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Abstract. We consider a Preconditioned Overdamped Langevin algorithm that does not alter the invariant
distribution (up to controllable discretisation errors) and ask whether preconditioning improves the standard
model in terms of reducing the asymptotic variance and of accelerating convergence to equilibrium. We present
a detailed study of the dependence of the asymptotic variance on preconditioning in some elementary toy
models related to molecular simulation. Our theoretical results are supported by numerical simulations.
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1. Introduction

The problem of convergence to equilibrium for diffusion processes has attracted considerable attention
in recent years. Due to the significant computational cost associated with MCMC type algorithms it
is important to understand, and where possible accelerate, the convergence to equilibrium of systems
in statistical physics, materials science, biochemistry, machine learning and many other areas.

In such applications it is typically necessary to compute expectations of the form

µ(f) =
∫
RN

f(x)µ(dx) (1.1)

of an observable f with respect to a target probability distribution µ(dx) on RN , where µ is of the
form

µ(dx) = Z−1
µ e−ENdx,

where EN : RN → R is e.g. a potential energy and Z−1
µ the normalisation constant. Note that we have

absorbed temperature into EN . The usual difficulty is that the integration (1.1) cannot be performed
directly due to the high dimensionality of the problem and MCMC methods are instead employed.

Ill-conditioning of EN , which can be induced by a variety of mechanisms, but in particular high-
dimensionality (large N), is a common challenge to overcome in order to construct an efficient sampling
scheme. An attractive approach is to precondition the MCMC algorithm. The algorithm is transformed
by a well-chosen operator (the preconditioner) in a way that does not alter the invariant measure but
(hopefully) accelerates convergence.

The purpose of this paper is to explore to what extent (or, whether at all) preconditioning of
a Langevin-type algorithm helps to accelerate the computation of expectations. Our study is moti-
vated by recent advances such as the Riemannian Manifold MALA citegiro09cite, Stochastic Newton
Methods [22], non-reversible diffusions [7, 21], optimal scaling for Langevin algorithms [2, 30] and
affine-invariant sampler [14].
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All of these references present different variants of preconditioning or related modifications of
MCMC methods and result in an improved performance. Reviewing all these different approaches
would go beyond the scope of this introduction, however, we mention the Riemannian Manifold Monte
Carlo method [8], [34] as the main motivation for the present study. In this method, precondition-
ing is understood as performing MCMC on a Riemannian manifold defined via a “metric” P (x), the
preconditioner. A range of preconditioners, ideally the hessian ∇2EN (x) or a positive definite matrix
P (x) closely approximating the Hessian, are tested. In a broad range of examples (including, e.g.,
logistic regression, a stochastic volatility model, and an ODE inference example) it has been shown
in numerical tests that a well-chosen preconditioner improves both the mixing time as well as the
convergence of the probability density functions to the target measure, with speed-ups ranging from
moderate O(1) factors to orders of magnitude depending on the application.

Motivated by these promising results we applied analogous preconditioned sampling algorithms
to some model molecular systems, but did not always (rarely in fact) observe the speed-ups we ex-
pected. For instance, in Figure 1.1 we show the convergence of reconstructed free energy profiles from
metadynamics [19] simulations comparing the unpreconditioned and preconditioned dynamics using a
Hessian–based preconditioner with varying parameter sets. This type of preconditioner usually yields
at least an order of magnitude speed-up in typical geometry optimisation tasks, but fails to accelerate
the assembly of the free energy surface (see Appendix A.2 for the precise setup of the test). The ques-
tion naturally arises whether this failure is due to a lack of fine-tuning or due to a more fundamental
limitation.

Thus, to understand better these observations we will study some elementary analytical and numer-
ical examples, which capture some essential characteristics of typical molecular systems, but where
explicit results can still be obtained. The origin of the difficulty comes from the fact that it is highly
dependent not only on µ but also on the observable f whether preconditioning can achieve a signif-
icant (or, any) speed-up. We will demonstrate that for some typical observables f , even moderate
preconditioning can achieve significant speed-ups while for other, equally common, observables no
speed-up should be at all expected even if EN is highly ill-conditioned. Moreover, we will show that
the dimensionality (1D, 2D, 3D) of the molecular structure plays a crucial role.

While our discussion is primarily motivated by applications in molecular simulations, it should
straightforwardly adapt the arguments and findings to other application areas.

1.1. Langevin Algorithm

The most commonly employed algorithms in molecular simulation are based on discretising the
Langevin equation, but for the sake of simplicity we will focus on the overdamped Langevin equation,

dXt = −∇EN (Xt)dt+
√

2dWt, (1.2)

where Wt is a N -dimensional standard Brownian motion. Under mild technical conditions on EN and
Xt it is known that the dynamics (Xt)t≥0 is ergodic with respect to the measure µ (see [32]).

Discretising in time,
Xm+1 = Xm − δ∇EN (Xm) +

√
2δRm, (1.3)

where Rm ∼ N(0, IN×N ) and δ is a parameter quantifying the size of the discrete time increment (time-
step), we obtain a Markov chain with invariant measure µ̃, where typically µ̃− µ ∼ O(t−1/2) +O(δ).
Here, O(t−1/2) represents the statistical error due to the finite length of the simulation, while O(δ)
represents the bias due to time discretisation.

Adding metropolisation to (1.3) leads to the Metropolis Adjusted Langevin Algorithm (MALA). It
is well known that the measure µ is invariant for the MALA [31, 32]. In molecular simulation it is
common to assume that the bias in µ̃ is negligible compared to modelling and statistical errors and
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Figure 1.1. RMS errors of the reconstructed free energy surface profiles from meta-
dynamics simulations without (black dashed line) and with preconditioning (coloured
solid lines). Error bars represent one standard deviation based on 10 independent sim-
ulations. See A for the detailed setup.

therefore we will not consider metropolisation in the present paper. The resulting algorithm is called
the Unadjusted Langevin Algorithm (ULA).

As a matter of fact, we will argue in Section 2.4 that the issues we are addressing are largely
unrelated to the time-discretisation, hence we will focus on the continuous process (1.2) instead of the
Markov chain (1.3).

Thus, given an observable f ∈ L1(µ), we are interested in quantifying the convergence

εT (f) := 1
T

∫ T

0
f(Xt)dt→ µ(f) for µ-a.e X0. (1.4)

Under additional assumptions on µ and f , this convergence result is accompanied by a central limit
theorem which characterises the asymptotic distribution of the fluctuations, i.e.

√
t (εt(f)− µ(f)) D−→ N (0, σ2

f ), (1.5)

where σ2
f is known as the asymptotic variance for the observable f (see [6, 18]).

In Section 4 we will explicitly compute σ2
f for some simple energy functionals and observables,

which mimic typical objects of interest in molecular simulations and demonstrate that for some typical
observables, σf may be strongly dependent on the conditioning of EN , in particular on system size
N , while for others the dependence on N is negligible.

59



H. AlRachid, L. Mones, et al.

1.2. Preconditioned Langevin Algorithm

For a (fixed) preconditioner P ∈ RN×N , symmetric positive definite, we consider the preconditioned
Overdamped Langevin dynamics (P -Langevin),

dXP
t = −P−1∇EN (XP

t )dt+
√

2P−1/2dWt. (1.6)

The standard overdamped Langevin dynamics is recovered by taking P = I. It is in principle possible
to allow P = P (X) but for simplicity we will not consider this in the present work. Note that, if P is
fixed then the coordinate transform Z = P 1/2X allows us to easily lift results from (1.2) to (1.6); see
Section 2.1 for more details.

