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Abstract. We consider the floating body problem in the vertical plane on a large space scale. More precisely, we
are interested in the numerical modeling of a body floating freely on the water such as icebergs or wave energy
converters. The fluid-solid interaction is formulated using a congested shallow water model for the fluid and Newton’s
second law of motion for the solid. We make a particular focus on the energy transfer between the solid and the
water since it is of major interest for energy production. A numerical approximation based on the coupling of a
finite volume scheme for the fluid and a Newmark scheme for the solid is presented. An entropy correction based
on an adapted choice of discretization for the coupling terms is made in order to ensure a dissipation law at the
discrete level. Simulations are presented to verify the method and to show the feasibility of extending it to more
complex cases.

2020 Mathematics Subject Classification. 35Q35, 7T0E15, 74F10, 76B07, 76M12.

Keywords. shallow water equations, wave-body interaction, congested model, coupling, entropy satisfying
scheme.

1. Introduction

We are interested in the modeling of a floating body in the vertical plane. In a previous work [20],
we considered a shallow water flow with an impermeable surface above it, namely the roof, which
constrains the water surface. The roof is motionless or is given by an explicit time and space dependent
function independent of the flow. In this work, we focus on a floating structure leading to the coupling
of the equations on the fluid and on the motion of the structure. Applications are the drift of icebergs
or flood debris, or the improvement of sustainable marine energy converters such as buoys.

Two main approaches are proposed in the literature to treat fluid-solid interaction. With the ex-
ception of work done in antiquity, in particular “On Floating Bodies” by Archimedes, the first one
dates back to Fritz John who proposed a mathematical formulation of the problem [19]. The fluid is
described by a velocity potential with a linear model for the free surface evolution. The motion of
the solid is supposed to be of small amplitude so that the interface between the water and the solid
is constant in time. Finally the surface pressure is obtained using the linearized Bernoulli equation.
Although the model is quite simplified, linear potential flow theory is still used in industrial context
since it is not costly in CPU time, see [18]. However nonlinear terms play an important part for wave
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interaction. For instance the non-linearity should be taken into account in simulations of wave energy
converter farms. Improvements have been made to include an interface depending on time [25] and
nonlinear effects based on the boundary element methods [23]. This progress needs higher CPU times
and does not yet allow wave breaking.

The second approach involves Navier—Stokes CFD computations. This approach is considerably
used in blood flow, for instance in aortic flow [36, 14]. Some other works also use Navier—Stokes CEFD
computations for the simulation of the flow around a yacht [34], fish [6] or wave energy converters [1,
31, 39]. In these works the fluid is expressed in an Eulerian frame while the solid is expressed in a
Lagrangian frame. The difficulty comes from the mesh. A moving grid with front tracking methods or
a fixed mesh with fictitious fluid domain can be considered. The first one perfectly catches the interface
but needs a moving mesh while the second is less accurate on the position of the interface but the mesh
is fixed. However this strategy implies high CPU times and does not make these methods suitable for
engineering optimization. To take advantage of the benefits from each approach, a coupling has been
proposed [38]. Since the viscosity is not considered in potential flow theory, it can hardly be included
in the coupling.

Recently the nonlinear floating body problem was reformulated in the framework of vertical-
integrated models [27]. A vertical movement of the body is considered so that the interface between the
congested and the free surface domain is fixed in time and continuity of the unknowns is assumed at
the interface. The surface pressure is then obtained by an elliptic equation. An analysis of this shallow
water type model in the two dimensional case with radial symmetry is done in [7]. In [11], a phenom-
ena of dispersive boundary layer is highlighted. In a more general framework the well-posedness of the
model in the one dimensional case has been proven in [24], relaxing the assumption of vertical lateral
walls. The description of the interface position is dealt with. A numerical resolution in one dimension
is done in [10]. The free surface and the congested subdomain are solved using an appropriate numer-
ical strategy, i.e. hyperbolic for the first and elliptic for the second. At the interfaces, the continuity
of the pressure and the discharge is assumed. Unfortunately, the transmission condition is not clear
physically, since a discontinuous solution is possible. In addition, when the position of the interface is
also an unknown, the coupling strategy is tricky to handle, and not robust. In [20] we have proposed
a uniform numerical resolution which eliminates the description of the interface and the transition
conditions between the congested and the free surface domain. The surface pressure is seen as a La-
grange multiplier associated to a constraint. These models [20, 27] are based on depth-averaging and
thus they cannot represent wave breaking but nonlinear terms are accounted for. Simpler than the
Navier—Stokes equations but still physically relevant, their resolution is less CPU consuming since the
computational domain does not depend on time. For optimization processes this seems interesting,
especially when large domains are considered. Eventually the interaction of energy converters with the
bottom as in [4, 5] can also be considered.

