension

(r+d
d

)
. The

nodes are taken to be pointwise evaluation at a lattice of
(r+d
d

)
points. Classically, these are taken to

be regular and equispaced, although options with superior interpolation and conditioning properties
for large r are also known [20]. One must ensure that nodal locations are chosen at the boundary
to enable C0 continuity between adjacent elements. A cubic Lagrange triangle (r = 3 and d = 2) is
shown earlier in Figure 1.1a.

The practical effect of Theorem 3.2 is that the reference element paradigm “works ” – computer code
contains a routine to evaluate the nodal basis Ψ̂ and its derivatives for a reference element (K̂, P̂, N̂).
Then, this routine is called at a set of quadrature points in K̂. One obtains values of the nodal basis
at quadrature points on each cell K by pull-back, so no additional work is required. To obtain the
gradients of each basis function at each quadrature point, one simply multiplies each basis gradient
at each point by JT .

On the other hand, when M 6= I, the usage of tabulated reference values is more complex. Given a
table

Ψ̂iq = ψ̂i(ξ̂q) (3.8)
of the reference basis at the reference quadrature points, one finds the nodal basis for (K,P,N) by
constructing M for that element and then computing the matrix-vector product MΨ̂ so that

ψi(ξq) =
ν∑
k=1

Mi,kΨ̂k,q (3.9)

Mapping gradients from the reference element requires both multiplication by M as well as appli-
cation of JT by the chain rule. We define DΨ̂ ∈ Rν×|ξ|×2 by

DΨ̂i,q,: = ∇̂ψ̂i(ξ̂)q. (3.10)
Then, the basis gradients requires contraction with M

DΨ ′i,q,: :=
ν∑
k=1

Mi,kDΨ̂k,q,:, (3.11)

followed by the chain rule
DΨi,q,: := JTDΨ ′i,q,:. (3.12)

In fact, the application of M and JT can be performed in either order. Note that applying M requires
an ν × ν matrix-vector multiplication and in principle couples all basis functions together, while
applying JT works pointwise on each basis function separately. When M is quite sparse, one expects
this to be a small additional cost compared to the other required arithmetic. We present further details
for this in the case of triangular Hermite elements, to which we now turn.
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(a) Reference Hermite element (b) Physical Hermite element

Figure 3.1. Reference and physical cubic Hermite elements with gradient degrees of
freedom expressed in terms of local Cartesian directional derivatives.

3.2. The Hermite element: affine-interpolation equivalence

The Hermite triangle [13], shown in Figure 1.1b is based cubic polynomials, although higher-order
instances can also be defined [10]. In contrast to the Lagrange element, its node set includes function
values and derivatives at the nodes, as well as an interior function value. The resulting finite element
spaces have C0 continuity with C1 continuity at vertices. They provide a classic example of elements
that are not affine equivalent but instead give affine-interpolation equivalent families.

We will let (K,P,N) be a cubic Hermite triangle, specifying the gradient at each vertex in terms
of the Cartesian derivatives – see Figure 3.1b. Let {vi}3i=1 be the three vertices of K and v4 its
barycenter. We order the nodes N by

N =
[
δv1 ∇Tv1 δv2 ∇Tv2 δv3 ∇Tv3 δv4

]T
, (3.13)

using block notation.
Now, we fix the reference element (K̂, P̂, N̂) with K̂ as the unit right triangle and express the

gradient by the derivatives in the direction of the reference Cartesian coordinates, as in Figure 3.1a.
Let {v̂i}3i=1 be the three vertices of K̂ and v̂4 its barycenter. We define N̂ analogously to N .

Consider the relationship between the nodal basis functions Ψ and the pulled-back F ∗(Ψ̂). For any
ψ̂ ∈ P̂ , the chain rule leads to

∇(ψ̂ ◦ F ) = JT ∇̂ψ̂ ◦ F. (3.14)
Now, suppose that ψ̂ is a nodal basis function corresponding to evaluation at a vertex or the

barycenter, so that δv̂i
ψ̂ = 1 for some 1 ≤ i ≤ 4, with the remaining reference nodes vanishing on ψ̂.

We compute that
δviF

∗(ψ̂) = (ψ̂ ◦ F ) (vi) = ψ̂(v̂i) = 1,
while δvjF

∗(ψ̂) = 0 for 1 ≤ j ≤ 4 with j 6= i. Also, since the reference gradient of ψ̂ vanishes at each
vertex, (3.14) implies that the physical gradient of F ∗(ψ̂) must also vanish at each vertex. Pulling
back ψ̂ gives the corresponding nodal basis function for (K,P,N).

The situation changes for the derivative basis functions. Now take ψ̂ to be the basis function with
unit-valued derivative in, say, the x̂ direction at vertex v̂i and other degrees of freedom vanishing.
Since it vanishes at each vertex and the barycenter of K̂, F ∗(ψ̂) will vanish at each vertex and the
barycenter of K. The reference gradient of ψ̂ vanishes at the vertices other than i, so the physical
gradient of its pullback must also vanish at the corresponding vertices of K. However, (3.14) shows
that ∇(ψ̂ ◦ F ) will typically not yield

[
1 0

]T at vi. Consequently, the pull-backs of the reference
derivative basis functions do not produce the physical basis functions.

Equivalently, we may express this failure in terms of the nodes – pushing forward N does not yield
N̂ . We demonstrate this pictorially in Figure 3.2, showing the images of the derivative nodes under

205



R. C. Kirby

F∗

Figure 3.2. Pushing forward the Hermite derivative nodes in physical space does not
produce the reference derivative nodes.

push-forward do not correspond to the reference derivative nodes. Taking this view allows us to address
the issue using Theorem 3.1.

This discussion using the chain rule can be summarized by the matrix-valued equation

F∗(N) =



1 0 0 0 0 0 0
0 JT 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 JT 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 JT 0
0 0 0 0 0 0 1


N̂, (3.15)

noting that the second, fourth, and sixth rows and columns of this matrix are blocks of two, and
each “0” is taken to be the zero matrix of appropriate size. This is exactly the inverse of V from
Theorem 3.1.

