
SMAI-JCM
SMAI Journal of
Computational Mathematics

Multiresolution greedy algorithm
dedicated to reflective tomography

Jean-Baptiste Bellet
Volume 4 (2018), p. 259-296.

<http://smai-jcm.cedram.org/item?id=SMAI-JCM_2018__4__259_0>

© Société de Mathématiques Appliquées et Industrielles, 2018
Certains droits réservés.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://smai-jcm.cedram.org/item?id=SMAI-JCM_2018__4__259_0
http://www.cedram.org/
http://www.cedram.org/

SMAI Journal of Computational Mathematics
Vol. 4, 259-296 (2018)

Multiresolution greedy algorithm dedicated to reflective
tomography

Jean-Baptiste Bellet 1

1 Université de Lorraine, CNRS, IECL, F-57000 Metz, France
E-mail address: jean-baptiste.bellet@univ-lorraine.fr.

Abstract. Reflective tomography recovers the surfaces of a scene to be imaged, from optical images: a tomographic
algorithm computes a full volumic reconstruction and then the surfaces are extracted from this reconstruction.
For better performance, we would like to avoid computing accurately the full reconstruction, and we want to
focus computations on the sought surfaces. For that purpose we propose an iterative multiresolution process. The
initialization computes a coarse reconstruction, and the iterations refines it. To identify the voxels to be refined,
we take advantage of the asymptotic behaviour of the reconstruction, with respect to its cut-off frequency: it
discriminates the surfaces to be extracted. By the way the proposed algorithm is greedy: each iteration maximizes
the accumulated intensity of the selected voxels, with prescribed volume. The combination of the complexity analysis
and the numerical results shows that this novel approach succeeds in reconstructing surfaces and is relatively
efficient compared with the standard method. These works pave the way towards accelerated algorithms in reflective
tomography. They can be extended to a general class of problems concerning the determination of asymptotically
discriminated sets, what is related to the computation of singular support of distributions.

2010 Mathematics Subject Classification. 78A97, 94A12, 65B99, 65Y20.
Keywords. Computational optics, reconstruction, acceleration, complexity.

1. Introduction

1.1. Reflective Tomography

In optics, reflective tomography reconstructs a scene from images of scattered intensity [8]. The idea
is to apply a tomographic algorithm on reflective projections [13, 11, 6, 2]: a filtered backprojection.
It offers several ways of representing the scene [7, 3, 5, 9] in three-dimensional optical imaging. The
most intense values of the reconstruction are located near the original surfaces, up to artifacts. The
surfaces are extracted using this information, for example by thresholding [4].

1.2. Goal

This article is part of a search for improvement of the algorithms of reflective tomography. Here
we would especially like to tackle the computational efforts. The observation is that the technique
computes a filtered backprojection, and thus it computes a full volume, whereas we look for surfaces
only. To gain performance, we would like to concentrate fine calculations close to surfaces, and limit
calculations far from surfaces. The chicken and the egg problem: compute only the voxels close to
surfaces that are unknown before computing all the voxels. In this article we design a new algorithm
that helps to solve this problem. This is a first attempt to accelerate the solver of reflective tomography
using a sequential approach.

1.3. Proposed strategy

To achieve this, we add a priori about the reconstruction. Surfacic extraction by thresholding assumes
essentially that the intense values of the reconstructed volume constitute the surfaces. We have got

259

mailto:jean-baptiste.bellet@univ-lorraine.fr

J.-B. Bellet

recently more quantitative results about the reconstruction [1]. Assuming essentially that the input is
piecewise smooth, these results formulate the reconstruction as a function of the cut-off frequency of the
filtering, when this frequency plays the role of an asymptotic parameter. We propose to take advantage
of this dependence to compute a reconstruction which is refined near the surfaces, iteration after
iteration. This approach will compute reconstructions for several cut-off frequencies, and thus several
resolutions, trying to focus the highest resolutions on surfaces. Such a multiresolution refinement has
similarities with an algorithm derived in [15]; but the framework and the core of the solver are different.

1.4. Main results

The most important result of this article is a new algorithm dedicated to reflective tomography:
Algorithm 6 page 272. It aims at answering efficiently to the following question: compute a small set
of voxels which represents the surfaces of the scene, and whose cardinality is set in advance. It is
a multiresolution greedy algorithm, guided by the asymptotic behaviour of the reconstruction under
the assumptions of [1]. We also derive complexity bounds: Table 3.1; they show that the method is
hoped to be competitive, at least for advantageous occurrences. And we extend these two-dimensional
results to a three-dimensional set-up: Algorithm 9 and Table 5.1. Numerical examples show that
the method is relevant on synthesis images with specular reflection and diffusion, simulated by the
Gouraud model [10], even if the images are corrupted with quite a strong speckle noise. By the way
the principle of the multiresolution method concerns a much more general class of problems that we
introduce: it deals with the efficient determination of a set from asymptotic discrimination.

1.5. Organization

This paper is organized as follows. We first recall the principle of reflective tomography; we formulate
the algorithm that is the reference method in the field. Then we design a new algorithm in a two
dimensional set-up, and we analyze its complexity. We test this algorithm on cases of imaging with
occlusions. To finish with, we extend these results in three dimensions, and we show the relevance of
the new algorithm, by comparing it with the standard algorithm on simulated optical images, with
and without noise.

2. Surface extraction in reflective tomography

2.1. Reflective tomography

We recall what 2D reflective tomography is.

2.1.1. Record: reflectogram

We consider a scene whose objects are opaque; we collect reflective projections similarly as [2]. We
assume that we measure in this way a reflectogram P : (θ, s) ∈ Θ × [−R,R] 7→ P (θ, s), where
Θ = [0, |Θ|] ⊂ [0, 2π] is an interval of angles, and R > 0 is the half-width of a screen. More precisely
let ∂O = ∂W ∪ ∂S, where ∂W denotes the (boundary of the) wall and ∂S denotes the (boundary of
the) objects of the scene. As in Figure 2.1, for every angle θ ∈ Θ, and for every radial value s ∈ [−R,R],
we consider the ray x · θ = s, where θ = (cos θ, sin θ); the scene is projected along this ray, along the
direction −θ⊥ = (sin θ,− cos θ). We record a reflective projection on a screen which is parallel to θ,
and between the objects and the wall:

P (θ, s) = f(θ, y(θ, s)), s ∈ [−R,R], y(θ, s) ∈ {x ∈ ∂O : x · θ = s}, f : (Θ, ∂O)→ R, (2.1)

260

Multiresolution greedy algorithm for reflective tomography

where y(θ, s) denotes the visible point, and f is the “physics” of the problem. The opacity assumption
means that for the ray x ·θ = s, the visible point is the last point of ∂O when we travel along the ray in
the direction −θ⊥. The reflectogram P is the collection of the reflective projections: P ≡ (P (θ, ·))θ∈Θ.
The function f can take different forms depending on the application. In optics, the measurement is the
power per unit area incident on the sensor: the irradiance [12]. So P (θ, s) = f(θ, y(θ, s)) represents the
amount of light that is reflected from y(θ, s) to the sensor. Other example: if f |∂S = 1 and f |∂W = 0,
we measure 1 if the ray x · θ = s intersects the scene ∂S, and 0 otherwise, and then P represents
the silhouettes of ∂S [14]. Silhouettes can be obtained by binarising optical data. For the numerical
examples of this article, we will always assume that the wall is black: f |∂W = 0.

θ⊥

θ

y(θ, s′)

y(θ, s)

screen

∂W

∂S

Figure 2.1. Reflective projection for an angle θ ∈ Θ: the wall ∂W and the scene ∂S
are projected in the direction −θ⊥ on a screen, along the rays x · θ = s, s ∈ [−R,R].
The set of the projected visible points, y(θ, s), s ∈ [−R,R], is represented in bold. The
dashed lines represent two rays of projection, from the visible points y(θ, s) and y(θ, s′),
to the screen.

2.1.2. Imaging by tomography

Then we consider the following imaging problem.

Problem 1. Reconstruct the scene ∂S, from the knowledge of the reflectogram P on Θ× [−R,R].

The acquisition geometry recalls the acquisition of the Radon transform in transmission tomography:
the scene is projected along parallel rays. Thus the filtered backprojection, which is a Radon inversion,
was introduced to solve this problem [13, 2]. The denomination “reflective tomography” comes from
that point: the method applies a tomographic solver on reflective data. More precisely for ψ(σ) = |σ|
and Ω > 0, we define a filter whose frequency window is contained in [−Ω,Ω]:

ψΩ(s) := 1
2Ω

∫ Ω

−Ω
ψ(σΩ)eiσsdσ =

∫ 1

0
σ cos(Ωσs)dσ.

We represent the scene ∂S using the ψΩ-filtered backprojection of P :

Definition 2.1. For every Ω > 0, the ψΩ-filtered backprojection of P is the two-dimensional function:

R∗[P ? ψΩ] : x ∈ R2 7→ R∗[P ? ψΩ](x) =
∫

Θ
P (θ, ·) ? ψΩ(x · θ)dθ,

where ? denotes the convolution with respect to the radial variable:

P (θ, ·) ? ψΩ(t) =
∫ R

−R
P (θ, s)ψΩ(t− s)ds.

261

J.-B. Bellet

Of course, the reconstruction R∗[P ?ψΩ] is only a heuristic representation of ∂S, because P is not a
Radon transform. The half-width Ω of the frequency window plays the role of a resolution parameter.
The reconstruction depends on that parameter. We will use this dependency later in the article.

2.2. Discretization

We recall a discrete version of the tomographic algorithm.

2.2.1. Records

We assume that the angular interval Θ is discretized on the grid of the θj = (j − 1)∆θ, 1 6 j 6 m,
with ∆θ = |Θ|

m . We assume that the radial interval [−R,R] is discretized on the grid of the tj =
−R+(j−1)∆t, 1 6 j 6 n, with ∆t = 2R

n . We assume that the reflectogram P (θ, t) is only known on the
grid of the (θj , tk); the record is thus a uniform discretization of the reflectogram P . We approximate
the filtered backprojection R∗[P ? ψΩ](x), for x scanning the grid of the (ti, tj), 1 6 i, j 6 n.

2.2.2. Discretization of the filtering

First the filtering is computed for every angle θ of the grid. Let ∆ω = π
R , α = d−n2 e∆ω, β = dn2 e∆ω;

we assume [−Ω,Ω) ⊂ [α, β), i.e. Ω 6 −α = bn2 c∆ω. Let ωk = α + (k − 1)∆ω, 1 6 k 6 n. Then for
t = tl, 1 6 l 6 n,

P (θ, ·) ? ψΩ(t) = π

Ω

∫ R

−R
P (θ, s) 1

2π

∫ β

α

(
ψ11[−1,1)

)
(σΩ)eiσ(t−s)dσds.

Notation. For every vector u, whose size is n, the forward, resp. inverse, discrete Fourier transform
of u is: FFTu :=

[
e−i 2π

n
(j−1)(k−1)

]
16k,j6n

u, IFFTu := 1
n

[
ei 2π

n
(j−1)(k−1)

]
16j,k6n

u.

These notations emphasize that such operations are computed using fast implementations: Fast
Fourier Transform and Inverse Fast Fourier Transform.

Notation. Let ?̂ denote a product component by component, composed by a shift: for all u, v, of size
n,

u?̂v := (u1vbn2 c+1, u2vbn2 c+2, . . . , udn2 evn, ud
n
2 e+1v1, udn2 e+2v2, . . . , unvbn2 c).