In the present work, we give a formulation of the problem taking into account a freely floating
object in the vertical plane, i.e. two translations and one rotation. A choice of discretization for the
different operators is proposed in order to ensure a strong coupling between the two systems. We use
a Newmark scheme for the solid and adapt the numerical strategy given in [20] for a ‘fixed roof’ to the
coupling. Furthermore our method allows to write the energy of the coupled fluid-solid system. The
energy transfer between the fluid and the solid is indeed a challenging problem and of major interest
in energy production using buoys. From a mathematical point of view, the energy balance, acting as
an entropy, is an argument for the existence of long time solutions.

Note that the modeling of submerged objects is not allowed by the choice of modeling for the
fluid since the vertical averaged model considers only one water height. Thus in the following, we will
restrict ourselves to a certain type of configuration for the floating objects. More details are given in
Hypothesis 2.
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CONGESTED SHALLOW WATER MODEL: ON FLOATING BODY

FIGURE 2.1. Floating body configuration and illustration of the unknowns.

In Section 2 the formulation at the continuous level is given while Section 3 is dedicated to the
numerical strategy. In both cases, the fluid and solid dynamics are considered separately, then the
coupling is handled. At the discrete level, first a naive non-entropy satisfying approach is presented
followed by an entropy correction. We also give details on the practical 1D implementation to treat
general shapes of the floating body. Finally in Section 4 we show simulations to validate our approach.

2. Mathematical modeling

In the current section, a description of the governing equations of the floating body problem using a
vertical-integrated model is given. The physical context is illustrated in Figure 2.1.

2.1. Fluid dynamics

In [20] a shallow water type model with an additional congestion constraint modeling a ‘roof’ is
proposed. Let us briefly introduce this model which is derived from the Navier—Stokes equations.
Let us consider the one dimensional domain 2, C R where x stands for the horizontal coordinate
in the frame of the observer and t € Ry stands for the time variable. In practice the domain €,
will be bounded but for simplicity the boundary conditions will not be detailed. A flow contained
between two surfaces (in the 1D framework, these are actually two curves) respectively called roof
and bottom is considered. The two surfaces can be parametrized by two given mono-valued functions
R(z,t), the roof, and B(z,t), the bottom, which satisfy B(x,t) < R(x,t). The surfaces must be regular
enough where they are reached by the fluid, i.e. everywhere for the bottom and at least at the inferior
surface of the floating body, see Hypothesis 1 below. The opening between the roof and the bottom
is defined by H(x,t) = R(x,t) — B(x,t). The unknowns of the model are the water depth h(z,t), the
vertical-averaged horizontal velocity @(z,t) and the surface pressure p(x,t) which satisfy

Oth  + 0y (hu) =0 .
{at (hﬂ) + 0, (hﬂQ) = —ho, (9 (h—l—B) + Z) (2.1)
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with g the gravitational constant. The fluid is assumed to be homogeneous, then the water density p
is constant in time and space and given. In addition, the congestion constraint

min (H — h,p— P) =0 (2.2)

has to be satisfied where P(z,t) denotes the given atmospheric pressure. In the following, the atmo-

spheric pressure is taken constant in time and space and for simplicity equal to zero, i.e. P = 0. Finally

the system (2.1)-(2.2) is completed with the initial conditions h (z,0) = h%(z) and @ (z,0) = @° ().
We recall the following energy balance law, the proof of which can be found in [20, Proposition 2.3].

Lemma 2.1. Any smooth enough solution of the congested shallow water model (2.1)-(2.2) satisfies
the following energy balance law

with the mechanical energy and the energy flur respectively given by

5=ghaz+pgh <B+Z> and G = (gu2—|—pg(h—|—B)—l—p) hii.

By smooth enough solution, we assume enough regularity on the solution to perform each step of
the computation, in particular we assume that h > 0 and h € C%(Q,), w € C°(Q,) and p € C° (Q,)
and as usual the above conservation law holds almost everywhere in practice. Unlike the work done
in [20], if B(z,t) is still a given function, this is no longer the case for R(z,t). The interaction between
the fluid and the roof is considered, i.e. R(x,t) is now an unknown of the problem and its evolution
has to be determined, see Section 2.2.

If a smooth solution is unique, it is well known that for hyperbolic equations such as the shallow
water equations, there may be several weak solutions, and one generally adds some entropy criterion.
In the case of the shallow water model, uniqueness can be ensured by selecting the solution which
ensures mechanical energy dissipation, acting as a mathematical entropy, see for instance [21].

2.2. Solid dynamics

Let us describe the planar motion of a body subjected to the gravity field and a surface pressure force
p. The reader can refer to [26] for more details about solid dynamics. In the vertical plane (e, e,), the
scalar product between two vectors a = (a1, a2) and b = (b1, by) is denoted a - b = a1b; + azbe and the
cross product a X b = a1by — agby.