In this case, the transformation V is quite local – that is, only the push-forward of nodes at a
given point are used to construct the reference nodes at the image of that point. This seems to be
generally true for interpolation-equivalent elements, although functionals with broader support (e.g.
integral moments over the cell or a facet thereof) would require a slight adaptation. We will see
presently for Morley and Argyris elements that the transformation neeed not be block diagonal for
elements without interpolation equivalence. At any rate, the following elementary observation from
linear algebra suggests the sparsity of V :

Proposition 3.3. LetW be a vector space with sets of vectorsW1 = {w1
i }mi=1 ⊂W andW2 = {w2

i }ni=1.
Suppose that spanW1 ⊂ spanW2 so that there exists a matrix A ∈ Rm×n such that w1

i =
∑n
k=1Aikw

2
k.

If we further have that some w1
i ∈ span{w2

j}j∈J for some J ⊂ [1, n], then Aij = 0 for all j /∈ J .

Our theory applies equally to the general family of Hermite triangles of degree k ≥ 3. In those
cases, the nodes consist of gradients at vertices together with point-wise values at appropriate places.
All higher-order cases generate C0 families of elements with C1-continuity at vertices. The V matrix
remains analogous to the cubic case, with J−T on the diagonal in three places corresponding to the
vertex derivative nodes. No major differences appear for the tetrahedral Hermite elements, either.

As we saw earlier, Hermite and other elements for which M 6= I incur an additional cost in map-
ping from the reference element, as one must compute basis function values and gradients via (3.9)
and (3.12). The key driver of this additional cost is the application of M . Since M is very sparse for
Hermite elements – just 12 nonzeros counting the 1’s on the diagonal – evaluating (3.9) requires just
12 operations per column, so a 10-point quadrature rule requires 120 operations. Evaluating (3.11)
requires twice this, or 240 operations. Applying JT in (3.12) is required whether Hermite or Lagrange
elements are used. It requires 4 × 10 times the number of quadrature points used – so a 10-point
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rule would require 400 operations. Hence, the chain rule costs more than the application of M in this
situation. On the other hand, building an element stiffness matrix requires a double loop over these
10 basis functions nested with a loop over the, say, 10 quadrature points. Hence, the deepest part of
the loop nest requires 1000 iterations, and with even a handful of operations will easily dominate the
additional cost of multiplying by M .

3.3. The Morley and Argyris elements

The construction of C1 finite elements, required for problems such as plate bending or the Cahn-
Hilliard equations, is a long-standing difficulty. Although it is possible to work around this requirement
by rewriting the fourth-order problem as a lower order system or by using C0 elements in conjunction
with variational form penalizing the jumps in derivatives [18, 35], this does not actually give a C1

solution.
The quadratic Morley triangle [31], shown in Figure 1.1c, finds application in plate-bending problems

and also provides a relatively simple motivation for and application of the theory developed here. The
six degrees of freedom, vertex values and the normal derivatives on each edge midpoint, lead to an
assembled finite element space that is neither C0 nor C1, but it is still suitable as a convergent
nonconforming approximation for fourth-order problems.

The quintic Argyris triangle [3], shown in Figure 1.1d, with its 21 degrees, gives a proper C1 finite
element. Hence it can be used generically for fourth-order problems as well as second-order problems for
which a continuously differentiable solution is desired. The Argyris elements use the values, gradients,
and second derivatives at each triangle vertex plus the normal derivatives at edge midpoints as the
twenty-one degrees of freedom.

It has been suggested that the Bell element [5] represents a simpler C1 element than the Argyris
element, on the account that it has fewer degrees of freedom. Shown in Figure 1.1e, we see that the edge
normal derivatives have been removed from the Argyris element. However, this comes with a (smaller
but) more complicated function space. Rather than full quintic polynomials, the Bell element uses
quintic polynomials that have normal derivatives on each edge of only third degree. This constraint
on the polynomial space turns out to complicate the transformation of Bell elements compared to
Hermite or even Argyris. For the rest of this section, we focus on Morley and Argyris, returning to
Bell later.

It can readily be seen that, like the Hermite element, the standard affine mapping will not preserve
nodal bases. Unlike the Hermite element, however, the Morley and Argyris elements do not form
affine-interpolation equivalent families – the spans of the nodes are not preserved under push-forward
thanks to the edge normal derivatives – see Figure 3.3. As the Morley and Aryris nodal sets do not
contain a full gradient at edge midpoints, the technique used for Hermite elements cannot be directly
applied.

To address this, we introduce the following idea:

Definition 3.4. Let (K,P,N) and (K̂, P̂, N̂) be finite elements of class Ck with affine mapping
F : K → K̂ and associated pull-back and push-forward F ∗ and F∗. Suppose also that F ∗(P̂ ) = P . Let
N c = {nci}

µ
i=1 ⊂ Ckb (K)′ and N̂ c = {n̂ci}

µ
i=1 ⊂ Ck(K̂)′ be such that

• N ⊂ N c (taken as sets rather than vectors),

• N̂ ⊂ N̂ c (again as sets),

• span(F∗(N c)) = span(N̂ c) in Ck(K̂)′.

Then N c and N̂ c form a compatible nodal completion of N and N̂ .
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F∗

Figure 3.3. Pushing forward the Morley derivative nodes in physical space does not
produce the reference derivative nodes.

Figure 3.4. Nodal sets N̂ c and N c giving the compatible nodal completion of N
and N̂ for a Morley element and reference element are formed by including tangential
derivatives along with normal derivatives at each edge midpoint.

Example 3.5. Let (K,P,N) and (K̂, P̂, N̂) be the Morley triangle and reference triangle. Take N c

to contain all the nodes of N together with the tangential derivatives at the midpoint of each edge
of K and similarly for N̂ c. In this case, µ = 9. Then, both N c and N̂ c contain complete gradients at
each edge midpoint and function values at each vertex. The push-forward of N c has the same span as
N̂ c and so N c and N̂ c form a compatible nodal completion of N and N̂ . This is shown pictorially in
Figure 3.4.

A similar completion – supplementing the nodes with tangential derivatives at edge midpoints –
exists for the Argyris nodes and reference nodes [16].