By the left Riemann sum, the filtering is approximated by a discrete Fourier inversion of a discrete
spectral product:

[P (θ, ·) ? ψΩ(tl)]16l6n ≈
π

Ω IFFT
[
FFT[P (θ, tj)]16j6n?̂

[(
ψ11[−1,1)

)
(ωkΩ)

]
16k6n

]
. (2.2)

This first step approximates the P̃Ω(θj , tl) = P (θj , ·) ? ψΩ(tl), 1 6 j 6 m, 1 6 l 6 n, for Ω 6 bn2 c∆ω.
The filtering function, written hereafter in pseudo-code, realizes this step for Ω = bn2 c

π
R .

2.2.3. Discretization of the backprojection

Then we discretize the backprojection. By the left Riemann sum:

R∗[P̃Ω](x) ≈ ∆θ
m∑
j=1

P̃Ω(θj , x · θj).

262

Multiresolution greedy algorithm for reflective tomography

The P̃Ω(θj , x·θj) must be interpolated on the grid of the tl. We assume that t1 < x·θj 6 tn, 1 6 j 6 m;
this assumption is satisfied if |x| 6 R−∆t. Then by linear interpolation:

P̃Ω(θj , x · θj) ≈ P̃Ω(θj , tl)
x · θj − tl+1
tl − tl+1

+ P̃Ω(θj , tl+1)x · θj − tl
tl+1 − tl

, 1 6 l :=
⌈
x·θj−a

∆t

⌉
6 n− 1.

Hence this second step computes:

R∗[P ? ψΩ](x) ≈ ∆θ
∆t

m∑
j=1
−P̃Ω(θj , tl)(x · θj − tl+1) + P̃Ω(θj , tl+1)(x · θj − tl). (2.3)

This is done using the backprojection function.

2.2.4. Reconstruction

Combining the filtering and the backprojection, we compute and we plot the reconstruction:

H(i, j) := 11|x|6R−∆tR∗[P ? ψΩ](x), x = (ti, tj), 1 6 i, j 6 n, Ω =
⌊
n

2

⌋
∆ω.

This represents the scene under the form of an image H of n2 pixels.

2.3. Surface extraction

The following problem formulates the question of surface extraction.

Problem 2. We know the P (θj , tk). Let α ∈ (0, 1]. Represent the scene ∂S using αn2 pixels.

We use as a priori that the most intense pixels of H represent the surfaces, up to artifacts. Hence
among the n2 pixels of H, we select the αn2 most intense. A way is to sort the set of pixels, by
decreasing intensity |H(i, j)|; then we keep the first αn2 pixels. In this article sorting will be realized
by a fast algorithm: merge sort. At the end we get the Algorithm 3. We will consider that it is the
reference method to solve Problem 2.

2.4. Costs

We give complexity indicators of the reference algorithm.

2.4.1. Filtering

The size of the filtered array P̃Ω is the size of the data array P : mn. For every θ = θj , 1 6 j 6 m,
we compute FFT[P (θj , ·)] with cost O (n logn), we multiply in Fourier space with cost O (n), then
we compute π

Ω IFFT[·] with cost O (n logn). In total, computing the array P̃Ω costs O (2mn logn)
operations.

2.4.2. Backprojection

The array H contains n2 elements. Backprojections must be computed for the (ti, tj) inside the disk
|x| 6 R−∆t. Dividing the area of the disk |x| < R by the area of the square [−R,R]2, we get π

4 ; thus
the number of computed backprojections is about π

4n
2. Every backprojection costs O (m) operations.

In total, O
(
mπ

4n
2) operations are needed to compute H.

263

J.-B. Bellet

2.4.3. Selection

Lastly the cost of surface extraction is predominated by the cost of a merge sort of n2 elements:
O
(
n2 logn2).

2.4.4. Synthesis

The costs are summarized in the first column of Table 3.1. We will choose m and n of the same order.
Hence the total cost is dominated by the cost of backprojection: O

(
mπ

4n
2). That is the reason why

we would like to tackle this cost in the sequel: by decreasing the number of backprojections, and by
reducing the cost of some backprojections.

Algorithm 1 Function [P̃Ω(θj , tl)] = filtering([P (θj , tl)], R)
Inputs: P (θj , tl), 1 6 j 6 m, 1 6 l 6 n, with θj = (j − 1)∆θ, tl = −R + (l − 1)∆t, ∆t = 2R

n .

Ω = bn2 c
π
R , ωk = (d−n2 e+ (k − 1)) πR , 1 6 k 6 n, ψ(σ) = |σ|.

For every 1 6 j 6 m,

P̃Ω(θj , t·) = π

Ω IFFT
[
FFT[P (θj , tl)]16l6n?̂

[(
ψ11[−1,1)

)
(ωkΩ)

]
16k6n

]
.

Output: filtered data P̃Ω(θj , tl), 1 6 j 6 m, 1 6 l 6 n, for Ω = bn2 c
π
R .

Algorithm 2 Function H=backprojection(x, [P̃ (θj , tl)],∆θ,R,∆t)
Inputs: x ∈ R2 and P̃ (θj , tl), 1 6 j 6 m, 1 6 l 6 n, where θj = (j − 1)∆θ, tl = −R + (l − 1)∆t,
∆t = 2R

n .

If |x| > R−∆t, H = 0 ;
else,

H = ∆θ
∆t

m∑
j=1
−P̃ (θj , tl)(x · θj − tl+1) + P̃ (θj , tl+1)(x · θj − tl), l =

⌈
x·θj+R

∆t

⌉
.

Output: backprojection of P̃ , evaluated at x : 11|x|6R−∆tR∗[P̃](x).

Algorithm 3 Reference of reconstruction-extraction in reflective tomography.
Inputs: reflective projections P (θj , tl), 1 6 j 6 m, 1 6 l 6 n, with θj = (j − 1)∆θ, tl =
−R+ (l − 1)∆t, ∆t = 2R

n ; rate α of wished pixels.

Filtering: [P̃Ω(θj , tl)] = filtering([P (θj , tl)], R)
Backprojection: computation of R∗P̃Ω.

For every 1 6 i, k 6 n,
x = (ti, tk), H(i, k) =backprojection(x, [P̃ (θj , tl)],∆θ,R,∆t).

Selection: sort the (i, j,H(i, j)) by decreasing |H(i, j)|, then select the first αn2.

Output: the αn2 most intense pixels of the reconstruction H (sorted by decreasing intensity).

264

Multiresolution greedy algorithm for reflective tomography

Figure 3.1. Principle of the multiresolution algorithm: compute an image with coarse
pixels, then refine sets of intense pixels, iteratively.

3. Multiresolution reflective tomography

3.1. Asymptotic result

An asymptotic expansion of the reconstruction R∗[P ?ψΩ] is derived in [1], the asymptotic parameter
being the frequency parameter: Ω→∞. Assuming essentially that the record P is piecewise smooth,
the reconstruction satisfies:

Ω1.5R∗[P ? ψΩ](x) = O (1) ,O
(
Ω−0.5 log Ω

)
,O
(
Ω−0.5

)
.

The intensity of the reconstructed surfacic points is O (1), or O
(
Ω−0.5 log Ω

)
. The intensity of the

artifacts is O
(
Ω−0.5 log Ω

)
, whereas O

(
Ω−0.5) represents a noise. This result is consistent with the

numerical observations: the highest values represent the surfaces of the original scene.
But this result is stronger: the heuristic reconstruction is quantified as a function of the resolution

parameter Ω. Let us compute the normalized reconstruction Ω1.5R∗[P ? ψΩ] for several values of Ω,
large enough. If the asymptotics at x is O (1), the result is expected to decrease when Ω increases. But
if the asymptotics at x is O (1), the result should not really change. We propose to take advantage of
this model for better performance: injecting this a priori into the solver should increase the efficiency
of the reconstruction-extraction process.

3.2. Principle

The main idea that we will develop is described below; see Figure 3.1.

3.2.1. Iterative refining

First we compute a normalized reconstruction Ω1.5R∗[P ? ψΩ](x), for x scanning a coarse grid, and
Ω being associated with the mesh size. Then we iteratively refine this reconstruction as follows. The
intense values are expected to represent surfaces, and the low values are expected to represent noise.
Thus we select a set of pixels whose intensity is high. We divide them into four (sub-)pixels. For all
of the new pixels, the normalized reconstruction Ω1.5R∗[P ? ψΩ] is computed with an adequate value
of Ω: from a pixel to a sub-pixel, Ω is doubled. Then we iterate. This process is multiresolution: the
reconstruction is computed for several values of the resolution parameter Ω. The idea is to increase
iteratively the resolution of the computed intense pixels.

Let us describe the sets of pixels that we refine. We can indeed obtain several variants of the method,
depending on this choice. A way is to refine a single pixel at each iteration: the most intense. In this
paper we will use the following rule. At the highest resolution, the sought thin pixels fill a surface
whose area is A units area (proportional to αn2). For every iteration, we refine the most intense pixels,
among the pixels whose resolution is not maximal; we constrain their area: adding these pixels with

265

J.-B. Bellet

the pixels at maximal resolution (already computed) must fill an area A. This process is illustrated
on Figure 3.1, with A representing the area of the 12 smallest pixels.

3.2.2. Greedy algorithm

The proposed algorithm can be interpreted as a greedy algorithm for the following problem:

Problem 3. Find a surface S, whose area is A, divided into pixels, and whose accumulated intensity is
maximal. Here, the accumulated intensity is defined as the sum of the absolute values of the normalized
reconstructions, computed at the center of the pixels.

Each iteration of the algorithm solves a similar problem, from pixels whose resolution is not maximal,
and then refines the pixels of the optimal surface S. The iterations are stopped when the pixels whose
resolution is maximal fill an area A. Each iteration increases (or does not change) the number of
computed pixels at maximal resolution. The area of the surface, that is to be determined such that
the thin pixels fill an area A, is a decreasing sequence (of the number of iteration).

In comparison solving Problem 2 by the reference algorithm computes all the pixels at maximal
resolution and then solves Problem 3 in a single step. It cannot be proved that the greedy algorithm
yields the same result; but it is designed to give a similar result with a lower cost.

3.2.3. Comments

According to the asymptotic result, refining the most intense pixels should first refine the O (1), and
then the O

(
Ω−0.5 log Ω

)
. This is desired because we want to first refine the surfaces of the scene. Such

refinements should yield reconstructions of the same order near the surfaces, even if they are computed
for different Ω. By the way, for every wrong alarm, i.e. selection of a non-surfacic pixel: the result is
O (1) and thus the refinement should decrease the intensity. This is requested in order to reduce the
noise and also to avoid refining more and more the noise in future iterations. As a result selecting and
refining a pixel produces a positive effect for both cases (true and wrong alarms).

Let us notice that it makes sense to compare reconstructions thanks to the normalization factor Ω1.5:
even on different grids, O (1) values can be compared, and they are expected to be larger than O (1)
values. On the contrary, without the normalization factor Ω1.5, the comments of the last paragraph
may become false. In particular comparing reconstructions computed for several values Ω would not
make sense. Knowing the asymptotic behaviour of the reconstruction has been crucial to adjust the
proposed method. It was used to find a reasonable normalization; and it is now used to understand
the behaviour of the proposed algorithm.

Finally the method does not need to eliminate pixels during the process. The algorithm decides itself
which zones must be refined, and it has a desired behaviour for noise (see the wrong alarms above).
For every computed pixel, there may exist a future iteration which refines it. This has two advantages.
This avoids eliminating prematurely pixels that should be preserved. Secondly, if the aimed area is
the area of the full image, then the algorithm converges to the reference reconstruction.

