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Abstract. We prove that an analog of the Scott-Vogelius finite elements are inf-sup stable on certain nondegenerate
meshes for piecewise cubic velocity fields. We also characterize the divergence of the velocity space on such meshes.
In addition, we show how such a characterization relates to the dimension of C1 piecewise quartics on the same
mesh.

2010 Mathematics Subject Classification. 65N30, 65N12, 76D07, 65N85.

1. Introduction

In 1985 Scott and Vogelius [22] (see also [24]) presented a family of piecewise polynomial spaces in two
dimensions that yield solutions to the Stokes equations with velocity approximations that are exactly
divergence free. The velocity space consists of continuous piecewise polynomials of degree k ≥ 4, and
the pressure space is taken to be the divergence of the velocity space. Moreover, they proved stability
of the method by establishing that the pair of spaces satisfy the so-called inf-sup condition assuming
that the meshes are quasi-uniform and that the maximum mesh size is sufficiently small. In a recent
paper [12] we gave an alternative proof of the inf-sup stability for k ≥ 4 on more general meshes,
assuming only that they are non-degenerate (shape regular). One key aspect in the proof is to use
the stability of the P 2 − P 0 (or the Bernardi-Raugel [5]) finite element spaces. As a result the proof
becomes significantly shorter. Here we utilize and extend the techniques to the case k = 3. The case
k = 3 has been considered earlier [19].

One key concept in this paper is the notion of a local interpolating vertex. Roughly speaking, this
is an interior vertex z such that for every finite element pressure p we can find a discrete velocity v in
the finite element velocity space such that div v(z) = p(z) with support in the star of z and such that
div v(σ) = 0 for all other vertices. Moreover, we require that div v has zero mean on each triangle. We
then show that if all interior vertices are local interpolating vertices then the inf-sup stability holds;
see Theorem 6.3. We generalize this result to show that if some interior vertices are local interpolating
and that there are acceptable paths from any other vertex to one of the local interpolating vertices
then the inf-sup condition holds; see Theorem 7.6. In [12] we showed that all interior vertices are
local interpolating vertices if piecewise quartic velocities or higher are used. In this article, we show
that a generic interior vertex is local interpolating if piecewise cubics are used for the velocity space.
In particular, we show that singular vertices and vertices with odd number of triangles touching it
are local interpolating vertices. In the case that a non-singular interior vertex has an even number
of triangles touching it then we give sufficient conditions for it to be a local interpolating vertex.
Although a generic interior vertex is a local interpolating vertex, there are important meshes where
no interior vertex is locally interpolating (e.g. three lines mesh).
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Since the work of Scott and Vogelius [24, 22], there have been significant efforts to construct con-
forming finite elements that produce divergence fee approximations; [26, 8, 18, 10, 9, 19, 4, 11]. The
thesis of Qin [19] has many intersting ideas including low-order elements. In particular, Qin [19] showed
that low order elements can be stable on barycentric refinement in two dimensions; see also [4]. This
was generalized by Zhang in three dimensions [25] and recently to arbitrary dimensions in [11]. Further
mesh refinements were used by Christiansen and Hu [13]. Guzmán and Neilan use rational functions
for the velocity basis functions [10, 9]. The importance of producing divergence free approximations
is explained carefully in the review paper [14]; see also the recent paper [1].

It is known that the C1 piecewise quartic space, which we denote by Ŝ4
h, is related to the piecewise

cubic, divergence free, Lagrange space. The dimension of Ŝ4
h has been computed [2]. In the last sections

of this paper we use the onto-ness of the divergence operator on piecewise cubics to provide an alternate
way to compute the dimension of Ŝ4

h, on certain meshes. We also are able to compute the dimension of
S4
h, which are those functions in Ŝ4

h that vanish to second-order on the boundary, for certain meshes.
The paper is organized as follows. In the following section we begin with Preliminaries. In Section 3

we identify vertices at which we can interpolate pressure vertex values with the divergence of localized
velocity fields. In Section 6 we prove the inf-sup stability for k = 3 under some restrictive assumptions
on the mesh. In Section 7 we characterize the divergence of piecewise cubics on a broader class of
meshes than considered in Section 6. In Section 8 we compare our the results with those of [19]. In
Section 9 we relate our results to the dimension of C1 piecewise quartics.

2. Preliminaries

We assume Ω is a polygonal domain in two dimensions. We let {Th}h be a non-degenerate (shape
regular) family triangulation of Ω; see [6]. The set of vertices and the set of internal edges are denoted
by

Sh = {x : x is a vertex of Th},
Eh = {e : e is an edge of Th and e 6⊂ ∂Ω}.

We also let S int
h and S∂h denote all the interior vertices and boundary vertices, respectively.

Define the internal edges Eh(z) and triangles Th(z) that have z ∈ Sh as a vertex via
Eh(z) = {e ∈ Eh : z is a vertex of e}, Th(z) = {T ∈ Th : z is a vertex of T}.

Finally, we define the star
Ωh(z) =

⋃
T∈Th(z)

T.

The diameter of this star is denoted by
hz = diam (Ωh(z)). (2.1)

To define the pressure space we must define singular and non-singular vertices. Let z ∈ Sh and
suppose that Th(z) = {T1, T2, . . . TN}, enumerated so that Tj , Tj+1 share an edge for j = 1, . . . N − 1
and TN and T1 share an edge in the case z is an interior vertex. If z is a boundary vertex then we
enumerate the triangles such that T1 and TN have a boundary edge. Let θj denote the angle between
the edges of Tj originating from z. Define

Θ(z) =
{

max{| sin(θ1 + θ2)|, . . . , | sin(θN−1 + θN )|, | sin(θN + θ1)|} if z is an interior vertex
max{| sin(θ1 + θ2)|, . . . , | sin(θN−1 + θN )|} if z is a boundary vertex .

Definition 2.1. A vertex z ∈ Sh is a singular vertex if Θ(z) = 0. It is non-singular if Θ(z) > 0.
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Figure 2.1. Example of singular vertices z. Dashed edges denote boundary edges.

This is equivalent to the original definition given in [16, 24].
We denote all the non-singular vertices by

S1
h = {x ∈ Sh : x is non-singular, that is, Θ(x) > 0},

and all singular vertices by S2
h = Sh\S1

h. We also define, for i = 1, 2, Si,int
h = Sih ∩ S int

h , and Si,∂h =
Sih ∩ S∂h .

Let q be a function such that q|T ∈ C(T ) for all T ∈ Th. For each vertex z ∈ S2
h define

Azh(q) =
N∑
j=1

(−1)j−1q|Tj (z). (2.2)

The Scott-Vogelius finite element spaces for k ≥ 1 are defined by

Vk
h = {v ∈ [C0(Ω)]2 : v|T ∈ [P k(T )]2,∀T ∈ Th},

Qk−1
h = {q ∈ L2

0(Ω) : q|T ∈ P k−1(T ), ∀T ∈ Th, Azh(q) = 0 for all z ∈ S2
h}.

Here P k(T ) is the space of polynomials of degree less than or equal to k defined on T . Also, L2
0(Ω)

denotes the subspace of L2 of functions that have average zero on Ω.
We also make the following definition

Vk
h,0 = {v ∈ Vk

h :
∫
T

div v dx = 0, for all T ∈ Th}.

The definition of Qk−1
h is based on the following result [21].

Lemma 2.2. For k ≥ 1, div Vk
h ⊂ Q

k−1
h .

The goal of this article is to prove the inf-sup stability of the pair Vk
h, Q

k−1
h for k = 3, for certain

meshes.

Definition 2.3. The pair of spaces Vk
h, Q

k−1
h is inf-sup stable on a family of triangulations {Th}h if

there exists β > 0 such that for all h

β ‖q‖L2(Ω) ≤ sup
v∈Vk

h
,v 6≡0

∫
Ω q div v dx
‖v‖H1(Ω)

∀q ∈ Qk−1
h . (2.3)

2.1. Notation for piecewise linears

For every z ∈ Sh the function ψz is the continuous, piecewise linear function corresponding to the
vertex z. That is, for every y ∈ Sh

ψz(y) =
{

1 if y = z,

0 if y 6= z.
(2.4)
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Figure 2.2. Notation for single triangle

For z ∈ Sh and e ∈ Eh(z), where e = {z, y}, let tze = |e|−1(y − z) be a unit vector tangent to e,
where |e| denotes the length of the edge e. Then

tze · ∇ψy = 1
|e|

on e. (2.5)

More generally, suppose that T ∈ Th(y) and let g be the edge of T that is opposite to y; see Figure 2.2.
Let nyT be the unit normal vector to g that points out of T . Then

∇ψy|T = − 1
hyT

nyT , (2.6)

where hyT is the distance of y to the line defined by the edge g. If z is another vertex of T and e = {z, y}
then

hyT = |e| sin θ , (2.7)
where θ is the angle between the edges of T emanating from z.

2.2. Preliminary stability results

The following is a consequence of the stability of the Bernardi-Raugel [5] finite element spaces.