Now, since the spans of N̂ c and F∗(N c) agree (even in Ckb (K̂)′), there exists a µ × µ matrix V c,
typically block diagonal, such that

N̂ c = V cF∗(N c). (3.16)
Let E ∈ Rν×µ be the Boolean matrix with Eij = 1 iff n̂i = n̂cj so that

N̂ = EN̂ c, (3.17)
and it is clear that

N̂ = EV cF∗(N c). (3.18)
In other words, the reference nodes are linear combinations of the pushed-forward nodes and the
extended nodes, but we must have the linear combination in terms of the pushed-forward nodes alone.

Recall that building the nodal basis only requires the action of the nodes on the polynomial space.
Because µ > ν, the set of nodes πN c must be linearly dependent. We seek a matrix D ∈ Rµ×ν such
that

πN c = DπN. (3.19)
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Since F∗ is an isomorphism, such a D also gives
π̂F∗(N c) = Dπ̂F∗(N). (3.20)

Rows i of the matrix D such that nci = nj for some j will just have Dik = δkj for 1 ≤ k ≤ ν. The
remaining rows must be constructed somehow via an interpolation argument, although the details will
vary by element.

This discussion suggests a three-stage process, each encoded by matrix multiplication, for converting
the push-forwards of the physical nodes to the reference nodes, hence giving a factored form of V
in (3.5). Before working examples, we summarize this in the following theorem:

Theorem 3.6. Let (K,P,N) and (K̂, P̂, N̂) be finite elements with affine mapping F : K → K̂ and
suppose that F ∗(P̂ ) = P . Let N c and N̂ c be a compatible nodal completion of N and N̂ . Then given
matrices E ∈ Rν×µ from (3.17), V c ∈ Rµ×µ from (3.16) and D ∈ Rµ×ν from (3.19) that builds the
(restrictions of) the extended nodes out of the given physical nodes, the nodal transformation matrix
V satisfies

V = EV cD. (3.21)
This gives the general outline for mapping finite elements whose function spaces are preserved

under pull-back. One first extends the nodes to a set whose span is preserved under push-forward (the
matrix D). Then, the extended nodes must be mapped by push-forward (V c), and the nodes of the
finite element extracted (E). The transpose of the resulting product then constructs the nodal basis
functions from the pull-back of the reference element nodal basis functions. For affine-interpolation
equivalent families, V simplifies to the single matrix V c, which further simplifies to the identity for
affine-equivalent families. To illustrate the more general setting, we now turn to the Morley and Argyris
elements.

3.3.1. The Morley element

Following our earlier notation for the geometry and nodes, we order the nodes of a Morley triangle by

N =
[
δv1 δv2 δv3 δn1

e1 δn2
e2 δn3

e3

]T (3.22)
Nodes N c will also include tangential derivatives at the edge midpoint. We put

N c =
[
δv1 δv2 δv3 (∇n1t1

e1 )T (∇n2t2
e2 )T (∇n3t3

e3 )T
]T
, (3.23)

Again, this is a block vector the last three entries each consist of two values. We give the same ordering
of reference element nodes N̂ and N̂ c.

The matrix E simply extracts the members of N c that are also in N , so with η =
[
1 0

]
, we have

the block matrix

E =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 η 0 0
0 0 0 0 η 0
0 0 0 0 0 η


. (3.24)

Because the gradient nodes in N c use normal and tangential coordinates, V c will be slightly more
more complicated than V for the Hermite element. For local edge γi, we define the (orthogonal) matrix

Gi =
[
ni ti

]T
with the normal and tangent vector in the rows. Similarly, we let

Ĝi =
[
n̂i t̂i

]T
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contain the unit normal and tangent to edge γ̂i of the reference cell K̂. It is clear that

F∗(∇niti
ei

) = F∗(Gi∇ei) = GiF∗(∇ei) = GiJ
T ∇̂ei = GiJ

T ĜTi ∇̂
n̂it̂i
êi

, (3.25)
so, defining

Bi = (GiJT ĜTi )−1 = ĜiJ
−TGTi , (3.26)

we have that

V c =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 B1 0 0
0 0 0 0 B2 0
0 0 0 0 0 B3


. (3.27)

Now, we turn to the matrix D ∈ R9×6, writing members of πN c in terms of πN alone. The challenge
is to express the tangential derivative nodes in terms of the remaining six nodes – vertex values and
normal derivatives. In fact, only the vertex values are needed. Along any edge, any member of P is just
a univariate quadratic polynomial, and so the tangential derivative is linear. Linear functions attain
their average value over an interval at its midpoint. But the average value of the derivative over the
edge is just the difference between vertex values divided by the edge length. The matrix D must be

D =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 −`−1

1 `−1
1 0 0 0

0 0 0 0 1 0
−`−1

2 0 `−1
2 0 0 0

0 0 0 0 0 1
−`−1

3 `−1
3 0 0 0 0


(3.28)

We can also arrive at this formulation of D in another way, that sets up the discussion used for Argyris
and later Bell elements. Consider the following (very elementary) univariate result

Proposition 3.7. Let p(x) any quadratic polynomial on [−1, 1]. Then
p′(0) = 1

2 (p(1)− p(−1)) (3.29)

Then, by a change of variables, this rule can be mapped to
[
− `

2 ,
`
2

]
so that

p′(0) = 1
`

(
p( `2)− p(− `

2)
)
.

Finally, one can apply this rule on the edge of a triangle running from va to vb to find that
πδti = `

2 (πδvb
− πδva) .

It is interesting to explicitly compute the product V = EV cD, as giving a single formula rather
than product of matrices is more useful in practice. Multiplying through gives:

V =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 −B1

12
`1

B1
12
`1

B1
11 0 0

−B2
12

`2
0 B2

12
`2

0 B2
11 0

−B3
12

`3

B3
12
`3

0 0 0 B3
11


(3.30)
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From the definition of Bi, it is possibly to explicitly calculate its entries in terms of the those of the
Jacobian and the normal and tangent vectors for K and K̂. Only the first row of each Bi is needed

Bi
11 = n̂x

i

(
nx
i
∂x
∂x̂ + txi

∂y
∂x̂

)
+ t̂xi

(
nx
i
∂x
∂ŷ + txi

∂y
∂ŷ

)
Bi

12 = n̂x
i

(
ny
i
∂x
∂x̂ + tyi

∂y
∂x̂

)
+ t̂xi

(
ny
i
∂x
∂ŷ + tyi

∂y
∂ŷ

) (3.31)

We can also recall that the normal and tangent vectors are related by nx = ty and ny = −tx to express
these entries purely in terms of either the normal or tangent vectors. Each entry of the Jacobian and
normal and tangent vectors of K and K̂ enter into the transformation.

