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Abstract. We present high-order, fully explicit projective integration schemes for nonlinear collisional
kinetic equations such as the BGK and Boltzmann equation. The methods first take a few small (inner)
steps with a simple, explicit method (such as direct forward Euler) to damp out the stiff components of the
solution. Then, the time derivative is estimated and used in an (outer) Runge-Kutta method of arbitrary
order. The procedure can be recursively repeated on a hierarchy of projective levels to construct telescopic
projective integration methods. Based on the spectrum of the linearized collision operator, we deduce that
the computational cost of the method is essentially independent of the stiffness of the problem: with an
appropriate choice of inner step size, the time step restriction on the outer time step, as well as the number
of inner time steps, is independent of the stiffness of the (collisional) source term. In some cases, the number
of levels in the telescopic hierarchy depends logarithmically on the stiffness. We illustrate the method with
numerical results in one and two spatial dimensions.

2010 Mathematics Subject Classification. 82B40, 76P05, 65M70, 65M08, 65M12.
Keywords. Boltzmann equation, BGK equation, Projective Integration, spectral theory, fast spec-
tral scheme.

1. Introduction

Kinetic equations represent a gas as a set of particles undergoing instantaneous collisions inter-
spersed with ballistic motion [18]. Nowadays, these models appear in a variety of sciences and
applications, such as astrophysics, aerospace and nuclear engineering, semiconductors, fusion
processes in plasmas, as well as biology, finance and social sciences. The common structure of
such equations consists in a combination of a linear transport term with one or more inter-
action terms, which together dictate the time evolution of the distribution of particles in the
(six-dimensional) position-velocity phase space. From a numerical point of view, it is clear that
this results in a real challenge, since the computational cost immediately becomes prohibitive for
realistic problems [22]. Aside from the curse of dimensionality, there are many other difficulties
which are specific to kinetic equations. We recall two among the most important ones. The first
is the computational cost related to the evaluation of the collision operator, which implies the
computation of multidimensional integrals in each point of the physical space [28,55]. The second
challenge is represented by the presence of multiple time scales in the collision dynamics, leading
to a very small mean free path, at least in parts of the spatial domain. Usually, computational
problems exhibit multiple regimes in different regions in space. This requires the development
of adapted numerical schemes to avoid the resolution of the stiff dynamics [6, 20,21,38,39].
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Historically, two different approaches are generally used to tackle kinetic equations numeri-
cally: deterministic methods, such as finite volume, semi-Lagrangian and spectral schemes [22],
and probabilistic methods, such as Direct Simulation Monte Carlo (DSMC) schemes [9, 12].
Both methodologies have strengths and weaknesses. Deterministic methods can normally reach
high orders of accuracy. Nevertheless, stochastic methods are often faster, especially for solving
steady problems, but, typically, exhibit lower convergence rates and difficulties in describing
non-stationary and slow motion flows. In this paper, we will consider deterministic methods,
in which we evaluate the collision operator using a fast spectral method, in the spirit of [53].
For a comprehensive overview of numerical schemes for collisional kinetic equations, such as
equation (2.1), we refer to [22] and references therein.

In this paper, we are specifically interested in the time discretization of kinetic equations
with stiffness arising from multiple time scales in the collision operator. The stiffness is usually
characterized by the (small) mean free path ε, and becomes infinite when ε tends to zero. In
that limit, a limiting macroscopic equation emerges in terms of a few moments of the particle
distribution (density, momentum, energy); the full particle distribution then relaxes infinitely
quickly to a Maxwellian distribution defined by these low-order moments. There is currently
a large research effort in the design of algorithms that are uniformly stable in ε and approach
a scheme for the limiting equation when ε tends to 0; such schemes are called asymptotic-
preserving in the sense of Jin [38]. Again, we refer to the recent review [22] for a clear survey
on numerical methods for kinetic equations. Here, we briefly review some achievements using
different strategies. In [38, 40], separating the distribution function f into its odd and even
parts in the velocity variable results in a coupled system of transport equations where the
stiffness appears only in the source term, allowing to use a time-splitting technique with implicit
treatment of the source term; see also related work in [38, 42, 43]. Implicit-explicit (IMEX)
schemes are an extensively studied technique to tackle this kind of problems, see [3, 26] and
references therein. Recent results in this setting were obtained by Dimarco et al. to deal with
nonlinear collision kernels [21], and an extension to hyperbolic systems in a diffusive limit is
given in [10]. A different approach, based on well-balanced methods, was introduced by Gosse
and Toscani [34,35], see also [11]. When the collision operator allows for an explicit computation,
an explicit scheme can be obtained subject to a classical diffusion CFL condition by splitting the
particle distribution into its mean value and the first-order fluctuations in a Chapman-Enskog
expansion form [32]. Also closure by moments, e.g. [19], can lead to reduced systems for which
time-splitting provides new classes of schemes [16]. Alternatively, a micro-macro decomposition
based on a Chapman-Enskog expansion has been proposed [49], leading to a system of transport
equations that allows to design a semi-implicit scheme without time splitting. A non-local
procedure based on the quadrature of kernels obtained through pseudo-differential calculus was
proposed in [7].

A robust and fully explicit method, which allows for time integration of (two-scale) stiff sys-
tems with arbitrary order of accuracy in time, is projective integration. Projective integration
was proposed in [30] for stiff systems of ordinary differential equations with a clear gap in their
eigenvalue spectrum. In such stiff problems, the fast modes, corresponding to the Jacobian
eigenvalues with large negative real parts, decay quickly, whereas the slow modes correspond
to eigenvalues of smaller magnitude and are the solution components of practical interest. Pro-
jective integration allows a stable yet explicit integration of such problems by first taking a
few small (inner) steps using a step size δt with a simple, explicit method, until the transients
corresponding to the fast modes have died out, and subsequently projecting (extrapolating)
the solution forward in time over a large (outer) time step of size ∆t > δt. In [47], projective
integration was analyzed for kinetic equations with a diffusive scaling. An arbitrary order ver-
sion, based on Runge-Kutta methods, has been proposed recently in [45], where it was also
analyzed for kinetic equations with an advection-diffusion limit. In [46], the scheme was used
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to construct an explicit, flexible, arbitrary order method for general nonlinear hyperbolic con-
servation laws, based on relaxation to a kinetic equation. Alternative approaches to obtain a
higher-order projective integration scheme have been proposed in [48, 56]. These methods fit
within recent research efforts on numerical methods for multiscale simulation [23,41].

For problems exhibiting more than a single fast time scale, telescopic projective integration
(TPI) was proposed [29]. In these methods, the projective integration idea is applied recursively.
Starting from an inner integrator at the fastest time scale, a projective integration method is
constructed with a time step that corresponds to the second-fastest time scale. This projective
integration method is then considered as the inner integrator of a projective integration method
on yet a coarser level. By repeating this idea, TPI methods construct a hierarchy of projective
levels in which each outer integrator step on a certain level serves as an inner integrator step
one level higher. The idea was studied and tested for linear kinetic equations in [52]. These
methods turn out to have a computational cost that is essentially independent of the stiffness
of the collision operator.

We do not call projective integration methods asymptotic-preserving as such, because we
cannot explicitly evaluate the scheme for ε = 0 to obtain a classical numerical scheme for the
limiting equation. Nevertheless, projective and telescopic projective integration methods share
important features with asymptotic-preserving methods. In particular, their computational cost
does (in many cases) not depend on the stiffness of the problem. To be specific, it was shown
in [52], for linear kinetic equations, that the number of inner time steps at each level of the
telescopic hierarchy is independent of the small-scale parameter ε, as is the step size of the
outermost integrator. The only parameter in the method that may depend on epsi is the number
of levels in the telescopic hierarchy. For systems in which the spectrum of the collision operator
fall apart into a set of clearly separated clusters (each corresponding to a specific time scale),
the number of levels equals the number of spectral clusters. In this situation, the computational
cost is completely independent of ε. When the collision operator represents a continuum of time
scales, the number of projective integration levels increases logarithmically with ε.

In this paper, we construct and evaluate telescopic projective integration methods for nonlin-
ear Boltzmann BGK and Boltzmann kinetic equations. The methods are of arbitrary order in
time, fully explicit, and general (they do not exploit any particular form of the collision opera-
tor). The remainder of this paper is structured as follows. In Section 2, we start by presenting
the Boltzmann and BGK equations that will be the subject of our simulations. We describe the
different projective and telescopic projective integration methods in detail in Section 3. (The
spatial and velocity discretizations are standard. To make the manuscript self-contained, we
present the corresponding numerical methods in Appendices A and B.) We discuss in Section 4
the spectral properties of the linearized collision operators, which will guide the choice of the
method parameters, ensuring stability of the time integrators. Some numerical experiments are
done in Section 5 to verify the theory developed in the two previous sections. We conclude in
Section 6.

2. Model equations

In this article, we are interested in rarefied, collisional gases, and then we shall consider Boltzmann-
like, collisional kinetic equations. We refer the reader to the classical works [18, 63] and the
references therein for a more detailed introduction on this vast topic. For a given non-negative
initial condition f0, we will study a particle distribution function f ε = f ε(x,v, t), for t ≥ 0,
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x ∈ Ω ⊂ RDx and v ∈ RDv , solution to the initial-boundary value problem
∂fε

∂t
+ v · ∇xf

ε = 1
ε
Q(f ε),

f ε(x,v, 0) = f0(x,v).

(2.1)

The left hand side of equation (2.1) corresponds to a linear transport operator that comprises
the convection of particles in space, whereas the right hand side contains the collision operator
that entails velocity changes due to particle collisions. We postpone the description of boundary
conditions until Section 5, where we discuss the numerical results.