We describe a general planar movement of a homogeneous solid body by three degrees of freedom,
denoted y, ¢ and 6, see Figure 2.1. The mass of the solid is denoted by M and its center of mass by
G = (x,(), where x € Q, denotes the horizontal and ¢ € R the vertical component. The variable 6
stands for the angle between the unit vector in the vertical direction e, and the vector GX where X
is a point in the solid different from the center of mass. The moment of inertia of the solid around an
axis passing through the center of mass is denoted [J. We consider a solid subjected to gravity and
a surface pressure of p. Additional horizontal (resp. vertical) forces will be denoted by F, (resp. F¢)
and their torque around the center of mass is denoted by Tp.

Hereafter, we give the mathematical description of the buoy. Note that in practice, it needs a
numerical implementation given in Section 3.4.1. For every 6 € [—m, 7|, the geometry of the solid body
in the frame centered on G is the set of coordinates (z, z) satisfying S (z, z,6) = 0, with S (z, z,0) a
given function. In the context of a floating body, from now on called the buoy, the surface pressure
only acts on its inferior surface. This inferior surface elevation is given by

z=S8(z,0) =min{z e R | S(z,z,0) =0}
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that leads to the following expression of R, the inferior surface elevation in the frame of the observer

R(x,x,¢(,0)=8(x—x,0)+ . (2.3)
Note that R (x, x, (,0) is not necessarily defined for all (z, x,(,0) € Q; x R x R x [—m, 7[. For a fixed
(x,0), we denote by Qr (x, ) C Q, the domain of definition of R (x, x, (,#). The domain of definition
Qr actually does not depend on the buoy elevation ( since it is a vertical shift.
Let us give some examples of the previous mathematical objects in particular cases:

e In the case of a discal solid with radius r, since the geometry is independent of the rotation,
it reads

Sdis (CC, 2, 0) — 1132 + 2’2 _ 7.2 and §dis (.’B, 9) _ _m
The domain of definition is given by

Q%S(X,Q):{xeﬂx|x—r<m<x—|—r}.

e In the case of an elliptical solid with semi-minor and semi-major axis respectively equal to a
and b, it reads

(2 cos 0 + zsin ) n (zsinf — z cos 0)?

Sell (ﬁl’,’, Z? 0) = a2 b2

-1

and S°! (,0) is the smaller root of the second order polynomial P, g (z) = S (x,2,6). The
domain of definition reads

Ql (x,0) = {x €,

with fp (¢) = acos (0) cos (¢) + bsin (0) sin ().

X+§min [fg(ﬁ)<:v<x—l—ﬂmax fg(i?)}

€[—m,m €l—m,n[

Since there is not always an analytical expression for R, we will indicate in Section 3.4 how to handle
the problem from a practical point of view.
We are now able to write more precisely the assumption on the surface pressure.

Hypothesis 1. The pressure varies only on the inferior surface of the solid, i.e. there exists a function
p(z,t) such that for any 0 <t < T the surface pressure reads

p (@, 2,8) = {pW) if & € Or (x(1),0(1)) and = = S (,0(1))

0 else.

In addition, on the inferior surface Qg (x(t),0(t)), the roof R is regular. In particular, we assume that
no vertical part of the floating object is in contact with water.

Note that the pressure can still vanish on the inferior surface of the solid when p(z,t) = 0.

Proposition 2.2. Assume that Hypothesis 1 is satisfied. Then the movement of the solid body is
described by the system

CilA =5 (A,A,B, t) (2.4)
X M 0 O
with A_(C>a 01—(0 M O) and &zSE(B,t)—i-@P
0 0o 0 J
— fQR PO R dx + Fy(t) 0
where SE (]3, t) = | Joppdz+ Fc(?) and Fp = ( —Mg )
fQR Q@gR dx + Tg(t) 0
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completed with the given initial conditions x (0) = x°, X (0) = x°, ¢ (0) = ¢°, ¢(0) =¢° 0(0) = 6°
and 6 (0) = 0.

Proof. A general planar motion of a rigid body can be separated into a translational motion of a
point in the body and a rotational motion around an axis through that point. It is generally convenient
to choose this point as the center of mass G, see [26]. The translational motion can be described by

Newton’s second law of motion. Taking into account the forces F\, F¢, the weight together with the
pressure applied on the solid from the water gives the following equations

MX=/ pn-eay/1+ (R dz + By,

Qr

Mfz—Mg—F/ pn-ez\/1+(5’IR)2dx+FC
Qr

with n the interior unit normal to the solid surface. The rotational movement is described by the
angular momentum theorem, i.e.