Proposition 2.4. Let k ≥ 1. There exists a constant α1 such that for every p ∈ Qk−1
h there exists a

v ∈ V2
h such that ∫

T
div v dx =

∫
T
p dx for all T ∈ Th,

and
‖v‖H1(Ω) ≤ α1‖p‖L2(Ω).

The constant α1 is independent of p and only depends on the shape regularity of the mesh and Ω.

348



Inf-Sup stability of cubic Lagrange Stokes elements

The next result is a simple consequence of Lemma 2.5 of [24] and is based on a simple counting
argument; also see [12] for a detailed proof.

Proposition 2.5. Let k ≥ 1. There exists a constant α2 > 0 such that for every p ∈ Qk−1
h with

p(z) = 0 for all z ∈ Sh and
∫
T p dx = 0 for all T ∈ Th there exists v ∈ Vk

h such that

div v = p on Ω,

and
‖v‖H1(Ω) ≤ α2‖p‖L2(Ω).

Using the above results we can prove inf-sup stability as long as we can interpolate pressure vertex
values with the divergence of velocity fields. This is the subject of the next result.

Lemma 2.6. Suppose there exists a constant α3 > 0 such that for every p ∈ Q2
h there exists a v ∈ V3

h,0
satisfying

(div v− p)(σ) = 0 for all σ ∈ Sh, (2.8)

with the bound
‖v‖H1(Ω) ≤ α3‖p‖L2(Ω).

Then, (2.3) holds for k = 3 with β = 1
α1+α3(1+α1)+α2(1+α3(1+α1)) .

Proof. Let p be an arbitrary function in Q2
h. First, we let v1 be from Proposition 2.4. We define

p1 = p − div v1. Then, from our hypothesis let v2 ∈ V 3
h,0 be such that (div(v2) − p1)(σ) = 0 for all

σ ∈ Sh. Letting p2 = p1 − div v2 we see that p2 satisfies the hypotheses of Proposition 2.5 and we let
v3 be the resulting vector field. Then, we set w = v1 + v2 + v3. Then we see that

div w = p on Ω,
and

‖w‖H1(Ω) ≤ (α1 + α3(1 + α1) + α2(1 + α3(1 + α1)))‖p‖L2(Ω). (2.9)
Hence,

‖p‖2L2(Ω) =
∫

Ω
p div wdx ≤ ‖w‖H1(Ω) sup

v∈V3
h
,v 6≡0

∫
Ω p div v dx
‖v‖H1(Ω)

.

The result now follows after applying (2.9).

Hence, one way of proving inf-sup stability is two establish the hypothesis of Lemma 2.6. This is
going to be the task of the next sections.

3. Locally interpolating vertex values

In this section we will identify vertices at which we can interpolate pressure vertex values with the
divergence of velocity fields. We first define the local spaces

Vk
h(z) = {v ∈ Vk

h : supp v ⊂ Ωh(z)},

Vk
h,0(z) = {v ∈ Vk

h(z) :
∫
T

div v dx = 0, for all T ∈ Th(z)},

Vk
h,00(z) = {v ∈ Vk

h,0(z) : div v(σ) = 0, for all σ ∈ Sh, σ 6= z}.

349



J. Guzmán & R. Scott

Suppose that z ∈ Sh and that Th(z) = {T1, T2, . . . , TN}, ordered as described following (2.1). Then in
view of (2.2) we define

W (z) = {(a1, . . . , aN ) ∈ RN : if z ∈ S2
h, then

N∑
j=1

(−1)j−1aj = 0}.

Note that if z ∈ S1
h is non-singular then W (z) = RN and there is a constraint if z is singular.

Definition 3.1. Let z ∈ Sh and suppose that Th(z) = {T1, T2, . . . , TN}. We say that z is a local
interpolating vertex if for every (a1, . . . , aN ) ∈W (z) there exists a v ∈ V 3

h,00(z) such that

div v|Tj (z) = aj for all 1 ≤ j ≤ N. (3.1)

If z ∈ Sh is a local interpolating vertex then, given a = (a1, . . . , aN ) ∈ W (z) we define Ma = {v ∈
V 3
h,00(z) : v satisfying (3.1)}. Also, we set

Dz = max
(a1,...,aN )∈W (z)

min
v∈Ma

‖∇v‖L∞(Ωh(z))
max1≤j≤N |aj |

. (3.2)

We let Lh be the collection of all local interpolating vertices. Then Definition 3.2 says that if z ∈ Lh
then given a ∈W (z) there exists v ∈ V 3

h,00(z) satisfying (3.1) and

‖∇v‖L∞(Ωh(z)) ≤ Dz max
1≤j≤N

|aj |.

In the next section we identify local interpolating vertices. It will be useful to define fundamental
vector fields used in [12]. For every z ∈ Sh and e ∈ Eh(z) with e = {z, y} define

ηze = ψ2
zψy. (3.3)

Let T1 and T2 be the two triangles that have e as an edge. Then we can easily verify the following (see
also [12]):

supp ηze ⊂ T1 ∪ T2, (3.4a)
∇ηze(σ) = 0 for σ ∈ Sh and σ 6= z. (3.4b)

‖∇ηze‖L∞(T1∪T2) ≤
C

|e|
. (3.4c)

We then define the vector fields
wz
e = |e|tzeηze . (3.5)

The following lemma is proved in [12].

Lemma 3.2. Let z ∈ Sh and e ∈ Eh(z) with e = {z, y} and denote the two triangles that have e as
an edge as T1 and T2. Let wz

e be given by (3.5). Then

wz
e ∈ V3

h,00(z), (3.6a)
supp wz

e ⊂ T1 ∪ T2, and div wz
e|Ts(z) = 1 for s = 1, 2 (3.6b)

‖∇wz
e‖L∞(T1∪T2) ≤ C. (3.6c)

The constant C only depends on the shape regularity of T1 and T2.
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Figure 3.1. Example of Th(z) with N = 4.

3.1. Schematic for interior vertex

It will be useful to use the following notation for an interior vertex z ∈ S int
h . We assume that Th(z) =

{T1, T2, . . . , TN}, enumerated as before so that Tj , Tj+1 share an edge for j = 0, . . . N − 1 and we
identify T0 as TN (indices modulo N). For 1 ≤ i ≤ N we let ei be the edge shared by Ti and Ti+1
and eN is the edge shared by TN and T1. We let y1, y2, . . . , yN be the vertices such that ei = {z, yi}.
We set y0 = z. Also, ni is unit-normal to ei pointing out of Ti and θi is the angle formed by the two
edges of Ti emanating from z. Moreover, let ti be the unit-tangent vector to ei pointing towards yi.
The edge opposite to z belonging to Ti is denoted by fi. The unit-normal to fi pointing out of Ti is
denoted mi.

mi = |fi|−1(yi − yi−1)⊥ = |yi − yi−1|−1(yi − yi−1)⊥. (3.7)
Finally, hi = dist(z, fi). The notation ·⊥ denotes rotation by 90 degrees counter clockwise. See Fig-
ure 3.1 for an illustration.

Using this notation, we will use the shorthand notation ψi = ψyi for 0 ≤ i ≤ N and wi = wz
ei

for
1 ≤ i ≤ N .

3.2. Singular vertices are local interpolating vertices: S2
h ⊂ Lh

In this section we recall that all singular vertices are local interpolating vertices. The proof can be
found in [12], but we recall some of the details.

Lemma 3.3. It holds S2
h ⊂ Lh. Moreover, there exists a constant Csing such that

Dz ≤ Csing for all z ∈ S2
h,

where Csing only depends on the shape regularity of the mesh.
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Proof.
We only consider interior singular vertices for simplicity (the proof for boundary singular vertices
is similar). Suppose that z ∈ S2,int

h and we use the notation in Section 3.1. Note that N = 4. Let
a = (a1, . . . , a4) ∈W (z). First define b1 = a1 and inductively define

bj = aj − bj−1 for j = 2, 3.
Then define

v = b1w1 + b2w2 + b3w3.

By (3.6a), v ∈ V3
h,00(z). Using (3.6b) we see that

div v|Tj (z) = aj for 1 ≤ j ≤ 3.
We also have

div v|T4(z) = b3 = a3 − a2 + a1 = a4,

where we used that (a1, a2, a3, a4) ∈W (z). Moreover, using (3.6c) we have
‖∇v‖L∞(Ωh(z)) ≤ C (b1 + b2 + b3) ≤ C max

1≤j≤4
|aj |,

where the constant C only depends on the shape regularity constant.

3.3. Interior vertices with odd number of triangles are local interpolating vertices

In this section we prove that if z ∈ S int
h and Th(z) has an odd number of triangles then z ∈ Lh.

Lemma 3.4. Let z ∈ S int
h with Th(z) = {T1, . . . , TN} and suppose that N is odd. Then z ∈ Lh.

Moreover, there exists a constant Codd such that

Dz ≤ Codd.

Here Codd is a fixed constant that only depends on the shape regularity of the mesh.

Proof. We use the notation in Section 3.1. We start by defining some auxiliary functions. First, define

v1 = 1
2

N∑
j=1

(−1)j−1wj .