We assume that the collision operator fulfils the following three assumptions:

(H1) Conservation of mass, momentum and kinetic energy:∫
RDv
Q(f)(v) dv = 0,

∫
RDv
Q(f)(v) v dv = 0RDv ,

∫
RDv
Q(f)(v) |v|2 dv = 0;

(H2) Dissipation of the Boltzmann entropy (H-theorem):∫
RDv
Q(f)(v) log(f)(v) dv ≤ 0;

(H3) Its equilibria are given by Maxwellian distributions:

Q(f) = 0 ⇔ f =Mρ,v̄,T
v := ρ

(2πT )Dv/2 exp
(
−|v− v̄|2

2T

)
,

where the density ρ, velocity v̄ andtemperature T of the gas are computed from the
distribution function f as:

ρ =
∫
RDv

f(v) dv, v̄ = 1
ρ

∫
RDv

vf(v) dv, T = 1
Dvρ

∫
RDv
|v̄− v|2f(v) dv. (2.2)

Equation (2.1) with assumptions (H1)-(H2)-(H3) describes numerous models such as the Boltz-
mann equation for elastic collisions [63] or Fokker-Planck-Landau type equations [1]. The pa-
rameter ε > 0 is the dimensionless Knudsen number, that is, the ratio between the mean
free path of particles and the length scale of observation. It determines the regime of the gas
flow, for which we roughly identify the hydrodynamic regime (ε ≤ 10−4), the transitional regime
(ε ∈ [10−4, 10−1]), and the kinetic regime (ε ≥ 10−1). Moreover, according to assumptions (H2)-
(H3), when ε→ 0, the distribution f ε converges (at least formally) to a Maxwellian distribution,
whose moments are solution to the compressible Euler system for perfect gases, given by:

∂tρ+ divx(ρ v̄) = 0,

∂t(ρ v̄) + divx(ρ v̄⊗ v̄ + ρ T I) = 0RDv ,

∂tE + divx(v̄(E + ρ T )) = 0,

(2.3)

in which E is the second moment of f ε, namely the total energy of the gas:

E =
∫
RDv
|v̄|2f(v) dv.

In the following, we will present the two main collisional kinetic equations that we will consider
in the remainder of this paper: the Boltzmann equation (Section 2.1) and the BGK equation
(Section 2.2).
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2.1. Boltzmann equation

The Boltzmann equation constitutes the cornerstone of the kinetic theory of rarefied gases [18,
63]. In a dimensionless, scalar setting, it describes the evolution of the one-particle mass distri-
bution function f ε(x,v, t) ∈ R+, solution to the model equation (2.1), in which we still need
to specify the collision operator Q(f ε)(v). The Boltzmann collision operator models binary
elastic collisions between particles having pre-collisional velocities (v′,v′∗) and post-collisional
velocities (v,v∗). In a two-dimensional velocity space, the pre- and post-collisional velocities
are linked through the following parametrization:

v′ = v + v∗
2 + |v− v∗|

2 σ, v′∗ = v + v∗
2 − |v− v∗|

2 σ,

where σ is the unit vector on the unit circle S1 = {σ ∈ R2 : |σ| = 1} directed along the
pre-collisional relative velocity v′r = v′ − v′∗:

σ = v′r
|v′r|

= v′ − v′∗
|v′ − v′∗|

.

The Boltzmann collision operator then reads:

Q(f ε)(v) =
∫
R2

∫
S1
B(|vr|,σ)(f ′f ′∗ − ff∗)dσdv∗

=
∫
R2

∫ 2π

0
B(|v− v∗|, θσ)(f ′f ′∗ − ff∗)dθσdv∗, (2.4)

where θσ is the angle between v′r and σ and we used the shorthand notations f = f ε(v),
f∗ = f ε(v∗), f

′ = f ε(v′), and f ′∗ = f ε(v′∗). Furthermore, the non-negative function B(|vr|,σ) ≡
B(|vr|, θσ) is the collision kernel, which, by physical arguments of invariance, only depends on
the relative speed |vr| = |v− v∗| and cos(θσ) = v′r/|vr| · σ. The collision kernel B contains
all relevant microscopic information such as the kind of particles and type of interactions. For
instance, when particles interact via an inverse power law potential Φ(r) = r−k+1 (k > 2), with
r the inter-particle distance, B factors as:

B(|vr|, θσ) = |vr|γbγ(θσ), γ = k − 3
k − 1 . (2.5)

Notably, in the special case k = 3, the collision kernel in (2.5) is independent of the rela-
tive speed |vr| and the resulting particles are known as Maxwellian particles. If, in addition,
b0(θσ) = b0 is assumed constant, the particles are referred to as pseudo-Maxwellian particles. In
general (except for hard sphere and pseudo-Maxwellian particles), the angular collision kernel
bγ in (2.5) is expressed implicitly and contains a singularity for grazing collisions (θσ → 0), and
its mathematical analysis, as well as its numerical simulations, can be very difficult [1]. For that
reason, the angular collision kernel is usually replaced by an integrable function by cutting off
such grazing collision angles (Grad’s cut-off assumption) [17].

It is instructive to split the collision operator (2.4) into a gain and loss operator as:
Q(f ε)(v) = Q+(f ε)(v)− ν(f ε)f ε(v), (2.6)

where the gain operator is given by:

Q+(f ε)(v) =
∫
R2

∫ 2π

0
B(|vr|, θσ)f ′f ′∗dθσdv∗. (2.7)

The loss operator Q−(f ε) = ν(f ε)f ε contains the collision frequency ν(f ε) ∈ R+, which is
defined by:

ν(f ε) =
∫
R2

∫ 2π

0
B(|vr|, θσ)f∗dθσdv∗. (2.8)

(Evidently, equation (2.6) is only valid if both integrals (2.7)-(2.8) are convergent, which is
certainly true for a cut-off collision kernel.) In general, the collision frequency depends on
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the dimension of velocity space and the type of microscopic collisions. In particular, when
considering pseudo-Maxwellian particles for Dv = 2, implying that γ = 0 and b0(θσ) = b0
constant, the collision kernel becomes much simpler and is given by B(|vr|, θσ) = b0, that is,
independent of |vr| and θσ. In that case, the collision frequency (2.8) can be explicitly computed
as:

ν(f ε) = b0

∫ 2π

0
dθσ

∫
R2
f∗dv∗ = 2πb0ρ,

and the collision operator in (2.6) reads:

Q(f ε)(v) = Q+(f ε)(v)− 2πb0ρf
ε. (2.9)

We note that, for inverse power law potentials with γ 6= 0 (including hard sphere particles),
the collision frequency in general depends on the density, temperature and collision kernel,
see [61]. Finally, it is easy (see [18]) to check that the Boltzmann collision operator satisfies the
hypotheses (H1)-(H2)-(H3).

2.2. BGK equation

Due to the high-dimensional and complicated structure of the Boltzmann collision operator,
the Boltzmann collision kernel (2.4) is often replaced by simpler collision models that capture
most of its essential features. The most well-known approximation is the BGK model [8], which
models collisions as a relaxation towards thermodynamic equilibrium. (Because of the moments-
dependency of the equilibrium, this is still a nonlinear operator.) It is the most well regarded
simplified model of the Boltzmann equation, and is almost universally used in the physics and
numerics communities (see [22] and the references therein for details). It is given by:

∂tf
ε + v · ∇xf

ε = ν

ε
(Mv(f ε)− f ε), (2.10)

whereMv(f ε) denotes the local Maxwellian distribution, which, for a Dv-dimensional velocity
space, is given by:

Mv(f ε) = ρ

(2πT )Dv/2 exp
(
−|v− v̄|2

2T

)
:=Mρ,v̄,T

v . (2.11)

Furthermore, in the BGK equation (2.10), the collision frequency ν ∈ R+ is in general derived
from the Boltzmann collision operator and its expression is given in (2.8), while in the linearized
setting, ν is independent of f ε and is formulated in (4.21), see Section 4.2. Notably, when setting
ν = ρ for Dv = 2, the BGK model matches the loss term of the Boltzmann collision operator
for pseudo-Maxwellian particles close to equilibrium, see equation (2.9). The BGK collision
operator satisfies by construction the hypotheses (H1)-(H2)-(H3).

3. Numerical method

Now that we have introduced the model problems, we turn to the description of the numerical
method that will be the focus of this paper. Equation (2.1) needs to be discretized in space,
velocity and time.

We discretize equation (2.1) in space using finite differences on a uniform, constant in time,
periodic mesh with spacing ∆x, consisting of I mesh points xi = i∆x, 1 ≤ i ≤ I, with I∆x = 1.
In the numerical experiments of section 5, we use the classical WENO scheme [59], which
we briefly recall in Appendix A. Next, we discretize velocity space by choosing J discrete
components denoted by vj . For the Boltzmann equation, that is, equation (2.1) with collision
operator (2.4), we use the fast spectral discretization of the Boltzmann operator, taken from [53].
This method is recalled in Appendix B. Note that it has been shown in [27] that this method
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is convergent in the L2 norm, when the number of velocity points tends to infinity, and has
spectral accuracy.

The semidiscrete numerical solution on this mesh is denoted by fi,j(t), where we have dropped
the superscript ε on discretized quantities. We then obtain a semidiscrete system of ODEs of
the form:

ḟ = Dt(f), Dt(f) = −Dx,v(f) + 1
ε
Q(f), (3.1)

where Dx,v(·) represents the finite difference discretization of the convective derivative v · ∇x,
and f is a vector of size I · J .

In the remainder of this section, we describe the time discretization of the semi-discretized
system (3.1), which is the novel element in the full discretization of equation (2.1). We start in
Section 3.1 with the projective integration method, which aims at efficiently simulating systems
with exactly two time scales (one fast and one slow). In Section 3.2, we present the generalized
telescopic projective integration method, which can deal with multiple fast time scales.

3.1. Projective integration

Projective integration [30] is a method that is tailored to problems with exactly two distinct
time scales. As such, in the context of kinetic equations, it matches nicely with the spectral
properties of a linear BGK equation, as was shown in [47]. Projective integration combines a
few small time steps with a naive (inner) timestepping method (here, a direct forward Euler
discretization) with a much larger (projective, outer) time step. The idea is sketched in figure 3.1.

Inner integrators. At the innermost leve, we introduce a uniform time mesh with time step
δt and discrete time instants tk = kδt. At this leve, we choose the (explicit) forward Euler
method with time step δt, for which we will, later on, use the shorthand notation:

fk+1 = Sδt(fk) = fk + δtDt(fk), k = 0, 1, . . . . (3.2)
The purpose of the inner integrator is to capture the fastest components in the numerical
solution of system (3.1) and to sufficiently damp these out. We only require the innermost
integrator to be stable for these components. The size of the inner time step δt and the required
number of inner steps K will depend on the spectral properties of the semidiscretization (3.1).
This will be studied in Section 4.

Outer integrators. In system (3.1), the small parameter ε leads to a classical time step
restriction of the form δt = O(ε) for the inner integrator. However, as ε goes to 0, we obtain
the limiting system (2.3), for which a standard finite volume/forward Euler method only needs
to satisfy a CFL stability restriction of the form ∆t ≤ C∆x, with C a constant that depends
on the specific choice of the scheme.