OLe = / p(GX x n) /1 + (0,R)? de + Ty (2.6)
Qr =

(2.5)

where L denotes the angular momentum around G, X a point at the surface with coordinates
(X2, R (Xz,x,¢,0)). By definition of the kinetic momentum in the plane, we have 9,Ls = J0. Re-

placing the inward normal n = W <—81x72> in (2.5) leads to the first two equations of (2.4)
and for (2.6) it yields
Jb— —/ p(GX - 20, R+ GX - ey) du + T, (2.7)
Qr —

Let us denote by X, = X, — X the horizontal coordinate in the frame centered on G. In this frame,
the movement is a simple rotation of angle # and as a consequence the coordinates (Xm,ﬁ (Xx, 9))

(s(50) =20 (s (2)

with ()Nfg,ﬁ ()Z'g, 60)> the coordinates of the point X with an angle # and the matrix of rotation

M,y = ( cos ¥ s1n19) . (2.8)

of the point X verify

—sind cos?
The previous relation implies
S = HX,. (2.9)
Moreover the trajectory of the points of the solid are concentric circles, i.e. Jy||GX|| = 0. Thus

9 ()?§+ (s (Xma)f) _0

X,09 Xy + S0 X00:S + SOpS = 0.
Using now the relation (2.9), we get

and it follows

X, + 88,8 + 9S = 0. (2.10)
Finally introducing this relation in (2.7) and noticing that GX - e, = S and GX - e, = X, gives the
last equation in (2.4). [ |

The system (2.4) requires to know the pressure p on the body. This pressure will be estimated from
the fluid system (2.1), see Section 2.3. The derivatives of the inferior surface elevation 0,R and 9pR
are not well-defined at the boundary of its domain of definition 2. However, thanks to Hypothesis 1,
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the support of the pressure p does not reach the boundary of the domain where the inferior surface
is defined Qr. Assuming that the inferior surface elevation R is regular enough on the support of the
pressure p, we ensure that the integrals in (2.4) are well-defined.

The solid system admits the following energy balance law.

Lemma 2.3. The solution of (2.4) satisfies the following energy law

OF = (/ pdx+FC)¢'— (/ p@IRdx—FX> Y+ (/ p@ngﬂU—l—Tg)é
Qr Qr Qr
with the mechanical energy of the buoy E ()’(, ¢, C) = % (C2 + X2) + %92 + MgC.

Proof. Multiplying the first equation of (2.4) by X, the second equation by ¢, the third equation by
f and summing gives the result. |

2.3. Full system

The two models (2.1) and (2.4) have to be coupled. More precisely, the roof R is an external unknown
of the model (2.1) but can be determined from the position of the buoy computed in the model (2.4).
Similarly the pressure p is an external unknown of the model (2.4) but is estimated by the model (2.1).

According to Newton’s third law, i.e. the action-reaction principle, the action of the buoy on the
water is opposite to the reaction of the water on the buoy. In the mathematical description introduced
previously, it implies that for any 0 <t < T and x € Qg (x(t),6(t)) we have

p(z,t) = p(x, t). (2.11)

Let us design by supp (f) the support of the function f. Hypothesis 1 and (2.11) together leads to the
following assumption.

Hypothesis 2. We assume that the water does not reach the extremities of the buoy, i.e. for any
0<tT .

From now on, we will only use the unknown p and we assume that Hypothesis 2 is satisfied.

In the part of the domain where there is no buoy, the roof is defined high enough not to touch the

fluid surface and otherwise the roof is given by R. More precisely for I € R large enough (in practice
we set IT = 10%°) we define

R(x,t) = {

An energy law for the coupled fluid-solid system (2.1)-(2.2)-(2.4)-(2.11)-(2.12) is obtained.

R (z, x(t),¢(1),0(8)) if = € Qr (x(¢),0(t))

(2.12)
II elsewhere.

Proposition 2.4. Considering a no-flur boundary on Q,, any smooth solution of (2.1)-(2.2)-(2.4)-
(2.11)-(2.12) satisfies the following energy balance law

at(5+E):/Q (pgh + ) B dz + Fe + Py + Ty with E:/Q £ da.

Proof. It follows from (2.3) and (2.12) that
atR(xa t) = XaxR (.I', X C? ‘9) + CaCR (l’, X Ca 9) + 98972 (:Ua X C> 9)
= —X0uR (2, X,¢,0) + ¢+ 009R (x, X, ¢, 0) .

Now integrating the energy balance law from Lemma 2.1 over {2, and summing with the result from
Lemma 2.3 concludes the proof. [ |

(2.13)
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3. Numerical approximation

This section is devoted to the numerical approximation of a solution of (2.1)-(2.2)-(2.4)-(2.11)-(2.12).
We first describe separately the numerical methods chosen for each model before considering their
coupling.

We consider a 1D mesh built from an increasing sequence x; 1 € R, where k belongs to aset T C N

of indices. A control volume is an interval V;, = {xk_%, xk+%] and we denote by £ = Tpyl = Tp_1 its

T, 1+x, 1
length and by zp = % its center. In addition, the time is discretized by t"+! = " +5f+1, with
t9 = 0 and the time step 6;""! will be adapted to the flow through a CFL condition see (3.7) below.
The mean value of the bottom level in the control volume Vj, at time t", is denoted by Bj}'. We also

introduce the following notation

n+l _ /n +
oty = W and  (¢); = ¢\2 v
t

3.1. Discretization for the fluid dynamics

Let us firstly recall the numerical strategy proposed in [20] for the congested shallow water model (2.1)-
(2.2). A pseudo-compressibility method is used, with A the relaxation parameter, to take into account
the congestion constraint. Namely the following relaxed model is considered

Orhy + 0y (hatiy) =0
ha—H 1

where we recall that the opening is defined by H = R — B.
The relaxed model (3.1) satisfies the energy conservation law written in Lemma 2.1, except that

(r—1)

the relaxed pressure is given by p\ = pg——z—" and the relaxed mechanical energy by

_ Py 2 hx g 2
5,\—2h,\u>\+pgh)\(B—|—2)+2)\2(h,\—R)\+B)+.