We see that v1 ∈ V3
h,00(z), by (3.6a). Moreover, using (3.6b) we see that

div v1|Tj (z) = δ1j for 1 ≤ j ≤ N,
where δij is the Kronecker delta function. Note that here we used crucially that N is odd. Moreover,
we have by (3.6c) that

‖∇v1‖L∞(Ωh(z)) ≤ C,
where C only depends on the shape regularity. Next, we define inductively

vi = wi − vi−1 for 2 ≤ i ≤ N.
Then, we easily see that vi ∈ V3

h,00(z) and
div vi|Tj (z) = δij for 1 ≤ i, j ≤ N, (3.8)

and, furthermore,
‖∇vi‖L∞(Ωh(z)) ≤ C for 1 ≤ i, j ≤ N, (3.9)

where C only depends on the shape regularity. Now given a = (a1, . . . , aN ) ∈W (z) we set

v =
N∑
j=1

ajvj .
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Then, using (3.8) we get (3.1). Moreover, using (3.9) we get
‖∇v‖L∞(Ωh(z)) ≤ Codd max

1≤j≤N
|aj |,

where Codd is a fixed constant only depending on the shape regularity of the mesh.

3.4. Interior vertices with even number of triangles

If z ∈ S int
h is non-singular and has an even number of triangles containing it, then it is not necessarily

the case that z ∈ Lh. In this section we give sufficient conditions for z ∈ Lh. We use the notation in
Section 3.1. To do this, in addition to the vector fields wi, we will need other vector fields. We start
with

χi = 12
|ei|

ηzei
ni = 12

|ei|
ψ2
zψyini for 1 ≤ i ≤ N. (3.10)

In the following lemma, the indices are calculated modulo N .

Lemma 3.5. It holds, for 1 ≤ i ≤ N

supp(χi) ⊂Ti ∪ Ti+1, (3.11a)
(div χi)(yj) = 0 for 1 ≤ j ≤ N, (3.11b)

(div χi)|Ti(z) = 12 cot(θi)
|ei|2

, (div χi)|Ti+1(z) = −12 cot(θi+1)
|ei|2

, (3.11c)∫
Ti

div χi dx = 1,
∫
Ti+1

div χi dx = −1, (3.11d)

‖∇χi‖L∞(Ti∪Ti+1) ≤
C

|ei|2
. (3.11e)

Proof. It follows from the definition (3.3) of ηzei
that (3.11a) and (3.11b) hold. A simple calculation

using (2.6) and (2.7) shows that

∇ψyi |Ti = 1
sin(θi)|ei|

ni−1.

Thus
(div χi)|Ti(z) = 12

|ei|
ψ2
z(z)∇ψyi |Ti · ni = 12

sin(θi)|ei|2
ni−1 · ni = 12 cot(θi)

|ei|2
.

Similarly, we can show that

(div χi)|Ti+1(z) = −12 cot(θi+1)
|ei|2

.

To show (3.11d) we use integration by parts and use that ηzei
vanishes on ∂Ti\ei to get∫

Ti

div χi dx = 12
∫
ei

ηei ds = 1.

Similarly, we can show that ∫
Ti+1

div χi dx = −1.

To prove (3.11e) we use the definition of χi and the bound (3.4c).

Note that χi is not in V3
h,0(z) by (3.11d). However, again using (3.11d), we see that

χ := χ1 + χ2 + · · ·+ χN ,
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does belong to V3
h,0(z). In fact, using (3.11b) we have that χ ∈ V3

h,00(z). We collect it in the following
result.

Lemma 3.6. It holds that χ ∈ V3
h,00(z) and

(div χ)|Tj (z) = 12 cot(θj)
( 1
|ej |2

− 1
|ej−1|2

)
for 1 ≤ j ≤ N, (3.12)

‖∇χ‖L∞(Ωh(z)) ≤
C

h2
z

. (3.13)

The inequality (3.13) follows from (3.11e).
So far, we have w1, . . . ,wN and χ that belong to V3

h,00(z). Next we describe two more functions
that also belong to the space.

We let E1 = [1, 0]t and E2 = [0, 1]t be canonical directions. We then define

ξ̃i := ψ2
zEi for i = 1, 2.

The following result can easily be proven.

Lemma 3.7. It holds, for i = 1, 2
ξ̃i ∈V3

h(z) (3.14a)
(div ξ̃i)(yj) = 0 for 1 ≤ j ≤ N (3.14b)

(div ξ̃i)|Tj (z) = 3
|Tj |

bji for 1 ≤ j ≤ N (3.14c)∫
Tj

div ξ̃i dx = bji for 1 ≤ j ≤ N, (3.14d)

where |Tj | denotes the area of Tj, and using (3.7) we get

bji = −|fj |mj · Ei
3 = −(yj − yj−1)⊥ · Ei

3 = −(yj − yj−1) · E⊥i
3 , (3.15)

where v⊥ denotes the rotation of v by 90 degrees counter clockwise. Moreover, the following bound
holds

‖∇ξ̃i‖L∞(Ωh(z)) ≤
C

hz
. (3.16)

Proof. From the definition ψz we have that (3.14a) and (3.14b) hold. To show (3.14c) we have

(div ξ̃i)|Tj (z) = 2ψz(z)∇ψz|Tj · Ei = −2mj · Ei
hj

= −|fj |mj · Ei
|Tj |

.

In the last equation we used that |Tj | = hj |fj |
2 . Using that div ξ̃i is linear in Tj and (3.14b), (3.14c) we

have ∫
Tj

div ξ̃i dx = |Tj |3 (div ξ̃i)|Tj (z) = bji.

Finally, (3.16) follows by a simple computation.

We note that ξ̃i does not belong to V3
h,0(z) by (3.14d). However, by integration by parts and using

that ξ̃i vanishes on ∂Ωh(z) we do have that
∫

Ωh(z) div ξ̃idx = 0 and hence

b1i + b2i + · · ·+ bNi = 0 for i = 1, 2. (3.17)
This also follows by summing (3.15).
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We can now correct ξ̃i to make it belong to V3
h,00(z). We define

ξi := ξ̃i − c1iχ1 − c2iχ2 − · · · − cN−1 iχN−1 for i = 1, 2,
where

cji = b1i + b2i + · · ·+ bji = 1
3(yN − yj) · E⊥i ,

for j = 1, · · · , N .
In the following result, indices are calculated mod N , and in particular c0,i = cN,i = 0.

Lemma 3.8. It holds, for i = 1, 2, ξi ∈ V3
h,00(z) and

div(ξi)|Tj (z) = 3
|Tj |

bji − 12 cot(θj)
( cji
|ej |2

− cj−1 i
|ej−1|2

)
for 1 ≤ j ≤ N, (3.18)

‖∇ξi‖L∞(Ωh(z)) ≤
C

hz
. (3.19)

The bound (3.19) follows from (3.16) and (3.11e).
We define for i = 1, 2

dji := (div ξi)|Tj (z) = 3
|Tj |

bji − 12 cot(θj)
( cji
|ej |2

− cj−1 i
|ej−1|2

)
for 1 ≤ j ≤ N, (3.20)

and
dj0 := (div χ)|Tj (z) = cot(θj)

( 1
|ej |2

− 1
|ej−1|2

)
for 1 ≤ j ≤ N. (3.21)

Using (3.19) and (3.13), we note that for all 1 ≤ j ≤ N

|dji| ≤
C

hsz
where s = 1 if i = 1, 2 and s = 2 if i = 0. (3.22)

We can now prove the following important result.

Lemma 3.9. Let z ∈ S1,int
h with Th(z) = {T1, . . . , TN} with N even. Assume that for at least one

i = 0, 1, 2

Di :=
N∑
j=1

(−1)jdji 6= 0, (3.23)

then z ∈ Lh. Moreover, in this case, there exists a constant C depending only on the shape regularity
constant such that

Dz ≤ C max
0≤i≤2

(
1 + 1
|Di|hsz

)
, (3.24)

where s = 1 if i = 1, 2 and s = 2 if i = 0.

Proof. We set ξ0 = χ. Let i be such that (3.23) holds, We let s1 = 0 and define inductively
sj = dji − sj−1 for 2 ≤ j ≤ N.

Define
v1 = −1

Di
(ξi − s2w2 − · · · − sN−1wN−1 − sNwN ).

We easily have that, using (3.20), (3.21)

div v1|Tj (z) = −1
Di

(dji − (sj−1 + sj)) = 0 for 2 ≤ j ≤ N,

and
div v1|T1(z) = −1

Di
(d1i − sN ).
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We see that sN =
∑N
j=2(−1)jdji, we have d1i − sN = −

∑N
j=1(−1)jdji = −Di. Hence,

div v1|T1(z) = 1.
The following bound follows from (3.22), (3.19), (3.13) and (3.6c)

‖∇v1‖L∞(Ωh(z)) ≤
C

|Di|hsz
. (3.25)

Then, we define inductively

v` = w` − v`−1 for 2 ≤ ` ≤ N.

We then easily see that

div v`|Tj (z) = δ`j for 1 ≤ `, j ≤ N. (3.26)

Moreover, from (3.6c) and (3.25) we have

‖∇v`‖L∞(Ωh(z)) ≤ C
(

1 + 1
|Di|hsz

)
.