The preconditioner does not affect the invariance property of the diffusion process, i.e., the target
measure µ is still invariant for the P-Langevin process (1.6). However, it can affect the convergence
of the process to the invariant measure. That is, for XP

t ∼ µPt = ϕPt dx, we will characterise in
Section 3 the rate of convergence of ϕPt to ϕ∞ (ϕ∞ denotes the density of µ) and demonstrate how
preconditioning improves this rate.

Moreover, we also obtain

εPT (f) := 1
T

∫ T

0
f(XP

t )dt→ µ(f), for µ-a.e X0. (1.7)

and analogously to the standard Langevin dynamics, a central limit theorem characterizes the asymp-
totic distribution of the fluctuations,

√
t
(
εPt (f)− µ(f)

)
D−→ N (0, σ2

f,P ), (1.8)

where σ2
f,P is the asymptotic variance of f under P -Langevin dynamics.

The main aim of our paper is to present several simplified but still realistic examples at which
we can observe whether or not preconditioning accelerates sampling in the sense that it achieves a
reduction in the asymptotic variance, i.e., σ2

f,P � σ2
f .

Outline

The rest of the paper is organised as follows. In Section 2 we present the model Hamiltonians, EN , to
motivate some key assumptions that we make throughout our analysis. We also recall the coordinate
transform that we use to reduce P -Langevin to standard Langevin, and we explain why the time-
discretisation is a negligible component and can therefore be ignored for our analysis.

In Section 3 we show a long time convergence result to the invariant measure in the P -Langevin
process. For some quadratic model Hamiltonians we can then precisely quantify the speed-up afforded
through preconditioning.

Section 4 is devoted to describe how the central limit theorem (1.8) arises from the solution of the
Poisson equation associated with the generator of the dynamics. This is then followed by a detailed
analysis of σ2

f and σ2
f,P for some quadratic model Hamiltonians and observables.

In Section 5 we show a numerical application to illustrate the reduction in the asymptotic variance.

2. Preliminaries

2.1. Coordinate transformation

As mentioned above, a convenience afforded by our assumption that the preconditioner P is constant,
is that a simple coordinate transformation can transform the P-Langevin dynamics (1.6) into standard
Langevin dynamics (1.2) by taking Zt = P 1/2Xt. We will now briefly review this transformation.
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First, let us introduce the new coordinates and associated energy

z := P 1/2x and EPN (z) := EN (x) = EN (P−1/2z).
The standard overdamped Langevin dynamics for z then reads

dZt = −∇zEN (P−1/2Zt)dt+
√

2dWt

= −P−1/2∇xEN (P−1/2Zt) +
√

2dWt.
(2.1)

Upon multiplying the equation with P−1/2 we clearly recover (1.6); that is, (2.1) and (1.6) are indeed
equivalent. In the new coordinate system the infinitesimal generator operator of the diffusion process
Zt is given by:

LP = −∇zEPN (z) · ∇z + ∆z. (2.2)
In terms of estimating observables, we obtain that

εPT (f) = 1
T

∫ T

0
f(XP

t )dt = 1
T

∫ T

0
f(P−1/2Zt)dt. (2.3)

The key observation in analysing how preconditioning changes the properties of EPN and hence of
the Langevin dynamics is that

∇2
zE

P
N (z) = P−1/2∇2

xEN (x)P−1/2.

In the following, if H and P are symmetric positive definite, we will write HP := P−1/2HP−1/2. We
also observe, for future reference, that the spectrum of HP satisfies

inf σ(HP ) = inf
vTPv=1

vTHv and supσ(HP ) = sup
vTPv=1

vTHv.

2.2. Model Hamiltonians

Let x ∈ RN describe a system of N/d particles at positions (yα)N/dα=1 ⊂ Rd, then a simple model for
potential energy is given by

EN (y) =
N/d∑
α=1

∑
β 6=α

φ(|yα − yβ|),

where φ is e.g. a Lennard-Jones type potential, φ(r) = r−12 − 2r−6. Such systems exhibit complex
meta-stable behaviour, which is an issue to be entirely separated from the ill-conditioning due to high
dimension.

A much simpler situation is a mass-spring model, where u = (uα) ∈ RN , with uα e.g. denoting
out-of-plane displacement of a particle, and particle connectivity described by an equivalence relation
α ∼ β. Then the energy can be written as

EN (u) =
∑
α∼β

φαβ(uα − uβ), (2.4)

where φαβ could be taken as strictly convex to avoid meta-stability. We will use systems of this kind
in our numerical experiments.

In order to admit explicit analytical calculations we simplify further EN by expanding it about an
equilibrium (e.g., at u = 0) which then yields a quadratic energy

EN (u) =
∑
α∼β

kαβ
2 |uα − uβ|

2 =: 1
2u

THu. (2.5)

The spring constants kαβ could model how the interaction between different atomic species / envi-
ronments differs. We assume throughout that there exist bounds k, k̄ on the spring constants and a
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bound n̄ on the number of neighbours, which are both independent of N . More precisely, we assume
that

0 < k ≤ kαβ ≤ k̄ and #{β : α ∼ β} ≤ n̄. (2.6)
Note that we have chosen a scaling of the energies where increasing system size N → ∞ does not

yield a continuum limit but rather an infinite lattice system. The consequence is that if we have a
bound in the spring constants 0 < kαβ ≤ k̄, and each atom α is connected with at most n̄ neighbours,
then it follows readily that

|EN (u)| . n̄k̄|u|2 or, equivalently ‖H‖ . n̄k̄, (2.7)
where ‖H‖ denotes the `2 → `2 operator norm.

To be even more specific let us assume that EN is a d-dimensional lattice model, i.e., each atom
index α corresponds to a coordinate `α ∈ {0, . . . ,M + 1}d and α ∼ β if and only if |`α − `β| = 1, that
is

EN (u) :=
M∑

α1=0
· · ·

M∑
αd=0

d∑
j=1

kα,α+ej
∣∣u(α+ ej)− u(α)

∣∣2. (2.8)

By clamping the boundary sites at u = 0, we obtain N = Md free lattice sites. In this case, H is
a (possibly inhomogeneous) discrete elliptic operator and employing (2.6) and using the min-max
characterisation of eigenvalues (see, e.g., Sect XIII.1 in ReedSimon) to compare H to the discrete
Laplacian for which the spectrum can be computed explicitly [15], we can readily show that there
exist constants c0, c1 such that

c0(j/N)2/d ≤ λj ≤ c1(j/N)2/d, (2.9)
where σ(H) = {λj | j = 1, . . . , N} is the ordered spectrum of H. This dimension-dependence of the
eigenvalue distribution will be important later on.

2.3. A model preconditioner

Although for the simple model problems described in Section 2.2 it is straightforward to compute
Hessians and use those as preconditioners, this would remove us from the practice of molecular sim-
ulations where Hessians are not normally computable. Instead, we will consider preconditioners that
only roughly capture the structure of the energy functionals and their Hessians.

Following [29], we will use a preconditioner of the form

vTPv = c
∑
α∼β
|vα − vβ|2, (2.10)

where c is a free parameter to be fitted to the model. The idea is that it captures the connectivity
information but not the fine details of the Hessian. For optimisation and saddle search, preconditioners
of this kind have been shown to yield considerable speed-ups even for much more complex electronic
structure type models [29].