The flux of energy G and the source term (right hand-side) are not affected by the relaxation. In [20],
we show that the solution of (3.1) tends formally to the solution of (2.1) when A\ goes to zero. In
particular, (h — H), = O (A\?) which ensures that the energy &y tends to £ and the constraint (2.2)
is satisfied when X\ goes to zero. Although the relaxed model (3.1) is hyperbolic, the eigenvalues go
to infinity when A goes to zero, that is why a low-Froude scheme is used. The CPR scheme [33] was
chosen for its strong robustness at low-Froude regime. Following [20], one particularity of the proposed
scheme is that the numerical unknowns are ¢} and @} which are respectively the approximation of
the average of the potential defined by

(),

r=g|h+B+ 32

(3.2)
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and the velocity @, in the control volume V, at time ¢"*. The potential can be used as a parametrization
of the water depth and the surface pressure, thus we set

( ) ¢—B, if ¢ < gR
H(p,B,R) = _ 2(e_
S i) Bt:\r)\(;’ B), else (3.3)

and P(¢,B,R) =p(¢—g(H(¢,B,R)+ B)).
For readability, we set
k= H(op, By, Ry)  and  pp =P (9f, By, Ry). (3.4)

where R} is an approximation of the mean value of the roof level in the control volume V}, at time ¢".
Note that in the present work, R} depends on the discrete values of x, ¢ and € in a similar way to the
continuous case (2.3), see more detail in Section 3.2. The conservation of the water volume reads

5n+1
M (o B R = = - (fgjg - fﬁfi) (3.5)

with .7-";‘:11 an approximation of the mean mass flux hu through the interface at x; 1 between the
2 2

times t” and ¢t"*1. More precisely, the numerical flux reads

G\ [dkh
Bn+1 BTL+1
Fn+1 _ f lel-l—l leli%. 5n+1
ki T LA B R Se N R
Uy Ugt1
U Cr1
Qsl d)r
B B _ _
Wlth .F Ri R"" 5t _ H(d)l?Bl)Rl) ’I,Ll +H(¢TaBT7Rr) ur
b T ) -
Uy Uy 2
o) \4,

6t H(d)lvBl)Rl) %(¢T)BT5RT) QST 7¢l
2 ( 2 * l ) 2

The given regularization parameter v controls the numerical diffusion. More precisely, the larger 7 is,
the more important the numerical diffusion is, but v has to be larger than 1 to make the computation
stable, see Lemma 3.1. The discrete conservation of the water volume (3.5) is implicit and non-linear. A
fixed point is used to compute the potential gbzﬂ from the implicit and non-linear discrete conservation
of the water volume (3.5), see Section 3.4.2 for details on the fixed-point. It is clear from (3.5) that
the volume of water is exactly preserved in the domain of computation.

Once the potential gb};‘“ is estimated, the water depth hZH and the pressure ﬁZH are computed
using (3.4) and the velocity is computed explicitly by

1 1 1 1 ¢Z+% B ¢Z+11
hZ+ ﬂZ+ — hﬁﬂﬁ _ 5;L+ hz—i— + T -
5tn+l +1 +1

_ E a <fn+1> — (J,—_-n—i—l)
Ek K k_% — k-t k_% + '
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The numerical scheme requires boundary conditions which depend on the regime of the flow. In the
current work, we do not deal with the theoretical issues of the boundary conditions. More precisely,
we assume that the flow in not congested at the boundary, i.e. b} < R} — B;!. It follows that classical
boundary conditions of the shallow water model can be used, see [30, §21.8].

The following energy dissipation law has been proven in [20, Proposition 2.3].

Lemma 3.1. Let v > 1 and assume that for any k € T and any 0 < n < N the following CFL
condition is satisfied

+ ntl o+l min (A2 AL
uk Uk+1 k+1 5n+1 < ( k+1) min (ﬁk,ﬁk 1)- (3-7>
t hn+1 hn+1 +
2( k k+1)