For an arbitrary a = (a1, a2, . . . , aN ) ∈W (z) we simply define

v =
N∑
`=1

a`v`.

Then, v satisfies (3.1) and hence z ∈ Lh. By (3.4) we have

‖∇v‖L∞(Ωh(z)) ≤ C
(

1 + 1
|Di|hsz

)
max
`
|a`|,

which proves (3.24).

3.5. Simplification of condition (3.23)

In the case i = 0, we have

D0 =
N∑
i=1

(−1)jdj0 =
N∑
i=1

(−1)j cot(θj)
(
|ej |−2 − |ej−1|−2)

=
N∑
i=1

(−1)j
(

cot(θj) + cot(θj+1)
)
|ej |−2.

(3.27)

Thus we see that generically this is nonzero, since the lengths |ej | can be chosen independently of the
angles θj . For i = 1, 2, we have

N∑
j=1

(−1)j 3
|Tj |

bji =
N∑
j=1

(−1)j 1
|Tj |

(
yj−1 − yj

)
· E⊥i

= −
N∑
j=1

(−1)j
( 1
|Tj |

+ 1
|Tj+1|

)
yj · E⊥i

(3.28)
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For i = 1, 2, we have

−12
N∑
j=1

(−1)j cot(θj)
( cj,i
|ej |2

− cj−1,i
|ej−1|2

)
= −12

N∑
j=1

(−1)j cot(θj)
( cj,i
|ej |2

− cj−1,i
|ej−1|2

)

= 4
N∑
j=1

(−1)j cot(θj)
(yj − yN
|ej |2

− yj−1 − yN
|ej−1|2

)
· E⊥i

= 4
N∑
j=1

(−1)j cot(θj)
( yj
|ej |2

− yj−1
|ej−1|2

)
· E⊥i

− 4
( N∑
j=1

(−1)j cot(θj)
( 1
|ej |2

− 1
|ej−1|2

))
yN · E⊥i

= 4
N∑
j=1

(−1)j cot(θj)
( yj
|ej |2

− yj−1
|ej−1|2

)
· E⊥i

− 4
( N∑
j=1

(−1)jdj0
)
yN · E⊥i

= 4
N∑
j=1

(−1)j cot(θj) + cot(θj+1)
|ej |2

yj · E⊥i − 4D0 yN · E⊥i .

(3.29)

Therefore, for i = 1, 2,

Di =
N∑
j=1

(−1)j
(

4cot(θj) + cot(θj+1)
|ej |2

−
( 1
|Tj |

+ 1
|Tj+1|

))
yj · E⊥i − 4D0 yN · E⊥i . (3.30)

4. Meshes where (3.23) fails to hold

Lemma 3.9 gives sufficient conditions for an interior vertex z with an even number of triangles to be
a local interpolating vertex (i.e., z ∈ Lh). We see that (3.23) is a mild constraint and that a generic
vertex will satisfy (3.23), however, there are important examples of vertices which do not satisfy (3.23)
and perhaps are not local interpolating vertices. Here we present some examples.

4.1. Regular N-gon with N even

Suppose that Ωh(z) is a triangulated regular N -gon with N even. More precisely, we assume that
Ωh(z) is subdivided by N similar triangles, with edge lengths |e1| = |e2| = · · · = |eN | and interior
angles θ1 = θ2 = · · · = θN . Then we can show that (3.23) does not hold.

First of all, the condition on the edge lengths alone implies that dj0 = 0 for all j = 1, . . . , N . Thus
D0 = 0.

Now consider i = 1, 2. The vertices of the regular N -gon can be written as

yk = heι2πk/N ,

for some h. Here we make the the standard association eιθ with the vector [cos θ, sin θ]t. We conclude
that, for N even,

h−1
N∑
j=1

(−1)jyj =
N/2∑
j=1

eι4πj/N −
N/2∑
j=1

eι2π(2j−1)/N =
(
1− e−ι2π/N

)N/2∑
j=1

eι4πk/N = 0. (4.1)
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z

Figure 5.1. For the mesh on left no interior vertex satisfies (3.23). All interior vertices
on the mesh on the right belong to Lh.

Since all the triangles are the same, using (3.30) and that we showed D0 = 0 we have for i = 1, 2

Di =
(8 cot(θ1)
|e1|2

− 2
|T1|

) N∑
j=1

(−1)jyj · E⊥i = 0,

where we used (4.1). Thus (3.23) fails for i = 1, 2 as well, and Lemma 3.9 cannot be used.

4.2. Three lines mesh

For the three-lines mesh generating a regular hexagonal pattern as shown on the left in Figure 5.1,
the condition (3.23) also fails for i = 0, 1, 2 since each vertex is at the center of a regular hexagon.

5. Crossed triangles

Consider the mesh shown on the right in Figure 5.1. Half of the vertices are at the center of a regular
4-gon, but these are singular vertices, so these are all local interpolating vertices. For the other vertices,
at the center of a non-regular 8-gon, we can argue as follows. Since the interior angles are all the same
(π/4), and cot(π/4) = 1, we have using (3.27)

D0 = 2
8∑
j=1

(−1)j 1
|ej |2

. (5.1)

Let L be the length of the smallest edge: L = min {|ej | : j = 1, . . . , 8}. Then the longest edge length
is
√

2L, and the edge lengths |ej | alternate L,
√

2L,L,
√

2L, . . . . Thus
8∑
j=1

(−1)j 1
|ej |2

= ± 2
L2 ,

depending on where we start the counting. Therefore condition (3.23) holds at these vertices, and thus
Lemma 3.9 can be applied to conclude that these vertices are also local interpolating vertices. Thus
all of the vertices in the mesh shown on the right in Figure 5.1 are in Lh.

6. Inf-sup stability when all interior vertices belong to Lh

In the previous section we have identified many local interpolating vertices. In particular, singular
vertices and interior vertices with odd number of triangles are local interpolating vertices; see Lem-
mas 3.3 and 3.4. If z is an interior non-singular vertex with even number of triangles then Lemma 3.9
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gives sufficient conditions for it to be a local interpolating vertex. None of the above examples ad-
dress boundary vertices that are non-singular. In this section we will show how to interpolate at those
vertices but in a non-local way. Then, using that result and assuming that S int

h ⊂ Lh we will prove
inf-sup stability. In the next section we will address S int

h 6⊂ Lh.
For vertices that are not local interpolating vertices we can still interpolate there but with a side

effect of polluting a neighboring vertex. In other words, the vector field will not belong to V3
h,00(z).

To do this, we will need to define a piecewise cubic function that has average zero on edges. For every
z ∈ S∂h and interior edge e ∈ Eh with e = {z, y} we set

κze = ηze −
1
2ψzψy = ψ2

zψy −
1
2ψzψy. (6.1)

The function κze will play the same role as γze in [12] but the difference is that the added term in κze
is piecewise quadratic. Let T1, T2 ∈ Th(z) be two triangles that have e as an edge, and let θi be the
angle between the edges of Ti emanating from z.

Then we can easily verify the following:
supp κze ⊂ T1 ∪ T2, (6.2a)

(∇κze)(σ) = 0 for σ ∈ Sh, σ 6= z and σ 6= y, (6.2b)∫
e
κze ds = 0 (6.2c)

∇κze|Ti(z) = 1
2∇ψy|Ti , ∇κze|Ti(y) = −1

2∇ψz|Ti for i = 1, 2. (6.2d)

Using these functions we can prove the following result.

Lemma 6.1. For every p ∈ Q2
h and z ∈ S∂h there exists a v ∈ V3

h,0(z) such the following properties
hold:

div v(σ) = 0 for all σ ∈ S∂h , σ 6= z, (6.3a)
div v|T (z) = p|T (z) for all T ∈ Th(z). (6.3b)

If z is non-singular
‖∇v‖L2(Ωh(z)) ≤ C

( 1
Θ(z) + 1

)
‖p‖L2(Ωh(z)). (6.4)

If z is singular
‖∇v‖L2(Ωh(z)) ≤ C‖p‖L2(Ωh(z)). (6.5)

The constant C only depends only on the shape regularity.

Proof. If z is singular, the result follows from Lemma 3.3, so now assume that z is non-singular.
Enumerate the triangles such that T1 and TN each have a boundary edge, and Tj , Tj+1 share an
edge ej = {z, yj}, for j = 1, . . . N − 1. Let θj denote the angle between the edges of Tj originating
from z. Also let nj be the normal to ej out of Tj and tj be tangent to ej pointing away from z. Let
1 ≤ s ≤ N − 1 be such that | sin(θs + θs+1)| = Θ(z). We will define vector fields v1, . . . ,vN . We start
by defining vs.

vs = 2|es| sin(θs)
sin(θs + θs+1)ts+1κ

z
es
.

Then, we can easily show that
div vs|Ti(z) = δi,s for 1 ≤ i ≤ N,

where δi,s is the Kronecker δ. Indeed,

div vs|Ti(z) = 2|es| sin(θs)
sin(θs + θs+1)ts+1 · ∇κzes

|Ti(z) = |es| sin(θs)
sin(θs + θs+1)ts+1 · ∇ψys |Ti(z).