3.2.4. Extension

In this paper, the multiresolution greedy principle is derived and is studied in the context of reflective
tomography. But the ideas can be immediately extended to a general class of problems, concerning
the efficient computation of a set which is discriminated thanks to the high-frequency asymptotics of
a band-limited function:

266

Multiresolution greedy algorithm for reflective tomography

Problem 4. Let IΩ : Rd → R be a band-limited function, where the resolution parameter Ω > 0 is a
bound over the frequencies: the Fourier transform F [IΩ] : ξ ∈ Rd 7→

∫
Rd IΩ(x)e−ix·ξdx is supported in

the ball {ξ ∈ Rd : |ξ| 6 Ω}. We assume the following asymptotics, when Ω→∞:

IΩ(x) =
{
O (1) , if x ∈ S,
O (1) , otherwise,

where S ⊂ Rd is a small set (small Lebesgue measure). We assume that we are able to compute, or
to approximate:

Iω(x), x ∈ Rd, 0 < ω 6 Ω,
where Ω is large and fixed. Question: compute S.

The brute force method computes IΩ on a full grid associated to the largest resolution Ω and then
selects the highest values. The multiresolution method starts the computation at a lower resolution
on a coarser grid, and then refines iteratively sets of meshes. If the cost of evaluation of IΩ is high, if
d is large, if S is small, and if Ω is large, then the multiresolution greedy process may accelerate the
computations.

This class of problems is linked to the numerical determination of the singular support (or sup-
port) of a distribution that would be known only through a low-pass filter. For example, up to the
normalization, IΩ(x1, . . . , xd) =

∏
16i6d sinc Ωxi is a low-pass version of the Dirac distribution δ0 in

Rd, with S = {0}. Let d = 10, and Ω = 106, and let us imagine that we have a black box whose input
is (x, ω), x ∈ Rd, ω 6 Ω, and whose output is Iω(x). It is clear that the multiresolution process would
outperform the brute force for determining the set S.

3.3. Computations at several resolutions

We precise the computational formulas, as function of the resolution.

3.3.1. Normalized reconstructions

We assume that n = 2p, where p > 1 is an integer. Let 0 6 k 6 p. At scale k, the square [−R− ∆t
2 , R−

∆t
2]2 is divided into square meshes with sides of length ∆tk = 2p−k∆t, and whose center is a point of
the grid:

Gk = {xkij := (−R− ∆t
2 ,−R−

∆t
2) + ∆tk(i− 1

2 , j −
1
2), 1 6 i, j 6 2k}.

At the coarser scale, k = 0, we get a single mesh which is the full square. At the finer scale, k = p, we
get n2 meshes, whose centers are the xpij = (ti, tj). Let the unit area be the area of a mesh at scale
k = p; thus the area of a mesh at scale k is ∆t2k = 4p−k units area.

For the reconstruction at scale k, at x = xkij ∈ Gk, we use the frequency Ωk = 2k−pbn2 c∆ω. The
associated normalized reconstruction is:

Hk(i, j) := 11|xkij |6R−∆tΩ
1.5
k R∗[P ? ψΩk](xkij).

We could use this reconstruction, combining (2.2) for the filtering and (2.3) for the backprojection.
But in the sequel we will use a more efficient scheme.

3.3.2. Multiresolution filtering

We propose indeed to downsample the filtered data P ? ψΩk(θj , tl), 1 6 j 6 m, 1 6 l 6 n. We have
in mind to speed up the computations for temporary scales k < p, and to keep precision only for the
final scale k = p.

267

J.-B. Bellet

Thus we keep only the l such that tl ∈ −R + ∆tkN and the j such that θj ∈ 2p−k∆θN. For the
scale k > 1, let mk = 1 +

⌊
m−1
2p−k

⌋
, θ(k)

j = (j − 1)2p−k∆θ = θ1+(j−1)2p−k , and t(k)
l = −R + (l − 1)∆tk =

t1+(l−1)2p−k . Hence the filtered data are:

P̃Ωk(θ(k)
j , t

(k)
l), 1 6 j 6 mk, 1 6 l 6 2k.

Notation. Let cutp[xh] = cutsp[xh] = [xh], and for every k < p:
cutk[xh]16h6n = [0, xn

2−2k−1+2, xn2−2k−1+3, . . . , xn2 +2k−1],
cutsk[fi]16i6n = [f1, . . . , f2k−1 , 0, fn−2k−1+2, . . . , fn].

Hence for every angle θ(k)
j :

P̃Ωk(θ(k)
j , t

(k)
·) ≈ 2k−pπ

Ωk
IFFT

[
cutsk FFT[P (θ(k)

j , tl)]16l6n?̂ cutk
[(
ψ11[−1,1)

)
(ωhΩk)

]
16h6n

]
.

In comparison with (2.2) we cut the frequency range. This is a way to downsample with respect to t,
and also to reduce the computational cost. It is indeed sufficient to keep the frequencies ωh ∈ [−Ωk,Ωk)
due to the support of ψ11[−1,1). The cut is operated using cutk and cutsk. In order to obtain a hermitian
spectral signal and a real signal, we cancelled the Fourier coefficients associated with the frequency
−Ωk, k < p (see the definition of cutk and cutsk). Due to these cuts, the IFFT is applied on a
vector whose size is 2k; at the end, the points of the spatial grid are the t(k)

l , 1 6 l 6 2k. The
filteringMultiResol function computes the downsampled filtering for the different resolutions.

3.3.3. Efficient normalized reconstructions

Then for all 1 6 ı, 6 2k, let:

H↓k(ı,) := 11|xkı|6R−∆tkΩ1.5
k R∗[P ? ψΩk](xkı),

where the notation ·↓ remembers that R∗[P ? ψΩk] is computed from a downsampling. In a similar
manner as (2.3), for x = xkı such that |x| 6 R−∆tk:

H↓k(ı,) ≈ Ω1.5
k

∆θ
∆t

mk∑
j=1
−P̃Ωk(θ(k)

j , t
(k)
l)(x · θ(k)

j − t
(k)
l+1) + P̃Ωk(θ(k)

j , t
(k)
l+1)(x · θ(k)

j − t
(k)
l), l =

⌈
x·θ(k)

j +R
∆tk

⌉
.

These computations are now accelerated due to the angle downsampling. The backprojection func-
tion is still adequate for such computations.

To summarize, at a scale 1 6 k < p the reconstruction H↓k is considered on a grid Gk coarser
than Gp, with a frequency Ωk lower than Ωp; downsampling speeds up the computations, and reduces
the precision. At the finer scale k = p, there is no downsampling, the full precision is kept; the
reconstruction coincides with the reference reconstruction, up to the normalization factor:H↓p = Ω1.5

p H.

3.4. Multiresolution algorithm

The proposed multiresolution algorithm is the Algorithm 6 page 272. We now describe its steps.

3.4.1. Initialization

At the beginning we compute all the filtering: P̃Ωk(θ(k)
j , t

(k)
l), k0 6 k 6 p, 1 6 j 6 mk, 1 6 l 6 2k.

Then we compute the full reconstruction at scale k0: H↓k0
(i, j), for xk0

ij scanning the grid Gk0 ; the
(k0, i, j,H↓k0

(i, j)) are stored in cells:

268

Multiresolution greedy algorithm for reflective tomography

Definition 3.1. A cell (or a pixel) is a quadruplet (k, i, j,H), where H = H↓k(i, j) is the normalized
reconstruction, computed at scale k at xkij ∈ Gk. The intensity of the cell is |H|. The associated mesh
is a square with side of length ∆tk and with centre xkij . The area of the cell is the area of this mesh:
4p−k units area.

The computed cells are stored in a list L. Then we sort L by decreasing intensity |H|. We define a
list Lp, which contains the cells computed with scale p. At the moment Lp is void. To finish the task
we must insert A = αn2 cells in Lp; this defines an area A to be filled.

3.4.2. Iteration

Then we iterate the following process. At the beginning of the iteration, L contains cells with scale
< p, sorted by decreasing intensity, Lp contains cells with scale p. We would like Lp to contain αn2

cells. A > 0 cells are missing; they represent an area to be filled. Hence we refine the most intense
cells of L, such that their area fill (at least) the area A. We update L,Lp, A. The iteration decreases
the area A to be filled as much as it increases Lp.

We first define an intermediate function: refine. This function refines the most intense cell of L,
and returns its area. Since L is assumed to be sorted, the refined cell is the first cell of L. Writing
this cell as (k, i, j,H↓k(i, j)), the returned area is a = 4p−k. We divide this cell into four cells with scale
k + 1 6 p: (k + 1, I, J,H↓k+1(I, J)), I = 2i, 2i − 1, J = 2j, 2j − 1. If k + 1 = p, then the resolution
of the computed cells is maximal, and thus they are inserted into Lp; else, we insert these cells into
a temporary list L̃. The original cell (k, i, j,H↓k(i, j)) is obsolete after refinement; hence it is deleted
from L.

Using this intermediate function, an iteration is defined as follows. We refine several cells using an
inner loop. The accumulated area of the refined cells is stored in a counter a. The inner loop stops as
soon as the accumulated area a reaches the aimed area A. After this loop, the list L does not contain
anymore the refined cells, the list L̃ contains the new cells with scale < p, and the list Lp has been
completed with the new ones with scale p. To update the sorted list L of cells with scale < p, L̃ is
sorted by decreasing intensity |H|; then L̃ and L are merged into L. We want |Lp| > αn2; the area to
be filled for this purpose is now A = max(0, αn2 − |Lp|).

Notation. We will sometimes index objects, using the number of the current iteration. At the be-
ginning of the iteration I > 1, the thinnest cells (scale k = p) are stored in the list L(I)

p , the list of
cells with scale k < p is L(I), and the area to be filled is A(I) = αn2 − |L(I)

p | > 0; at the end, we get
respectively L(I+1)

p , L(I+1) and A(I+1).

3.4.3. Stopping criterion

The natural stopping criterion is: A = 0. The area A = max(0, αn2 − |Lp|) represents indeed the
number of missing thin cells; thus we iterate while A > 0.

Remark. We could add a maximum number of iterations Imax for safety purposes; we did not write
it in Algorithm 6 for simplicity.

We now justify that the algorithm stops, and we count the final number of cells with maximal
resolution.

Proposition 3.2. The Algorithm 6 stops after N iterations, where N is a finite integer.

Proof. At the beginning and at the end of every iteration, adding the area of the cells of Lp with
the area of the cells of L gives always the total area n2. Hence if we enter in the outer loop with a

269

J.-B. Bellet

missing area A = αn2 − |Lp| > 0, then the area n2 − |Lp| of L satisfies: n2 − |Lp| > A. Thus the inner
loop will stop: it is possible to find and refine a set of cells of L, whose area is at least A. By the way
the area of L, n2 − |Lp|, is filled by at most 1

4(n2 − |Lp|) cells with scale < p. Thus:

|L| 6 1
4(n2 − |Lp|). (3.1)

Concerning the outer loop, if the iterations do not stop, we consider the successive missing areas:
A = αn2 − |Lp| > 0. This sequence decreases and takes its values in a finite set. Thus it is constant
after a finite number of iterations; so is the number of thin cells |Lp|. But the number of cells of L∪Lp
is |L|+ |Lp| and strictly increases. As a result |L| indefinitely increases. This is in contradiction with
the bound (3.1). This proves that the algorithm stops.