In this form, V has 12 nonzero entries, although the formation of those entries, which depend on
normal and tangent vectors and the Jacobian, from the vertex coordinates requires an additional
amount of arithmetic. The Jacobian will typically be computed anyway in a typical code, and the
cost of working with M = V T will again be subdominant to the nested loops over basis functions and
quadrature points required to form element matrices, much like Hermite.

3.3.2. The Argyris element

Because it is higher degree than Morley and contains second derivatives among the nodes, the Argyris
transformation is more involved. However, it is a prime motivating example and also demonstrates
that the general theory here reproduces the specific technique in [16]. The classical Argyris element
has P as polynomials of degree 5 over a triangle K, a 21-dimensional space. The 21 associated nodes
N are selected as the point values, gradients, and all three unique second derivatives at the vertices
together with the normal derivatives evaluated at edge midpoints. These nodal choices lead to a proper
C1 element, and C2 continuity is obtained at vertices.

Since the Argyris elements do not form an affine-interpolation equivalent family, we will need to
embed the physical nodes into a larger set. Much as with Morley elements, the edge normal derivatives
will be augmented by the tangential derivatives.

With this notation, N is a vector of 21 functionals and N c a vector of 24 functions written as

N =
[
δv1 ∇v1 4v1 δv2 ∇v2 4v2 δv3 ∇v3 4v3 δn1

e1 δn2
e2 δn3

e3

]T
,

N c =
[
δv1 ∇v1 4v1 δv2 ∇v2 4v2 δv3 ∇v3 4v3 ∇n1t1

v1 ∇n2t2
v2 ∇n3t3

v3

]T
,

(3.32)

with corresponding ordering of reference nodes N̂ and N̂ c. The 21× 24 matrix E just selects out the
items in N c that are also in N , so that

Eij =
{

1, for 1 ≤ i = j ≤ 19 or (i, j) ∈ {(20, 21), (21, 23)}
0, otherwise.

The matrix V c relating the push-forward of the extended nodes to the extended reference nodes is
block diagonal and similar to our earlier examples. We use (3.14) to map the vertex gradient nodes
as in the Hermite case. Mapping the three unique second derivatives by the chain rule requires the
matrix:

Θ =


(
∂x̂
∂x

)2
2∂x̂∂x

∂ŷ
∂x

(
∂ŷ
∂x

)2

∂x̂
∂y

∂x̂
∂x

∂x̂
∂y

∂ŷ
∂x + ∂x̂

∂x
∂ŷ
∂y

∂ŷ
∂x

∂ŷ
∂y(

∂x̂
∂y

)2
2∂x̂∂y

∂ŷ
∂y

(
∂ŷ
∂y

)2

 (3.33)
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The edge midpoint nodes transform by B just as in (3.26), so that the V c is

V c =



1 0 0 0 0 0 0 0 0 0 0 0
0 J−T 0 0 0 0 0 0 0 0 0 0
0 0 Θ−1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 J−T 0 0 0 0 0 0 0
0 0 0 0 0 Θ−1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 J−T 0 0 0 0
0 0 0 0 0 0 0 0 Θ−1 0 0 0
0 0 0 0 0 0 0 0 0 B1 0 0
0 0 0 0 0 0 0 0 0 0 B2 0
0 0 0 0 0 0 0 0 0 0 0 B3



. (3.34)

Constructing D, like for Morley, is slightly more delicate. The additional nodes acting on quintic
polynomials – tangential derivatives at edge midpoints – must be written in terms of the remaining
nodes. The first aspect of this involves a univariate interpolation-theoretic question. On the biunit
interval [−1, 1], we seek a rule of the form

f ′(0) ≈ a1f(−1) + a2f(1) + a3f
′(−1) + a4f

′(1) + a5f
′′(−1) + a6f

′′(1)

that is exact when f is a quintic polynomial. The coefficients may be determined to by writing a 6× 6
linear system asserting correctness on the monomial basis. The answer, given in [16], is that

Proposition 3.8. Any quintic polynomial p defined on [−1, 1] satisfies

p′(0) = 15
16 (p(1)− p(−1))− 7

16
(
p′(1) + p′(−1)

)
+ 1

16
(
p′′(1)− p′′(−1)

)
. (3.35)

This can be mapped to the interval [− `
2 ,

`
2 ] by a change of variables:

p′(0) = 15
8`

(
p
(
`
2

)
− p

(
−`
2

))
− 7

16

(
p′
(
`
2

)
+ p′

(
−`
2

))
+ `

32

(
p′′
(
`
2

)
− p′′

(
−`
2

))
. (3.36)

Now, we can use this to compute the tangential derivative at an edge midpoint, expanding the
tangential first and second derivatives in terms of the Cartesian derivatives. If va and vb are the
beginning and ending vertex of edge γi with midpoint ei and length `i, we write the tangential
derivative acting on quintics as

πδti
ei

= 15
8`i (δvb

− δva)− 7
16

(
txi

(
δx

vb
+ δx

va

)
+ tyi

(
δy

vb
+ δy

va

))
+ `i

32

(
(txi )2

(
δxx

vb
− δxx

va

)
+ 2txi t

y
i

(
δxy

vb
− δxy

va

)
+ (tyi )2

(
δyy

vb
− δyy

va

))
.

(3.37)

For each edge γi, define the vector τi by

τi =
[
(txi )2 2txi t

y
i (tyi )2]T .
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The end result is that

D =



1 0 0 0 0 0 0 0 0 0 0 0
0 I2 0 0 0 0 0 0 0 0 0 0
0 0 I3 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 I2 0 0 0 0 0 0 0
0 0 0 0 0 I3 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 I2 0 0 0 0
0 0 0 0 0 0 0 0 I3 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 −15

8`1
7
16tT1 −`

32 τ
T
1

15
8`1

7
16tT1 `

32τ
T
1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0
−15
8`2

7
16tT2 −`

32 τ
T
2 0 0 0 15

8`2
7
16tT2 `

32τ
T
2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1
−15
8`3

7
16tT3 −`

32 τ
T
3

15
8`3

7
16tT3 `

32τ
T
3 0 0 0 0 0 0



. (3.38)

If this transformation is kept in factored form, D contains 57 nonzero entries and V c contains
54 nonzero entries. E is just a Boolean matrix and its application requires copies. Application of M
requires no more than 111 floating-point operations, besides the cost of forming the entries themselves.
While this is about ten times the cost of the Hermite transformation, it is for about twice the number
of basis functions and still well-amortized over the cost of integration loops. Additionally, one can
multiply out the product EV cD symbolically and find only 81 nonzero entries, which reduces the cost
of multiplication accordingly.