359



J. Guzmán & R. Scott

The result follows after using (2.5) and (2.7) to calculate ψys |Ti and using basic trigonometry. Then
we can define inductively for s+ 1 ≤ j ≤ N .

vj = wz
ej
− vj−1.

Also, for 1 ≤ j ≤ s− 1 we define
vj = wz

ej
− vj+1.

Hence, we have the following property:
div vj |Ti(s) = δi,j for 1 ≤ i, j ≤ N. (6.6)

We then define

v =
N∑
j=1

p|Tj (z)vj .

The stated conditions on v are easily verified.

We can then use the above lemma to prove the following result. We define
Θmin,∂ = min

z∈S1,∂
h

Θ(z).

Lemma 6.2. For every p ∈ Q2
h there exists a v ∈ V3

h,0 such that

(div v− p)(z) = 0 for all z ∈ S∂h , (6.7)
and

‖∇v‖L2(Ω) ≤ Cb
( 1

Θmin,∂
+ 1

)
‖p‖L2(Ω).

The constant Cb only depends on the shape regularity.

Proof. Let p ∈ Q2
h. For every z ∈ S∂h let vz be the vector field from Lemma 6.1 then we set

v =
∑
z∈S∂

h

vz.

Then, it is easy to verify the conditoins on v.

We can now prove the main result of the section.

Theorem 6.3. Assume that S int
h ⊂ Lh. Then, for every p ∈ Q2

h there exists a v ∈ V 3
h,0 satisfying

(div v− p)(σ) = 0 for all σ ∈ Sh, (6.8)
with the bound

‖v‖H1(Ω) ≤ C(1 +D)(1 + 1
Θmin,∂

)‖p‖L2(Ω).

where D = maxz∈Lh
Dz.

Proof. Let v1 be from Lemma 6.2 and let p1 = p−div v1 and we note that p1 ∈ Q2
h with p1 vanishing

on boundary vertices. Since S int
h ⊂ Lh for every z ∈ S int

h there exists a vz ∈ V3
h,00(z) such that

(div vz − p1)(z) = 0
with

‖∇vz‖L∞(Ωh(z)) ≤ Dz max
T∈Th(z)

|p1|T (z)|.

Using an inverse estimate we can show
‖∇vz‖L2(Ωh(z)) ≤ CDz‖p1‖L2(Ωh(z)).
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Figure 7.1. Illustration for Lemma 7.1, with N = 4.

If we set
v2 =

∑
z∈Sint

h

vz

and set v = v1 + v2, then the desired conditions on v are met.

Using Lemma 2.6 we have the following corollary.

Corollary 6.4. Assume that S int
h ⊂ Lh, then the inf-sup condition holds for Q2

h ×V3
h with constants

given by Lemma 2.6 and Theorem 6.3.

7. Inf-sup stability: the general case

As mentioned above for most meshes S int
h ⊂ Lh and hence by the previous section one can prove

inf-sup stability. However, for very important meshes, such as the diagonal mesh, none of the interior
vertices belong to Lh (i.e. Lh ∩ S int

h = ∅). However, if some interior nodes belong to Lh then it might
hold that div V3

h = Q2
h and we can give a bound for inf-sup constant. To do this we use a concept of

a tree and paths. We consider the mesh as a graph and consider trees and paths that are subgraphs
of the mesh. Precise statements are given below.

7.1. Paths and trees in a mesh

We will prove that if there is a tree of the mesh Th with root in Lh satisfying certain mild conditions
then we can interpolate a pressure on all the vertices of the tree. We start with some preliminary
results. Let T1, T2 ∈ Th(z) be two triangles that have e as an edge and let φi be the angle between the
edges of Ti emanating from z. Then we define

M z
e = cot(φ1) + cot(φ2). (7.1)

Note that M z
e = 0 if φ1 + φ2 = π.

Lemma 7.1. Let z, y ∈ Sh and e = {z, y} ∈ Eh and suppose thatM z
e 6= 0. Let Th(z) = {T1, T2, . . . , TN}

and suppose T1 and T2 are the two triangles that share e as an edge and let θi be the angles of Ti
originating from y for i = 1, 2; see Figure 7.1. Let a = (a1, a2, . . . , aN ) ∈ RN and define the alternating
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sum s(a) =
∑N
j=1(−1)j−1aj. Then, there exists a v ∈ V3

h,0(z)

div v|Ti(z) = ai for all 1 ≤ i ≤ N (7.2a)
div v(σ) = 0 for all σ ∈ Sh, σ 6= z, σ 6= y, (7.2b)

div v|T1(y) = −s(a)cot(θ1)
M z
e

, div v|T2(y) = s(a)cot(θ2)
M z
e

(7.2c)

‖∇v‖L∞(Ωh(z)) ≤
C

|M z
e |

max
1≤i≤N

|ai|. (7.2d)

The constant C depends only on the shape regularity.

Proof. We prove the result in the case z is an interior vertex. The case z is a boundary vertex is
similar. We use the notation from Section 3.1. We need to define some auxiliary vector fields. First let

r = 2|e1|κze1n1,

where we recall that the definition of κze1 is given in (6.1). Using, (6.2a) and (6.2c) it is easy to show
that r ∈ V3

h,0(z). Then, using (6.2b) we have
div r|Ti(σ) = 0 for all σ ∈ Sh, σ 6= z, σ 6= y.

Also, using (6.2d), (2.6), (2.7) we can show that
div r|T1(z) = cot(φ1), div r|T2(z) = − cot(φ2),

and
div r|T1(y) = − cot(θ1), div r|T2(z) = cot(θ2).

If we let
v1 = 1

M z
e

(
r + cot(φ2)w1

)
,

then using the properties of w1 (e.g. (3.6)) we have the following
div v1|T1(z) = 1, div v1|T2(z) = 0,

div v1|T1(y) = −cot(θ1)
M z
e

, div v1|T2(y) = cot(θ2)
M z
e

,

and
‖∇v1‖L∞(Ωh(z)) ≤

C

|M z
e |
,

where the constant C only depends on the shape regularity constant.
Next, we define inductively

vj = wj−1 − vj−1 for 2 ≤ j ≤ N.
Using the properties of v1 just proved together with (3.6), we can show the following for all 1 ≤ j ≤ N
:

vj ∈V3
h,0(z), (7.3a)

div vj(σ) = 0 for all σ ∈ Sh, σ 6= z, σ 6= y, (7.3b)
div vj |Ti(z) = δij for all 1 ≤ i, j ≤ N, (7.3c)

‖∇vj‖L∞(Ωh(z)) ≤C
(
1 + 1
|M z

e |

)
≤ C

|M z
e |
, (7.3d)

where we used that |M z
e | ≤ c is bounded where the constant c depends on the shape regularity. By

the definition of vj and using that div wj(y) = 0, we note that div vj(y) = (−1)j−1 div v1(y).
We now set

v =
N∑
j=1

ajvj .

362



Inf-Sup stability of cubic Lagrange Stokes elements

Figure 7.2. Illustration of acceptable path, with N = 6, L=4.

We easily see conditions (7.2) hold.

We can apply the previous result repeatedly to generalize the result for a path.

Definition 7.2. Given z, y ∈ Sh P = {y0, y1, . . . , yL} is a path between y0 = z, yL = y if ei =
{yi−1, yi} ∈ Eh and yi 6= yj for i 6= j. We say that the path is acceptable if Myi−1

ei 6= 0 for 1 ≤ i ≤ L.

See Figure 7.2 for an illustration. For an acceptable path P as in Definition 7.2 we define for
1 ≤ j ≤ L− 1

ρ̃z,yj :=
My1
e1

My0
e1

My2
e2

My1
e2
· · ·

M
yj
ej

M
yj−1
ej

.

We also let ρ̃z,z = 1. Moreover, we define

ρz,yj+1 :=
ρ̃z,yj

M
yj
ej+1

. (7.4)

Finally, we let

ρ(P ) = max
1≤j≤L

|ρz,yj |. (7.5)

Also for any collection of vertices P we define Th(P ) = {T ∈ Th : T ∈ Th(y) for some y ∈ P}. We
define Ωh(P ) =

⋃
T∈Th(P ) T .

Lemma 7.3. Suppose that z, y ∈ Sh and let Th(z) = {T1, T2, . . . , TN}. Let P = {y0, y1, . . . , yL} with
y0 = z, yL = y be an acceptable path. Also, we denote by K1 and K2 the two triangles that share eL
and θi the corresponding angles. For every a = (a1, . . . , aN ) ∈ RN there exists a v ∈ V3

h,0 with support
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in Ωh(P ) such that

div v|Ti(z) = ai for all 1 ≤ i ≤ N, (7.6a)
div v(σ) = 0 for all σ ∈ Sh, σ 6= z, σ 6= y, (7.6b)

div v|K1(y) = ±s(a)ρ̃z,yL−1

cot(θ1)
M

yL−1
eL

, div v|K2(y) = ∓s(a)ρ̃z,yL−1

cot(θ2)
M

yL−1
eL

(7.6c)

div v|T (y) = 0 for all T ∈ Th(y), T 6= K1, T 6= K2, (7.6d)
‖∇v‖L∞(Ωh(P )) ≤Cρ(P ) max

1≤i≤N
|ai|. (7.6e)

Here s(a) =
∑N
j=1(−1)jaj. The constant C only depends on the shape regularity of the mesh.