Proposition 3.3. For the output of Algorithm 6, the number of cells with maximal resolution is:

|Lp| = 4
⌈
αn2

4

⌉
. (3.2)

Proof. The stopping criterion implies |Lp| > αn2. Since Lp is built by adding 4 cells by 4 cells, |Lp|
is a multiple of 4. It remains to prove that |Lp| < αn2 + 4.
Let us consider the last iteration, whose number is N :

A(N) = αn2 − |L(N)
p | > 0 = A(N+1) > αn2 − |L(N+1)

p |.
We first prove that the scale of the last four computed cells is p. If we enter only once inside the
inner loop, then the last four computed cells strictly increase |Lp| because A(N+1) < A(N). Else we
enter several times inside the inner loop. In that case, if the scale of the last four computed cells is
< p, we consider the penultimate iteration of the inner loop. At the end of this iteration, the final list
L

(N+1)
p has already been obtained; thus the accumulated area a satisfies: a > |L(N+1)

p | − |L(N)
p |. Then

a > A(N) − (αn2 − |L(N+1)
p |) > A(N), and thus the inner loop must stop. This is a contradiction: the

penultimate iteration is not the last one.
We now prove that |L(N+1)

p | − 4 < αn2. If the inner loop contains only one iteration, it is clear:
|L(N+1)
p | − 4 = |L(N)

p | < αn2. Else, at the end of the penultimate iteration of the inner loop, if
|L(N+1)
p | − 4 > αn2, then a > |L(N+1)

p | − 4− |L(N)
p | > A(N) − (αn2 − |L(N+1)

p |+ 4) > A(N), which is a
contradiction as before.

3.4.4. Solution to the main problem

The Algorithm 6 computes a set of cells: L∪Lp. Displaying these cells, using their meshes and values,
provides a multiresolution image. We can also display only the thinnest cells: Lp. The obtained image
is the new solution that we propose to solve the Problem 2.

270

Multiresolution greedy algorithm for reflective tomography

Algorithm 4 Function [P̃Ωk(θ(k)
j , t

(k)
l)]k,j,l=filteringMultiResol([P (θj , tl)], k0, R)

Inputs: P (θj , tl), 1 6 j 6 m, 1 6 l 6 n = 2p, 1 6 k0 < p, where θj = (j − 1)∆θ, tl =
−R+ (l − 1)∆t, ∆t = 2R

n .

ωh = (d−n2 e+ (h− 1)) πR , 1 6 h 6 n, ψ(σ) = |σ|.
For every 1 6 j 6 m, P̂ (θj , t.) = FFT[P (θj , tl)]16l6n.
For every k0 6 k 6 p,

mk = 1 +
⌊
m−1
2p−k

⌋
, Ωk = 2k−1 π

R , (t(k)
l = t1+(l−1)2p−k , 1 6 l 6 2k)

for every 1 6 j 6 mk, (θ(k)
j = θ1+(j−1)2p−k)

P̃Ωk(θ(k)
j , t

(k)
·) = 2k−pπ

Ωk
IFFT

[
cutsk P̂ (θ(k)

j , t.)?̂ cutk
[(
ψ11[−1,1)

)
(ωhΩk)

]
16h6n

]
.

Output: downsampled filtered data P̃Ωk(θ(k)
j , t

(k)
l), k0 6 k 6 p, 1 6 j 6 mk, 1 6 l 6 2k.

Algorithm 5 Function a =refine(Lp, L, L̃, [P̃Ωk(θ(k)
j , t

(k)
l)],∆θ,R,∆t)

Inputs: Lp, L, L̃: lists of cells with scale p, < p, < p; L is sorted. . .

From the first cell (k, i, j,H↓k(i, j)) of L to four cells with scale k + 1.
Delete the first cell of L.
The area of the refined cell is a = 4p−k.
K = k + 1, ΩK = 2K−1 π

R , ∆tK = 2p−K∆t, ∆θK = 2p−K∆θ.
For all (I, J) ∈ {2i, 2i− 1} × {2j, 2j − 1},

x = (−R− ∆t
2 ,−R−

∆t
2) + ∆tK(I − 1

2 , J −
1
2), (= xKIJ)

H = Ω1.5
K backprojection(x, [P̃ΩK (θ(K)

j , t
(K)
l)]j,l,∆θK , R,∆tK), (= H↓K(I, J))

insert the new cell (K, I, J,H) into Lp if K = p, into L̃ otherwise.

Output: area a of the refined cell (and updated lists).

271

J.-B. Bellet

Algorithm 6 Multiresolution greedy algorithm dedicated to reflective tomography.
Inputs: reflective projections P (θj , tl), 1 6 j 6 m, 1 6 l 6 n = 2p, θj = (j − 1)∆θ, tl =
−R+ (l − 1)∆t, ∆t = 2R

n ; rate α ∈ (0, 1] of wished cells; initial resolution 1 6 k0 < p.

Initialization
List of cells: the lists L and Lp are void.
Filtering: computation of the downsampled filtered data P̃Ωk(θ(k)

j , t
(k)
l).

[P̃Ωk(θ(k)
j , t

(k)
l)]k,j,l=filteringMultiResol([P (θj , tl)], k0, R)

Backprojection: computation of a coarse reconstruction at scale k0, H↓k0
.

k = k0, Ωk = 2k−1 π
R , ∆tk = 2p−k∆t, ∆θk = 2p−k∆θ.

For all 1 6 ı, 6 2k,
x = (−R− ∆t

2 ,−R−
∆t
2) + ∆tk(ı− 1

2 , −
1
2), (= xkı)

H = Ω1.5
k backprojection(x, [P̃Ωk(θ(k)

j , t
(k)
l)]j,l,∆θk, R,∆tk), (= H↓k(ı,))

insert the cell (k, ı, ,H) into L.
Sort: sort the list L by decreasing intensity |H|.
Area to be filled: A = αn2.

Iterations
While the number of thin cells is too small, i.e. A > 0.

a = 0, L̃ is void.
While the accumulated area of refined cells is too small, i.e. a < A,

refine the most intense cell of L:
a = a+ refine(Lp, L, L̃, [P̃Ωk(θ(k)

j , t
(k)
l)],∆θ,R,∆t).

EndWhile
Sorted list: sort L̃ by decreasing |H|, then merge L and L̃ into L.
Area to be filled: A = max(0, αn2 − |Lp|).

EndWhile

Output: multiresolution reconstruction L ∪ Lp; Lp contains 4dαn2

4 e cells at full resolution.

272

Multiresolution greedy algorithm for reflective tomography

3.5. Analysis of the algorithm

We study some properties of the multiresolution algorithm in order to establish guaranties and to
estimate its performance. See Table 3.1 page 277 for a synthetic view.

3.5.1. Evolution and conservation laws

Let 1 6 I 6 N + 1. For every k0 6 k 6 p− 1, let C(I)
k denote the number of cells with scale k in L(I),

and let C(I)
p the number of cells (with scale p) in L(I)

p . In particular, after the initialization:

C
(1)
k0

= n2

4p−k0
, C

(1)
k0+1 = · · · = C(1)

p = 0,

and the number of cells with scale < p is:

|L(I)| =
p−1∑
k=k0

C
(I)
k . (3.3)

For every k 6 p − 1, let S(I)
k denote the number of cells with scale k which are selected and refined.

The inner loop builds L̃(I), with L̃(I) = 4
∑p−2
k=k0

S
(I)
k cells, and builds L(I+1)

p by inserting 4S(I)
p−1 cells

into L(I)
p . After the iteration 1 6 I 6 N , the sizes of L(I+1)

p and L(I+1) are:

|L(I+1)
p | = |L(I)

p |+ 4S(I)
p−1, |L(I+1)| = |L(I)| − S(I)

p−1 + 3
p−2∑
k=k0

S
(I)
k . (3.4)

The following schemes describe the evolution of the number of cells of the different scales, during
the iterations: for every 1 6 I 6 N ,

C
(I+1)
k0

− C(I)
k0

= −S(I)
k0
,

(3.5)

C
(I+1)
k − C(I)

k = −S(I)
k + 4S(I)

k−1, k0 < k < p,

(3.6)

C(I+1)
p − C(I)

p = 4S(I)
p−1. (3.7)

Using (3.2), the final number of thin cells is:

|L(N+1)
p | = C(N+1)

p = 4
N∑
I=1

S
(I)
p−1 = 4

⌈
αn2

4

⌉
. (3.8)

Furthermore the area of the cells of L(I) ∪ L(I)
p is conserved during the iterations:

p∑
k=k0

4p−kC(I)
k = n2, 1 6 I 6 N + 1. (3.9)

The S(I)
k are constrained: 0 6 S

(I)
k 6 C

(I)
k . During the iteration I the refined cells reach the area

A(I), but if we delete the last refined cell, whose scale is some kI ∈ [k0, p− 1], the area does not reach
A(I):

A(I) 6
p−1∑
k=k0

4p−kS(I)
k < A(I) + 4p−kI , 1 6 I 6 N.

To finish with, the area to be filled satisfies: A(1) = αn2, A(N+1) = 0, and a recurrence relation:
A(I+1) = A(I) − 4S(I)

p−1, 1 6 I 6 N − 1.

273

J.-B. Bellet

3.5.2. Filtering

Proposition 3.4. The filtering of Algorithm 6 costs O
(

7
3mn logn

)
operations. The filtered data are

stored in an array of size O
(

4
3mn

)
.

Proof. The filtering starts by m FFT of vectors of size n: P̂ (θj , ·) = FFT[P (θj , ·)], 1 6 j 6 m. This
costs O (mn logn) operations. Then for each frequency Ωk, k0 6 k 6 p, the main cost comes from
mk = O

(
m

2p−k

)
IFFT of vectors of size 2k = n

2p−k : O
(

m
2p−k

n
2p−k log n

2p−k

)
. The total cost is:

O (mn logn) +O (mn logn) +O
(
m

2
n

2 log n2

)
+ · · ·+O

(
m

2p−k0

n

2p−k0
log n

2p−k0

)
= O

((
1 + 1 + 1

4 + · · ·+ 1
4p−k0

)
mn logn

)
= O

(7
3mn logn

)
;

the constants of the O are of the same order than the constant of the cost of FFT.
After the computations, we save: an array of size mk × 2k = O

(
m

2p−k
n

2p−k

)
, for each k0 6 k 6 p. The

storage cost is:

O (mn) +O
(
m

2
n

2

)
+ · · ·+O

(
m

2p−k0

n

2p−k0

)
= O

((
1 + 1

4 + · · ·+ 1
4p−k0

)
mn

)
= O

(4
3mn

)
.

3.5.3. Backprojection

The backprojection cost is not easy to evaluate because it depends on the data. We will derive bounds,
based on bounds for the number of computed cells:

Proposition 3.5. Let Ck be the number of computed cells at scale k during Algorithm 6.

(i) Cp = 4dαn2

4 e and the number of cells computed during the iterations satisfies:
4
3(1− 4k0−p)Cp 6 Cp + Cp−1 + · · ·+ Ck0+1 6 Cp + 1

3(1− 4k0+1−p)n2. (3.10)

(ii) The lower bound is reached if, and only if, each cell computed at a scale k0 < k < p was refined.

(iii) The upper bound is reached if, and only if, all the cells of all the intermediate scales k0 < k < p
were computed.

Proof. At the end of the algorithm, for the scale k = p: Cp = C
(N+1)
p = |L(N+1)

p |. But more generally,
for all k 6 p and I 6 N + 1, we have only Ck > C

(I)
k , due to deletions. The size of the full image at

scale k is
(

n
2p−k

)2
, thus Ck 6 n2

4p−k . Then, due to the refinement strategy, for every k0 < k 6 p, Ck is
a multiple of 4 and Ck−1 > 1

4Ck. So Ck > 1
4p−kCp, k0 < k 6 p. Hence the number of pixels computed

during the iterations satisfies:(
1 + 1

4 + · · ·+ 1
4p−k0−1

)
Cp 6 Cp + Cp−1 + · · ·+ Ck0+1 6 Cp +

(1
4 + · · ·+ 1

4p−k0−1

)
n2.

This gives (i). Then (ii) and (iii) are deduced by studying the conditions of equality.

The following proposition estimate the cost of backprojection; see its proof for estimations on the
number of computed backprojections.