3.4. Generalizations

3.4.1. Non-affine mappings

Non-affine geometric transformations, whether for simplicial or other element shapes, present no major
complications to the theory. In this case, K and K̂ are related by a non-affine map, and P is taken to
be the image of P̂ under pull-back

P =
{
F ∗(p̂) : p̂ ∈ P̂

}
, (3.39)

although this space need not consist of polynomials for non-affine F . At any rate, one may define
Hermite elements on curvilinear cells [12, 15]. In this case, the Jacobian matrix varies spatially so that
each instance of JT in (3.15) must be replaced by the particular value of JT at each vertex.

3.4.2. Generalized pullbacks

Many vector-valued finite element spaces make use of pull-backs other than composition with affine
maps. For example, the Raviart-Thomas and Nédélec elements use contravariant and covariant Piola
maps, respectively. Because these preserve either normal or tangential components, one can put the
nodal basis functions of a given element (K,P,N) and reference element (K̂, P̂, N̂) into one-to-one
correspondence by means of the Piola transform, a fact used heavily in [34]. It would be straightforward
to give a generalization of affine equivalence to equivalence under an arbitrary pull-back F ∗, with push-
forward defined in terms of F ∗. In this case, the major structure of §3.1 would be unchanged.

However, not all H(div) elements form equivalent families under the contravariant Piola transform.
For example, Mardal, Tai, and Winther [30] give an element that can be paired with discontinuous
polynomials to give uniform inf-sup stability on a scale of spaces between H(div) and (H1)2, although
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it isH1-nonconforming. The degrees of freedom include constant and linear moments of normal compo-
nents on edges, which are preserved under Piola mapping. However, the nodes also include the constant
moments of the tangential component on edges, which are not preserved under Piola transform. One
could push-forward both the normal and tangential constant moments, then express them as a linear
combination of the normal and tangential moments on the reference cell in a manner like (3.15). One
could see the Mardal–Tai–Winther element as satisfying a kind of “Piola-interpolation equivalence”
and readily adapt the techniques for Hermite elements.

3.5. A further note on computation

We have commented on the added cost of multiplying the set of basis functions by M during local
integration. It also also possible to apply the transformation in a different way that perhaps more fully
leverages pre-existing computer routines. With this approach, M can also be included in local matrix
assembly by means means of a congruence transform acting on the “wrong” element matrix as follows.

Given a finite element (K,P,N) with nodal basis Ψ = {ψi}νi=1 and bilinear form aK(·, ·) over the
domain K, we want to compute the matrix

AKij = aK(ψj , ψi). (3.40)

Suppose that a computer routine existed for evaluating AK via a reference mapping for affine-
equivalent elements. Given the mapping F : K̂ → K, this routine maps all integration to the reference
domain K̂ assuming that the integrand over K is just the affine pull-back of something on K̂. Consider
the following computation:

AKij = aK(ψj , ψi)

= aK

 ν∑
`2=1

Mj`2F
∗(ψ̂`2),

ν∑
`1=1

Mi`1F
∗(ψ̂`1)


=

ν∑
`1,`2=1

Mj`2Mi`1aK(F ∗(ψ̂`2), F ∗(ψ̂`1)).

(3.41)

Now, this is just expressed in terms of the affine pullback of reference-element integrands and so could
use the hypothesized computer routine. We then have

AKij =
ν∑

`1,`2=1
Mj`2Mi`1aK̂(ψ̂`2 , ψ̂`1) =

ν∑
`1,`2=1

Mj`1Mi`2Â
K
`1`2 , (3.42)

or, more compactly,
AK = MÃKMT ,

where ÃK is the matrix one would obtain by using the pull-back of the reference element nodal basis
functions instead of the actual nodal basis for (K,P,N). Hence, rather than applying M invasively at
each quadrature point, one may use existing code for local integration and pre- and post-multiply the
resulting matrix by the basis transformation. In the case of Hermite, for example, applying M to a
vector costs 12 operations, so applying M to all 10 columns of ÃK costs 120 operations, plus another
120 for the transpose. This adds 240 extra operations to the cost of building ÃK , or just 2.4 extra
FLOPs per entry of the matrix.

One may also apply this idea in a “matrix-free” context. Given a routine for applying ÃK to a
vector, one may simply apply MT to the input vector, apply ÃK to the result, and post-multiply by
M . Hence, one has the cost of muliplying by ÃK plus the cost of applying M and its transpose to a
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single vector. In the case of Hermite, one has the cost of computing the “wrong” local matrix-vector
product via an existing kernel plus 24 additional operations.

Finally, we comment on evaluating discrete functions over elements requiring such transforms. Dis-
crete function evaluation is frequently required in matrix-free computation, nonlinear residual evalua-
tion, and in bilinear form evaluation when a coefficient is expressed in a finite element space. Suppose
one has on a local element K a function expressed by

u =
ν∑
j=1

cjψj ,

where c ∈ Rν is the vector of coefficients and {ψj} is the nodal basis for (K,P,N). In terms of
pulled-back reference basis functions, u is given by

u =
ν∑
j=1

cj

(
ν∑
k=1

MjkF
∗(ψ̂k)

)
=

ν∑
j,k=1

MjkcjF
∗(ψ̂k),

which can also be written as

u =
ν∑
k=1

(MT c)kF ∗(ψ̂k) =
ν∑
k=1

(V c)kF ∗(ψ̂k). (3.43)

Just as one can build element matrices by means of the “wrong” basis functions and a patch-up
operation, one can also evaluate functions by transforming the coefficients and then using the standard
pullback of the reference basis functions. Such observations may make incorporating nonstandard
element transformations into existing code more practical.