Proof. Let a = (a1, . . . , aN ) ∈ RN be given. We will use the following notation: ej is the edge with
vertices yj−1, yj . We assume that Th(yj) = {T1,j , T2,j , . . . , TNj ,j} and such that T1,j , T2,j share ej as a
common edge. The corresponding angles are denoted by θ1,j , θ2,j . Note that K1 = T1,L and K2 = T2,L.
By Lemma 7.1 we have r1 ∈ V3

h,0(y0)
div r1|Ti(y0) = ai for all 1 ≤ i ≤ N (7.7a)

div r1(σ) = 0 for all σ ∈ Sh, σ 6= y0, σ 6= y1, (7.7b)

div r1|T1,1(y1) = −s(a)cot(θ1,1)
My0
e1

, div r1|T2,j (y1) = s(a)cot(θ2,1)
My0
e1

(7.7c)

div r1|Ti,1(y1) = 0 for all 3 ≤ i ≤ N (7.7d)

‖∇r1‖L∞(Ωh(y0)) ≤
C

|My0
e1 |

max
1≤i≤N

|ai|. (7.7e)

Now suppose that we have constructed rj ∈ V3
h,0(yj−1) for j = 2, . . . , ` with the following properties

(div rj + div rj−1) (yj−1) = 0, (7.8a)
div rj(σ) = 0 for all σ ∈ Sh, σ 6= yj−1, σ 6= yj , (7.8b)

div rj |T1,j (yj) = ±s(a)ρ̃z,yj−1
cot(θ1,j)
M

yj−1
ej

, div rj |T2,j (yj) = ∓s(a)ρ̃z,yj−1
cot(θ2,j)
M

yj−1
ej

(7.8c)

div rj |Ti,j (yj) = 0 for all 3 ≤ i ≤ Nj , (7.8d)
‖∇rj‖L∞(Ωh(yj−1)) ≤ C|ρz,yj | max

1≤i≤N
|ai|. (7.8e)

Setting ãi = div r`|Ti,`
(y`) for 1 ≤ i ≤ N` and using (7.8c) and (7.8d) we have

s(ã) =
N∑̀
i=1

(−1)i−1ãi = ã1 − ã2 = ±s(a)ρ̃z,y`−1

cot(θ1,`)
M

y`−1
ej

± s(a)ρ̃z,y`−1

cot(θ2,`)
M

y`−1
e`

,

= ±s(a)ρ̃z,y`−1

cot(θ1,`) + cot(θ2,`)
M

y`−1
ej

= ±s(a)ρ̃z,y`−1

My`
e`

M
y`−1
e`

= ±s(a)ρ̃z,y`
. (7.9)

Hence, using Lemma 7.1 we can find r`+1 ∈ V3
h,0(y`) such that

div r`+1|Ti,`
(y`) = −ãi for all 1 ≤ i ≤ N` (7.10a)

div r`+1(σ) = 0 for all σ ∈ Sh, σ 6= y`, σ 6= y`+1, (7.10b)

div r`+1|T1,`+1(y`+1) = ±s(ã)cot(θ1,`+1)
My`
e`+1

, div r`+1|T2,`+1(y`+1) = ∓s(ã)cot(θ2,`+1)
My`
e`+1

(7.10c)

‖∇r`+1‖L∞(Ωh(y`)) ≤
C

|My`
e`+1 |

max
1≤i≤N`

|ãi| ≤
C

|My`
e`+1 |
|s(a)||ρ̃z,y`

| = C|s(a)||ρz,y`+1 |. (7.10d)
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Hence, using (7.10) and (7.9) we get that (7.8) holds for j = `+ 1 and hence by induction (7.8) holds
for 2 ≤ j ≤ L.
We let v = r1 + r2 + · · · + rL. We then easily see that (7.6a)-(7.6d) hold from (7.8) and (7.7). To
prove (7.6e) we use that

‖∇v‖L∞(Ωh(P )) ≤ max
1≤i≤L

‖∇v‖L∞(Ωh(yi)).

Since finitely many {rj} have support in Ωh(yi) the result follows from (7.8e) and (7.7e).

The next task is to interpolate values on a tree of the mesh. We need some notation.

Definition 7.4. We say that R(r) := Y × E with Y =
⋃

0≤j≤M Yj and E =
⋃

1≤j≤M Ej is a tree of
Th with root r if the following hold

1) Y0 = {r},
2) for every 1 ≤ j ≤M, Yj ⊂ Sh, Ej ⊂ Eh and |Yj | = |Ej |,
3) for every y ∈ Yj there is a unique e ∈ Ej such that e = {y, z} for some z ∈ Yj−1,

4) Yj ∩ Yi = ∅ for i 6= j.

If y ∈ Yj and z ∈ Yj+s for s ≥ 1 and there is a path in R(r) connecting y to z then we say that
z is a descendant of y and that y is an ancestor of z. If we let y0 = z, ys = y, by path we mean
Pz,y = {y0, y1, . . . , ys} such that yi ∈ Yj+s−i for 0 ≤ i ≤ s such that ei = {yi−1, yi} ∈ Ej+s−(i−1) for
1 ≤ i ≤ s. We let D(y) denote the set of all descendants of y and A(y) to be all the ancestors of y. We
know that if z ∈ Y then there is a unique path Pz,r (which we denote by Pz) from z to the root r. We
say that the tree R(r) is acceptable if Pz is acceptable for each z ∈ Y . Moreover, we define

ρ(R(r)) = max
z∈Y

ρ(Pz), (7.11)

where ρ(Pz) is defined in (7.5).
We can now state the following result.

Lemma 7.5. Let R(r) = Y × E with Y =
⋃

0≤j≤M Yj and E =
⋃

1≤j≤M Ej be an acceptable tree of
Th with root r ∈ Lh. Then, for any p ∈ Q2

h there exist v ∈ V3
h,0 such that

support(v) ⊂Ωh(Y ) (7.12a)
(div v− p)(σ) = 0 for all σ ∈ Y (7.12b)

div v(σ) = 0 for all σ ∈ Sh\Y. (7.12c)
If in addition Th is quasi-uniform the following bound holds

‖∇v‖L2(Ωh(Y )) ≤ C
(
1 +Dr

)(
1 + Υ(R(r))ρ(R(r))

)
‖p‖L2(Ωh(Y )), (7.13)

where Υ(R(r))2 := maxz∈Y
(∑

y∈A(z) |D(y)|
)
. We recall that Dr is given in (3.2).

Proof. For every z ∈ Y with z 6= r there is a unique path Pz ⊂ Y that connects z to r. By Lemma 7.3
we can find vz ∈ V3

h,0 such that
support(vz) ⊂Ωh(Pz), (7.14a)
(div vz − p)(z) = 0 (7.14b)

div vz(σ) = 0 for all σ ∈ Sh, σ 6= z, σ 6= r, (7.14c)
‖∇vz‖L∞(Ωh(Pz)) ≤C ρ(Pz) max

T∈Th(z)
|p|T (z)|, (7.14d)

where C only depends on the shape regularity of the mesh.
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Note that from (7.14d) and inverse estimates we get that for any y ∈ A(z), assuming hy ≤ C hz (which
holds if the mesh is quasi-uniform) we have

‖∇vz‖L2(Ωh(y)) ≤ Cρ(Pz)‖p‖L2(Ωh(z)). (7.15)
Then, we take

w =
∑

z∈Y,z 6=r
vz.

We then have the following properties of w
(div w− p)(y) = 0 for all y ∈ Y \{r} (7.16)
support(w) ⊂Ωh(Y ) (7.17)

div w(σ) =0, σ /∈ Y. (7.18)
Since r ∈ Lh (using Definition 3.1) we can find r ∈ V3

h,00(r) so that
(div r + div w− p)(r) = 0 (7.19)

‖∇r‖L∞(Ωh(r)) ≤ Dr max
T∈Th(r)

|(div w− p)|T (r)|. (7.20)

In this case, using inverse estimates, we can show that
‖∇r‖L2(Ωh(r)) ≤ CDr(‖∇w‖L2(Ωh(r)) + ‖p‖L2(Ωh(r))). (7.21)

We next set v = w + r and we see that v ∈ V3
h,0 and (7.12a), (7.12b) and (7.12c) hold.

To get the bound (7.13) we assume that Th is quasi-uniform. Using the triangle inequality and (7.21)
‖∇v‖L2(Ωh(Y )) ≤ ‖∇w‖L2(Ωh(Y )) + ‖∇r‖L2(Ωh(Y ))

≤ (1 + C Dr)
(
‖∇w‖L2(Ωh(Y )) + ‖p‖L2(Ωh(r))

)
.