For example, considering EN given by (2.5) with hessian H := ∇2EN and choosing c := 1
2(k + k̄),

we observe that
2k
k̄+kv

TPv ≤ vTHv ≤ 2k̄
k̄+kv

TPv, (2.11)
which in particular implies that

κ
(
HP

)
≤ k̄

k
.

Here, κ(A) := ‖A‖‖A−1‖ denotes the condition number of the matrix A.
That is, provided the inhomogeneity k̄/k is not too severe, then the preconditioned energy landscape

has only very moderate conditioning, independent of N , while typically κ(∇2E)→∞ as N →∞, with
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a rate depending on the connectivity. For instance, for a lattice model (2.9) implies that κ(∇2EN ) ∼
N2/d.

2.4. Time Discretisation

To measure the cost/accuracy ratio of a practical sampling algorithm based on the Langevin process
we need to account also for the time-discretisation,

Xn+1 = Xn − δP−1∇EN (Xn) +
√

2δP−1/2Rn, (2.12)
where Rn ∼ N(0, IN×N ).

It is tempting to assume that one advantage afforded by preconditioning is to take larger time-steps.
As we show in the following, this is a matter of scale, thus justifying our choice to focus purely on the
time-continuous P-Langevin dynamics.

In the scaling that we have chosen in the model problems of Section 2.2, both the Hessians H
and preconditioned Hessians HP are bounded operators (on `2), independent of system size N . Thus,
the time-steps have similar restrictions for the preconditioned and unpreconditioned Langevin pro-
cesses [10]. More precisely, in the quadratic model problem (2.5) we may assume k̄ = 1 without
loss of generality. Then, using the model preconditioner (2.10) with c = k̄ = 1, say, we have that
supσ(H) = supσ(HP ).

Proposition 2.1. Suppose that EN (x) = 1
2x

THx and P ∈ RN×N with H and P both positive definite.
Suppose further that δ2 |P

−1H| < 1. Then the invariant measure for (2.12) is Gaussian with covariance
matrix

CPδ =
(
I − δ

2P
−1H

)−1
H−1.

Proof. See Section 6.1.

It follows that the error in the covariance operator is O(δ) with constant independence of N , and
independent of the choice of preconditioner. Indeed, even with an “optimal” preconditioner P = H,
one would not obtain an improvement in the bias: if there exist eigenmodes Hv = λv with λ � 1,
then

|CHδ v − Cv| =
∣∣(1− δ

2)−1 − 1
∣∣ |Cv|,

whereas |CIδ v − Cv| =
∣∣(1− λδ

2 )−1 − 1
∣∣|Cv|,

that is,
|CHδ v − Cv|
|CIδ v − Cv|

∼ λ−1 for δ, λ sufficiently small,

where C = H−1 is the covariance operator of the unbiased measure. Therefore, for the remainder of
the paper, we will not consider the effect of preconditioning on time-discretisation but only focus on
the speed of convergence to equilibrium in the undiscretised (P-)Langevin dynamics. We only stress
that this point of view is only valid as long as ‖H‖ and ‖HP ‖ are comparable.

3. Exponential convergence to the invariant measure

In this section, we prove exponential convergence to the equilibrium. For the sake of simplicity we
represent the probability density functions µ and µPt by their respective densities ϕ∞ and ϕPt . Under
the transformation z = P 1/2x, we obtain transformed probability densities

ψ∞(z) := (detP )−1/2ϕ∞(P−1/2z) and ψPt (z) := (detP )−1/2ϕPt (P−1/2z).
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Their evolution is described by the Fokker–Planck equation

∂tψ
P
t = L∗PψPt := ∇z ·

(
∇zEN (P−1/2z)ψPt +∇zψPt

)
, (3.1)

where L∗P is the dual operator of LP (for the L2(dz)−scalar product) defined in (2.2).
The proof of the following theorem is inspired from [21] or A.19 in Villani.

Theorem 3.1. Suppose that EN ∈ C2(RN ), such that 1
2 |∇EN (x)|2 −∆EN (x)→ +∞ as |x| → +∞.

Then there exists λP > 0 such that for all initial conditions ψ0 ∈ L2(ϕ−1
∞ ), and for all times t ≥ 0

‖ψPt − ψ∞‖2L2(ψ−1
∞ ) ≤ e−λP t‖ψ0 − ψ∞‖2L2(ψ−1

∞ ), or, equivalently,

‖ϕPt − ϕ∞‖2L2(ϕ−1
∞ ) ≤ e−λP t‖ϕ0 − ϕ∞‖2L2(ϕ−1

∞ ),

||.||L2(ψ−1
∞ ) denotes the norm in L2(RN , ψ−1

∞ dz), namely ||f ||2
L2(ψ−1

∞ ) =
∫
RN f

2(z)ψ−1
∞ dz. The exponent

λP is the spectral gap of the Fokker–Planck operator L∗P defined in (3.1) (i.e., the smallest non-zero
eigenvalue of −L∗P ).

Proof. See Section 6.2.

We now consider the quadratic case, EN (x) = 1
2x

THx with H symmetric and positive definite. In
this case, we have the following characterisation of the spectrum of L∗P and hence of λP . The proof is
based on [12, 21, 28].

Theorem 3.2. The spectrum of the operator L∗P is

σ(L∗P ) = σ(LP ) =
{
−
∑
λ∈σ(HP )kλλ : kλ ∈ N

}
. (3.2)

Proof. See Section 6.4.

An immediate consequence of Theorem 3.2 is that
λP = inf σ(HP ) \ {0}, (3.3)

in other words, the smallest non-zero generalised eigenvalue of
Hv = λPv.

Returning to the quadratic model Hamiltonians and model preconditioners introduced in Sec-
tions 2.2 and 2.3, assume that min σ(H) ∼ N−s (which is consistent with (2.9)), while min σ(HP ) ∼ 1,
then we obtain that λI ∼ N−s with λP ∼ 1. This result should give us confidence in the value of
preconditioning.

Remark 3.3. The preconditioning ideas and results presented in Sections 2 and 3 are similar to the
Brascamp–Lieb inequality [4]. In some sense, this inequality claims that a good preconditioner is the
Hessian.

Precisely [20], if EN is strictly convex, for any function f ∈ L2(e−EN ),∫ [
f −

∫
fe−EN

]2
e−EN ≤

∫
∇f(∇2EN )−1 · ∇fe−EN ,

where we assume here that the normalization
∫

e−EN = 1. This means that if one considers the
Fokker–Planck equation

∂tψ = div[(∇2EN )−1e−EN∇(ψeEN )],
which is associated to the following overdamped Langevin dynamics [34]:

dXt = −(∇2EN )−1∇EN (Xt)dt+ div[(∇2EN )−1](Xt)dt+
√

2(∇2EN )−1(Xt)dWt,
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then, if EN is strictly convex, we have

1
2
d

dt

∫ (
ψ

e−EN − 1
)2

e−EN = −
∫

(∇2EN )−1∇
(

ψ

e−EN

)
· ∇

(
ψ

e−EN

)
e−EN

≤
∫ (

ψ

e−EN − 1
)2

e−EN .