Then the scheme (3.5) admits the following energy dissipation law

1
8n+15 + = 0 <gn+1 _ gn+1> < pz+laz1+1Rk + (pghk +PZ+1> athBk (3.8)

with the discrete mechanical energy
n 1 n (—n\2 n n hz g n n n\2
& =p §hk(uk) + ghg BkJr? +72)\2( K — Rp + Bp)y

and the numerical energy flux

no |ﬂ| <]:n+1) _‘EZH
k+i TP N 9

'2

+1 +1
]_—n+1 (Z)'ﬂ + ¢Z+1 J—_-nJrl
1 9 k+3

¢n+1 ¢n+1 2

k+1
2

n+1 n+l—n n+l1 n+1 n+1 n+1
L e R R 4 gl Pevr
2 2 lrt1 Uk

3.2. Discretization for the solid dynamics

The current section is devoted to the numerical approximation of a solution of the solid dynamics (2.4).
The approximation of the three degrees of freedom x, ¢ and 6 of the solid at time t" are respectively
denoted by x™, ("™ and 6™. Due to its simple implementation, a Newmark scheme is chosen. For («, 3)
€ [0, 1], the Newmark scheme writes

. n+1 .
AL — AT 5n+1An (5 ) (ﬁA"'H +(1-8) An)
An—i—l An + 5n+1 (aAn—‘rl _|_( )An) (3.9)
CLA™ =Fp + St

In our case, we have A = (x,¢, )T while C] is given in (2.4). The forcing term is discretized by
S%—H =% ( Zn+1 8kRn+1 akRnJrl tn+1) with
) f — 2 keT ékﬁkagpb + Fy(t)
o (p.OROFR) = | Sper b + FL(t) (3.10)
where OFR™ (resp. 8§Rn) are discretizations of the derivative of the roof with respect to x (resp.
) at time t" in the control volume Vj. These terms will be discussed below in order to obtain the

energy stability for the coupled fluid-solid model. In the following, we take a = 8 = 1. This choice is
motivated by the fact that the surface pressure source term in (3.8) is implicit and it is required to
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get the discrete energy stability, see Proposition 3.4 below. With this choice, the Newmark scheme is
completely implicit and expected to be first order accurate.

At the discrete level, the Hypothesis 1 and Hypothesis 2 are not required for the stability of the
scheme but must be considered for the relevance of the simulation result. It is actually similar to the
case of discontinuous bottom in a classical shallow water model.

Let us first state the energy stability for the Newmark scheme.

Lemma 3.2. For any 0 <n < N the scheme (3.9)-(3.10) satisfies the following energy law
OttE = FEtt.optia (3.11)
with B = F ()’(", L om, C”) defined in Lemma 2.3.

Proof. The proof for the general ODE case is detailed in [37, §3]. Using a Newmark scheme for the
linear equation of motion on a vector of unknowns A

ClAn + CQA” + C3A" = F"
where C1, Cy and C5 are matrices and §" a given vector, the following energy equation is proven

ntt (1 st i1
Bt iA Ci + 5 Cy A+§AC3A

1 L (A A Ry e
— alH—lA . 3n+1 _ §8f+1A . (Cz + 5?-1—103) atn-i-lA _ 5 < 2+ ) CQ 2+ > '

With the definition given in Proposition 2.2, the following estimate holds
1. .
P! (2A : 01A> = A (Fp+F) = — 0Pt (MgC) + 0PI T
The time evolution of the mechanical energy reads

M /. . 1. .
ontlE = optt (2 (g2 + >'<2) + %92 + Mgg> = ortt (21\ : 01A> + P (MgQ).
Summing the two previous equalities leads to (3.11). ]

3.3. Coupling strategy between the fluid and the solid

Let us now concentrate on the discrete coupling. We will discuss the form of 9¥ R™ and 95 R™ in (3.10)
and analyze the energy of the coupled system. First an estimate of the discrete entropy law for a
general discretization of the operators 0, R"™ and JyR" is given. In a second paragraph an adapted
choice for O R™ and 8§R” is proposed to ensure the entropy stability of the numerical scheme.

3.3.1. A first entropy estimate
In this section, we consider the following straightforward discretization of 9, R™ and 9y R"

n PN
8k Rn+1 _ k41 k—1
- 20, (3.12)
and G R = — (w — X") — (B — (") Dje R
The discrete operator ﬁﬁcR” is the centered discretization of 9,R and the discretization of 3§CR"
comes from (2.10). More precisely 95, R" is a discretization of — (X, — x) — (R — ¢) 9,R. The shift of

the time step is used to make the computation easier.
A discrete energy inequality for the coupled fluid-solid system can be written.
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Proposition 3.3. Consider a no-flur boundary on Q. Under the CFL condition (3.7) the scheme
(3.5)-(3.9)-(3.10) with any discretized operators OXR™ and O R", admits for any 0 < n < N the
following energy inequality

O (E+E) <> (b (pghi + 5t?) 07 By) + P10 ¢ — Fpttoptix + 1,100
keT
+ > bpp T (—Opt Ry — Op IO R 4 0PI+ optop R
keT

with gn = ZkGT gk-g]?