274

Multiresolution greedy algorithm for reflective tomography

Proposition 3.6. The total cost of backprojection for the Algorithm 6 is

(i) at least O
(
π
4

m
2p−k0

n2

4p−k0

)
+O

(
8
7(1− 8k0−p)αmn2

)
;

(ii) at most O
((
α+ π

4
1
7(1− 8k0−p)

)
mn2

)
.

Proof. The initialization computes a reconstruction on the grid Gk0 of size n2

4p−k0 , from mk0 angles.
This costsO

(
π
4

n2

4p−k0

)
backprojections of costO

(
m

2p−k0

)
operations. Hence the cost isO

(
π
4

m
2p−k0

n2

4p−k0

)
operations for the initial reconstruction. We must now add the costs of the iterations.
We prove (i) by considering the case where the number of computed reconstructions would be minimal.
The number of cells that we compute during the iterations is at least the lower bound of Proposition 3.5.
Reaching this bound would mean that the algorithm would converge without useless computations:
every computed cell with scale k0 < k < p would be utilized (refined) to get the final result. In that
case, for every scale k0 < k 6 p, we would compute Ck = Cp

4p−k reconstructions of cost O
(

m
2p−k

)
operations, with Cp = O

(
αn2); the total cost of backprojection during the iterations would be:

O (mCp) +O
(
m

2
Cp
4

)
+ · · ·+O

(
m

2p−k0−1
Cp

4p−k0−1

)
= O

((
1 + 1

8 + · · ·+ 1
8p−k0−1

)
αmn2

)
.

We now show (ii) by maximizing the number of computed cells; this means reaching the upper bound
of Proposition 3.5. The algorithm would compute Cp cells at scale p, and the full reconstruction, at
every intermediate scale k0 < k < p. In that case, the number of backprojections would be:

O
((

α+ π

4
1
3(1− 4k0+1−p)

)
n2
)
.

The corresponding cost would be: O
(
αmn2 + m

2
π
4
n2

4 + · · ·+ m
2p−k0−1

π
4

n2

4p−k0−1

)
.

The following result establish guaranties concerning the use of memory.

Proposition 3.7. The total number of cells |L ∪ Lp| satisfies:

|L ∪ Lp| 6
1
4n

2 + 3
⌈
αn2

4

⌉
= O

(
(1 + 3α)n

2

4

)
.

Proof. By combining the inequality (3.1) and |Lp| 6 Cp = 4dαn2

4 e, the number of cells in memory
always satisfies: |L|+ |Lp| 6 1

4n
2 + 3

4Cp (also true during the iterations).

3.5.4. Number of iterations

The following Proposition gives bounds for the number of iterations; if we do not use the structure of
the data and of the solver, they are “optimal”:

Proposition 3.8.
(i) Algorithm 6 stops after N iterations, with

p− k0 6 N 6

⌈
αn2

4

⌉
+ n2

4 · 3(1− 4k0+1−p). (3.11)

(ii) If each iteration 1 6 I 6 p−k0 refines d αn2

4p−k0−I+1 e cells with scale k0 + I−1, then N = p−k0.

275

J.-B. Bellet

(iii) If each iteration refines a single cell, and if the number of computed cells is maximal (upper
bound of (3.10)), then N = dαn2

4 e+ n2

4·3(1− 4k0+1−p).

Proof. We easily see the cases of equality (ii) and (iii). We prove (i). For every iteration, the increment
of the largest scale of the cells of L is at most one. Starting with cells with scale k0, we need at least
p − k0 iterations to obtain cells with scale p: N > p − k0. By the way, we compute at least 4 cells
at every iteration; thus 4N is lesser or equal to the number of computed cells during the iterations,
which is itself dominated using (3.10).

3.5.5. Selection

We count the main costs related to the selection of intense values: merge sorts and (extra-)merges.

Proposition 3.9. The merge sorts of Algorithm 6 cost:

O
(

n2

4p−k0
log n2

4p−k0

)
+O

(
n2

3 (1− 4k0+1−p) log n
2

3 (1− 4k0+1−p)
)
.

Proof. The initialization sorts a list of size (n
2p−k0)2, with cost O

(
n2

4p−k0 log n2

4p−k0

)
. If k0 = p− 1, no

additional sort. Else, k0 < p−1, each iteration sorts the list L̃ of refined cells with scale < p, with cost
O
(
|L̃| log |L̃|

)
. Summing these costs over the iteration number 1 6 I 6 N , the cost to be estimated

is O
(∑N

I=1

(
4
∑p−2
k=k0

S
(I)
k

)
log

(
4
∑p−2
k=k0

S
(I)
k

))
. Summing (3.4) over I, with (3.7), we get:

3
N∑
I=1

p−2∑
k=k0

S
(I)
k = |L(N+1)| − |L(1)|+ 1

4(C(N+1)
p − C(1)

p).

After the initialization |L(1)| = n2

4p−k0 , and C
(1)
p = 0. And at the end, from (3.1), |L(N+1)| 6 n2−C(N+1)

p

4 ,
with C(N+1)

p = 4dαn2

4 e. Therefore:

3
N∑
I=1

p−2∑
k=k0

S
(I)
k 6

n2

4 (1− 4k0+1−p),

and we conclude:
N∑
I=1

4
p−2∑
k=k0

S
(I)
k

 log

4
p−2∑
k=k0

S
(I)
k

 6

4
N∑
I=1

p−2∑
k=k0

S
(I)
k

 log

4
N∑
J=1

p−2∑
k=k0

S
(J)
k

6
n2

3 (1− 4k0+1−p) log n
2

3 (1− 4k0+1−p).

Proposition 3.10. The merges of Algorithm 6 cost

O
(
Nn2

4 γ

)
,

with γ ∈ [0, 1], and the number of iterations N satisfies (3.11). (This cost is null if k0 = p− 1).

Proof. If k0 = p − 1, no additional merge to be considered. Else, k0 < p − 1, each iteration sorts
L̃, and merges L̃ with L. This additional merge costs O

(
|L̃|+ |L|

)
(the cost of the merges of the

276

Multiresolution greedy algorithm for reflective tomography

sort is counted in the sort cost). Summing over 1 6 I 6 N , the merge cost to be estimated is:
O
(∑N

I=1 |L(I+1)|
)
. Combining the area conservation (3.9), and a mean value formula:

p−1∑
k=k0

4p−kC(I+1)
k = n2 − C(I+1)

p = 1
γ

(I+1)
1

p−1∑
k=k0

C
(I+1)
k , with 1

γ
(I+1)
1

∈ [4, 4p−k0].

We deduce |L(I+1)| = γ
(I+1)
1 (n2 − C(I+1)

p) from the decomposition (3.3). Therefore:
N∑
I=1
|L(I+1)| =

N∑
I=1

γ
(I+1)
1 (n2 − C(I+1)

p) = γ2Nn
2 − γ3

N∑
I=1

C(I+1)
p , with γ2, γ3 ∈ [4k0−p, 4−1].

We apply
∑

16J6N
∑

16I6J on (3.7), with C(1)
p = 0. We get:∑

16J6N
C(J+1)
p = 4

∑
16I6N

(N − I + 1)S(I)
p−1 = (1 + (N − 1)γ4)4

∑
16I6N

S
(I)
p−1,

with γ4 ∈ [0, 1]. We now obtain from (3.8):
N∑
I=1
|L(I+1)| = γ2Nn

2 − γ3(1 + (N − 1)γ4)4dαn
2

4 e,

which proves the writing: O
(
Nn2

4 γ
)
, γ ∈ [0, 1].

3.6. Discussion

We discuss the interest of the new method, in comparison with the reference method, concerning the
computational effort. The discussion is based on Table 3.1.

Algorithm 3 Algorithm 6
Filtering
- operations O (2mn logn) O

(
7
3mn logn

)
- storage O (mn) O

(
4
3mn

)
Backprojection
- number O

(
π
4n

2) at least O
(
π
4

n2

4p−k0

)
+O

(
αn2 4

3(1− 1
4p−k0)

)
,

at most O
(
αn2 + π

4
n2

3 (1− 1
4p−k0)

)
- operations O

(
π
4mn

2) at least O
(
π
4
mn2

8p−k0

)
+O

(
αmn2 8

7(1− 1
8p−k0)

)
,

at most O
(
αmn2 + π

4
mn2

7 (1− 1
8p−k0)

)
- storage O

(
n2) O

(
n2

4 (1 + 3α)
)

Selection
- operations O

(
n2 logn2) O

(
n2

4p−k0 log n2

4p−k0

)
. . .

+11k0<p−1
[
O
(
n2

3 log n2

3

)
+O

(
Nn2

4

)]
,

with p− k0 6 N 6
⌈
αn2

4

⌉
+ n2

4·3(1− 1
4p−k0−1)

Table 3.1. Costs: reference method (Algorithm 3) versus multiresolution greedy
method (Algorithm 6).

277

J.-B. Bellet

3.6.1. Filtering

The additional cost due to downsampled filtering at several scales is at most 33%, for both computation
and storage. This step does not determine what method is the most efficient.

3.6.2. Backprojection

We need to compute at least αn2 backprojections, with cost O
(
αmn2), in order to solve Problem 2

using tomography. We compare the two methods with these lower bounds.
The reference method computes 100(π

4α − 1)% additional pixels; the corresponding extra cost is
100(π

4α − 1)%. Concerning the new method, for the most advantageous cases (lower bound reached),
with a small k0, the number of computed backprojections would be close to 4

3αn
2, i.e. 33% additional

backprojections; the extra cost would be close to 100
7 ≈ 14%. For the most disadvantageous cases

(upper bound reached) the extra cost would be close to 100 π
4·7α%.

Concerning the backprojection cost, if α is small then the new method is always better than the
reference one. But if α becomes larger than 6π

4·7 ≈ 0.67, then the new method becomes more expensive
for the most disadvantageous cases; if α becomes larger than 7π

32 ≈ 0.69, this stands true even for the
most favourable cases.

The multiresolution method is designed to diminish the backprojection cost when we want to com-
pute only a small portion of the full volume at full resolution. This analysis shows that the proposed
method achieves its goal. It also reveals that if we want to compute a large portion of the full volume
(let us say more than 67%), it is better to directly use the reference method.

3.6.3. Selection

For the main costs of selection (merges and sorts), let us first consider the case k0 = p− 1. The cost
is dominated by the cost of the sort of the coarse reconstruction: O

(
n2

2 log n
2

)
, which is at least four

times smaller than the selection cost for the reference. If α is small, then the new method should
reduce the total execution time.

It is not so obvious for k0 < p − 1. If the number of iterations is reasonable, i.e. N = O
(
logn2),

then the cost is reasonable; its order is roughly the order of the sort cost of the reference method.
But if N becomes large, in comparison with logn2, then the main cost comes from the merges, and
is O

(
Nn2

4

)
. In particular, if N is close to 4m, then the merge cost is close to the global cost mn2

of the reference method. In such a case the multiresolution algorithm would not really decrease the
execution time. Worse still, if N is close to its upper bound, then the merge cost may be close to a n4

term; this is prohibitive.
Unfortunately the number of iterations is not known in advance. From a pessimistic point of view, we

do not know in advance if the multiresolution process will outperform the reference one (for k0 < p−1).
From a more optimistic point of view, the proposed analysis does not take into account the structure
of the data set, nor the kind of solver. But in practice the algorithm is not used on arbitrary data, but
on reflectograms. And the solver (normalized filtered backprojection) has been adjusted for such data.
According to the expected behaviour of the refinement process, as discussed in the subsubsection 3.2.3,
we hope that the costs will be in practice close to the lower bounds (and not the upper bounds).