4. When the function space is not preserved under pull-back

The theory so far has been predicated on F ∗ providing an isomorphism between the reference and
physical function spaces. In certain cases, however, this assumption fails. Now, we bring our theory
to its fullest expression by introducing an enriched finite element whose function space is in fact
preserved. This new element is then transformed by the already-developed techniques, and a nodal
basis includes one for the original, unenriched element as a proper subset. In some sense, this is merely
applying the same principle used for the nodes to the function space.

Our main motivation here is to transform the Bell element, a near-relative of the quintic Argyris
element. In this case, one takes P to be the subspace of P5 that has cubic normal derivatives on edges
rather than the typical quartic values. This reduction of P by three dimensions is accompanied by
removing the three edge normal derivatives at midpoints from N . In general, however, the pull-back
F ∗(P̂ ) does not coincide with P . Instead of cubic normal derivatives on edges, F ∗(P̂ ) has reduced
degree in some other direction corresponding to the image of the normal under affine mapping.

4.1. General theory: extending the finite element

Abstractly, one may view the Bell element or other spaces built by constraint as the intersection of
the null spaces of a collection of functionals acting on some larger space as follows. Let (K,P,N) be
a finite element. Suppose that P ⊂ P̃ and that {λi}κi=1 ⊂

(
Ckb

)′
are linearly independent functionals

that when acting on P̃ satisfy
P = ∩κi=1null(λi). (4.1)

The following result is not difficult to prove:
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Proposition 4.1. Let (K,P,N) be a finite element with ∩κi=1null(λi) = P ⊂ P̃ as per (4.1). Similarly,
let (K̂, P̂, N̂) be a reference element with ∩κi=1null(λ̂i) = P̂ ⊂ ˜̂

P . Suppose that P̃ = F ∗( ˜̂
P ). Then

P = F ∗(P̂ ) iff
span{F∗(λi)}κi=1 = span{λ̂i}κi=1. (4.2)

In the case of the Bell element, the span condition (4.2) fails and so that the function space is not
preserved under affine mapping. Consequently, the theory of the previous section predicated on this
preservation does not directly apply. Instead, we proceed by making the following observation.

Proposition 4.2. Let (K,P,N) be a finite element with P ⊂ P̃ satisfying P = ∩κi=1null(λi) for
linearly independent functionals {λi}κi=1. Define

Ñ =
[
N
L

]
to include the nodes of N together with L =

[
λ1 λ2 . . . λκ

]T . Then (K, P̃, Ñ) is a finite element.

Proof. Since we have a finite-dimensional function space, it remains to show that Ñ is linearly
independent and hence spans P̃ ′. Consider a linear combination in P̃ ′

ν∑
i=1

cini +
κ∑
i=1

diλi = 0.

Apply this linear combination to any p ∈ P to find
ν∑
i=1

cini(p) = 0

since λi(p) = 0 for p ∈ P . Because (K,P,N) is a finite element, the ni are linearly independent in P ′
so ci = 0 for 1 ≤ i ≤ ν. Applying the same linear combination to any p ∈ P̃\P then gives that di = 0
since the constraint functionals are also linearly independent.

In principle, this characterization can always be made. However, it will be most natural in cases,
like the Bell element, where the function space P is already built by constraints.

Continuing with the development, it is easy, given a nodal basis for (K, P̃, Ñ), to obtain one for
(K,P,N).

Proposition 4.3. Let (K,P,N), {λi}κi=1, and (K, P̃, Ñ) be as in Proposition 4.2. Order the nodes in

Ñ by Ñ =
[
N
L

]
with Li = λi for 1 ≤ i ≤ κ. Let {ψ̃i}ν+κ

i=1 be the nodal basis for (K, P̃, Ñ). Then {ψ̃i}νi=1

is the nodal basis for (K,P,N).

Proof. Clearly, ni(ψ̃j) = δij for 1 ≤ i, j ≤ ν by the ordering of the nodes in Ñ . Moreover, {ψ̃i}νi=1 ⊂ P
because λi(ψ̃j) = 0 for each 1 ≤ i ≤ κ.

4.2. The Bell element

We can obtain a nodal basis for the Bell element or others with similarly constrained function spaces
by mapping the nodal basis for a slightly larger finite element and extracting a subset of the basis
functions. Let (K,P,N) and (K̂, P̂, N̂) be the Bell elements over K and reference cell K̂.

Recall that the Legendre polynomial of degree n is orthogonal to polynomials of degree n − 1 or
less. Let Ln be the Legendre polynomial of degree n mapped from the biunit interval to edge γi of K.
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Define a functional
λi(p) =

∫
γi

L4(s) (ni · ∇p) ds. (4.3)

For any p ∈ P5(K), its normal derivative on edge i is cubic iff λi(p) = 0. The constraint functionals

are given in L =
[
λ1 λ2 λ3

]T and Ñ =
[
N
L

]
as in Proposition 4.2. We define

λ̂i(p) =
∫
γ̂i

L4(s) (n̂i · ∇p) ds (4.4)

and hence (K̂, P̂, N̂) as well as L̂ and ˜̂
N in a similar way.

The constrained spaces are P and P̂ – quintic polynomials with cubic normal derivatives on edges,
while P̃ and ˜̂

P are the spaces of full quintic polynomials overK and K̂, respectively. We must construct
a nodal basis for (K̂, ˜̂

P,
˜̂
N), map it to a nodal basis for (K, P̃, Ñ) by the techniques in Section 3, and

then take the subset of basis functions corresponding to the Bell basis.
This is accomplished by specifying a compatible nodal extension of Ñ and ˜̂

N by including the edge
moments of tangential derivatives against L4 with those of Ñ and ˜̂

N . We define

λ′i(p) =
∫
γi

L4(s) (ti · ∇p) ds,

λ̂′i(p) =
∫
γ̂i

L4(s)
(
t̂i · ∇p

)
ds.

(4.5)

We must specify the E, V c, and D matrices for this extended set of finite element nodes. We focus
first on D, needing to compute each λ′i in terms of the remaining functionals. As with Morley and
Argyris, we begin with univariate results.