In [47], it was proposed to use a projective integration method to accelerate such a brute-force
integration; the idea, originating from [30], is the following. Starting from a computed numerical
solution fn at time tn = n∆t, one first takes K+ 1 inner steps of size δt using (3.2), denoted as
fn,k+1, in which the superscripts (n, k) denote the numerical solution at time tn,k = n∆t+ kδt.
The aim is to obtain a discrete derivative to be used in the outer step to compute fn+1 = fn+1,0

via extrapolation in time:

fn+1 = fn,K+1 + (∆t− (K + 1)δt) fn,K+1 − fn,K
δt

,

= fn,K+1 +Mδt
fn,K+1 − fn,K

δt
,

whereM = ∆t/δt− (K+1). Also the size of the (macroscopic) extrapolation step ∆t will result
from the spectral analysis of the semidiscretization (3.1) in section 4.

59



time
tn−1 tn tn+1

Figure 3.1. Sketch of projective integration. At each time, an explicit method is
applied over a number of small time steps (black dots) so as to stably integrate the fast
modes. As soon as these modes are sufficiently damped, the solution is extrapolated
using a much larger time step (dashed lines).

Higher-order projective Runge-Kutta (PRK) methods have been constructed [45, 46] by re-
placing each time derivative evaluation ks in a classical Runge-Kutta method by K + 1 steps
of an inner integrator as follows:

s = 1 :


fn,k+1 = fn,k + δtDt(fn,k), 0 ≤ k ≤ K

k1 = fn,K+1 − fn,K
δt

2 ≤ s ≤ S :



fn+cs,0
s = fn,K+1 + (cs∆t− (K + 1)δt)

s−1∑
l=1

as,l
cs

kl,

fn+cs,k+1
s = fn+cs,k

s + δtDt(fn+cs,k
s ), 0 ≤ k ≤ K

ks = fn+cs,K+1
s − fn+cs,K

s

δt

fn+1 = fn,K+1 + (∆t− (K + 1)δt)
S∑
s=1

bsks.

To ensure consistency, the Runge-Kutta matrix a = (as,i)Ss,i=1, weights b = (bs)Ss=1, and nodes
c = (cs)Ss=1 satisfy the conditions 0 ≤ bs ≤ 1 and 0 ≤ cs ≤ 1, as well as:

S∑
s=1

bs = 1,
S−1∑
i=1

as,i = cs, 1 ≤ s ≤ S.

3.2. Telescopic projective integration

In general, the stiff semidiscrete system (3.1), contains more than two distinct time scales. In this
section, we therefore describe an extension of projective integration, called telescopic projective
integration (TPI) and introduced in [29], that can handle multiple time scales. This method has
been studied in the context of linear BGK equations with multiple relaxation times in [52].

Telescopic projective integration employs a number of projective integrator levels, which,
starting from a base (innermost) integrator, are wrapped around the previous level integra-
tor [29]. In this way, a hierarchy of projective integrators is formed in which each level (except
the innermost and outermost one) fulfils both an inner and outer integrator role. This general-
izes the idea of projective integration, which contains only one projective level wrapped around
an inner integrator. The idea of a level-3 TPI method with K = 2 on each projective level
is sketched in figure 3.2. The different level integrators in a TPI method can in principle be
selected independently from each other, but in general one selects a first order explicit scheme
(the forward Euler scheme) for all but the outermost integrator level, whose order is chosen to
meet the accuracy requirements dictated by the problem.
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time

h0 h0 h0
M0h0

h1

h0 h0 h0
M0h0

h1

h0 h0 h0
M0h0

h1

t1,n,0 t1,n,1 t1,n,2 t1,n,3

time

h1 h1 h1
M1h1

h2

h1 h1 h1
M1h1

h2

h1 h1 h1
M1h1

h2

t2,n,0 t2,n,1 t2,n,2 t2,n,3

time

h2 h2 h2
M2h2

h3

h2 h2 h2
M2h2

h3

h2 h2 h2
M2h2

h3

tn tn+1 tn+2 tn+3

Figure 3.2. A level-3 TPI method drawn for three outermost time steps h3 (bottom
row) with K = 2 on all projective levels. The dots correspond to different time points
at which the numerical solution is calculated. The time step and projective step size of
each level ` = 0, . . . , 2 are denoted by h` and M`, respectively.

Innermost integrator. We intend to integrate the semidiscrete system of equations (3.1)
using a uniform time mesh with time step h0 and discrete time instants tk = kh0. The innermost
integrator of the TPI method is chosen to be the forward Euler (FE) method,

fk+1 = fk + h0Dt(fk).

In the sequel, we use the following shorthand notation:

fk+1 = S0(fk) (k = 0, 1, . . .),

in which S0 denotes the time stepper with corresponding time step h0. Also in the telescopic
projective integration method, the purpose of the innermost integrator is only to capture the
fastest components in the numerical solution of system (3.1) and to sufficiently damp these out.
As a consequence, it is ill-advised to use higher-order methods for the innermost integrator,
see [52] for a more detailed discussion.

Projective (outer) levels. The telescopic projective integration method employs in general
L nested levels of projective integration that are constructed around the innermost integrator.
In [29], the method has been introduced in a recursive way. Here, following [52], we describe
the method in an alternative way, to make the presentation more similar to that of classical
projective integration.

To keep track of the time instant at which the numerical solution is computed throughout
the TPI method and at the same time desiring a compact notation, in what follows, we employ
superscript triplets of the form (`, n, k`) where ` denotes the integrator level ranging from 0
(innermost) to L−1, n represents the index of the current outermost integrator time tn = nhL,
and k` corresponds to the iteration index of the integrator on level `. The numerical time on
each level ` = 0, . . . , L− 1 is then defined as (see also figure 3.2):

t`,n,k` = nhL +
L−1∑
`′=`

k`′h`′ . (3.3)
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Notice that, for a certain level `, this time requires the iteration indices k`′ of all its outer
integrators. Therefore, it incorporates a memory that keeps up with the current time instants
at which the outer integrators of a given level ` integrator have arrived at and is necessary to
take into account to correctly reflect the numerical time of the solution on each level `.

Starting from a computed numerical solution fn at time tn = nhL, one first takes K0 + 1
steps of size h0 with the innermost integrator:

f0,n,k0+1 = S0(f0,n,k0) (0 ≤ k0 ≤ K0), (3.4)
in which f0,n,k0 corresponds to the numerical solution at time t0,n,k0 calculated by the innermost
integrator. Since all outer integrator iteration indices k`′ , `′ = 1, . . . , L − 1 are initially zero
in (3.3), we have t0,n,k0 = nhL + k0h0. The repeated action (3.4) of the innermost integrator is
depicted by small black arrows in the upper row of figure 3.2, for which we chose K0 = 2.

In the telescopic projective integration framework, the scheme is set up from the lowest level
up to the highest level. The aim is to obtain a discrete derivative to be used on each level to
eventually compute fn+1 = f0,n+1,0 via extrapolation in time. Using the innermost integrator
iterations (3.4), we perform the extrapolation by a projective integrator on level 1, written as:

f1,n,1 = f0,n,K0+1 + (M0h0) f0,n,K0+1 − f0,n,K0

h0
, (3.5)

which corresponds to the projective forward Euler (PFE) method. In (3.5), f1,n,1 represents
the numerical solution at time t1,n,1 calculated by one iteration of the first level projective
integrator. Since k1 = 1 and all its outer integrator iteration indices k`′ , `′ = 2, . . . , L− 1 are
still zero in (3.3), we have t1,n,1 = nhL + h1. One step of the first level integrator is visualized
by a large green arrow in the upper row of figure 3.2. By repeating this idea, we construct a
hierarchy of projective integrators on levels ` = 1, . . . , L− 1, given by:

f `,n,k`+1 = f `−1,n,K`−1+1 + (M`−1h`−1) f `−1,n,K`−1+1 − f `−1,n,K`−1

h`−1
, (3.6)

in which, on each level `, we iterate over k` = 0, . . . ,K`. In (3.6), f `,n,k` denotes the numerical
solution at time t`,n,k` calculated by the projective integrator on level `. According to (3.3), this
time depends on the values k`′ , `′ = `+ 1, . . . , L− 1 of all of its outer integrators. In figure 3.2,
these projective integrator steps are shown by long arrows for each level ` = 1, . . . , 3. Ultimately,
the outermost integrator on level L computes fn+1 as:

fn+1 = fL−1,n,KL−1+1 + (ML−1hL−1) fL−1,n,KL−1+1 − fL−1,n,KL−1

hL−1
. (3.7)

Since the outermost integrator (3.7) also constitutes a PFE scheme, the telescopic method
resulting from the hierarchy of projective levels (3.6)-(3.7) is called telescopic projective forward
Euler (TPFE).

It is straightforward to implement higher-order extensions of the outermost integrator, as
is done in [45]. We mention the projective Runge-Kutta methods of order 2 and 4, leading to
TPRK2 and TPRK4 method in the telescopic case. In general, the outermost integrator in a
TPRK method replaces each time derivative evaluation ks in a classical Runge-Kutta method
by KL−1 + 1 steps of its inner integrator on level L − 1. Using (3.6) with ` = L − 1, the first
stage in a TPRK method calculates the time derivative k1 as:

k1 = fL−1,n,KL−1+1 − fL−1,n,KL−1

hL−1
. (3.8)

Computing ks on any other stage s ≥ 2 requires evaluating time derivatives at the intermediate
times tn+cs = (n+ cs)hL. Similarly to (3.8), these are computed as:

ks = fL−1,n+cs,KL−1+1 − fL−1,n+cs,KL−1

hL−1
. (3.9)
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However, since the numerical solution at time tn+cs in equation (3.9) is not available, we use
the integrator on level L− 1 to approximate it as follows:

fL−1,n+cs,0 = fL−1,n,KL−1+1 + (cshL − (KL−1 + 1)hL−1)
s−1∑
i=1

as,i
cs

ki

fL−1,n+cs,kL−1+1 = fL−2,n+cs,KL−2+1

+ (ML−2hL−2) fL−2,n+cs,KL−2+1 − fL−2,n+cs,KL−2

hL−2
,

in which the second equation iterates over 0 ≤ kL−1 ≤ KL−1. Ultimately, the outermost inte-
grator of a TPRK method is written as:

fn+1 = fL−1,n,KL−1+1 + (ML−1hL−1)
S∑
s=1

bsks.

The consistency conditions on the Runge-Kutta matrix a = (as,i)Ss,i=1, weights b = (bs)Ss=1, and
nodes c = (cs)Ss=1 are still valid in this setting [45]. In the numerical experiments in Section 5,
we will use the projective Runge-Kutta method of order 4 as outermost integrator.