And thus ∫ (
ψ

e−EN − 1
)2

e−EN ≤
[∫ (

ψ0
e−EN − 1

)2
e−EN

]
e−2t,

whatever the potential EN is. It is in some sense “universal”. For example, it does not depend on the
temperature: if we multiply EN by a constant β (inverse of the temperature) it remains the same,
whereas understanding the dependency of the spectral gap on the temperature is tricky in general.

4. Analysis of the asymptotic variance

In this section we present sufficient conditions under which the estimator

εPT (f) = 1
T

∫ T

0
f(XP

t )dt = 1
T

∫ T

0
f(P−1/2Zt)dt

satisfies a central limit theorem of the form (1.8) and we characterise the associated asymptotic
variance.

4.1. Generalities

The fundamental requirements to prove the central limit theorem is establishing the well-posedness of
the Poisson equation

− LPφ(z) = f(P−1/2z)− µ(f), µ(φ) = 0, (4.1)
for all bounded and continuous functions f : RN → R, where LP is defined by (2.2), and obtaining
estimates on the growth of the unique solution φ. Recall that we shall assume that µ admits a smooth,
strictly positive density denoted by ψ∞(z), such that

∫
RN ψ∞(z)dz = 1 and the SDE (2.1) has a unique

strong solution.
Referring to results in [9, 24] we suppose that the process Zt admits a Lyapunov function (see the

Definition 6.1 in Section 6.5), which is sufficient to ensure the geometric ergodicity of Zt (see [16, 23]).
In terms of the potential energy EN and the preconditioner P , we require that there exists β ∈ (0, 1)
such that

lim
|z|→+∞

inf
[
(1− β)|∇EPN (z)|2 + ∆EPN (z)

]
> 0. (4.2)

It is straightforward to check that this condition holds whenever EN is strongly convex and in particular
if it is of the form (2.5).

If condition (4.2) holds, then the process Zt will be geometrically ergodic. More specifically, the law
of the process Zt started from a point z ∈ RN will converge exponentially fast in the total-variation
norm to the equilibrium distribution µ (cf. (1.7)).

Assuming (4.2), we also obtain the following well-posedness result for the Poisson equation (4.1).

Theorem 4.1. Suppose that (4.2) holds, then there exists c > 0, such that for any measurable observ-
able f satisfying |f |2 ≤ e−βEPN (z), the Poisson equation (4.1) admits a unique strong solution satisfying
the bound |φ(z)|2 ≤ ce−βEPN (z). In particular, φ(P 1/2x) ∈ L2(µ).
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Proof. See Section 6.5.

The technique of using a Poisson equation to obtain a central limit theorem for an additive functional
of a Markov process is widely known (see e.g. [3]). For linear and quadratic observables, we can in fact
produce an analytic solution to this Poisson problem; see Section 4.2 below.

Theorem 4.2. Under the conditions of Theorem 4.1, there exists a constant 0 < σ2
f,P < ∞ such

that the asymptotic distribution of the fluctuations of εPt (f) about µ(f) are given by the central limit
theorem √

t
(
εPt (f)− µ(f)

)
D−→ N (0, σ2

f,P ), as t→ +∞, (4.3)

where σ2
f,P (the asymptotic variance for the observable f) is given by

σ2
f,P = 2

∫ ∣∣∇zφ(z)
∣∣2µP (dz)

= 2
∫ ∣∣∇zφ(P 1/2x)

∣∣2µ(dx),
(4.4)

where µP (dz) = ψ∞(z)dz.

Proof. See Section 6.6.

4.2. Explicit solution for linear observables

In this section we exhibit explicit solutions φ of the Poisson equation (4.1) when EN is quadratic and
f is linear, and compute the associated asymptotic variance σ2

f,P . This simplest possible case is of
course well-known but we summarise it nevertheless to prepare for more interesting cases.

Suppose, therefore, that

P = I, EN (x) = 1
2x

THx and f(x) = v · x,

where v ∈ RN . From symmetry it follows that µ(f) = 0, hence the Poisson equation (4.1) becomes

Hx · ∇φ(x)−∆φ(x) = v · x. (4.5)

Seeking a solution of the form φ(x) = d · x with d ∈ RN , we obtain d = H−1v, i.e.,

φ(x) = x ·H−1v,

and in particular,

σ2
f = σ2

f,I = 2
∫
|H−1v|2µ(dx) = 2|H−1v|2.

In particular, choosing v to be a normalised eigenmode of H with associated eigenvalue λ, we obtain
σ2
f = 2λ−2.
Focusing specifically on a d-dimensional lattice model, we know from (2.9) that min σ(H) ∼ N−2/d

while max σ(H) ∼ 1. Hence, it follows that σ2
f is moderate for the high-frequency eigenmodes, but

large for the observables corresponding to low-frequency eigenmodes.
Next, we turn to the preconditioned dynamics. In this case we effectively replace H with HP =

P−1/2HP−1/2 and v with P−1/2v and thus obtain

σ2
f,P = 2

∫
|H−1

P P−1/2v|2µ(dx) = 2|P 1/2H−1v|2 =: 2|H−1v|2P . (4.6)
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If we assume that c0 = min σ(HP ), c1 = max σ(HP ), then a simple rewrite yields

2c0v
TH−1v ≤ σ2

f,P ≤ 2c1v
TH−1v. (4.7)

Comparing with σ2
f = 2vTH−2v and recalling our standing assumption (2.11) that c0 ∼ 1, c1 ∼ 1 (the

spectrum is bounded above and below independently of N), we conclude that preconditioning does
not entirely remove ill-conditioning but it is (potentially) diminished.

More concretely, for a d-dimensional lattice system, we obtain that

N−2/d .
σ2
f,P

σ2
f

. 1,

and both bounds are attained for specific observables. We conclude that preconditioned Langevin can
be significantly more efficient than standard Langevin (low-frequency observables) but that it will be
comparable in efficiency for high-frequency observables.

Intuitively, low-frequency observables are “macroscopic” in nature and include e.g. energy, average
bond-length etc., while high-frequency observables include in particular single bonds, bond angles and
dihedral angles (in a large molecule) or a bond-length near a crack-tip. In the next sections, we consider
three toy models mimicking “realistic” observables of these kinds, occurring in real-world simulations,
to further substantiate our remarks.

4.3. Example 1: Energy per particle

We now consider EN (x) = 1
2x

THx and f(x) = N−1EN (x). A straightforward computation yields

〈x ·Bx〉µ = Tr(H−1B) for B ∈ RN×N , (4.8)

which in particular implies that

µ(f) = 1
N

∫
EN (x)e−EN (x)∫

e−EN (x) = TrI
2N = 1

2 .

Thus, the Poisson equation becomes

Hx · ∇φ(x)−∆φ(x) = 1
2N x

THx− 1
2

We seek a solution of the form φ(x) = 1
2x

TBx+ l · x−TrB (to ensure that µ(φ) = 0), then this yields
the equation

Hx · (Bx+ l)− TrB = 1
2N x

THx− 1
2 .

This is satisfied for B = 1
N I, l = 0, hence φ(x) = 1

2N |x|
2 − 1

2 .
We can now compute the asymptotic variance as

σ2
f = σ2

f,I = 2
∫ ∣∣ 1

N x
∣∣2µ(dx) = 2

N2 TrH−1.

Repeating the same argument in transformed coordinates z = P 1/2x, we also obtain the asymptotic
variance of the energy for the preconditioned Langevin dynamics:

σ2
f,P = 2

N2 TrH−1
P = 2

N2 Tr
(
H−1P

)
.