Proof. Summing (3.8) over the computational domain and adding (3.11) gives the result. |

The estimate of Proposition 3.3 is general in the sense that it holds for any discrete operators OF R™
and aan. In addition, it is consistent with the continuous energy estimate given in Proposition 2.4
since using classical arguments and thanks to (2.13) the last term vanishes when the space step and
the time step goes to zero. However the last term does not vanish and its sign cannot be determined
in general. In particular, in the case of the discrete operators (3.12), the sign of the last term is not
defined, which can lead to the artificial creation of mechanical energy.

3.3.2. Numerical discretization ensuring entropy stability

Let us now discuss a discretization for 9, R™ and dyR™ such that the energy stability is ensured. We

set
R”“—R(zk NN 9n+1)
k ) ) ) : n+1 n
— if
aé;ERn-f—l — { Ty ) X 7é X

k 1 .
ok R, else

3.13
R(wr,x",¢"0" ) —RY (3.13)

3 n—+1 n
and 8§ER”+1 = gn¥T_gn if 071 £ 0
ag:CRnJrl 3 else.

With the discrete operator (3.13), the discrete counterpart of the energy dissipation law Proposi-
tion 2.4 can be proven.

Proposition 3.4. Consider a no-flur boundary on . Under the CFL condition (3.7) the scheme
(3.5)-(3.9)-(3.10) with OR™ = 0%, R™ and OFR™ = Ok R™ given by (3.13) admits for any 0 <n < N
the following dissipation law

8tn+1 (g—i—E) < Z (51@ (pth +1§Z+1> 8,?“Bk) + Fg“@f“c _ F;“afﬂx —I—T;’H@ZLHG.
keT

Proof. Assume first the unknowns y and 6 at two successive time steps are not the same, i.e.
X"t £ x™ and 0"t # 6. With the discrete operators (3.13) the last term of the estimate of
Proposition 3.3 reads

o7 (07 Ry + O Ok R — 971 C - 0p T 00fp R
= (B - BY) — (B = R (w0 0m)
(¢ =) = (R (wox ¢, 074 — BY)
= (R (10, €71 0) <R (e, 01)) = (¢ - 7).

Using (2.3) we conclude that this term vanishes. Otherwise, if x"*! = x™ (resp. if "1 = 6") the
evolution of the mechanical energy does not depend on 9¥R"*! (resp. 5§R"+1). So any well defined
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and consistent discretization can be used in this case without affecting the mechanical energy estimate.
We conclude that the using the discretization (3.13), the reminder of Proposition 3.3 and the discrete
energy dissipation is ensured. |

3.4. Practical details

Some details about the practical implementation are given below.

3.4.1. Buoy implementation

The discretization of the roof R (z,x,(,0) is defined from the buoy surface written under the form
S (z,2,0) = 0, see (2.3). However in practice, the geometry of a realistic buoy is not in general
parametrized in this form. Let us explain in the following the numerical implementation of the discrete
roof RY (x,x,(,0) the geometry of a buoy with a general shape in a one-dimensional framework.

In practice the buoy is represented thanks to a finite sequence Sg of Np points (X, Zi)le-< Np—1-
The points describe the vertices of a polygon approaching the geometry of the buoy in the frame
centered on the center of mass. For a set of variables A = (x,(,#), the buoy is described by the

sequence of points
st (5)+ ()] (5) o)

where the rotation matrix My is defined in (2.8).
Let i (resp. ¢) be the index of the point of the buoy at the left (resp. at the right) extremity, i.e.

i(x,¢,0) = maxo<i<np—1{V5,0 < j < Np—1, X; < X;}

and i(X,¢,0) = ming<i<np—1{V5,0 < j < Np—1, X; > X;}.

The inferior surface elevation in the frame of the buoy is defined by the subsequence

t
§6 (X?Cae) = {(Xli(x,c,9)7 ZIZ'(X,C,H)) € 86 (X?Cae) 0<:< J(X7C7€)}
with Ii (x,¢,0) =i+i(x,¢,0) mod Np
and J(X7C70) = i(X,C,H) _Z(Xa ¢ 9) mod Np.

For any position x not under the buoy, i.e. < Xj( ¢ ) Or > Xix.c,0) we set RO (z,x,¢,0) =11,
see (2.12). In the part of the domain where the buoy is, i.e. X, ¢9) <@ < X;(X7<79), the roof is deduced

by linear interpolation from the points in S° (x, ¢, #). More precisely, let
iy (X, €, 0) = max;eq(y ¢ 0) {Xzi(x,g,e) < :E}

¢ ¢
In other words, (szx(x,c,e)’ Z[l.x<X7C79)> (resp. (Xfiz(x,c,e)’Zfiz(x,w)) ) is among the sequence of points

8% (x, ¢, ) the nearest vertex from the left (respectively from the right) to 2. To get an approximation
of the roof a linear interpolation is done, i.e.

r—= szz(x,cm) mex,c,m + (Xfmx,c,e) - x) Zfzz(x,ae)

Xfim,c,e) - szw(x,c,m

RO (z,x,(.0) = (

In the following test cases, the discrete roof is estimated using this strategy, i.e. R} =R (zr, X", (", 0M),
and in the discrete operators (3.13), we use R° (z, x, ¢, 0) instead of R (x,x, ¢, 0).
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pratl L gn
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st = (3.14)
™It < (3.15)

a" T < (3.6)

FiGURE 3.1. Scheme of the weak coupling iterative process. The notation a < b is
the numerical affectation, i.e. a gets the value of b. The notation a <= (X) means that
a is computed using the equation (X).