The following is readily confirmed, for example, by noting the right-hand side is a quintic polynomial
and computing values and first and second derivatives at ±1:

Proposition 4.4. Let p be any quintic polynomial on [−1, 1]. Then

16p(x) = − (x− 1)3
(
p′′(−1) (x+ 1)2 + p′(−1) (x+ 1) (3x+ 5) + p(−1)

(
3x2 + 9x+ 8

))
+ (x+ 1)3

(
p′′(1) (x− 1)2 − p′(1) (x− 1) (3x− 5) + (1)

(
3x2 − 9x+ 8

))
.

(4.6)

The formula (4.6) can be differentiated and then integrated against L4 to show that∫ 1

−1
p′(x)L4(x)dx = 1

21

[
(1)− p(−1)− p′(1)− p′(−1) + 1

3
(
p′′(1)− p′′(−1)

)]
. (4.7)

Then, this can be mapped to a general interval [−`2 ,
`
2 ] by a simple change of variables:∫ `

2

− `2
p′(x)L4(x)dx = 1

21

[
p
(
`
2

)
− p

(
− `

2

)
− `

2

(
p′
(
`
2

)
+ p′

(
− `

2

))
+ `2

12

(
p′′
(
`
2

)
− p′′

(
− `

2

))]
. (4.8)

Now, we can use this to express the functionals λ′i from (4.5) as linear combinations of the Bell
nodes:

Proposition 4.5. Let K be a triangle and va and vb are the beginning and ending vertices of edge
γi with length `i. Let p be any bivariate quintic polynomial over K and λ′i defined in (4.5). Then the
restriction of λ′i to bivariate quintic polynomials satisfies

πλ′i = 1
21

[
πδvb

− πδva − `i
2

(
πδti

vb
+ πδti

vb

)
+ `2i

12

(
πδtiti

vb
− πδtiti

vb

)]
, (4.9)
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and hence
πλ′i = 1

21 [πδvb
− πδva ]

− `i
42

[
txi

(
πδx

vb
+ πδx

va

)
+ tyi

(
πδy

vb
+ πδy

va

)]
+ `2i

252

(
(txi )2

(
πδxx

vb
− πδxx

va

)
+ 2txi t

y
i

(
πδxy

vb
− πδxy

va

)
+
(
tyi
)2 (

πδyy
vb
− πδyy

va

))
.

(4.10)

Now, V c is quite similar to that for the Argyris element. There is a slight difference in the handling
the edge nodes, for we have an integral moment instead of a point value and must account for the edge
length accordingly. By converting between normal/tangent and Cartesian coordinates via the matrix
Gi and mapping to the reference element, we find that for any p,[

λi(p)
λ′i(p)

]
=
∫
γi

L4(s) (Gi∇p) ds

=
∫
γ̂i

∣∣∣dŝds ∣∣∣L4(ŝ)
(
GiJ

T ĜTi ∇̂n̂it̂i p̂
)
dŝ

=
∣∣∣dŝds ∣∣∣GiJT ĜTi

[
λ̂i(p)
λ̂i
′(p)

]
.

(4.11)

This calculation shows that V c for the Bell element is identical to (3.34) for Argyris, except with a
geometric scaling of the B matrices.

The extraction matrix E for the extended Bell elements consisting of full quintics now is identical
to that for Argyris. Then, when evaluating basis functions, one multiplies the affinely mapped set of
basis values by V T and then takes only the first 18 entries to obtain the local Bell basis.

4.3. A remark on the Brezzi-Douglas-Fortin-Marini element

In [24], we describe a two-part process for computing the triangular Brezzi-Douglas-Fortin-Marini
(BDFM) element [19], an H(div) conforming finite element based on polynomials of degree k with
normal components constrained to have degree k−1. This is a reduction of the Brezzi-Douglas-Marini
element [11] somewhat as Bell is of Argyris. However, as both elements form Piola-equivalent families,
the transformation techniques developed here are not needed.

Like the Bell element, one can define constraint functionals (integral moments of normal components
against the degree k Legendre polynomial) for BDFM. In [24], we formed a basis for the intersection
of the null spaces of these functionals by means of a singular value decomposition. A nodal basis for
the BDFM space then followed by building and inverting a generalized Vandermonde matrix on the
basis for this constrained space.

In light of Propositions 4.2 and 4.3, however, this process was rather inefficient. Instead, we could
have merely extended the BDFM nodes by the constraint functionals, building and inverting a single
Vandermonde-like matrix. If one takes the BDM edge degrees of freedom as moments of normal
components against Legendre polynomials up to degree (k − 1) instead of pointwise normal values,
then this technique shows that one can even build a basis for BDM that includes a basis for BDFM
as a proper subset.

5. Numerical results

Incorporation of these techniques into high-level software tools such as Firedrake is the subject of
ongoing investigation. In the meantime, we provide some basic examples written in Python, with
sparse matrix assembly and solvers using petsc4py [14]. We begin with the unit square divided into a
4 × 4 mesh, then each square divided into two right triangles. To confirm that our techniques work
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Figure 5.1. Initial mesh for our computations.

in irregular geometry, we then perturb the interior vertices of the triangulation, giving the mesh in
Figure 5.1. All our results then follow on a sequence of uniform refinements of this mesh.

5.1. Scaling degrees of freedom

Before considering the accuracy of the L2 projection, achieved via the global mass matrix, we comment
on the conditioning of the mass and other matrices when both derivative and point value degrees of
freedom appear. The Hermite element is illustrative of the situation.

On a cell of typical diameter h, consider a basis function corresponding to the point value at a
given vertex. Since the vertex basis function has a size of O(1) on a triangle of size O(h2), its L2 norm
should be O(h). Now, consider a basis function corresponding to a vertex derivative. Its derivative is
now O(1) on the cell, so that the H1 seminorm is O(h). Inverse inequalities suggest that the L2 norm
could then be as large as O(1). The different kinds of nodes introduce multiple scales of basis function
sizes under transformation, which manifests in ill-conditioning. Where one expects a mass matrix to
have an O(1) condition number, one now obtains an O(h−2) condition number. This is observed even
on a unit square mesh, in Figure 5.2. All condition numbers are computed by converting the PETSc
mass matrix to a dense matrix and using LAPACK via scipy [23].