Let us now focus on a lattice model, where we have (2.9). Then we obtain that

1
2σ

2
f ≈ N−2

N∑
j=1

(j/N)−2/d ≈ N−1
∫ 1

1/N
s−2/dds ≈


1, d = 1,
N−1 logN, d = 2,
N−1, d = 3,
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while, clearly, 1
2σ

2
f,P ≈ N−1. In summary,

σ2
f

σ2
f,P

≈


N, d = 1,
logN, d = 2,
1, d = 3;

that is, preconditioning only gives a significant speed-up in one-dimensional lattices but not in two-
or three-dimensional lattices.

4.4. Example 2: Bond-length

In our second example we observe a single bond in the crystal or molecule. That is, we still use
EN (x) = 1

2x
THx but the observable is now given by

f(x) = xi − xj for some fixed bond i ∼ j.

This is a linear observable, hence a special case of the discussion in Section 4.2. Hence, we obtain

σ2
f = 2|H−1l|2 where ln =


1, n = i

−1, n = j,

0, otherwise.

In order to estimate σ2
f further we consider again the d-dimensional lattice model (2.8) and P given

by (2.10). For d ≥ 2, since P is a homogeneous discrete elliptic operator, we know from [27] that∣∣[P−1]ni − [P−1]nj
∣∣ ≤ C(1 + |n− i|)−d,

where we note that i, j are now neighbouring lattice sites; i.e., [P−1]ni − [P−1]nj denotes a discrete
gradient of the lattice Green’s function.

Therefore, we obtain that

σ2
f = 2|H−1l|2 . 2|P−1l|2 . 2

∑
n∈Zd

(1 + |n− i|)−2d <∞; (4.9)

that is, σ2
f has an upper bound that is independent of N . A lower bound follows simply from the fact

that ‖H‖ ≤ 1 and hence vTH−1v ≥ |v|2, which implies

σ2
f ≥ |l|2 = 1.

To obtain bounds on σ2
f,P , we use (4.7) to estimate

2c0 = 2c0|l|2 ≤ σ2
f,P ≤ 2c1l

TH−1 ≤ 2c1|l||H−1l|,

and we have already shown in (4.9) that this is bounded above, independently of N .
In summary, we obtain that

σ2
f

σ2
f,P

. 1 for d ≥ 2,

that is, we expect no substantial (if any) speed-up for the bond-length observable from preconditioning
for d ≥ 2.

By contrast, for d = 1, the system P−1l can be solved explicitly, and in this case one obtains σ2
f ∼ N

as N →∞ (specifically, |P−1l|2 = N/12), that is,
σ2
f

σ2
f,P

∼ N for d = 1.
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Thus, we conclude that preconditioning helps to accelerate the computation of the bond-length
observable only for one-dimensional structures. The intuitive explanation of this effect is that far-
away regions of space have little influence on a single bond and hence only local equilibration matters.
The difference in 1D is that elastic interaction is naturally more long-ranged than in dimension d > 1.

4.5. Example 3: Umbrella sampling

Our final example is inspired by a technique called umbrella sampling [17]. Given a potential energy
EN (x) and a reaction coordinate ξ(x), we wish to compute

A(ξ0) := − log
∫
e−EN (x)δ(ξ(x)− ξ0) dx.

Umbrella sampling achieves this by placing a restraint on the potential energy,

EN,K(x) := EN (x) + K
2
(
ξ(x)− ξ0

)2
,

for some K > 0, ξ0 ∈ R. Let µK denote the corresponding equilibrium measure, then it can be
shown [17] that, for K large,

∂A

∂ξ

∣∣∣
ξ=ξ̄0

≈ −K(ξ̄0 − ξ0) where ξ̄0 = 〈ξ〉µK .

Thus, ∂ξA and hence A can be reconstructed in this way. More sophisticated variations of the idea
exist of course, but for the sake of simplicity of presentation we will focus on this particularly simple
variant.

To construct an analytically accessible toy problem mimicking umbrella sampling we consider again
a quadratic energy EN (x) = 1

2x
THx and a linear reaction coordinate ξ(x) := l ·x where, for simplicity,

we assume that |l| = 1 (for |l| = O(1), the argument is analogous). The restrained potential with
penalty parameter K > 0 is then given by

EN,K(x) = 1
2x

THx+ K
2 (ξ(x)− ξ0)2,

for some ξ0 ∈ R, while the observable from which we can reconstruct the mean force is simply
f(x) = K

(
l · x− ξ0

)
.

We are again in the context of Section 4.2 and therefore obtain

σ2
f = 2K2∣∣H−1

K l
∣∣2,

where
HK = ∇2EN,K = H +KllT .

The Sherman–Morrison formula yields

H−1
K l =

(
H−1 − KH−1llTH−1

1 +KlTH−1l

)
l = H−1l

1 +KlTH−1l
, (4.10)

and hence,

σ2
f = 2K2∣∣H−1

K l
∣∣2 = 2K2|H−1l|2

(1 +KlTH−1l)2 .

Since our focus in the present example is the ill-conditioning induced by large K rather than ill-
conditioning induced by H (e.g. through system size N), let us assume that max σ(H) = 1 (as always)
while min σ(H) ≥ c0, for some moderate constant c0. This would, e.g., be the typical situation for a
small molecule, or if we preconditioned H but without accounting for the umbrella. We then obtain

c2
0 ≤

2K2c2
0

(1 +K)2 ≤ σ
2
f ≤

2K2

(1 +Kc0)2 ≤
2
c2

0
;
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that is, 1
2σ

2
f ∼ 1 as K →∞.

By contrast, suppose now that we choose a preconditioner

PK := P +KllT ,

where P is a preconditioner for H satisfying cP0 v
TPv ≤ vTHv ≤ vTPv. Then a straightforward

calculation yields

cP0 ≤
vTHv +K(l · v)2

vTPv +K(l · v)2 = vTHKv

vTPKv
≤ 1.

It follows from (4.7) that
σ2
f,P = 2K2∣∣H−1

K l
∣∣2
PK
≈ 2K2|H−1/2

K l|2,

where ≈ now indicates upper and lower bounds with constants that are independent of K.
Using (4.10) we obtain

σ2
f,P ≈ 2K2 lTH−1l

1 +KlTH−1l
∼ K as K →∞.

We can therefore conclude that
σ2
f,P

σ2
f

≈ (lTH−1l)(1 +KlTH−1l)
|H−1l|2

∼ 1 +K as K →∞;

that is, preconditioning the umbrella actually achieves a significant deterioration of the asymptotic
variance and thus the P -Langevin dynamics actually becomes less efficient than the standard Langevin
dynamics. However note the following crucial remark:

Remark 4.3 (Step-sizes revisited). The surprising result of the present section does not in fact fully
fall within our starting assumptions. While ‖H‖ = 1, ‖HK‖ is in fact of order O(1 +K) which means
that the time-step for the discretisation of the Langevin equation should be of order O(K−1), which
exactly balances the lower mixing of the preconditioned dynamics and make the two schemes again
comparable. Indeed, in our computational examples we will need to choose ∆t = O(K−1) to prevent
instability.

In practice, the restraint parameter K is chosen of the same order of magnitude of the stiffest bond
in a molecule, while the reaction coordinate will normally be a function of the softest bonds and hence
it would create no additional time-step restriction. In such a situation, it is indeed preferable to not
precondition the restraint.