Next, we estimate w:
‖∇w‖2L2(Ωh(Y )) ≤

∑
y∈Y
‖∇w‖2L2(Ωh(y))

≤
∑
y∈Y
‖
∑

z∈D(y)
∇vz‖2L2(Ωh(y)) by (7.14a)

≤
∑
y∈Y

(
∑

z∈D(y)
‖∇vz‖L2(Ωh(y)))2 by the triangle inequality

≤
∑
y∈Y
|D(y)|

∑
z∈D(y)

‖∇vz‖2L2(Ωh(y)) by Hölder’s inequality

≤Cρ(R(r))2 ∑
y∈Y
|D(y)|

∑
z∈D(y)

‖p‖2L2(Ωh(z)) by (7.15)

≤Cρ(R(r))2 ∑
z∈Y
‖p‖2L2(Ωh(z))

∑
y∈A(z)

|D(y)| interchange summation

≤3Cρ(R(r))2Υ(R(r))2‖p‖2L2(Ωh(Y )) by definition of Υ(R(r)).
Taking square roots we get

‖∇w‖L2(Ωh(Y )) ≤ C ρ(R(r)) Υ(R(r))‖p‖L2(Ωh(Y )).

The result now follows.

The next result follows immediately from the previous lemma.

Theorem 7.6. Suppose that we have {r1, . . . , rt} ∈ Lh and corresponding acceptable trees
{R(r1),R(r2), . . . ,R(rt)}. If R(ri) = Zi ×Ei we require that

⋃t
i=1 Zi = Sh and Zi ∩Zj = ∅ for i 6= j.
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Then, for any p ∈ Q2
h there exist v ∈ V3

h,0 such that

(div v− p)(σ) = 0 for all σ ∈ Sh
and if Th is quasi-uniform

‖∇v‖L2(Ω) ≤ C(1 + D̄)(1 + Ῡρ̄)‖p‖L2(Ω).

where
D̄ = max

1≤i≤t
Dri , Ῡ = max

1≤i≤t
Υ(R(ri)), ρ̄ = max

1≤i≤t
ρ(R(ri)). (7.22)

Using Theorem 7.6 and Lemma 2.6 we have that the inf-sup condition (2.3) holds for Q2
h ×V3

h.

Corollary 7.7. Assuming the hypothesis Theorem 7.6 then the estimate (2.3) holds for Q2
h×V3

h with
constants given by Lemma 2.6 and Theorem 7.6.

From Theorem 7.6 and Lemma 2.6 we deduce that if the hypotheses of Theorem 7.6 hold then
Q2
h×V3

h is inf-sup stable (see Corollary 7.7) and in fact that div V3
h = Q2

h. If we do not care about the
inf-sup constant in (2.3) and only care if div V3

h = Q2
h then we can give weaker conditions. Inspecting

the proof of Lemma 7.5 (and using Lemma 2.6), we can show the following.

Theorem 7.8. . If for every z ∈ Sh there is exists an r ∈ Lh such that there is an acceptable path
Pz,r between them, then div V3

h = Q2
h.

Remark 7.9. The key to our analysis is using local interpolating vertices. There seems to be some
parallels between these vertices and confinable vertices defined in [2], which they used to prove the
dimension count of C1 quartics on general meshes (see below). In particular, singular vertices and
vertices with odd number of triangles are confinable vertices, and as we have shown are also local
interpolating. In addition, they show that any vertex with four triangles is a confinable vertex, but we
have not been able to show that they are local interpolating. It will be interesting to explore further
the connections between local interpolating vertices and confinable vertices.

The other common idea between our paper and the one in [2] is the use of paths from vertices to
vertices. Indeed, in Theorem 7.8 we use acceptable paths from non-local interpolating vertices to local
interpolating vertices and in [2] they use paths from non-confinable vertices to confinable ones.

8. Relationship to Qin’s result

Results concerning the pair of spaces V k
h , Q

k−1
h were given in [19] for k ≤ 3. Here we review the case

k = 3. For the case k = 1, also see [20], and for the case k = 2, see [4]. Qin considered the mesh in
Figure 9.3, which is called a Type I triangulation [15]. Of course, the upper-left and lower-right triangles
are problematic, since the pressures will vanish at the corner vertices there. But more interestingly,
Qin found an additional spurious pressure mode as indicated in Figure 8.1(a). We can relate this to
the quantities Di in (3.23) by computing them for this mesh, as indicated in Figure 8.1(b). There
are only two angles in this mesh, π/4 and π/2, and cot(π/4) = 1 and cot(π/2) = 0. Similarly, the
edge lengths are L and L

√
2, for some L. Thus the quantities dj0 in (3.21) are of the form ±A where

A = 1/2L2 for the π/4 angles, and 0 for the π/2 angles, as indicated in Figure 8.1(b). Computing the
alternating sum of terms in (3.21), we get

D0 =
6∑
j=1

(−1)jdj0 = A− (−A) + 0−A+ (−A) = 0. (8.1)

Thus condition (3.23) is violated for i = 0 for all the interior vertices in Figure 9.3.
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Figure 8.1. (a) A global spurious pressure mode on the mesh in Figure 9.3. (b)
Computation of (8.1).

Now let us compute Di for i = 1, 2. First, we note that the sequence of vertices yk for a fixed interior
vertex z

y1 =L(1, 0) + z, y2 = L(1, 1) + z, y3 = L(0, 1) + z,

y4 =L(−1, 0) + z, y5 = L(−1,−1) + z, y6 = L(0,−1) + z.

Thus,
6∑
j=1

(−1)jyj = L(−1 + 1− 1 + 1, 1− 1 + 1− 1) + z
6∑
j=1

(−1)j = 0. (8.2)

Letting tj = cot(θj) + cot(θj+1), we easily can show
t1 = 1, t2 = 2, t3 = 1, t4 = 1, t5 = 2, t6 = 1.

Also, we have the sequence of values |ej |−2 are

|e1|−2 = 1
L2 , |e2|−2 = 1

2L2 , |e3|−2 = 1
L2 , |e4|−2 = 1

L2 , |e5|−2 = 1
2L2 , |e6|−2 = 1

L2 .

Hence, (cot(θj)+cot(θj+1))
|ej |2 = 1

L2 for all j. Also, |Tj | = |T1| for all j. Hence, using (3.30), (8.1), and (8.2)
we have for i = 1, 2

Di =
( 4
L2 −

2
|T1|

) n∑
j=1

(−1)jyj · E⊥i = 0.

Thus condtion (3.23) is violated for all i = 0, 1, 2 for all interior vertices in Figure 9.3. This suggests
that the constraint (3.23) maybe required for inf-sup stability.

9. Strang’s Dimension

For simplicity, let us assume that Ω is simply connected. Then the space Z3
h := {v ∈ V3

h : div v = 0}
is the curl of the space S4

h of C1 piecewise quartics on the same mesh, where the quartics must vanish
to second order on the boundary:

Z3
h = ∇⊥S4

h,

where ∇⊥φ = (−φy, φx) is the two-dimensional curl operator. It is obvious that ∇⊥S4
h ⊂ Z3

h, and also
∇⊥ is injective on S4

h since the kernel of∇⊥ consists of constants. Anything in Z3
h is a curl of something,

and it is not hard to show that this must be a C1 piecewise polynomial. Thus dim Z3
h = dim∇⊥S4

h.
The dimension of the space Ŝ4

h of C1 piecewise quartics, without boundary conditions, is known [2]
to be

dim Ŝ4
h = E + 4V − V0 + σi, (9.1)
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(a) (b)

Figure 9.1. (a) Nodal basis for quartics. (b) Nodes that determine value and gradient
on an edge.

where T is the number of triangles in Th, E (resp., E0) is the number of edges (resp., interior edges)
in Th, V (resp., V0) is the number of vertices (resp., interior vertices) in Th, and σi is the number of
singular interior vertices in Th.

The dimension formula (9.1) is essentially the one conjectured by Gil Strang [23], so we refer to this
as the Strang dimension of Ŝ4

h:
D(Ŝ4

h) = E + 4V − V0 + σi. (9.2)
For C1 piecewise polynomials of degree k ≥ 5, the Strang dimension was confirmed using an explicit
basis [16]. But the Strang dimension for k ≤ 4 is more complicated. However, what is known is that
the derivation of Strang’s conjecture [23] provides a lower bound [17]

dim Ŝ4
h ≥ D(Ŝ4

h). (9.3)
We show how this lower bound can be used, together with the results developed here, to prove the
dimension formula.

9.1. Computing dimS4
h

Now let us compute dimS4
h = dim Z3

h under the assumption that the inf-sup condition holds. The
space V3

h can be described in terms of Lagrange nodes:
dim V3

h = 2(T + 2E0 + V0) = 2T + 4E0 + 2V0. (9.4)
We have ∇·V3

h ⊂ Q2
h, where the latter space consists of mean-zero piecewise quadratics that satisfy

the alternating condition Azh(div v) = 0 at singular vertices, where Azh is defined in (2.2):
dimQ2

h = 6T − 1− σ.