3.6.4. Performance indicators

The multiresolution algorithm is designed to focus iteratively on the surfaces of the scene, from a
coarse initial reconstruction, and to reach a set of thin pixels, whose number is set in advance. The
efficiency of the algorithm to achieve its goal appears under several forms in the complexity analysis.

278

Multiresolution greedy algorithm for reflective tomography

Firstly, by the number of computed intermediate cells; this is related with the backprojection cost.
For the most advantageous cases, the algorithm would focus on the parts to be extracted and would
compute only the necessary cells. For the most disadvantageous ones, the algorithm would spread out
the computations, by computing all the cells of all the intermediate scales. We define an indicator
which measures this phenomenon:

Definition 3.11. For the Algorithm 6, the number of intermediate cells S = Cp−1 + · · · + Ck0+1 is
between the lower bound S0 = 1

3(1 − 4k0+1−p)4
⌈
αn2

4

⌉
and the upper bound S1 = 1

3(1 − 4k0+1−p)n2.
The focus F is defined by:

F := S1 − S
S1 − S0

∈ [0, 1].

Thus: F close to 1 means that few useless cells were computed, and that the algorithm efficiently
focused on the parts to be extracted. On the contrary, F close to 0 means that many useless cells
were computed. In practice S is computed by incrementing a counter during the iterations, and F is
computed at the end of the execution. (Of course, F makes sense only if k0 < p− 1).

Secondly, by the number of iterations N ; this is related with the selection cost, which conditions
the interest of the multiresolution algorithm. For the optimal case, N = p−k0. If N is a few multiples
of 2p, the method is still relevant. But if N becomes very large, in comparison with p, then the new
method is not interesting concerning the execution time.

In the numerical tests, we will check the efficiency of the Algorithm 6 by checking a posteriori the
values of F and N .

3.6.5. Modified algorithm

We can define variations of the Algorithm 6, without changing the main principle: refining the most
intense pixels. For example, downsampling the angles is not mandatory. This would need more compu-
tational effort, but would increase the precision of the intermediate computations. This may improve
the coarse reconstruction, the selections, and the final result.

Other example, if we want to be sure that the selection cost is not O
(
n4), we can add a lower

threshold βn2 ∈ (0, αn2], set in advance, for the area of the refined zone. The condition of the inner
loop, a < A, is replaced by: a < A or a < βn2. After N iterations, the accumulation of the refined
areas is at least Nβn2. But this cannot exceed n2(p−k0 +1), and thus N 6 p−k0+1

β . The disadvantage
of this version: we refine more cells than the strict necessary when A < βn2; this may increase the
backprojection cost.

4. Numerical results

4.1. Implementation

The multiresolution algorithm was implemented in Fortran. The computations are performed using
double precision. The Fourier transforms are computed using the library fftw3. For the sorts, we
implemented a merge sort, by decreasing absolute value.

Concerning the data structures, we defined a type cell for the cells. The lists of cells are stored in
arrays which are dynamically allocated. Lp is an array of Cp cells. L and L̃ are stored respectively at
the beginning and at the end of a single array, whose size is large enough. To locate the beginning and
the end of Lp, L, L̃ in these large arrays, we define sentinels: the insertions or deletions, at the top or
at the queue of the lists, update the sentinels (increment or decrement).

279

J.-B. Bellet

The code is compiled with gfortran-4.6. The execution takes place on a workstation HP Z820,
processors Intel Xeon E5-2609, 2.40GHz. During the execution, we measure time dedicated to: initial
filtering, initial backprojection, initial sort, and iterations.

4.2. Full example

We consider the silhouettes of a scene containing two circles: in model (2.1), f = 1 on the circles, and
f = 0 on the wall: P (θ, s) = 1 if the ray x · θ = s intersects at least one of the circles, P (θ, s) = 0
otherwise. See Figure 4.1 for an image of the scene, and the associated reflectogram P of size m×n =
805× 256 (θ is the abscissa, and s is the ordinate).

Figure 4.1. Scene with white circle (left) and its reflectogram 805× 256 (right).

Figure 4.2. Reference for the reflectogram of Figure 4.1: full reconstruction of size
2562 (left), and after extraction of 5% of the pixels (right).

Figure 4.3. Multiresolution reconstruction for Figure 4.1: initialization of size 322

(left), multiresolution image (middle), and the 0.05× 2562 thinnest pixels (right).

On Figure 4.2, we represent the full reconstruction of size n2 = 2562, and the reconstruction after
extraction of the most intense pixels, α = 5%. Computing the reconstruction and the extraction took

280

Multiresolution greedy algorithm for reflective tomography

3.61 seconds. Qualitatively we find what was already known: the most intense pixels correspond to the
surfaces of the scene, up to artifacts (the artifacts being the lines that are tangent to both circles).

By the way we applied the multiresolution algorithm. On Figure 4.3, we represent the initial coarse
reconstruction of size 322 (k0 = 5). We represent the final multiresolution reconstruction, and the
0.05 × 2562 thinnest pixels. This multiresolution computation took 0.364 second. Qualitatively we
observe what was announced: the pixels are refined near the surfaces (and artifacts) and they stay
coarse elsewhere. The algorithm succeeds in focusing the computations near the relevant places. The
indicators show the efficiency: we got F = 0.951 for the focus, and N = 25 = 1.5 · 2p+ 1 iterations.

At the end, the extracted reconstruction is not as nice as the reference reconstruction, but it looks
similar, and the computation time was divided by 10.

4.3. Influence of the initial grid

We consider the scene and the reflectogram of size m× n = 1609× 512, of Figure 4.4. Here, f = 0.77
on the large circle, and f = 1 on the small circle. We set α = 0.01 and we look at the behaviour of the
method for several sizes (2k0)2 of the initial grid. The produced images are presented on Figure 4.5.
The last line is the reference, considered as an extreme multiresolution case, where k0 = p, N = 0,
and the pre-extraction reconstruction is the initial image.

We observe some convergence of the reconstructions to the reference reconstruction. We notice that
for k0 = p − 1, p − 2 (where p = log2 n = 9), the results after extraction are relatively close to the
reference. For the smallest values of k0, i.e. for the coarsest initial grids, the result contains relevant
information, but with a degradation (holes). We grant that k0 cannot become too small: the algorithm
is based on the high-resolution asymptotics of the reconstruction.

The performance indicators are in Table 4.1. The focus is always very high. The number of iterations
N is reasonable, in comparison with 2p = 18. The measured times are consistent with these indicators:
the multiresolution method is clearly faster than the reference. Of course, for k0 = p− 1, the method
converges after a single iteration.

Figure 4.4. Scene (left) and its reflectogram 1609× 512 (right).

size 2k0 focus F iterations N time (s)
16 0.984 45 0.728
32 0.981 43 0.752
64 0.984 24 0.784
128 0.988 13 1.12
256 × 1 4.14
512 × 0 31.8

Table 4.1. Performances as a function of the initial grid, for the reconstructions of Figure 4.5.

281

J.-B. Bellet

Figure 4.5. Reconstructions for the Figure 4.4: coarse initialization of size (2k0)2

(left), multiresolution reconstruction (middle), and the thinnest pixels (right). From
top to bottom: k0 = 4, 5, 6, 7, 8; on the last line: reference reconstruction.

282

Multiresolution greedy algorithm for reflective tomography

To conclude this example, the case k0 = 7 = p− 2 is a good compromise between computation time
and quality of the extracted reconstruction. We propose more generally to set k0 such that p − k0 is
a small integer.

4.4. Influence of the rate

We consider the scene and the reflectogram of sizem×n = 1609×512, of Figure 4.4. Let k0 = 7 = p−2;
we study the behaviour of the multiresolution method with respect to the rate α = 0.32·2β,−8 6 β 6 0.
The initial reconstruction has already been represented on Figure 4.5.

On Figure 4.6, we represent the extracted reconstructions. We observe that the algorithm recon-
structs in priority the circles, then the straight artifacts, then the noise. This is explained by the
asymptotics: Ω1.5R∗[P ? ψΩ](x) is O (1) on the circles, O

(
Ω−0.5 log Ω

)
on the lines, and O

(
Ω−0.5)

elsewhere. This sets the priority order when we select the most intense pixels. That was the idea
of the algorithm. We also observe that α must be appropriate: if α is too small, the reconstructed
part contains too few points; increasing α increases the number of reconstructed points, but it also
increases the artifacts and the noise. In practice we could imagine several steps: start with a small α,
then launch the iterations again to refine more cells, and so on.

In Table 4.2, we reported the performance indicators. The execution time increases lightly with
α when α is very small; then it increases sublinearly (from β = −4). In particular we cannot hope

Figure 4.6. Reconstructions of α5122 pixels for the scene of Figure 4.4, with initial-
ization of size 1282 and α = 0.32 · 2β ; −8 6 β 6 0 increases in the usual reading order
(left to right, top to bottom).

283

J.-B. Bellet

β = log α
0.32 focus F iterations N time (s)

-8 0.998 9 0.676
-7 0.997 11 0.736
-6 0.994 10 0.860
-5 0.988 13 1.12
-4 0.981 12 1.61
-3 0.973 13 2.57
-2 0.936 14 4.62
-1 0.907 7 8.41
0 0.770 15 16.2

Table 4.2. Performances as a function of the rate of pixels α, for the reconstructions of Figure 4.6.

vanishing this time, even if α is very small: the method contains incompressible costs (including the
initialization).

The other important conclusions of the table concern the focus. We observe that the focus F
decreases when α increases. The main decreases appear at the end of the table. We must link this
with the Figure 4.6. The algorithm focuses on some parts of the scene, by taking advantage of the
asymptotic behaviour when Ω increases. As soon as the parts corresponding to the right behaviour
are reconstructed at full resolution, the algorithm works on pixels which contains noise, and not on
signals containing the sought behaviour. Thus the algorithm cannot focus anymore on well targeted
regions, and so F decreases.

We have already mentioned that the focus F gives information on the efficiency of the algorithm.
We now see that it gives indications about the quantity of useful signal in the final image. If F is very
close to 1, increasing α (or relaunching iterations) may improve the quality of the reconstruction. On
the contrary, if F is small, the computed reconstruction may be already corrupted by noise, and it
may be preferable to keep only the most intense computed pixels; or we can alternately start again
with a smaller α. These comments also suggest another variation of the algorithm, taking into account
the focus in the stopping criterion: continue while the focus is above some fixed threshold.

4.5. Complex scene

We add an example which is more difficult: see Figure 4.7. The size of the reflectogram is m × n =
3217×1024. The scene contains: a small circle with f = 1, a large circle with f = 0.77, a polygon with
f = 0.63, a croissant with f = 85 on the convex portion, and two parts for the concavity, f = 0.63 and
f = 0.73. The reconstruction Ω1.5R∗[P ?ψΩ](x) is essentially expected to be O (1) on convex portions,
and O

(
Ω−0.5 log Ω

)
on lines and isolated points.

Figure 4.7. Scene (left) and its reflectogram 3217× 1024 (right).

284

Multiresolution greedy algorithm for reflective tomography

Figure 4.8. Reconstructions for the Figure 4.7. Top: reference before (left) and after
extraction (right). Bottom: initialization (left) and final reconstruction (right) by the
multiresolution method.

On Figure 4.8, we represent the full reference reconstruction, of size n2 = 10242, and the extraction
of the 0.05× 10242 most intense pixels. The reconstruction and the extraction took 286 seconds. On
the second line of Figure 4.8, we represent the reconstructions of the multiresolution method: for the
initial grid of size 1282 (k0 = 7), and the final 0.05 × 10242 thinnest pixels. For this test the focus is
F = 0.948, and the number of iterations is N = 33; the test took 25.9 seconds. By zooming we can
see that the reference is slightly better; but it took 11 times more time.