4. On linearized operators and spectral properties

Telescopic projective integration methods are very versatile, but require choosing a relatively
large number of method parameters: the size of the time steps h` at each level, the number
K` of inner steps at each level, as well as the number L of telescopic levels. As these choices
are dictated mainly by stability requirements, they crucially depend on the spectrum of the
collision operator. The analysis of this spectrum for the problems of Section 2 is the focus of
this Section. In [45, 47], the spectrum of the collision operator was analysed for linear kinetic
equations in the diffusive and hyperbolic scalings. An extension to kinetic relaxations of a
nonlinear hyperbolic conservation law was presented in [46]. In all of these settings, the spectrum
of the collision operator turned out to consist of exactly two well-separated time scales, and
projective integration was therefore sufficient. A first study of telescopic projective integration
for linear kinetic equations with multiple relaxation times was presented in [52].

In this section, we devise a general framework of linear operators in which linearizations of
both the BGK and Boltzmann equation can be studied. This framework will allow determining
suitable method parameters for the (telescopic) projective integration of the Boltzmann and
nonlinear BGK equations. In addition, it allows embedding the linear kinetic equations that
were studied in [46, 52]. For the reader’s convenience, we restrict the exposition to the case
when Dv = 2. However, all the results of this section can be extended straigthforwardly to
the Dv = 3 case, at the cost of heavier notations. In Section 4.1, we build this framework for
BGK equations and draw conclusions on their spectral properties. Afterwards, in Section 4.2, we
extend this framework to include the Boltzmann equation. We discuss the selection of suitable
method parameters for (telescopic) projective integration in Section 4.3.

4.1. Linearized BGK models and their spectra

We first recall the linearization of the BGK equation (2.10), as it has been described in [17]. We
then show in section 4.1.2 how the simpler linear kinetic equations that were analyzed in [46,52]
fit in this framework. Finally, in section 4.1.3, we discuss how the analysis of the spectrum of
these linear kinetic equations generalizes to the linearization of the full BGK equation.
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4.1.1. Linearized BGK equation

In [17], it is shown that the linearized BGK operator can be formulated as:

M1(f ε)(x,v, t) =
Dv+1∑
k=0

Ψk(v)〈Ψk, f
ε〉(x, t), (4.1)

in which the scalar product is defined by:

〈g, h〉 =
∫
RDv

g(v)h(v) 1
2π exp

(
−|v|2

2

)
dv. (4.2)

Furthermore, the basis functions Ψk(v) in (4.1) represent an orthogonal basis for the space
spanned by

V :=
{

1, vx1 , . . . , vxDv ,
|v|2

2

}
,

in which the superscript xd on v indicates that vxd is the component of v in the d-th velocity
dimension. The space V corresponds to the set of elementary collision invariants (ψk(v))Dv+1

k=0 .
We construct an orthonormal basis, i.e., we seek basis functions Psik such that:

(Ψk,Ψj) = δkj , k, j ∈ {0, . . . , Dv + 1}, (4.3)

in which δkj denotes the Kronecker delta. A straightforward application of the Gram-Schmidt
process then allows to compute the desired set of orthonormal functions Ψk(v) satisfying (4.3)
as: (

Ψ0(v), . . . ,ΨDv+1(v)
)

=
(

1, vx1 , . . . , vxDv ,
|v|2 − 2

2

)
. (4.4)

Ultimately, using the linearized Maxwellian (4.1), the linearized version of the full BGK equa-
tion (2.10) reads:

∂tf
ε + v · ∇xf

ε = −ν
ε

(I −ΠBGK)f ε, (4.5)

where ΠBGK is the following rank-Dv + 2 projection operator:

ΠBGKf
ε =

Dv+1∑
k=0

Ψk(v)〈Ψk, f
ε〉. (4.6)

Remark 4.1. Recall that the collision rate ν in eq (4.5) can be chosen as ν = 1 for the Dv = 1
case and ν = ρ for the Dv = 2 case (see section 2.2 for more details). In that latter case,
we still call the model linearized BGK (although its collision operator is not linear) because
the relaxation operator I − ΠBGK is linear. This operator is important because the resulting
equation shares structural properties with the full Boltzmann equation (nonlinear quadratic
operator), while being still tractable for a rigorous analysis.

4.1.2. Linear kinetic models

In [46], the spectrum of a specific class of linear, hyperbolically scaled, kinetic equations was
studied. In a scalar, two-dimensional setting (where we shall set x := x1 and y := x2), the
following equation was proposed:

∂tf
ε + v · ∇xf

ε = 1
ε

(Mv(ρε)− f ε), (4.7)

with an artificial Maxwellian distribution given by:

Mv(ρε) = ρε(1 + vx + vy), (4.8)
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in which ρε is linked to f ε by averaging over the velocity space:

ρε =
∫
R2
f ε(v) 1

2π exp
(
−|v|2

2

)
dv

see also equation (2.2).
In [52], multiple relaxation time linearized BGK equations of the following form are consid-

ered:
∂tf

ε + v · ∇xf
ε = ν

ε
(Mlin,v(f ε)− f ε), (4.9)

with linearized Maxwellian given by:

Mlin,v(f ε) = ρε(1 + vx)(1 + vy). (4.10)

To fit both of these model problems in the general framework of section 4.1.1, we rewrite the
artificial Maxwellians in (4.8) and (4.10) as:

M−2(f ε)(x,v, t) = Ψ−2(v)ρε(x, t), Ψ−2(v) = (1 + vx + vy), (4.11)
M−1(f ε)(x,v, t) = Ψ−1(v)ρε(x, t), Ψ−1(v) = (1 + vx)(1 + vy). (4.12)

With these choices of the Maxwellian distribution, we can summarize the linear kinetic mod-
els (4.7) and (4.9) as:

∂tf
ε + v · ∇xf

ε = −ν
ε

(I −Πk)f ε,

where I is the identity operator and Πk is the following rank-1 projection operator:

Πkf
ε = Ψk(v)

∫
R2
f ε(v) 1

2π exp
(
−|v|2

2

)
dv, (4.13)

with either k = −2 (4.11) or k = −1 (4.12).

4.1.3. Linearized BGK spectrum

The above considerations indicate that the structure of the linearized Maxwellian (4.1) and the
linearized BGK projection operator (4.6) are almost identical to those in (4.11)-(4.12) and (4.13),
respectively. Indeed, the linear kinetic projection operators Π−2 and Π−1 in (4.13) match the
first three terms of ΠBGK in (4.6) and only differ in the last term. This can be seen by using the
orthonormal set of basis functions (4.4) and the scalar product (4.2), and subsequently rewriting
Π−2 and Π−1 as:

Π−2f
ε =

2∑
k=0

Ψk(v)(Ψk, f
ε)

Π−1f
ε =

2∑
k=0

Ψk(v)(Ψk, f
ε) + Ψ1(v)Ψ2(v)(Ψ0, f

ε).
(4.14)

We can thus view the linear kinetic models (4.7) and (4.9) used in [46, 52], respectively, as a
special simplified case of the linearized BGK equation.

Since the linearized BGK operator (4.6) was shown to be nearly identical to the relaxation
operators of the linear kinetic models in (4.14), we expect the spectral properties of the linearized
BGK equation (4.5) to closely resemble those in [46] (for ν = 1) or the linearization of the
model with ν = ρ presented in [52] (see also Remark 4.1). Therefore, it is expected that the
construction of stable PI methods for the full BGK equation (2.10) with ν = 1 and stable TPI
methods for (2.10) with ν = ρ is practically identical to that in [46] and [52], respectively.
The choice of method parameters for the full BGK equation will be discussed more closely in
section 4.3.
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4.2. Linearized Boltzmann equation and its spectrum

4.2.1. Linearization of the Boltzmann equation

To simplify the analysis of the Boltzmann equation (2.1), it is customary to linearize the collision
operator Q(f ε)(v) around the global Maxwellian distributionMρ∞,v̄∞,T∞

v =M1,0,1
v , which, for

Dv = 2, is given by:

M1,0,1
v = 1

2π exp
(
−|v|

2

2

)
, (4.15)

see, for instance, [17,33,57]. Subsequently, we consider small fluctuations of f ε around the global
equilibrium (4.15), that is:

f ε(v) =M1,0,1
v

(
1 + gε(v)

)
. (4.16)

Using a similar shorthand notation as before, that is, g′ = gε(v′),M′ =M1,0,1
v′ , and so on, we

linearize the quadratic terms in (2.4) as:

f ′f ′∗ − ff∗ =MM∗
(
g′ + g′∗ − g − g∗

)
, (4.17)

where we neglected second-order fluctuations in the second equality, and we used thatM′M′∗ =
MM∗ for any Maxwellian distributionM. By substituting (4.16) and (4.17) into the Boltzmann
equation (2.1), and exploiting that M = M1,0,1

v depends only on velocity v, we obtain the
linearized Boltzmann equation as:

∂tg
ε + v · ∇xg

ε = 1
ε
Lgε, (4.18)

where Lgε is the linearized Boltzmann collision operator, which reads:

Lgε =
∫
R2

∫ 2π

0
B(|vr|, θσ)M∗(g′∗ + g′ − g∗ − g)dθσdv∗, (4.19)

see also [18,57]. Moreover, the operator Lgε can be cast in the following form [17, IV.5]:

Lgε(v) = Kgε(v)− ν(|v|)gε(v), (4.20)

where ν(|v|) is a local multiplication operator termed the linearized collision frequency that
depends only on the magnitude of v and is defined as:

ν(|v|) =
∫
R2

∫ 2π

0
B(|vr|, θσ)M∗dθσdv∗, (4.21)

and K is a non-local integral operator containing the remaining three terms in (4.19).
Using (4.20) and writing f ε instead of gε, we rewrite (4.18) as:

∂tf
ε + v · ∇xf

ε = −1
ε

(
ν(|v|)I − K

)
f ε. (4.22)

For inverse power law potentials under Grad’s cut-off assumption and for hard sphere particles,
it can be proven that K is a compact operator on L2(R2), see [17,33]. This implies that it maps
the unit ball of R2 onto a finite-dimensional space [17]. In that sense, it shares properties with
the finite rank operators described previously. However, the linearized operator L = K−ν(|v|)I
does not have finite rank. Furthermore, one could write formally:

K = ν(|v|)(ΠBGK +R),

for a certain remainder operator R. Then, one can write (4.22) as:

∂tf
ε + v · ∇xf

ε = −ν
ε

(I −ΠBGK)f ε − ν

ε
Rf ε,

which provides a connection with the linearized BGK projection operator.