However, we emphasise again that the interaction between preconditioning and time-stepping is an
issue that we do not properly address in the present work and which will require further attention in
the future.

5. Numerical Tests

We conclude our discussion by demonstrating the extension of our explicit computations to a mildly
non-linear lattice model. As potential energy EMd : R{1,...,M}d → R, we choose

EN (u) :=
M∑

α1=0
· · ·

M∑
αd=0

d∑
j=1

φ
(

1√
d

(
u(α+ ej)− u(α)

))
,

where u(α) := 0 if any αj ∈ {0,M + 1}, and with convex nearest-neighbour pair potential

φ(r) = 1
8
(
r2 + sin(r)2).
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Upon choosing an arbitrary linear labelling of indices α ∈ {1, . . . ,M}d, this is a special case of (2.4).
As preconditioner we choose (2.10), which we can also write as

〈Pv, v〉 = 1
4d

M∑
α1=0

· · ·
M∑

αd=0

d∑
j=1
|u(α+ ej)− u(α)|2.

The occurrence of d in the definitions of EN and P ensures that ‖∇EN‖ ≈ ‖P‖ ≈ 1; moreover, since
φ is strictly convex, we have that cond((∇EN (x))P ) is bounded above independently of N ; cf. (2.11).

For all simulations (with small modifications for the umbrella sampling example) we choose

δ = 0.1, Nsteps = 105, Nruns = 400.

We then use a Cholesky factorisation to compute P , i.e. P = LLT , followed by

XP
n+1 = XP

n − δP−1∇EN (XP
N ) +

√
2δL−TRn, for n = 1, . . . , Nsteps,

where Rn ∼ N(0, I)N . The estimate of the observable value is then given by f̄ = N−1
steps

∑Nsteps
n=1 f(XP

n ).
We compute Nruns trajectories in order to estimate the asymptotic variance from Nruns independent
samples of f̄ .

For the umbrella sampling test, we choose ξ(x) := l · x to be the bond-length observable again
with ξ0 = 0.33. The modification to the energy and observable is then as described in Section 4.5.
With δ = 0.1, the discretised Langevin dynamics turns out to be unstable, hence we had to choose
δK = 0.1/K instead. To account for this (see also Remark 4.3), we study Kσ2

f instead of σ2
f in our

tests. We perform the umbrella sampling test only for d = 2, N = 82, since we focus here on the
magnitude on the restraint parameter K rather than the system size.

The results of the simulations are shown in table 5.1. The numbers closely match the analytical
predictions of Sections 4.3, 4.4 and 4.5. To conclude this discussion we only remark that we did not
fine-tune step-sizes, which means one could likely make small improvements to both the preconditioned
and unpreconditioned processes. However, we believe that the trends across dimension, system size
and restraint parameter are reliable.

In particular, we stress that even though the preconditioned variants often have a smaller asymptotic
variance, often (in particular for d = 3) this improvement is only by a moderate constant factor.
Because only the trends are reliable indicators in these tests only a successive improvement with
increasing N or K (e.g. as in the d = 1 tests) can be considered a success for the preconditioned
algorithm.

Conclusion

In this paper we strived to develop an intuition what the effect of preconditioning has on molecular
simulations. The results are very mixed: it is clear that preconditioning accelerates convergence of the
probability density functions to equilibrium (see Theorem 3.1 as well as the discussion in Section 4.2),
and this necessarily implies accelerated convergence for some observables. However, for many concrete
observables of practical importance little (if any) benefit can be gained. This was a surprising outcome
for us and indicates that alternative avenues need to be explored on how a priori information about
the analytical structure of configuration space should be exploited in molecular simulation.

We emphasize again that our (partially negative) conclusion, contrary to much of the existing
literature, is due to the fact that we test the convergence of specific observables. Moreover, we stress
that we have only performed a limited set of tests on highly simplified toy models and a limited set
of observables, while more realistic models may exhibit many features that we neglected.

71



H. AlRachid, L. Mones, et al.

Asymptotic Variance: Energy
d = 1 d = 2 d = 3

N
1
d σ2

f σ2
f,P N

1
d σ2

f σ2
f,P N

1
d σ2

f σ2
f,P

8 3.7e-01 6.4e-02 4 1.1e-01 4.4e-02 4 2.8e-02 9.8e-03
16 3.6e-01 3.7e-02 8 3.2e-02 9.3e-03 6 8.0e-03 3.5e-03
32 3.0e-01 1.8e-02 16 1.0e-02 2.3e-03 9 2.3e-03 9.4e-04
128 1.7e-01 4.5e-03 32 2.8e-03 5.4e-04 13 7.9e-04 3.0e-04

Asymptotic Variance: Bond-length
d = 1 d = 2 d = 3

N
1
d σ2

f σ2
f,P N

1
d σ2

f σ2
f,P N

1
d σ2

f σ2
f,P

8 2.4e+01 7.4e+00 4 3.2e+01 8.5e+00 4 1.9e+01 7.5e+00
16 4.2e+01 7.2e+00 8 5.4e+01 9.5e+00 6 1.8e+01 7.6e+00
32 7.6e+01 7.4e+00 16 7.2e+01 1.1e+01 9 1.9e+01 7.5e+00
128 2.8e+02 7.0e+00 32 1.1e+02 1.1e+01 13 2.2e+01 7.7e+00

Asymptotic Variance: Umbrella Sampling
d = 2, N1/2 = 8

K Kσ2
f σ2

f,P

10 1.6e+01 1.8e+01
20 3.5e+01 4.0e+01
40 6.7e+01 7.7e+01
80 1.3e+02 1.8e+02

Table 5.1. Numerically estimated asymptotic variances of the energy observable (Sec-
tion 4.3), the bond-length observable (Section 4.4) and the restraint observable occur-
ring in umbrella sampling (Section 4.5). The nonlinear potential energy used in these
tests is described in Section 5. All results match the analytical predictions of Sec-
tions 4.3, 4.4 and 4.5.

6. Proofs

6.1. Proof of Proposition 2.1

Proof. The covariance of the invariant measure associated to the dynamics (2.12) is given by the
following identity:

CPδ = (I − δP−1H)CPδ (I − δHP−1) + 2δP−1

CPδ = CPδ − δP−1HCPδ − δCPδ HP−1 + δ2P−1HCPδ HP
−1 + 2δP−1

P−1HCPδ + CPδ HP
−1 = 2P−1 + δP−1HCPδ HP

−1.

Expanding CPδ , we have
CPδ ∼ C0 + δC1 + δ2C2 +O(δ3),

then one gets
P−1HC0 + C0HP

−1 = 2P−1 ⇒ C0 = H−1

P−1HC1 + C1HP
−1 = P−1HP−1 ⇒ C1 = 1

2P
−1

P−1HC2 + C2HP
−1 = 1

2P
−1HP−1HP−1 ⇒ C2 = 1

4P
−1HP−1.
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Proceeding by induction, one can therefore obtain:
∀k ∈ N, Ck = 2−k(P−1H)kH−1.

Therefore CPδ can be rewritten as:

CPδ =
+∞∑
k=0

(
δ
2P
−1H

)k
H−1.