However, there is a simple solution. For the Hermite element, one can scale the derivative degrees
of freedom locally by an “effective h”. All cells sharing a given vertex must agree on that h, which
could be the average cell diameter among cells sharing a vertex. Scaling the nodes/basis functions
(which amounts to multiplying V on the right by a diagonal matrix with 1’s or h’s) removes the scale
separation among basis functions and leads again to an O(1) condition number for mass matrices, also
seen in Figure 5.2. From here, we will assume that all degrees of freedom are appropriately scaled to
give O(1) conditioning for the mass matrix.
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Figure 5.2. Condition numbers for cubic Lagrange and Hermite mass matrices on a
sequence of uniform refinements of the mesh in Figure 5.1. This demonsrates an O(h−2)
scaling when the “original” Hermite degrees of freedom are used, but O(1) condition
number when the derivative degrees of freedom are scaled by h. Rescaling the Hermite
nodes still gives a considerably larger condition number than for standard Lagrange
elements.

5.2. Accuracy of L2 projection

Now, we demonstrate that optimal-order accuracy is obtained by performing L2 projection of smooth
functions into the Lagrange, Hermite, Morley, Argyris, and Bell finite element spaces on uniform
refinements of our initial mesh. Defining u(x, y) = sin(πx) sin(2πy) on [0, 1]2, we seek uh such that

(uh, vh) = (u, vh) (5.1)

for each vh ∈ Vh, where Vh is one of the finite element spaces. Predicted asymptotic convergence rates
– third for Morley, fourth for Hermite and Lagrange, fifth for Bell, and sixth for Argyris, are observed
in Figure 5.3 as we uniformly refine the initial mesh in Figure 5.1.

Note that the Hermite and Lagrange elements deliver the same order of approximation, but the
Lagrange element delivers a slightly lower error. This is to be expected, as the space spanned by cubic
Hermite triangles is a proper subset of that spanned by Lagrange.

5.3. The Laplace operator

As a simple second-order elliptic operator, we consider the Dirichlet problem for the Laplace operator
on the unit square Ω:

−∆u = f, (5.2)
equipped with homogeneous Dirichlet boundary conditions u = 0 on ∂Ω.

We again consider tesselating Ω into uniform refinements of the mesh in Figure 5.1 and let Vh be
one of the Lagrange, Hermite, Argyris, or Bell finite element spaces, all of which are H1-conforming.
The Morley element is not a suitable H1 nonconforming element, so we do not use it here. We then
seek uh ∈ Vh such that

(∇uh,∇vh) = (f, vh) (5.3)
for all vh ∈ Vh.
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Figure 5.3. Accuracy of L2 projection using cubic Lagrange, Hermite, Morley, Ar-
gyris, and Bell elements. All approach theoretically optimal rates.

Figure 5.4. Convergence study of various elements for second-order elliptic equa-
tion (5.2). As the mesh is refined, all elements approach their predicted optimal rates
of convergence.

Enforcing strong boundary conditions on elements with derivative degrees of freedom is delicate
in general. However, with grid-aligned boundaries, it is less difficult. To force a function to be zero
on a given boundary segment, we simply require the vertex values and all derivatives tangent to the
edge vanish. This amounts to setting the x-derivatives on the top and bottom edges of the box and
y-derivative on the left and right for Hermite, Argyris, and Bell elements. Dirichlet conditions for
Lagrange are enforced in the standard way.

By the method of manufactured solutions, we select f(x, y) = 8π2 sin(2πx) sin(2πy) so that u(x, y) =
sin(2πx) sin(2πy). In Figure 5.4, we show the L2 error in the computed solution for both element
families. As the mesh is refined, both curves approach the expected order of convergence – fourth for
Hermite and Lagrange, fifth for Bell, and sixth for Argyris. Again, the error for Lagrange is slightly
smaller than for Hermite, albeit with more global degrees of freedom.
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Figure 5.5. Convergence study of various elements for clamped plate biharmonic
problem (5.5). As the mesh is refined, Bell, and Argyris elements converge in L2 at
fifth and sixth order, respectively. The nonconforming Morley element only converges
at second order, which is known to be sharp.

5.4. The clamped plate problem

We now turn to a fourth-order problem for which the Argyris and Bell elements provide conforming
H2 discretizations and Morley a suitable nonconforming one. Following [10], we take the bilinear form
defined on H2(Ω) to be

a(u, v) =
∫

Ω
∆u∆v − (1− ν) (2uxxvyy + 2uyyvxx − 4uxyvxy) dx, (5.4)

where 0 < ν < 1 yields a coercive bilinear form for any closed subspace of H2 that does not contain
nontrivial linear polynomials. We fix ν = 0.5.

Then, we consider the variational problem

a(u, v) = F (v) =
∫

Ω
fv dx, (5.5)

posed over suitable subspaces of H2. It is known [10] that solutions of (5.5) that lie in H4(Ω) satisfy
the biharmonic equation ∆2u = f in an L2 sense.

We consider the clamped plate problem, in which both the function value and outward normal
derivative are set to vanish, which removes nontrivial linear polynomials from the space. Again, we
use the method of manufactured solutions on the unit square to select f(x, y) such that u(x, y) =
(x(1− x)y(1− y))2, which satifies clamped boundary conditions. We solve this problem with Argyris
and Bell elements, and then also use the nonconforming Morley element in the bilinear form. Again,
expected orders of convergence are observed in Figure 5.5.

6. Conclusions

Many users have wondered why FEniCS, Firedrake, and most other high-level finite element tools lack
the full array of triangular elements, including Argyris and Hermite. One answer is that fundamental
mathematical aspects of mapping such elements have remained relatively poorly understood. This
work demonstrates the challenges involved with mapping such elements from a reference cell, but
also proposes a general paradigm for overcoming those challenges by embedding the nodes into a
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larger set that transforms more cleanly and using interpolation techniques to relate the additional
nodes back to original ones. In the future, we hope to incorporate these techniques in FInAT (https:
//github.com/FInAT/FInAT), a successor project to FIAT that produces abstract syntax for finite
element evaluation rather than flat tables of numerical values. TSFC [21] already uses FInAT for its
basis functions. If FInAT can provide rules for evaluating the matrix M in terms of local geometry
on a per-finite element basis, then TSFC and other form compilers should be able to seamlessly (from
the end-users’ perspective) generate code for many new kinds of finite elements.
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