66



4.2.2. Linearized Boltzmann spectrum.

Analyzing the spectrum of the linearized Boltzmann collision operator L = K−ν(|v|)I in (4.22)
is more involved than in the BGK case. In general, the linearized Boltzmann collision opera-
tor has a spectrum that consists of (i) a non-empty essential (purely continuous) part that is
entirely determined by the continuous spectrum of −ν(|v|)I, and (ii) a set of discrete eigen-
values that is influenced by the operator K, see, for instance, [17] or [5, 24]. In contrast, the
spectrum of the linear kinetic relaxation operators and linearized BGK operator only consists
of discrete eigenvalues. However, for Maxwellian particles with angular cut-off and, in particu-
lar, for pseudo-Maxwellian particles, it is known that the spectrum of L contains only discrete
eigenvalues spread inside the interval [−ν(0), 0] with ν(|v|) given in (4.21) [17].

We have seen in Section 4.2.1 that the linearized version of the full Boltzmann equation reads:

∂tf
ε + v · ∇xf

ε = −1
ε

(ν(|v|)I − K)f ε.

Let us apply the Fourier transform in the physical space: since the collision operator depends
only on the velocity magnitude |v|, the only difference in the equation will be that the free
transport term v · ∇x will become a multiplication operator (by iγ · v, where γ is the spatial
Fourier variable). One can then write the Fourier-transformed linear Boltzmann equation as:

∂th
ε = 1

ε
Khε − (ν(|v|)/ε+ i εγ · v)hε, (4.23)

where hε is the Fourier transform in space of f ε. Hence, the evolution of hε is given by a compact
perturbation of a (complex-valued) multiplication operator. It was proven in a series of papers
that the spectrum of this Fourier-transformed collision operator has the following behavior as
a function of |γ| and ε:
Theorem 4.2 ( [54], Section 2, and [24], Theorem 3.1). The spectrum of the right hand side of
equation (4.23) consists of an essential part Σe located to the left of a vertical line of negative
real part and a discrete spectrum Σd composed of:

• fast modes: eigenvalues located at a distance at least 1/ε to the left of the imaginary
axis;

• slow modes: if |ε| � 1, there are exactly 4 eigenvalues branches given by:

λ(j)(|γ|) := i λ
(j)
1 ε|γ| − λ(j)

2 ε2|γ|2 +O
(
ε3|γ|3

)
, j ∈ {0, 1, 2, 3},

for explicit constants λ(j)
1 ∈ R and λ(j)

2 > 0.

A sketch of this result can be found in figure 4.1.
Proof. We shall give a very short sketch of the lengthy proof of this result, for ε = 1 (the
general result is obtained by a scaling argument). Let us denote by Lγ the Fourier-transformed,
linearized Boltzmann operator:

Lγh = Kh− (ν(|v|) + iγ · v)h.
This linear operator is the sum of the compact operator K in L2 and of a multiplication operator
Mγ . According to Weyl’s Theorem, its spectrum in L2 is then composed of the spectrum of Mγ

and of discrete eigenvalues. Since Mγ is a multiplication operator, its spectrum is the numerical
range of the function v 7→ −ν(|v|) − iγ · v. Since Mγ is uniformly bounded by below by
a negative constant [18], its spectrum is then located on the half-plane Σe. Moreover, since
v 7→ −ν(|v|) − iγ · v is not unto, this spectrum is only composed of essential, continuous
spectrum. The discrete part is located on the right of this set.
Concerning this discrete part, if λγ is an eigenvalue, with associated (nonzero) eigenfunction
hγ ∈ L2, one has

Khγ − (ν(|v|) + iγ · v + λ)hγ = 0
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Figure 4.1. Spectrum of the Fourier transformed linearized Boltzmann operator, for
small radial frequencies.

Taking the inner product of this expression with hγ yields:

λ = −
[
ν(v)− 〈Khγ , hγ〉L2

‖hγ‖2L2

]
− iγ 〈v, |hγ |

2〉L2

‖hγ‖2L2
.

The careful study of the dependency of this relation on |γ| yields the result.

We observe in Theorem 4.2 that the discrete eigenvalues form a fast and a slow cluster,
justifying the use of projective integration with easily computable parameters, in the spirit
of [46, 52]. Nevertheless, the presence of an essential spectrum is one of the reasons that one
must use telescopic projective integration to solve the full Boltzmann equation: this spectral
decomposition will give rise to new clusters of eigenvalues at the discrete level.

Remark 1. Note that one can mimic the proof of this result for the simpler BGK operator with
ν = 1 to obtain the same spectral behavior of the linearized operator without the essential part,
justifying at the continuous level the results from [46].

4.3. Method parameters for projective and telescopic projective integration

It still remains to select appropriate parameter values for the projective or telescopic projective
integration methods. These are determined by ensuring that all eigenvalues of the kinetic prob-
lem under study fall within the stability region of the full projective method. In sections 4.1
and 4.2, we revealed that the spectra of the linearized kinetic equations either appear in two sta-
tionary eigenvalue disks (linearized BGK equation with ν = 1) or are continuously spread along
(a part of) the negative real axis (linearized BGK equation with ν = ρ and linearized Boltzmann
equation). Since the construction of stable projective methods for both well-separated as well
as continuously spread spectra is studied in previous works [46] and [52], respectively, we take
over the main results here, which are summarized below.

4.3.1. Stationary, well-separated spectrum

For the linearized BGK equation with ν = 1, which falls into the class of kinetic models stud-
ied in [46], it was shown in [46] that the spectrum consists of two stationary, well-separated
eigenvalue clusters (a fast and slow, dominant cluster). To accommodate these two clusters, the
method parameters of projective integration can be selected such that its stability region splits
up into two parts.
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(1) First, the inner integrator time step δt is chosen corresponding to the fastest time scale of
the problem, which is of the order of ε. This centers one stability region of the projective
method around the fast eigenvalues.

(2) Next, the number of inner integrator time stepsK is chosen such that all fast eigenvalues
lie inside this stability region. In [46], it was proven that we require K ≥ 2.

(3) Last, the outer integrator time step ∆t is selected such that all dominant eigenvalues
fall into the second stability region of the projective method.

Since both K and ∆t are independent of the small-scale parameter ε, the resulting projective
method has a cost that is also independent of ε, which becomes increasingly advantageous for
ε→ 0.

4.3.2. Continuously spread spectrum

When considering the linearized BGK equation with ν = ρ, the spectrum varies continuously
over the negative real axis. This also holds true for the linearized Boltzmann equation, be it on a
part of the negative real axis, see figure 4.1. In this case, we require that the stability region of the
numerical method does not split up but instead comprises the entire negative real axis up to the
fastest eigenvalue of the problem (a numerical method with this property is termed [0 , 1 ]-stable).
Here, for simplicity, we assume that the fastest eigenvalue at t = 0 corresponds to the fastest
possible eigenvalue for all other times t > 0. Since [0,1]-stable projective integration methods lose
practically all of their potential speed-up, [0,1]-stable telescopic projective integration methods
can be designed with much higher speed-ups. We describe the strategy that was used in [52],
to which we refer for more details.

(1) Similarly to projective integration, the innermost integrator time step h0 of the telescopic
projective integration method is chosen corresponding to the fastest time scale, which
is of the order of ε/maxx ρ(x, 0).

(2) Next, we fix the outermost time step we would like to use, taking into account a CFL-like
stability constraint, as follows: hL = C∆x.

(3) Before choosing the number of projective levels, we decide on the number of inner
integrator time steps K, which we consider to be fixed on each projective level. For each
chosen value of K there is a corresponding maximal value of M such that the stability
region does not split up, see [29].

(4) The required number of projective levels L to obtain a [0,1]-stable telescopic method is
computed as:

L ≈ log(hL) + log(1/h0)
log(M +K + 1) . (4.24)

(5) For the given values of h0, hL, K and L adapt the value ofM on the different projective
levels such that the following equation:

hL =
L−1∏
`=0

(M` +K + 1)h0 (4.25)

is valid.

For a [0,1]-stable telescopic method, the values of hL,M` and K are independent of ε. However,
as indicated by equation (4.24), the number of projective levels increases as O(log(1/ε)). As a
consequence, the cost of a [0,1]-stable telescopic projective integration method is not completely
ε-independent. However, the dependence is rather modest.
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4.3.3. Definition of speedup

If we assume, as in [29], that the overhead due to extrapolations is negligible and timestepping
with the innermost integrator is computationally most demanding, the speedup SL realized by
the overall level-L TPI method compared to naive forward Euler timestepping is given by:

SL =
L−1∏
`=0

M` +K` + 1
K` + 1 , (4.26)

that is, the ratio of the total number of naive forward Euler time steps within one outermost
time step hL (see equation (4.25)) over the number of actual innermost steps in the TPI method.

5. Numerical experiments

Here, we report simulation results for the BGK equation (2.10) and the Boltzmann equa-
tion (2.1) using pseudo-Maxwellian particles (that is, γ = 0 and b0 constant). For each exper-
iment, we shall compactly indicate the dimensions in space (Dx) and velocity (Dv) by writing
“DxD/DvD" with Dx, Dv ∈ {1, 2}. We begin with BGK in 1D/1D (Section 5.1), and subse-
quently consider both the BGK and Boltzmann equation in 1D/2D (Section 5.2). Thereafter,
we target a shock-bubble interaction problem for the BGK equation in 2D/2D (Section 5.3),
and the more intricated Kelvin-Helmoltz-like instability in the same setting (Section 5.4). As a
last experiment, we deal with the full Boltzmann equation in 2D/2D (Section 5.5).