Indeed, the sum
∑
k≥0

Ck converges since δ
2 |P

−1H| < 1. The covariance operator be can rewritten as

CPδ =
( ∞∑
k=0

(
δ
2P
−1H

)k)
H−1

=
(
I − δ

2P
−1H

)−1
H−1

= (H − δ
2HP

−1H)−1,

which concludes the proof.

6.2. Proof of Theorem 3.1

Proof. Under the assumptions on the potential EN , see A.19 in [33], the density ψ∞ satisfies a
Poincaré inequality: there exists λP > 0 such that for all probability density functions φ, we have:∫

RN

∣∣∣∣ φψ∞ − 1
∣∣∣∣2 ψ∞dz ≤ 1

λP

∫
RN

∣∣∣∣∇( φ

ψ∞

)∣∣∣∣2 ψ∞dz. (6.1)

The optimal parameter λP in (6.1) is the opposite of the smallest (in absolute value) non-zero eigen-
value of the Fokker-Planck operator L∗P , which is self-adjoint in L2(RN , ψ−1

∞ dx). Thus the exponent
λP is the spectral gap of L∗P .
If ψPt is a solution of (3.1), therefore for all initial condition ψ0 ∈ L2(ψ−1

∞ ), ∀t ≥ 0 :
d

dt
‖ψPt − ψ∞‖2L2(ψ−1

∞ ) = −2
∫
RN

∣∣∣∣∣∇
(
ψPt
ψ∞

)∣∣∣∣∣
2

ψ∞dz. (6.2)

Indeed,
d

dt
‖ψPt − ψ∞‖2L2(ψ−1

∞ ) = d

dt

∫ ∣∣∣ψPt − ψ∞∣∣∣2 ψ−1
∞ dz

= 2
∫
∂tψ

P
t

(
ψPt − ψ∞

)
ψ−1
∞ dz

= 2
∫
∇ ·

(
∇EPN (z)ψPt +∇ψPt

)(ψPt
ψ∞
− 1

)
dz

= −2
∫ (
∇EPN (z)ψPt +∇ψPt

)
· ∇

(
ψPt
ψ∞

)
dz.

But we have
∇EPN (z)ψPt +∇ψPt = −∇ (ln (ψ∞))ψPt +∇ψPt

= −∇ψ∞ψ
P
t

ψ∞
+∇ψPt

= ∇
(
ψPt
ψ∞

)
ψ∞,

73



H. AlRachid, L. Mones, et al.

which yields (6.2). Therefore, using (6.1),
d

dt
‖ψPt − ψ∞‖2L2(ψ−1

∞ ) ≤ −2λP
∫ ∣∣∣∣∣ψPtψ∞ − 1

∣∣∣∣∣
2

ψ∞dz

= −2λP
∫ ∣∣∣ψPt − ψ∞∣∣∣2 ψ−1

∞ dz,

then
‖ψPt − ψ∞‖2L2(ψ−1

∞ ) ≤ e−λP ‖ψ0 − ψ∞‖2L2(ψ−1
∞ ).

6.3. Preliminaries for spectral analysis

In the linear case, i.e EPN (z) = 1
2z
THP z, where H and P are symmetric positive definite and HP :=

P−1/2HP−1/2, the analysis will be carried out in a suitable system of coordinates which simplifies the
calculations and the proofs of the main theorems. For this reason, we will perform one conjugation
and one additional change of variables.

From the partial differential equation point of view and in order to use standard techniques from the
spectral analysis of partial differential equations, then it appears to be useful to work in L2(RN , dz;C)
instead of L2(RN , ψ∞dz;C). The mapping φ 7→ ψ

−1/2
∞ φ maps unitarily L2(RN , dz;C) into

L2(RN , ψ∞dz;C) with the associated transformation rules for the differential operators:

e−
1
2HP∇ze

1
2HP = ∇z + 1

2∇zHP .

Thus, the operator LP = −∇zEPN (z) · ∇z + ∆z is transformed into

LP = e−
1
2HPLP e

1
2HP

= ∆z −
1
4 |∇zE

P
N (z)|2 + 1

2∆zE
P
N (z)

= ∆z −
1
4z

TH2
P z + 1

2Tr(HP ). (6.3)

The kernel of LP is Ce−
zTHP z

4 and the operator LP is unitarily equivalent to the operator LP .
In the goal of modifying the kernel of the operator LP into a centered Gaussian with identity

covariance matrix, we perform a second change of variables. In the following, we introduce the new
coordinates y = H

1/2
P z, so that ∇z = H

1/2
P ∇y. Then the operator LP becomes:

L̃P = ∇TyHP∇y −
1
4y

THP y + 1
2Tr(HP ). (6.4)

The operator L̃P is still acting in L2(RN , dz;C). In the new coordinate system (Yt = H
1/2
P Zt), the

corresponding stochastic process is:

dYt = −HPYtdt+
√

2H1/2
P dWt,

so that Ker(L̃P ) = 1
(2π)N/4 e

|y|2
4 . The last conjugation and change of variables are used to compute the

spectrum of L∗P needed to proof Theorem 3.2 (see Section 6.4).
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Let us now introduce some additional notations. Recall the space of rapidly decaying complex valued
C∞ functions

S(RN ) =
{
f ∈ C∞(RN ),∀α, β ∈ NN ,∃Cα,β ∈ R+, sup

x∈RN
|xα∂βxf(x)| ≤ Cα,β

}
,

and its dual is denoted S ′(RN ).
The Weyl-quantization qW (x,Dx) of a symbol q(x, ξ) ∈ S ′(RN ) is an operator defined by its

Schwartz-kernel [
qW (x,Dx)

]
(x, y) =

∫
RN

ei(x−y)·ξq

(
x+ y

2 , ξ

)
dξ

(2π)N .

For instance, the Weyl symbol of the operator

−L̃P + 1
2Tr(HP ) = −∇TyHP∇y + 1

4y
THP y

is
q(y, ξ) = ξTHP ξ + yTHP y

4 . (6.5)

Those tools are essential to proof Theorem 3.2 (see Section 6.4). For more details on Weyl-quantization,
one can refer to [28].

6.4. Proof of Theorem 3.2

Proof. Referring to Theorem 1.2.2 in [12], the spectrum of the operator qW (y,Dy) = −L̃P + 1
2Tr(HP )

associated with the elliptic quadratic Weyl symbol q(y, ξ) defined by (6.5) is given by

σ(qW (y,Dy)) =


∑

λ∈σ(G)
Imλ≥0

−iλ(rλ + 2kλ), kλ ∈ N

 .
where G is the so-called Hamilton map associated with q, and rλ is the algebraic multiplicity of
λ ∈ σ(G) (the dimension of the characteristic space). The Hamilton map is the C-linear map G :
C2N → C2N associated with the matrix

G =
[ 0 HP

−1
4HP 0

]
∈ C2N×2N .

The matrix G is similar to another matrix denoted G and defined by

G =
[ 1√

2 0
0
√

2

]
G

[√
2 0

0 1√
2

]
= 1

2

[
0 HP

−HP 0

]
.

Now, the characteristic polynomial of G can be computed by

det(G− λI) = det(G− λI) = 2−2N
∣∣∣∣ −2λI HP

−HP −2λI

∣∣∣∣
= 2−2N

∣∣∣∣ −2λI HP

−HP − i2λI i(HP + i2λI)

∣∣∣∣
= 2−2N

∣∣∣∣ i(−HP + i2λI) HP

0 i(HP + i2λI)

∣∣∣∣
= 2−2Ndet(HP − i2λI)det(HP + i2λI).