Definition 9.1. For any mesh Th, the number K defined by K = dimQ2
h − dim∇·V3

h is the number
of spurious modes for a given mesh.

Thus ∇·V3
h = Q2

h if and only if K = 0. Since
dim V3

h = dim(image∇·V3
h) + dim Z3

h,

we have more generally that
dim Z3

h = dim V3
h − dim(image∇·V3

h)
= dim V3

h − dimQ2
h +K

= 2T + 4E0 + 2V0 − 6T + 1 + σ +K

= −4T + 4E0 + 2V0 + 1 + σ +K.

(9.5)

We have 3T = (E − E0) + 2E0 = E + E0. Thus
dim Z3

h = −T − (E + E0) + 4E0 + 2V0 + 1 + σ +K. (9.6)
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By Euler’s formula, 1 = T − E + V = T − E0 + V0 = 1. Thus E0 − V0 = T − 1, and
dimS4

h = dim Z3
h = (V0 − E0)− (E + E0) + 4E0 + 2V0 + σ +K

= 2E0 − E + 3V0 + σ +K.
(9.7)

Technically, we actually have
dimS4

h = min{0, 2E0 − E + 3V0 + σ +K},
since the dimension can never be negative. There are cases where the number of boundary edges E−E0
(which is the same as the number of boundary vertices) is larger than E0 + 3V0 + σ. For a domain
consisting of only two triangles, E0 = 1, V0 = 0, σ = 2, and E −E0 = 4, so the formula in (9.7) gives
a negative number if K = 0. From now on, we assume that E0 − (E − E0) + 3V0 + σ ≥ 0 for Th.

Theorem 9.2. Let k = 3 and suppose that Th is any triangulation satisfying E0 + 3V0 + σ ≥ E −E0.
Then

∇·V3
h = Q2

h

if and only if
dimS4

h = 2E0 − E + 3V0 + σ.

More generally,
dim∇·V3

h = dimQ2
h −K

if and only if
dimS4

h = 2E0 − E + 3V0 + σ +K,

where K is the number of spurious modes defined in Definition 9.1.

This is, as far as we know, the only known formula for dimS4
h, the space of C1 piecewise quartics

satisfying second-order boundary conditions. The number K in Theorem 9.2 is the number of spurious
modes for the pair (V3

h, dimQ2
h) for the Stokes system [19]. In the case of spurious modes (K > 0),

we get a formula for dimS4
h different from what we might expect, as we now explain.

9.2. Computing dim Ŝ4
h

Now let us relate the spaces S4
h and Ŝ4

h by imposing boundary conditions on Ŝ4
h to yield the space

S4
h. Using the approach pioneered by Strang [23], it is natural to conjecture that this involves simply

imposing constraints on the boundary. For example, a C1 piecewise quartic that vanishes to second
order on ∂Ω must vanish to second order at each boundary vertex (3 constraints per boundary vertex).
In addition, the value at one point on each boundary edge must vanish, as well as the normal derivative
at two points on each boundary edge.

To see why this is the right number of constraints, we pick special nodal variables for quartics as
indicated in Figure 9.1(a). These are

(1) the value and gradient at each vertex,

(2) the value at edge midpoints, and

(3) the second-order cross derivatives ∂ei∂ej evaluated at the vertex νij at the intersection of ei
and ej , where the ek’s are the edges of the triangle.

More precisely, ∂eiφ(νij) is defined as the directional derivative of φ in the direction of ei away from νij .
These nodal variables are unisolvent for quartics, as follows. Vanishing of nodal variables of type (1)
and (2) guarantee vanishing on each edge; these are the standard nodal variables for Hermite quartics.
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Thus a quartic q with these nodal values zero is of the form q = L1L2L3L where the non-trivial linear
functions Li vanish on ei. But

∂ei∂ejq(νij) =
(
∂eiLj

)(
∂ejLi

)
Lk(νij)L(νij),

where {i, j, k} = {1, 2, 3} and Lk(νij) 6= 0. Thus vanishing of the nodal variables of type (3) implies
that L ≡ 0.

Moreover, similar arguments show that the nodal variables for q associated with a boundary edge,
as indicated in Figure 9.1(b), determine q to second order on that edge. Thus satisfication of second-
order boundary conditions is guarenteed by setting these nodal values to zero. We can make this more
precise by defining a map C from S4

h to R3(V−V0)+3(E−E0) by evaluating the nodal values (1–3) at each
boundary vertex and edge. Then

S4
h =

{
v ∈ Ŝ4

h : Cv = 0
}
. (9.8)

This means that the dimension of S4
h is less than the dimension of S̃4

h by at most 3(V −V0) + 3(E−
E0) = 6(E − E0) (note E − E0 = V − V0). We will show that these conditions have (at least) one
redundancy per singular boundary vertex. Thus

dimS4
h ≥ dim Ŝ4

h − 6(E − E0) + σb,

where σb is the number of singular boundary vertices. Therefore

dimS4
h + 6(E − E0)− σb ≥ dim Ŝ4

h ≥ D(Ŝ4
h) = E + 4V − V0 + σi. (9.9)

Assume now that
dim∇·V3

h = dimQ2
h −K.

Using Theorem 9.2 and E − E0 = V − V0, we find
dimS4

h + 6(E − E0)− σb = E0 − (E − E0) + 3V0 + σ + 6(E − E0)− σb
= E0 + 3V0 + σi + 5(E − E0) = E0 + 3V + σi + 2(E − E0)
= E + 3V + σi + (E − E0) = E + 4V + σi − V0.

(9.10)

Combining (9.9) and (9.10) proves the following result.

Theorem 9.3. Suppose that Th is a triangulation satisfying E0 + 3V0 +σ ≥ E−E0, and suppose that
dim∇·V3

h = dimQ2
h −K

on this triangulation. If K = 0, the Strang dimension (9.1) is valid for Ŝ4
h: dim Ŝ4

h = D(Ŝ4
h). Moreover,

equality holds in (9.9), so the 6(E − E0)− σb constraints are nonredundant. If K > 0, then there are
K redundant constraints in (9.8) in addition to the ones at singular boundary vertices.

To complete the proof of Theorem 9.3, we need to verify the redundancy of constraints at singular
boundary vertices. This occurs because the second-order cross derivatives ∂ei∂ej are linearly dependent
at singular boundary vertices. For the case of a triangle with two boundary edges e1 and e2, the
vanishing of the nodal variables of type (1) and (2) on e1 and e2 already imply vanishing on both
edges, so necessarily ∂e1∂e2 is already zero.

For the case where two triangles meet at a singular boundary vertex ν, see Figure 9.2(a). Then e1
and e3 are parallel, and thus

∂e1∂e2φ(ν) = −∂e3∂e2φ(ν) (9.11)
for any C1 piecewise quartic φ. Thus setting one of them to zero sets the other; they are redundant.

For the case where three triangles meet at a singular boundary vertex ν, see Figure 9.2(b). Equa-
tion (9.11) still holds, and in addition e2 and e4 are parallel, and thus

∂e3∂e2φ(ν) = −∂e3∂e4φ(ν)
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Figure 9.2. (a) Singular boundary vertex where two triangles meet. (b) Singular
boundary vertex where three triangles meet.

for any C1 piecewise quartic φ. Thus
∂e1∂e2φ(ν) = ∂e3∂e4φ(ν),

and setting one of them to zero sets the other; they are redundant.
The arguments above mean that we can remove one degree of freedom per singular boundary vertex

and define a new constraint map C̃, where
C̃ : Ŝ4

h → R6(E−E0)−σb ,

and we have
S4
h =

{
v ∈ Ŝ4

h : C̃v = 0
}
. (9.12)

The number of spurious modes K is then the codiminsion of the image of C̃. This completes the proof
of Theorem 9.3.

Since Theorem 7.6 allows us to prove the inf-sup condition for quite general meshes, this (9.1)
for Ŝ4

h is correct for such meshes. In particular, if the hypothesis of Theorem 7.8 holds, then (9.1)
But more strikingly, when the number of spurious modes K for cubic Lagrange elements for Stokes
satisfies K > 0, there is a redundancy in the obvious constraints (9.12) defining second-order boundary
conditions for C1 piecewise quartics. Results of Qin show this can happen on well-behaved meshes.

9.3. Connection to Qin’s results

There is a connection between Qin’s results and dimension counting. Qin finds a spurious mode that
indicates that div V3

h 6= Q2
h on the right-traingle mesh in Figure 9.3. We conclude that the dimension

of the space S4
h of C1 quartics satisfying second-order boundary conditions on this mesh is at least one

larger than the dimension for this space given in Theorem 9.2: K ≥ 1. On the other hand, it is well
known [15, 17] that the Strang dimension (9.1) is correct on Type I triangulations without boundary
conditions. In view of (9.9), there is a further redundancy in the constraints (9.12) enforcing boundary
conditions. (It should be noted that Qin provesK = 1 for the Type I triangulation.) Unfortunately, the
dimension of splines in two dimensions satisfying boundary conditions has had only limited study [7, 3]
so far.
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Figure 9.3. The Type I regular mesh studied in [19, Chapter 6]
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