5.1. BGK in 1D/1D

As a first experiment, we focus on the nonlinear BGK equation (2.10) in 1D/1D. We consider
a Sod-like test case for x ∈ [0, 1] consisting of an initial centered Riemann problem with the
following left and right state values:ρLv̄L

TL

 =

1
0
1

,
ρRv̄R
TR

 =

0.125
0

0.25

. (5.1)

The initial distribution f ε(x, v, 0) is then chosen as the Maxwellian (2.11) corresponding to
the above initial macroscopic variables. We impose outflow boundary conditions and perform
simulations for t ∈ [0, 0.15]. As velocity space, we take the interval [−8, 8], which we discretize
on a uniform grid using J = 80 velocity nodes. In all simulations, space is discretized using the
WENO3 spatial discretization with ∆x = 0.01. Below we regard three gas flow regimes, ε = 10−1

(kinetic regime), ε = 10−2 (transitional regime) and ε = 10−5 (fluid regime), and for each regime,
we compare solutions for two cases of collision frequency ν in the BGK equation (2.10), ν = 1
and ν = ρ.
Direct integration (ε = 10−1 and ε = 10−2). In the kinetic (ε = 10−1) and transitional
(ε = 10−2) regimes, we compute the numerical solution for ν = 1 and ν = ρ using the fourth
order Runge-Kutta (RK4) time discretization with time step δt = 0.1∆x. The results are shown
in figure 5.1 for ν = 1 (left) and ν = ρ (right), where we display the density ρ, macroscopic
velocity v̄ and temperature T as given in (2.2) at t = 0.15. In addition, we plot the heat flux q,
which, in a general Dv-dimensional setting, is a vector q =

(
qd
)Dv
d=1

with components given by:

qd = 1
2

∫
RDv
|c|2cdf εdv,

in which c =
(
cd
)Dv
d=1

= v − v̄ is the peculiar velocity. The different regimes are shown by
blue (kinetic) and purple (transitional) dots. The red line in each plot denotes the limiting
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(ε → 0) solution of each macroscopic variable, which all converge to the solution of the Euler
system (2.3) with ideal gas law P = ρT and heat flux q = 0.
Projective integration (ε = 10−5 and ν = 1). In the fluid regime (ε = 10−5), direct
integration schemes such as RK4 become too expensive due to a severe time step restriction,
which is required to ensure stability of the method. Exploiting that the spectrum of the linearized
BGK equation with ν = 1 resembles that of the linear kinetic models used in [46], see section 4,
we construct a projective integration method to accelerate time integration in the fluid regime.
As inner integrator, we select the forward Euler time discretization with δt = ε. As outer
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Figure 5.1. Numerical solution of the BGK equation in 1D/1D with ν = 1 (left) and
ν = ρ (right) at t = 0.15 for a Sod-like shock test (5.1) using the WENO3 scheme with
∆x = 0.01. RK4 is used for ε = 10−1 (blue dots) and ε = 10−2 (purple dots) with
δt = 0.1∆x. The PRK4 (left) and level-2 TPRK4 (right) methods are used for ε = 10−5

(green dots). Red line: hydrodynamic limit solution (ε→ 0).

71



integrator, we choose the fourth-order projective Runge-Kutta (PRK4) method, using K = 2
inner steps and an outer step of size ∆t = 0.4∆x. Figure 5.1 (left) shows the macroscopic
observables in the fluid regime for ν = 1 at t = 0.15 (green dots). From this, we observe
that the BGK solution is increasingly dissipative for increasing values of ε since the rate with
which f ε converges to its equilibriumMv(f ε) becomes slower. In contrast, for sufficiently small
ε, relaxation to thermodynamic equilibrium occurs practically instantaneous and the Euler
equations (2.3) yield a valid description. Since this is a hyperbolic system, it allows for the
development of sharp discontinuous and shock waves which are clearly seen in the numerical
solution.

In this numerical test, the speed-up factor between a naive RK4 implementation and the
projective integration method is 130.3, namely formula (4.26) with L = 1 (1 projective level),
K0 = 2 and M0 = 397.

Telescopic projective integration (ε = 10−5 and ν = ρ). Next, we repeat the above
experiment taking ν = ρ in the BGK equation (2.10). We now design a [0, 1]-stable telescopic
projective integration method as in 4.3.2, since, for this choice of ν, the spectrum of the linearized
BGK equation is spread along the negative real axis and is time-dependent. Therefore, the two-
scale nature in case of ν = 1 has become a multi-scale problem, which destroys the acceleration
in time of projective integration. We construct a [0, 1]-stable TPRK4 method consisting of 2
projective levels with FE as innermost integrator with time step h0 = ε, constant K = 6 on each
level and an outermost time step h2 = 0.4∆x. The extrapolation step sizes M on each level are
calculated as M = {14.24, 11.83}. The results are shown by green dots in figure 5.1 (right). We
conclude that the effect of choosing ν = ρ primarily manifests itself in the transitional regime
(ε = 10−2), for which the relaxation rate is not too slow nor too fast. Moreover, it is seen that
this choice of collision frequency does not alter the hydrodynamic limit of the BGK equation,
which is captured correctly by the telescopic scheme.
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Figure 5.2. Numerical solution of the BGK equation in 1D/1D with ν = ρ, ε = 10−5

at t = 0.15 for a Sod-like shock test (5.1) using the WENO3 scheme with ∆x = 0.01.
Comparison between level-2 TPRK4 with δt = 0.1∆x (solid blue line) and classical RK4
with a ∆t = 0.5ε (red dots).
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Finally, figure 5.2 compares the solutions obtained with the level-2 TPRK4 method and a
classical RK4 method with a very small time step (of order ε) for the stiff test case where
ε = 10−5. We observe a very good agreement between the two simulations (only a very small
difference can be seen in the heat flux), while the TPRK4 scheme is more than 10 times faster
than the RK4 scheme, because of its bigger time steps. The former scheme would be even more
efficient with smaller values of the relaxation parameter.

In this test, the speed-up factor between a naive RK4 implementation and the telescopic
projective integration method is 8.2, namely formula (4.26) with L = 2 (2 projective levels),
(K0,K1) = (6, 6) and (M0,M1) = (14.24, 11.83).

5.2. BGK and Boltzmann in 1D/2D

The BGK equation was introduced as a simplified model for the Boltzmann equation capturing
most essential features of the latter. Here, we investigate the difference between both models.
Since the Boltzmann collision operator vanishes for a one-dimensional velocity space, in this
section, we consider both models in 1D/2D. In the experiments, this is achieved by discretizing
space (x, y) on a grid of size Ix× 2 and using homogeneous data along the y-direction such that
the spatial derivative ∂yf ε exactly cancels out.

We perform the Sod test (5.1) of the previous section in 1D/2D, see also [25]. As velocity
space, we take the domain [−8, 8]2, which we discretize on a uniform grid using Jx = Jy = 32
velocity nodes along each dimension. In all simulations, space is discretized using the WENO2
spatial discretization with ∆x = 0.01. Below we regard two regimes, ε = 10−2 (transitional
regime) and ε = 10−5 (fluid regime), and for each regime, we compare solutions for BGK with
ν = 1, BGK with ν = ρ and Boltzmann with pseudo-Maxwellian particles. To approximate the
Boltzmann collision operator, we apply the fast spectral method described in section B using
Nθ = 4 discrete angles. This is enough because of the spectral accuracy of the trapezoidal rule
applied to periodic functions (see [28] for more details on this topic).

Direct integration (ε = 10−2). In the transitional regime, we perform all simulations using
the RK4 method with time step δt = 0.1∆x, for which we display the results in figure 5.3 (left)
for BGK with ν = 1 (blue dots), BGK with ν = ρ (green dots) and the Boltzmann equation
(red dots). From this, we observe that the BGK solution with ν = ρ is closer to the Boltzmann
solution than the BGK solution with ν = 1. This is as expected, since the BGK equation with
ν = ρ correctly captures the loss term of the Boltzmann collision operator, see (2.9). Moreover,
the discrepancy between Boltzmann and BGK with ν = ρ increases for higher order moments
of f ε; while the density (zeroth order moment) appears to coincide (to the naked eye), the heat
flux (third order moment) reveals a clear difference between both models.

Projective methods (ε = 10−5). In the fluid regime, the RK4 method becomes too expen-
sive. To that end, for BGK with ν = 1, we design a PRK4 method with FE as inner integrator
using δt = ε, K = 2 inner steps and ∆t = 0.4∆x. Due to the multi-scale nature of both the
BGK relaxation operator with ν = ρ and the Boltzmann collision operator, we construct a
[0, 1]-stable level-2 TPRK4 method for both models using the FE scheme as innermost integra-
tor with h0 = ε. We set K = 4 constant on each level, compute the extrapolation step sizes
as M = {14.24, 11.83}, and choose the outermost time step as h2 = 0.4∆x. The results can be
seen in figure 5.3 (right) using the same plotting style as in the left column. For all models,
the projective and telescopic projective integration methods display the expected hydrodynamic
limit.

In these numerical tests, the speed-up factor between a naive RK4 implementation and the
telescopic projective integration method for the PRK4 method for the BGK model with constant
relaxation is 133.3, namely formula (4.26) with L = 1 (1 projective level),K0 = 2 andM0 = 397.
The speedup for the TPRK4 method for the BGK model with nonconstant relaxation rate
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Figure 5.3. Comparison between BGK and Boltzmann in 1D/2D for ε = 10−2 (left)
and ε = 10−5 (right) at t = 0.15 for a Sod-like shock test (5.1) using the WENO2 scheme
with ∆x = 0.01. Blue dots: BGK with ν = 1; green dots: BGK with ν = ρ; red dots:
Boltzmann. For ε = 10−2, we used RK4 with δt = 0.1∆x. For ε = 10−5, we applied a
PRK4 (blue dots) and a level-2 TPRK4 (green and red dots) method.

and the Boltzmann equation is 13, namely formula (4.26) with L = 2 (2 projective levels),
(K0,K1) = (4, 4) and (M0,M1) = (14.24, 11.83).

5.3. Shock-bubble interaction in 2D/2D

Here, we consider the BGK equation in 2D/2D with constant collision frequency ν = 1 and
we investigate the interaction between a moving shock wave and a stationary smooth bubble,
which was proposed in [62] (see also [13] for a more detailed presentation of the physics behind
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this example). This problem consists of a shock wave positioned at x = −1 in a spatial domain
x = (x, y) ∈ [−2, 3] × [−1, 1] traveling with Mach number Ma = 2 into an equilibrium flow
region. Over the shock wave, the following left (x ≤ −1) and right (x > −1) state values are
imposed [13]: (

ρL, v̄
x
L, v̄

y
L, TL

)
=
(

16
7 ,
√

5
3

7
16 , 0,

133
64

)
(
ρR, v̄

x
R, v̄

y
R, TR

)
= (1, 0, 0, 1).

(5.2)

Due to this initial profile, the shock wave will propagate rightwards into the flow region at rest
(x > −1). Moreover, in this equilibrium region, a smooth Gaussian density bubble centered at
x0 = (0.5, 0) is placed, given by:

ρ(x, 0) = 1 + 1.5 exp
(
−16|x− x0|2

)
. (5.3)

The initial density ρ(x, 0) and temperature T (x, 0) are visualized in figure 5.4. Then, the initial
distribution f ε(x,v, 0) is chosen as the Maxwellian (2.11) corresponding to the initial macro-
scopic variables in (5.2)-(5.3). We impose outflow and periodic boundary conditions along the x-
and y-directions, respectively, and we perform simulations for t ∈ [0, 0.8]. As velocity space, we
take the domain [−10, 10]2, which we discretize on a uniform grid using Jx = Jy = 30 velocity
nodes along each dimension. We discretize space using the WENO2 spatial discretization with
Ix = 200 and Iy = 25. Furthermore, we consider a fluid regime by taking ε = 10−5.