Since Re(σ(HP )) ≥ 0, one thus obtains that

σ(G) ∩ {λ, Imλ ≥ 0} = i

2σ(HP ).
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In particular, ∑
λ∈σ(G)
Imλ≥0

−iλ2kλ =
∑

µ∈σ(HP )
k i

2µ
µ

and ∑
λ∈σ(G)
Imλ≥0

−iλrλ = Tr(HP )
2 ,

which concludes the proof of the theorem.

6.5. Proof of Theorem 4.1

Definition 6.1. (Foster-Lyapunov criterion)
We say that the Foster-Lyapunov criterion holds for (2.1) if there exists a function U : RN → R and
constants C > 0 and b ∈ R such that µ(U) <∞,

LPU(z) ≤ −cU(z) + b1C (6.6)

and U(z) ≥ 1, z ∈ RN , where 1C is the indication function over a petite Borel subset C of RN (refer
to twe for more details).

For the generator LP corresponding to (2.2), compact sets are always petite. In the following we
prove that the Foster-Lyapunov criterion holds for (2.1). But first we need an assumption on the
potential EPN .

Assumption A There exists k > 0 such that µP (z) is bounded from above for all |z| ≥ k and, for
some 0 < β < 1,

lim
|z|→+∞

inf
[
(1− β)|∇EPN (z)|2 + ∆EPN (z)

]
> 0.

Lemma 6.2. Under Assumption A, the Foster-Lyapunov criterion holds for (2.1) with:

U(z) = eβEPN (z), 0 < β < 1. (6.7)

Proof. Recall the generator of (2.1)
LP = −∇zEPN (z)∇+ ∆.

For U(z) = eβEPN (z), one obtains:
LPU(z) = −∇U(z) · ∇EPN (z) + ∆U(z)

= −∇eβEPN (z) · ∇EPN (z) +∇ · (∇eβEPN (z))

= −β|∇EPN (z)|2eβEPN (z) + β∆EPN (z)eβEPN (z)

+ β2|∇EPN (z)|2eβEPN (z)

= −β
[
(1− β)|∇EPN (z)|2 + ∆EPN (z)

]
U(z). (6.8)

Therefore, by Assumption A, for ε > 0, ∃k > 0 such that ∀ |z| > k:
(1− β)|∇EPN (z)|2 + ∆EPN (z) > ε,

and so also,
LPU(z) ≤ −βεU(z) + b1Ck ,

where Ck = {z ∈ RN ; |z| ≤ k} and b > 0.
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Finally, since ψ∞(z) is bounded, then U(z) is bounded away from zero uniformly. Then U(z) can be
rescaled to satisfy the condition U(z) ≥ 1. Thus, we valid the Foster-Lyapunov criterion for (2.1).

Using this lemma, the proof of the well-posedness result for the Poisson equation (4.1) come straight-
forward using Theorem 3.2 in [3].

6.6. Proof of Theorem 4.2

Proof. We start the proof by decomposing µPt (f)− µ(f) into a martingale and a remainder terms:
Using (4.1), (2.2) and (2.1)

εPt (f)− µ(f) = 1
t

∫ t

0
f(P−1/2Zs)ds− µ(f)

= 1
t

∫ t

0

(
f(P−1/2Zs)− µ(f)

)
ds

= 1
t

∫ t

0
−LPφ(Zs)ds

= φ(Z0)− φ(Zt)
t

+
√

2
t

∫ t

0
∇φ(Zs)dWs

:= Rt +Mt.

Consider now the rescaling
√
t(εPt (f)−µ(f)). Using the central limit theorem for the martingale term√

tMt (see [11], Theorem 5.3), one obtains the following convergence in distribution
√
tMt

D−→ N (0, σ2
f,P ),

with
σ2
f,P = 2

∫
|∇zφ(z)|2µP (dz) = 2

∫
|∇zφ(z)|2µ(dx).

It remains to study the remainder term
√
tRt. We consider the two cases: If Z0 ∼ µ, then since

φ ∈ L2(µ), we have that √
tRt

D−→ 0 in L2(µ).
In the more general case, we must refer to a "propagation of chaos" argument (see for example [6],
Section 8 and [7]), to obtain the same result.
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Appendix A. Setup of the Metadynamics example

In the example shown in Figure 1.1, we investigated how preconditioning the second order Langevin
dynamics affects the sampling of different observables when applied to adaptive potential of mean force
(PMF) techniques such metadynamics (MTD) [19]. Unlike the previously discussed umbrella sampling
method, adaptive PMF techniques build their bias and mean force or potential of mean force esti-
mates on-the-fly during the dynamics. In a general form, the corresponding biased and preconditioned
equations of motion with preconditioner P = P (q) can be written as

dqt = M−1ptdt (A.1a)

dpt = −∇EN (qt)dt+∇ξ(qt)Fb(ξ(qt), t)− PM−1ptdt+
√

2
β
P 1/2dWt (A.1b)

whereM ∈ RN×N is the diagonal mass matrix, β is the inverse temperature, ξ is the collective variable
(reaction coordinate) and Fb(ξ, t) is the biasing force. In the case of metadynamics, FMTD

b (ξ, t) =
−∇ξEMTD

b (ξ, t), where EMTD
b (ξ, t) is some history dependent biasing potential composed by Gaussians

regularly deposited in the collective variable space:

EMTD
b (ξ, t) =

∑
t′<t

δt′ exp
(
−1

2 (ξ − ξ(qt′))T w−2 (ξ − ξ(qt′))
)

(A.2)

where δt′ is the height of the corresponding Gaussian and w is a diagonal matrix including the widths
of the collective variable components.

The molecular system we chose for this test was the 2-(formylamino) propionaldehyde in gas phase
using the Amber99SB [13] force field.

The molecule has a single slow degree of freedom, a dihedral angle, that was selected as the one-
dimensional collective variable (we note that this variable is highly associated to one of the two
dihedrals of alanine dipeptide, a test system widely used in the computational chemistry field).

We performed 200 ps long molecular dynamics simulations at 300 K using the BBK integrator
scheme [5] with 0.5 fs timestep. In the case of unpreconditioned dynamics P = γM was used with
γ = 5.0 ps−1, while for the preconditioned dynamics we applied P = γM + τH̃, where H̃ is a
Hessian-based preconditioner, whose positiveness is guaranteed by rebuilding the matrix using the
spectral decomposition of the Hessian with the absolute values of the eigenvalues [26]. We used γM
as diagonal a stabiliser and varied γ and τ parameters.

A deposition frequency of 1/50 fs−1 and a starting height of δ = 0.004 eV were used in a well-
tempered variant of MTD [1] with Tw = 10000 K.

Free energy profiles were reconstructed simply as the negative of the actual history dependent
biasing potential. The reference for computing the RMS error of the profiles was obtained from a 200
ns long unpreconditioned constrained dynamics simulation [25].

The result of this test is shown in Figure 1.1, where we plotted the RMS error of the reconstructed
profiles based on 10 independent MTD simulations for each parameter set. We observe that in general,
preconditioning does not improve the convergence.

As a matter of fact, we performed a variety of similar tests, e.g. with different parameters, or different
observables, all of which led to similar conclusions. Indeed, depending on the choice of observable,
preconditioning often has an even larger negative impact.
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