Remark. For clarity, the images of Figure 4.8 do not represent H, but
√
|H| sign(H).

5. Three-dimensional extension

We extend the multiresolution greedy algorithm to a problem in three dimensions, for an acquisition
by slice.

5.1. Reconstruction by slices

We measure a three-dimensional reflectogram, by slice: the collected reflective projections are the
P (θ, s, z), where for every altitude z, P (·, ·, z) is a reflectogram in the horizontal plane x3 = z. The full
reconstruction is obtained horizontal slice by horizontal slice: for every altitude z, the reconstruction,
restricted to the plane x3 = z, is (x1, x2) 7→ R∗[P (·, ·, z) ?ψΩ](x1, x2). We assume that the parameters
θ, s, x1, x2 are discretized as before. Concerning the altitude, we assume that z scans the values zl, 1 6
l 6 n, with constant step ∆z = zl+1 − zl.

Similarly as the two dimensional problem, the question is: represent the 3D scene using at least
αn3 thin voxels, where α ∈ (0, 1]. The reference method consists in computing a full reconstruction of

285

J.-B. Bellet

size n3, by computing the reconstruction slice by slice, i.e. for every zl, 1 6 l 6 n. Then the voxels are
sorted by decreasing intensity, and we select the first αn3 voxels.

We would like to take advantage of the principle of Algorithm 6 in order to outperform this 3D
process. The easiest way is the following: we directly apply Algorithm 6, for every slice of altitude
zl, 1 6 l 6 n. Once Algorithm 6 is implemented, this is easy: we have only to add a loop over l.
But this approach has a disadvantage: the 3D structure of the problem is not utilized. We will prefer
operating selection on the whole volume, and not slice by slice. This is what we are going to do.

5.2. Multiresolution computations

We assume: n = 2p with p > 1 an integer. Let 0 6 k 6 p. At scale k, we divide the volume
[−R − ∆t

2 , R −
∆t
2]2 × [z1 − ∆z

2 , zn + ∆z
2] into parallelepiped voxels of size ∆tk × ∆tk × ∆z, with

∆tk = 2−k2R, and whose center is a point of the grid:
Gk = {(xkij , z`) = (−R− ∆t

2 ,−R−
∆t
2 , z`) + ∆tk(i− 1

2 , j −
1
2 , 0), 1 6 i, j 6 2k, 1 6 ` 6 n}.

Thus a refinement (increment of scale) is operated in the two horizontal directions; vertically, the
discretization is always the thinnest possible. At the coarser scale, k = 0, the volume contains n slices
with width ∆z. At the thinner scale, k = p, the volume contains n3 thin voxels, with (xpij , z`) =
(ti, tj , z`). The volume unit is chosen such that the volume of a parallelepiped with scale k is ∆t2k∆z =
4p−k volume units.

The altitude z` of every point of Gk belongs to the altitudes where P is known. Thus, at scale k,
at x = (xkij , z`) ∈ Gk, we compute using the 2D formula, with Ωk = 2k−pbn2 c∆ω:

H↓k(i, j, `) := 11|xkij |6R−∆tkΩ1.5
k R∗[P (·, ·, z`) ? ψΩk](xkij);

each P (·, ·, z`) ? ψΩk , 1 6 ` 6 n, is downsampled, as in 2D.

5.3. Multiresolution greedy algorithm

5.3.1. Principle

We use the same principle as before: we start from a coarse reconstruction, and we iteratively refine
the most intense voxels. At each iteration, we refine a set of voxels whose volume fills the volume to
be filled. Essentially, in comparison with 2D, we must add an altitude coordinate to the objects.

5.3.2. Filtering

The filtering is operated angle by angle, scale by scale, altitude by altitude, and with a downsampling
in t and θ. Here we take care of memory usage, so we combine reading of the data and filtering. We
avoid the simultaneous storage of several full volumes: see the function filteringMultiResol3D. For
every angle θj , the image with angle θj is loaded and filtered in Fourier space; then, for every scale k
such that the angle θj is selected by the downsampling in θ, for every altitude z`, we invert the cut
Fourier data.

5.3.3. Iterative refining of cells

The cells that we now define contain also an altitude. And now, refining a voxel with scale k, whose
volume is 4p−k, produces 4 sub-voxels. We get at the end the Algorithm 9, using the function refine3D.

286

Multiresolution greedy algorithm for reflective tomography

Algorithm 7 Function (R,∆t,∆θ, [P̃Ωk(θ(k)
j , t

(k)
l , z`)]k,j,l,`=filteringMultiResol3D(k0, n,m)

Inputs: initial scale k0, sizes n = 2p and m.

Read ∆t, ∆θ.
For every angle θj , 1 6 j 6 m,

for every altitude z`, 1 6 ` 6 n,
read [P (θj , tl, z`)]16l6n,
compute P̂ψ(θj , t., z`) = FFT[P (θj , tl, z`)]16l6n?̂ πR [n2 , . . . , 1, 0, 1, . . . ,

n
2 − 1];

for every scale k0 6 k 6 p, Ωk = 2k−1 π
R ,

if j̄ = 1 + (j − 1)2k−p is integer, (θ(k)
j̄

= θj)
for every altitude z`, 1 6 ` 6 n,

invert the cut frequency data:

P̃Ωk(θ(k)
j̄
, t

(k)
· , z`) = ∆t

Ωk
IFFT cutsk P̂ψ(θ(k)

j̄
, t., z`).

Output: parameters R, ∆t, ∆θ and downsampled filtered data P̃Ωk(θ(k)
j , t

(k)
l , z`), k0 6 k 6 p,

1 6 j 6 mk, 1 6 l 6 2k, 1 6 ` 6 n.

Algorithm 8 Function v =refine3D(Lp, L, L̃, [P̃Ωk(θ(k)
j , t

(k)
l , z`)],∆θ,R,∆t)

Inputs: Lp, L, L̃: lists of cells with scale p, < p, < p; L is sorted;. . .

From the first cell (k, i, j, `,H↓k(i, j, `)) of L to four cells with scale k + 1.
Delete the first cell of L.
The volume of the refined cell is v = 4p−k.
K = k + 1, ΩK = 2K−1 π

R , ∆tK = 2p−K∆t, ∆θK = 2p−K∆θ.
For all (I, J) ∈ {2i, 2i− 1} × {2j, 2j − 1},

x = (−R− ∆t
2 ,−R−

∆t
2) + ∆tK(I − 1

2 , J −
1
2), (= xKIJ)

H = Ω1.5
K backprojection(x, [P̃ΩK (θ(K)

j , t
(K)
l , z`)]j,l,∆θK , R,∆tK), (= H↓K(I, J, `))

insert the new cell (K, I, J, `,H) into Lp if K = p, into L̃ otherwise.

Output: volume v of the refined voxel (and updated lists).

287

J.-B. Bellet

Algorithm 9 Multiresolution greedy algorithm for 3D reflective tomography.
Inputs: Sizes n = 2p,m; rate α ∈ (0, 1]; initial scale 1 6 k0 < p.

Initialization
Lists of cells: the lists L and Lp are void.
Reading and filtering: computation of the downsampled filtered data P̃Ωk(θ(k)

j , t
(k)
l , z`).

(R,∆t,∆θ, [P̃Ωk(θ(k)
j , t

(k)
l , z`)]k,j,l,`)=filteringMultiResol3D(k0, n,m)

Backprojection: computation of a coarse reconstruction at scale k0, H↓k0
.

k = k0, Ωk = 2k−1 π
R , ∆tk = 2p−k∆t, ∆θk = 2p−k∆θ.

For all 1 6 ı, 6 2k and 1 6 ` 6 n,
x = (−R− ∆t

2 ,−R−
∆t
2) + ∆tk(ı− 1

2 , −
1
2), (= xkı)

H = Ω1.5
k backprojection(x, [P̃Ωk(θ(k)

j , t
(k)
l , z`)]j,l,∆θk, R,∆tk), (= H↓k(ı, , `))

insert the cell (k, ı, , `,H) into L.
Sort: sort the list L by decreasing intensity |H|.
Volume to be filled: V = αn3.

Iterations
While the number of thin voxels is too small, i.e. V > 0.

v = 0, L̃ is void.
While the accumulated volume of the refined cells is too small, i.e. v < V ,

refine the most intense cell of L :
v = v + refine3D(Lp, L, L̃, [P̃Ωk(θ(k)

j , t
(k)
l , z`)],∆θ,R,∆t).

EndWhile
Sorted list: sort L̃ by decreasing |H|, then merge L and L̃ into L.
Volume to be filled: V = max(0, αn3 − |Lp|)

EndWhile

Output: multiresolution reconstruction L ∪ Lp; Lp contains 4dαn3

4 e voxels at full resolution.

288

Multiresolution greedy algorithm for reflective tomography

5.3.4. Costs

Similarly as the 2D analysis, we get Table 5.1 for the costs of Algorithm 9. Here again we will check a
posteriori the value of N and we will compute the focus F , based on the number S of voxels computed
at scales k0 < k < p:

F = S1 − S
S1 − S0

∈ [0, 1], 1
3(1− 4k0+1−p)4

⌈
αn3

4

⌉
=: S0 6 S 6 S1 := 1

3(1− 4k0+1−p)n3.

Reference Multiresolution greedy
Filtering
- storage O

(
mn2) O

(
4
3mn

2
)

- operations O
(
2mn2 logn

)
O
(

7
3mn

2 logn
)

Backprojection
- number O

(
π
4n

3) at least O
(
π
4

n3

4p−k0

)
+O

(
αn3 4

3(1− 1
4p−k0)

)
,

at most O
(
αn3 + π

4
n3

3 (1− 1
4p−k0)

)
- operations O

(
π
4mn

3) at least O
(
π
4
mn3

8p−k0

)
+O

(
αmn3 8

7(1− 1
8p−k0)

)
,

at most O
(
αmn3 + π

4
mn3

7 (1− 1
8p−k0)

)
- storage O

(
n3) O

(
n3

4 (1 + 3α)
)

Selection
- operations O

(
n3 logn3) O

(
n3

4p−k0 log n3

4p−k0

)
. . .

+11k0<p−1
[
O
(
n3

3 log n3

3

)
+O

(
Nn3

4

)]
,

p− k0 6 N 6
⌈
αn3

4

⌉
+ n3

4·3(1− 1
4p−k0−1)

Table 5.1. Costs for 3D reflective tomography: reference method versus multiresolu-
tion greedy algorithm (Algorithm 9).

289

J.-B. Bellet

Figure 5.1. Simulated images of the Stanford Bunny, using the Gouraud model.

5.4. Numerical tests

5.4.1. Simulation of optical images

Using the triangulation of the Stanford Bunny [16], we simulated a sequence of m = 805 images of size
n× n = 512× 512, by turning around the bunny; the angular step is 2π

m . These images are computed
using the Gouraud model of Matlab, for orthographic projections (parallel rays). These synthesis
images contain a component of scattering, and a component of specular reflection. See Figure 5.1 for
a few images of the sequence. The pixels values depend particularly on the light source position, the
pixel location and the normal to the surface at the visible point.

5.4.2. Computation of the reconstructed images

Concerning the reconstruction, we implemented the Algorithm 9 by adjusting the Fortran code of the
2D case. For the visualization, we project the thinnest voxels on three orthogonal planes, using the
Maximum Intensity Projection (MIP - see for example [17]): for each plane of projection, along every
line orthogonal to the plane, we project the intensity of the most intense positive voxel (or 0 if all the
voxels of the line are negative). For clarity we apply the square root at each image, before printing.