Since we regard the BGK equation with constant collision frequency ν = 1, the spectrum
of the linearized BGK operator consists of two eigenvalue clusters. Therefore, we construct a
projective integration method to speed up simulation in time. We select the PRK4 method with
FE as inner integrator. The inner time step is fixed as δt = ε and we use K = 2 inner steps in
each outer integrator iteration. The outer time step is chosen as ∆t = 0.4∆x. The simulated
density and temperature at time t = 0.8 are displayed in figure 5.5. We observe that the shock
propagates in the positive x-direction and bumps into the stationary bubbly density. A similar
behavior is seen for the temperature evolution.

To compare our results with those in [62], where the smallest value of ε is chosen as ε = 10−2,
we regard the one-dimensional evolution of density and temperature along the axis y = 0. For
t ∈ {0, 0.2, 0.4, 0.6, 0.8}, we plot these intersections in figure 5.6. We conclude that we obtain
the same solution structure at t = 0.8 as in [62]. However, our results are sharper and less
dissipative supposedly due to the particular small value of ε (10−5 versus 10−2). In contrast
to [13], we nicely capture the swift changes in the temperature profile for x ∈ [0.5, 1] at t = 0.8.

Again, in this numerical test, the speed-up factor between a naive RK4 implementation and
the projective integration method is 133.3, namely formula (4.26) with L = 1 (1 projective
level), K0 = 2 and M0 = 397.

5.4. A Kelvin-Helmoltz like instability problem

Keeping the same setting of the BGK equation in 2D/2D with constant collision frequency
ν = 1, we now turn to a less common test case in the field of collisional kinetic equation,
the so-called Kelvin-Helmoltz instability. This phenomenon occurs when two fluids of different
densities and in thermodynamic equilibrium move at different speeds. It is very well known
that such a system will exhibit turbulent, unstable vortices at the interface between the two
fluids, because of the velocity shear [64]. In order for these instabilities to develop, the Reynolds
number of the fluids considered must be large. Using the von Karman relation [60], which states
that the Reynolds number is inversely proportional to the Knudsen number ε, we shall then
choose a very small Knudsen number ε = 5 · 10−5 along with the following initial condition
inspired from [51] (more details of the physics behind this example can also be found in this
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Figure 5.4. Initial solution for density (top) and temperature (bottom) of the shock-
bubble interaction in 2D/2D. The spatial domain [−2, 3] × [−1, 1] is discretized using
Ix = 200 and Iy = 25.

reference):
ρ1
v̄x1
v̄y1
T1

 =


1

0.5
0.01 sin(4πx)

1

 (y ≥ 0),


ρ2
v̄x2
v̄y2
T2

 =


2
−0.5

0.01 sin(4πx)
1

 (y < 0). (5.4)

The initial distribution f ε(x,v, 0) is chosen as the Maxwellian (2.11) corresponding to the initial
macroscopic variables in (5.4). We impose periodic and outflow boundary conditions along the x-
and y-directions, respectively, and we perform simulations for t ∈ [0, 1.6]. As velocity space, we
take the domain [−8, 8]2, which we discretize on a uniform grid using Jx = Jy = 30 velocity nodes
along each dimension. We discretize space using the WENO2 method on [−0.5, 0.5]× [−0.5, 0.5]
with Ix = Iy = 100.

Since we consider again the BGK equation with constant collision frequency ν = 1, the
spectrum of the linearized BGK operator consists of two eigenvalue clusters. Therefore, we
construct a projective integration method to speed up simulation in time. We select the PRK4
method with FE as inner integrator. The inner time step is fixed as δt = ε and we use K = 3
inner steps in each outer integrator iteration (this test case is stiffer than the previous one
because of the turbulent regime). The outer time step is chosen as ∆t = 0.45∆x. The simulated
density and pressure at time t = 0.4, 0.9 and 1.6 are displayed in figure 5.7, along with the
vector field v̄ with the contour lines of density at time t = 0.9 in figure 5.8.

In this numerical test, the speed-up factor between a naive RK4 implementation and the
projective integration method is 22.5, namely formula (4.26) with L = 1 (1 projective level),
K0 = 3 and M0 = 86.
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Figure 5.5. Numerical solution of the shock-bubble interaction at t = 0.8 using the
BGK equation with ν = 1 in 2D/2D. We discretized velocity space using Jx = Jy = 30.
We applied a PRK4 method with FE as inner integrator and δt = ε = 10−5 together
with the WENO2 spatial discretization scheme with Ix = 200 and Iy = 25.
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Figure 5.6. Numerical solution of the shock-bubble interaction along y = 0 at t = 0
(black dashed), t = 0.2 (blue), t = 0.4 (purple), t = 0.6 (green) and t = 0.8 (red).

As expected, we observe vortices developing along the velocity shear line y = 0, and then ex-
panding, forming small scale structures as time evolves, hence validating the turbulent behavior
exhibited by the fluid for this Reynolds number. Note that the use of high-order methods in
both space (WENO2) and time (PRK4) is crucial, because of these fine scale structures. Choos-
ing less accurate (and more dissipative) schemes, such as forward Euler in time and upwind in
space, leads to a uniform density and pressure instead of vortices in our numerical tests.

77



−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

y

Density

1

1.5

2

−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

Pressure

0.8

1

1.2

−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

y

1

1.5

2

−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

0.8

1

1.2

−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

x

y

1

1.5

2

−0.4 −0.2 0 0.2 0.4

−0.4

−0.2

0

0.2

0.4

x

0.8

1

Figure 5.7. Density (left) and pressure (right) of the Kelvin-Helmoltzm-like instability
at times t = 0.6 (first row), 0.9 (second row) and 1.6 (third row).

5.5. Boltzmann in 2D/2D

As a last experiment, we concentrate on the Boltzmann equation with pseudo-Maxwellian par-
ticles in 2D/2D. As initial configuration for the gas, we consider the double Sod shock test, that
is, for x = (x, y) ∈ [−0.5, 0.5]2, we set:ρ1

v̄1
T1

 =

0.1
0
1

 (xy ≤ 0),

ρ2
v̄2
T2

 =

1
0
1

 (otherwise). (5.5)

The initial distribution f ε(x,v, 0) is then chosen as the Maxwellian (2.11) corresponding to the
above macroscopic variables. We impose outflow boundary conditions along both dimensions
and perform simulations for t ∈ [0, 0.16]. As velocity space, we take the domain [−8, 8]2, which
we discretize on a uniform grid with Jx = Jy = 32 velocity nodes along each dimension.
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Figure 5.8. Velocity fields and density lines of the Kelvin-Helmoltz-like instability
at time t = 0.9. The color coding of these density lines is the one detailed in the first
column, second row of Figure 5.7.

Furthermore, we discretize the spatial domain using the WENO2 spatial discretization with
Ix = Iy = 64 grid points along each dimension, and we fix ε = 5 · 10−5 (that is, we are in the
fluid regime). The Boltzmann collision operator is approximated again using the fast spectral
method described in section B with Nθ = 4 discrete angles.

For the time simulation of the Boltzmann equation, we apply a level-2 TPRK4 method with
FE as innermost integrator using h0 = ε as innermost time step. We set K = 3 constant
on each level and compute the extrapolation step sizes as M = {6.66, 4.80}. The outermost
time step is chosen as ∆t = 0.3∆x. In figure 5.9, we plot various macroscopic observables of
interest at t = 0.16. The density, macroscopic velocity along x and temperature are computed
as the moments of f ε, see (2.2). Then, pressure, energy and the Mach number are obtained,
respectively, as:

P = ρT, E = 1
2ρ|v̄|

2 + P, Ma = |v̄|√
T
.

In this test, the speed-up factor between a naive RK4 implementation and the telescopic
projective integration method is 5.9, namely formula (4.26) with L = 2 (2 projective levels),
(K0,K1) = (3, 3) and (M0,M1) = (6.66, 4.80 =).

6. Conclusions

We extended projective and telescopic projective integration methods, studied in [46, 52] for
kinetic BGK-like equations, to allow for a fully explicit, high-order time simulation of both
the nonlinear BGK equation and the full Boltzmann equation for pseudo-Maxwellian particles.
We developed a framework of linearized operators, which revealed that the linearized BGK
operator closely resembles the relaxation operator of the linear kinetic models used in [46, 52].
As a result, the design of stable projective and telescopic projective integration methods for
simulation of the nonlinear BGK equation is practically identical to that presented in [46]
and [52], respectively. Since the spectrum of the linearized Boltzmann equation for pseudo-
Maxwellian particles is known to be spread along the negative real axis, accelerated explicit
time integration of the full Boltzmann equation required the construbtion of [0, 1]-stable TPI
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Boltzmann equation in 2D/2D (level-2 TPRK4 + WENO2)
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Figure 5.9. Numerical solution of the Boltzmann equation with pseudo-Maxwellian
particles in 2D/2D at t = 0.16 for a double Sod shock test (5.5). Velocity space is
discretized using Jx = Jy = 32. We applied a level-2 TPRK4 method with FE as
innermost integrator and h0 = ε = 5 · 10−5 together with WENO2 with Ix = Iy = 64.

methods. Although such methods are not completely asymptotic-preserving, the cost scales only
logarithmically with the stiffness of the problem, which we consider acceptable. We designed
and applied the projective methods to a number of model problems of increasing dimension and
complexity, showing the potential of these schemes, with speed-ups that ranges from 8 for the
most complicated Boltzmann model to more than a hundred for the BGK equation with linear
relaxation rate.

Because of their explicit nature and hierarchical structure, telescopic projective integration
methods naturally lend themselves to adaptivity. In future work, we will explore the use of
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space-dependent hierarchies of projective levels, adapted to the local values of ε, to further
increase computational efficiency.

Appendix A. Free transport with WENO scheme

In weighted essentially non-oscillatory (WENO) methods, introduced in [50], the stencil is built
adaptively for each finite volume cell Ci = [xi−1/2, xi+1/2]. A WENO method considers all
k possible stencils for cell Ci at once and computes a weighted average over the k resulting
reconstructed solutions. The k stencils for cell Ci are given by:

S`i = {Ci−`, . . . , Ci−`+k−1} (` = 0, . . . , k − 1), (A.1)

in which the left shift ` is used to iterate over the possible stencils. As in [58], for each stencil
in (A.1), the reconstructed solution on the left side of xi+1/2 and on the right side of xi−1/2 are
calculated as:

u`i+1/2 =
k−1∑
r=0

c`,rUi−`+r

u`i−1/2 =
k−1∑
r=0

c`−1,rUi−`+r

(` = 0, . . . , k − 1), (A.2)

where we dropped the minus and plus superscripts in (A.2), respectively, for clarity. In what
follows, we concentrate on the right boundary of Ci. The left boundary is treated analogously.