5.4.3. Reconstructions at 5%

On Figure 5.3, we represent the reference reconstruction, before extraction, and after extraction of
α = 5% of the voxels. The computation took 8680 seconds. On Figure 5.4, we represent the greedy
reconstruction, with initialization of size 1282 ·512, and α = 5%. The computation needed 24 iterations,
for a total time of 1060 seconds; this is 8 times smaller than the reference time. The focus is 0.962. To
observe the differences between the extracted reconstructions, we subtracted the MIPs of the greedy
reconstruction from the MIPs of the reference: see Figure 5.2. The renderings of the two methods are
finally similar.

5.4.4. Reconstructions at 1%

We now compare the reference with the greedy method for α = 1% (and initial size 1282 · 512): see
Figure 5.5. The computation took 8730 seconds for the reference, while it took 416 seconds for the
greedy method; the ratio of computation times is 21. The greedy method converges in 27 iterations,
with a focus 0.986.

5.4.5. Speckle noise

We would like to test the algorithm on a more challenging case with speckle noise. We simulate Gouraud
images of the Stanford Bunny as before, but with a striped pattern on the surface: see Figure 5.6.

290

Multiresolution greedy algorithm for reflective tomography

Figure 5.2. Greedy MIP subtracted from the reference MIP, for α = 5%.

Figure 5.3. Reference reconstruction: full volume of size 5123 (top), and extraction
of 0.05 · 5123 voxels (bottom).

After the rescaling P := 1 + P
max(P) , the range of the values of P is [1, 2]. Then we add a speckle noise:

each value P (θ, s, z) is replaced by P (θ, s, z) := P (θ, s, z)(1 + ε(θ, s, z)), where ε contains independent
realizations of the gaussian N (0, 1). After these changes, the first line of Figure 5.6 becomes the second
one. Reconstructing the surface with such a level of noise is quite challenging.

We compare the reference with the greedy method for α = 0.001, and initial size 642 · 512: see
Figure 5.7. The computation took 8760 seconds for the reference, while it took 237 seconds for the
greedy method (the ratio of time is 37). The greedy method converges in 96 iterations, with focus
0.996. The initial reconstruction of the greedy method is regularized thanks to the frequency cut; this
helps the method to concentrate the computations on the surfaces. At the end, the cloud of the greedy
reconstruction looks less diffuse than the reference one.

291

J.-B. Bellet

Figure 5.4. Greedy reconstruction: initialization of size 1282 · 512 (top), and recon-
struction at 5% (bottom).

6. Conclusion

6.1. Synthesis

These works provide an original solution to the following problem: extract the surfaces of a scene by
reflective tomography.

6.1.1. Multiresolution greedy algorithm

This solution is a multiresolution greedy algorithm, derived from the high-frequency asymptotics of
the reflective filtered backprojection. The idea: start from a coarse reconstruction on a coarse grid,
then refine iteratively sets of voxels. Each iteration selects and refines a set of voxels maximizing the
accumulated normalized filtered backprojection, with a volume constraint. In comparison with the
reference, this approach does not compute the full volume at full resolution; the computations focus
themselves on the regions of interest. The principles of the algorithm can be extended for a general
class of problems, concerning the efficient determination of a set fixed by asymptotics.

6.1.2. Performances

The expected consequence is a reduction of the computation time. Concerning the complexity, we
derived bounds for the costs. The lower bounds show that the method can be competitive for the most
advantageous occurrences. The upper bounds are prohibitive, but they do not take into account the
special structures of the data and of the solver. We measure a posteriori the efficiency of the algorithm,
by looking at the number of iterations and a focus indicator. The observed values in the numerical
tests reveal that the algorithm quickly converges and efficiently focuses.

292

Multiresolution greedy algorithm for reflective tomography

Figure 5.5. Reference reconstruction (top), greedy reconstruction with initialization
1282 · 512 (middle), and difference between the two (bottom); α = 1%.

6.1.3. Settings

There is a price to be paid; two parameters must chosen in advance: initial resolution and rate of
wished voxels. If they are too small, the reconstruction might be too sparse: pieces of surfaces not
reconstructed. Based on empirical observations, a good compromise between computational effort and
quality of the result: reconstruct a few percents of the full volume, from an initial resolution that is
near the full resolution. In such a case, the reconstruction is expected to be close to the reference, but
with a significant reduction of computation time.

6.1.4. Accelerated solver

At the end, the proposed method is an alternative to the reference method, and especially for large
volumes of data. It accelerates the reference solver and it offers new opportunities to develop an
algorithm which is as fast as possible.

293

J.-B. Bellet

Figure 5.6. Gouraud images of a striped bunny: without noise (top) and with speckle
noise (bottom).

Figure 5.7. Reconstructions for the noisy striped bunny. Reference reconstruction
(top), greedy reconstruction with initialization 642 · 512 (bottom); α = 0.001.

6.2. Perspectives

We suggest several options to be explored.

6.2.1. Complexity

The theoretical analysis of complexity must be deepen. The bounds that we derived do not explore
the special structure of the data, nor the form of the solver. It would be interesting to refine the
bounds, in a framework to be determined. This question is difficult. Another point to be studied is
the average-case complexity.

294

Multiresolution greedy algorithm for reflective tomography

6.2.2. Filtering

We used the Ram-Lak filter: the method stands on the asymptotics of the corresponding reflective
filtered backprojection. We can tune the process for other filters. If we want another filter, we must
first study the associated asymptotics to find the right normalization, and to check that the algorithm
will have the expected behaviour.

6.2.3. Parallel computing

By the way, in tomography, a standard way of gaining in performance is parallel computing. Here
we introduced an acceleration principle in a sequential algorithm. It could be interesting to derive an
algorithm which combines such a principle with parallel computing.

6.2.4. Extension

To finish with, the extended problem about the determination of an asymptotically discriminated set
is relatively general, and thus it should be possible to apply the multiresolution greedy principles to
other fields. It would be worth checking the relevancy of the concept on other problems that involve
asymptotic methods such as stationary phase analysis.

References

[1] Jean-Baptiste Bellet. Analyse asymptotique et géométrique de la tomographie réflective. <hal-01571707>,
2017.

[2] Jean-Baptiste Bellet and Gérard Berginc. Reflective filtered backprojection. Comptes rendus - Mathéma-
tique, 354:960–964, 2016.

[3] I. Berechet and G. Berginc. Advanced algorithms for identifying targets from a three-dimensional recon-
struction of sparse 3D Ladar data. In G. Berginc, editor, Optical Complex Systems: OCS11, 81720Z, volume
8172 of Proc. of SPIE, 2011.

[4] Stefan Berechet, Ion Berechet, Jean-Baptiste Bellet, and Gérard Berginc. Procédé de discrimination et
d’identification par imagerie 3D d’objets d’une scène. Patent WO2016097168 A1, 2015.

[5] G. Berginc, J.-B. Bellet, I. Berechet, and S. Berechet. Optical 3D imaging and visualization of concealed
objects. In Proc. SPIE, volume 9961, page 99610Q, 2016.

[6] G. Berginc and M. Jouffroy. Simulation of 3D laser systems. In Geoscience and Remote Sensing Symposium,
2009 IEEE International, IGARSS 2009, volume 2, pages 440–444. IEEE, 2009.

[7] G. Berginc and M. Jouffroy. Simulation of 3D laser imaging. PIERS Online, 6(5):415–419, 2010.
[8] Gérard Berginc. Scattering models for 1-D–2-D–3-D laser imagery. Optical Engineering, 56(3):031207, 2016.
[9] David T. Gering and W.M. Wells. Object modeling using tomography and photography. In Multi-View

Modeling and Analysis of Visual Scenes, 1999.(MVIEW’99) Proceedings. IEEE Workshop on, pages 11–18.
IEEE, 1999.

[10] Henri Gouraud. Continuous shading of curved surfaces. IEEE transactions on computers, 100(6):623–629,
1971.

[11] Markus Henriksson, Tomas Olofsson, Christina Grönwall, Carl Brännlund, and Lars Sjöqvist. Optical
reflectance tomography using TCSPC laser radar. In Proc. SPIE, volume 8542, page 85420E, 2012.

[12] Berthold Horn. Robot vision. MIT press, 1986.
[13] F.K. Knight, S.R. Kulkarni, R.M. Marino, and J.K. Parker. Tomographic Techniques Applied to Laser

Radar Reflective Measurements. Lincoln Laboratory Journal, 2(2):143–160, 1989.

295

J.-B. Bellet

[14] Aldo Laurentini. The visual hull concept for silhouette-based image understanding. IEEE Transactions on
pattern analysis and machine intelligence, 16(2):150–162, 1994.

[15] Charles Soussen and Jérôme Idier. 3D reconstruction of localized objects from radiographs and based
on multiresolution and sparsity. In IEEE International Conference on Image Processing, volume 3, pages
744–747. IEEE, 2005.

[16] Greg Turk and Marc Levoy. Zippered polygon meshes from range images. In Proceedings of the 21st annual
conference on Computer graphics and interactive techniques, pages 311–318. ACM, 1994.

[17] J.W. Wallis and T.R. Miller. Three-Dimensional Display in Nuclear Medicine and Radiology. The Journal
of Nuclear Medicine, pages 534–546, 1991.

296

	1. Introduction
	1.1. Reflective Tomography
	1.2. Goal
	1.3. Proposed strategy
	1.4. Main results
	1.5. Organization

	2. Surface extraction in reflective tomography
	2.1. Reflective tomography
	2.1.1. Record: reflectogram
	2.1.2. Imaging by tomography

	2.2. Discretization
	2.2.1. Records
	2.2.2. Discretization of the filtering
	2.2.3. Discretization of the backprojection
	2.2.4. Reconstruction

	2.3. Surface extraction
	2.4. Costs
	2.4.1. Filtering
	2.4.2. Backprojection
	2.4.3. Selection
	2.4.4. Synthesis

	3. Multiresolution reflective tomography
	3.1. Asymptotic result
	3.2. Principle
	3.2.1. Iterative refining
	3.2.2. Greedy algorithm
	3.2.3. Comments
	3.2.4. Extension

	3.3. Computations at several resolutions
	3.3.1. Normalized reconstructions
	3.3.2. Multiresolution filtering
	3.3.3. Efficient normalized reconstructions

	3.4. Multiresolution algorithm
	3.4.1. Initialization
	3.4.2. Iteration
	3.4.3. Stopping criterion
	3.4.4. Solution to the main problem

	3.5. Analysis of the algorithm
	3.5.1. Evolution and conservation laws
	3.5.2. Filtering
	3.5.3. Backprojection
	3.5.4. Number of iterations
	3.5.5. Selection

	3.6. Discussion
	3.6.1. Filtering
	3.6.2. Backprojection
	3.6.3. Selection
	3.6.4. Performance indicators
	3.6.5. Modified algorithm

	4. Numerical results
	4.1. Implementation
	4.2. Full example
	4.3. Influence of the initial grid
	4.4. Influence of the rate
	4.5. Complex scene

	5. Three-dimensional extension
	5.1. Reconstruction by slices
	5.2. Multiresolution computations
	5.3. Multiresolution greedy algorithm
	5.3.1. Principle
	5.3.2. Filtering
	5.3.3. Iterative refining of cells
	5.3.4. Costs

	5.4. Numerical tests
	5.4.1. Simulation of optical images
	5.4.2. Computation of the reconstructed images
	5.4.3. Reconstructions at 5%
	5.4.4. Reconstructions at 1%
	5.4.5. Speckle noise

	6. Conclusion
	6.1. Synthesis
	6.1.1. Multiresolution greedy algorithm
	6.1.2. Performances
	6.1.3. Settings
	6.1.4. Accelerated solver

	6.2. Perspectives
	6.2.1. Complexity
	6.2.2. Filtering
	6.2.3. Parallel computing
	6.2.4. Extension

	References