Using the k reconstructed solutions in (A.2), we could define the following weighted average:

u−i+1/2 =
k−1∑
`=0

d`u
`
i+1/2, (A.3)

for some weights d`, ` = 0, . . . , k − 1. Equation (A.3) can be seen as the reconstruction of the
solution on the left side of xi+1/2 using a stencil of 2k− 1 consecutive cells. The weights d` can
be chosen such that (A.3) has an order of accuracy of 2k − 1, that is:

u−i+1/2 = u(xi+1/2) +O
(
∆x2k−1

)
,

which holds if the solution is smooth over all cells of (A.1). In [2] it is proven that the weights
d` can be written in terms of binomial coefficients as:

d` =

(
k − 1

k − 1− `

)(
k

k − 1− `

)
(

2k − 1
k

) (` = 0, . . . , k − 1),

from which it is straightforward to see that 0 < d` ≤ 1 and
∑k−1
`=0 d` = 1 such that (A.3)

represents a convex combination of the k reconstructed solutions. For instance, we compute:
k = 1 : d0 = 1

k = 2 : d0 = 2
3 , d1 = 1

3
k = 3 : d0 = 3

10 , d1 = 6
10 , d2 = 1

10 .

(A.4)

The idea of WENO methods is to use the weights d` only for stencils over which the solution
is smooth and allocate very small weights to stencils containing one or more discontinuities. If
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we denote these WENO weights by ω`, we write the WENO reconstruction as:

u−i+1/2 =
k−1∑
`=0

ω`u
`
i+1/2,

for which we require that the weights ω` also form a convex set, that is:

0 < ω` ≤ 1,
k−1∑
`=1

ω` = 1. (A.5)

In [50] the second constraint in (A.5) is guaranteed by writing ω` in terms of constants α` as:

ω` = α`
k−1∑
s=0

αs

(` = 0, . . . , k − 1).

The constants α` are expressed in terms of the weights d`, as given in (A.4), and new constants
β`, leading to:

α` = d`
(δ + β`)2 (` = 0, . . . , k − 1), (A.6)

in which the coefficients β` determine the smoothness of each stencil and are therefore termed
the smoothness indicators. Since the smoothness indicators can become zero, a small constant
δ > 0 is added in (A.6) that avoids division by zero. A typical choice is δ = 10−6 and the
numerical experiments in [37] suggest that the resulting WENO method is not sensitive to the
choice of δ as soon as 10−7 ≤ δ ≤ 10−5.

The critical step in the design of WENO methods appears to be the definition of the smooth-
ness indicators β`. In [37], the authors proposed the following smoothness indicators:

β` =
k−1∑
s=1

∆x2s−1
∫ xi+1/2

xi−1/2

(
dsp`i(x)
dxs

)2

dx (` = 0, . . . , k − 1). (A.7)

Each smoothness indicator in (A.7) includes the information of all derivatives that are approx-
imated by the reconstruction polynomial p`i(x) based on stencil S`i as a measure of smoothness
of the true solution in cell Ci. The factor ∆x2s−1 in front of the integral ensures that β` is
independent of ∆x when computing the derivative of p`i(x) in (A.7). For instance, for k = 2,
the smoothness indicators in (A.7) are calculated as:

β0 = (Ui − Ui+1)2

β1 = (Ui−1 − Ui)2.
(A.8)

For higher-order reconstructions, the derivatives in (A.7) can be computed by using a general
expression of the reconstruction polynomial. For k = 3, after rearranging terms, we find (see [37,
58]):

β0 = 1
4(3Ui − 4Ui+1 + Ui+2)2 + 13

12(Ui − 2Ui+1 + Ui+2)2

β1 = 1
4(Ui−1 − Ui+1)2 + 13

12(Ui−1 − 2Ui + Ui+1)2

β2 = 1
4(Ui−2 − 4Ui−1 + 3Ui)2 + 13

12(Ui−2 − 2Ui−1 + Ui)2,

(A.9)

see also the work of [36]. For orders k = 4, 5, 6, the corresponding expressions were obtained
in [4] and extended to even higher orders k = 7, 8, 9 in [31]. From the expressions in (A.8)
and (A.9), we see that β` = O(∆x2) as soon as the solution is smooth over the stencil, while
we have β` = O(1) for stencils containing a discontinuity. Using equation (A.6), this results in
weights ω` ≈ d` for smooth solutions and ω` = O(∆x4) for discontinuous solutions, as desired.
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Appendix B. Evaluating the Boltzmann collision operator with a fast spectral
scheme

The fast spectral discretization of the Boltzmann operator taken from [53] employed in this
work is described in this appendix.

To this aim, and since the Boltzmann collision operator acts only on the velocity variables,
we focus on a given spatial cell xj at a given instant of time tn. Hence, only the dependency on
the velocity variable v is considered for the distribution function f , i.e. f = f(v).

The first step to construct our spectral discretization is to truncate the integration domain
of the Boltzmann integral (2.4). As a consequence, we suppose the distribution function f to
have compact support on the ball B0(R) of radius R centered in the origin. Since one can
prove (see e.g. [55]) that Supp(Q(f)(v)) ⊂ B0(

√
2R), in order to write a spectral approximation

which avoids aliasing, it is sufficient that the distribution function f(v) is restricted on the cube
[−T, T ]Dv with T ≥ (2 +

√
2)R. Successively, one should assume f(v) = 0 on [−T, T ]Dv \ B0(R)

and extend f to a periodic function on the set [−T, T ]Dv . Let observe that the lower bound
for T can be improved. For instance, the choice T = (3 +

√
2)R/2 guarantees the absence

of intersection between periods where f is different from zero. However, since in practice the
support of f increases with time, we can just minimize the errors due to aliasing [14] with
spectral accuracy.

To further simplify the notation, let us take T = π and hence R = λπ with λ = 2/(3 +
√

2)
in the following. We denote by QRB(f) the Boltzmann operator with cut-off. Hereafter, using
one (bold) index to denote the Dv-dimensional sums, we have that the approximate function
fN can be represented as the truncated Fourier series by

fN (v) =
N/2∑

k=−N/2
f̂ke

ik·v, (B.1)

where the kth Fourier coefficient is given by

f̂k = 1
(2π)Dv

∫
[−π,π]Dv

f(v)e−ik·v dv.

We then obtain a spectral quadrature of our collision operator by projecting (2.4) on the space
of trigonometric polynomials of degree less or equal to N , i.e.

Q̂k =
∫

[−π,π]Dv
QRB(fN ) e−ik·v dv, k = −N/2, . . . , N/2. (B.2)

Finally, by substituting expression (B.1) in (B.2) one gets after some computations

Q̂k =
N/2∑

l,m=−N/2
l+m=k

f̂l f̂m β̂(l,m), k = −N, . . . , N, (B.3)

where β̂(l,m) = B̂(l,m)− B̂(m,m) are given by

B̂(l,m) =
∫
B0(2λπ)

∫
SDv−1

B(|q|, cos θ)e−i(l·q++m·q−) dω dq.

with
q+ = 1

2(q + |q|ω), q− = 1
2(q − |q|ω).

Let us notice that the naive evaluation of (B.3) requires O(n2) operations, where n = N3. This
causes the spectral method to be computationally very expensive, especially in dimension three.
In order to reduce the number of operations needed to evaluate the collision integral, the main
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idea is to use another representation of (2.4), the so-called Carleman representation [15] which
is obtained by using the following identity

1
2

∫
SDv−1

F (|u|σ − u) dσ = 1
|u|d−2

∫
RDv

δ(2x · u+ |x|2)F (x) dx.

This gives in our context for the Boltzmann integral

Q(f) =
∫
RDv

∫
RDv

B̃(x, y)δ(x · y)[f(v + y) f(v + x)− f(v + x+ y) f(v)] dx dy,

with

B̃(|x|, |y|) = 2Dv−1 σ

(√
|x|2 + |y|2, |x|√

|x|2 + |y|2

)
(|x|2 + |y|2)−

Dv−2
2 . (B.4)

This transformation yields the following new spectral quadrature formula

Q̂k =
N/2∑

l,m=−N/2
l+m=k

β̂F (l,m) f̂l f̂m, k = −N, . . . , N (B.5)

where β̂F (l,m) = B̂F (l,m)− B̂F (m,m) are now given by

B̂F (l,m) =
∫
B0(R)

∫
B0(R)

B̃(x, y) δ(x · y) ei(l·x+m·y) dx dy.

Now, in order to reduce the number of operation needed to evaluate (B.5), we look for a
convolution structure. The aim is to approximate each β̂F (l,m) by a sum

β̂F (l,m) '
A∑
p=1

αp(l)α′p(m),

where A represents the number of finite possible directions of collisions. This finally gives a sum
of A discrete convolutions and, consequently, the algorithm can be computed in O(AN log2N)
operations by means of standard FFT technique [14].

In order to get this convolution form, we make the decoupling assumption

B̃(x, y) = a(|x|) b(|y|).

This assumption is satisfied if B̃ is constant. This is the case of Maxwellian molecules in dimen-
sion two, which is the case we shall consider for the numerical simulations of section 5. Indeed,
using the kernel (2.9) in (B.4), one has

B̃(x, y) = 2Dv−1b0(|x|2 + |y|2)−
Dv−α−2

2 ,

so that B̃ is constant if Dv = 2 and α = 0. Here we write x and y in spherical coordinates
x = ρe and y = ρ′e′ to get

B̂F (l,m) = 1
4

∫
S1

∫
S1
δ(e · e′)

[∫ R

−R
eiρ(l·e) dρ

] [∫ R

−R
eiρ
′(m·e′) dρ′

]
de de′.

Then, denoting φ2
R(s) =

∫ R
−R e

iρs dρ, for s ∈ R, we have the explicit formula

φ2
R(s) = 2R Sinc(Rs),

where Sinc(x) = sin(x)
x . This explicit formula is further plugged in the expression of B̂F (l,m)

and using its parity property, this yields

B̂F (l,m) =
∫ π

0
φ2
R(l · eθ)φ2

R(m · eθ+π/2) dθ.
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Finally, a regular discretization of Nθ equally spaced points, which is spectrally accurate because
of the periodicity of the function [44], gives

B̂F (l,m) = π

M

Nθ∑
p=1

αp(l)α′p(m),

with
αp(l) = φ2

R(l · eθp), α′p(m) = φ2
R(m · eθp+π/2)

where θp = πp/Nθ.
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