3.4.2. Fized point approach

The scheme (3.5) is implicit and non-linear, see [33]. Because of the derivative of the roof in the
dynamic equation of the buoy, the computation of the Jacobian required to apply a Newton method is
not trivial. In order to easily introduce new forces on the buoy, we propose a weak coupling iterative
process where the buoy and the water dynamics are solved successively until convergence. In addition,
the CFL condition (3.7) does not take into account the buoy dynamics. A time step adaptation is
added to reduce the time step when the convergence of the iterative process is too slow. The reader
can find more details on time step adaptation in [13] for example. The iterative process is precisely
described in the following. In practice the fixed point algorithm converges in a few iterations (less than
20) with reasonable time steps, but this observation depends on the test case. The rigorous proof of
convergence for the fixed point is out of the scope of this work.

Let us describe more precisely the iterative process, illustrated in Figure 3.1. We consider the state

((h};, ug) e s A" A") given with A = (x, ¢, G)T. Let the exponent ¢ be related to the iteration number

of the iterative process. The iterative process is initialized by ngZ’O computed from A} using (3.2),
A0 = A™ and A™0 = A™. To obtain the next approximation ¢ + 1 from the approximation ¢, an
approximation of the time step d;' AL s first computed such that the CFL condition (3.7) is satisfied
¢ =< n,q +1
2 (e + i) ( /3

at convergence, i.e.
where 0 < €9 < 1 is an adaptive CFL parameter, initialized by ™0 = 1.

Then we compute the potential gZ)Z’qH considering the roof R;'? obtained from the buoy position
A™1  see Section 3.4.1. Since (3.5) is implicit and non-linear, we use a linearization to compute the

- n,q n,q .
5n,q+1 _ ¢nyg i (hk ’hk ) min (€k7£k+1)

(3.14)

7‘L
+“k+1 ¢k+1
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next approximation. More precisely the potential is computed by solving the linear system
Tyt (@nn) Rttt =10 (¢)

3.1=;>
ﬁ ) j— $ ) Snvq (

where Ji"¢ (¢) is the Jacobian of the residual I (¢) = (I[}"? (¢)) .oy of (3.5), i.e.

9 (9) = H (@, Byt Rp) — hi

o Dr+1 Pr—1 o
st Byt B ) Bt Byt .
t n7 n? n7q+ n’ n7 n7q+
+ T X f Rk‘ q 3 Rk}-gl 75t - .F Rk—ql 3 Rk) g 75t
N ~nNn ~nNn N
Uy Ut Up_q Up,
Ly, lri1 lr—q Oy,

Since this formula comes from a linearization of the mass flux in the finite volume formula (3.5) it is
clear that the volume of water is exactly preserved up to the resolution error of the linear system (3.15).

n,q+1

From ¢, , we compute the water depth and the surface pressure using (3.3), i.e.

hZ,qul — Yy ( Z,q+17 BZH’ RZ’Q) and ﬁZ’qH —p (¢Z,q+1’ BZH’ qu) ‘ (3.16)
This pressure is then used to compute the external force, i.e.

An—i—l — A" n+1An (6?_‘—1)2 -1 —n,qg+1 ak pn,g gk pn,g in+1
= +6t + 9 Cl SP“—S'E pk ;aa:R 780R at

(3.17)
A = A 5p Ot (8p + §e (BT 08 RM, OFRM, 741) )

with the discretization of the external force given by (3.10) while C} is given in (2.4). Note that even
if the implicit version of the Newmark scheme is considered, i.e. &« = § = 1, it can be computed
explicitly thanks to the iterative process. )

At this step, we get an approximation of the state variable (¢, A, A) at time ¢"*!, that does not
necessarily satisfy the constraint (2.2). To impose the constraint on each time step, the previous
operations are repeated until numerical convergence. Two stopping criteria are used to increase the
reliability of the result, based on the L>°-norm of the residual of the non-linear system (3.5) (already
used in the case without structure see [33]) and the L*°-norm of the difference between two iterations
of the buoy variable A. When the two errors estimates are inferior to a tolerance & ey, we consider the
fixed point as converged. When the vertical velocity of the buoy is not too large, the convergence of
the iterative process is acceptable (less than 20 iterations). However, when the buoy vertical velocity
is large and especially when it reaches the water surface for the first time, convergence can be hard.
To avoid two-way wiring in the fixed point, the time step is limited if too many iterations are required.
More precisely, we set an acceptable maximum number of iterations %,,q, in the fixed point. If the
Newton iterative process reaches the number of iterations 4,4z, the adaptive CFL parameter is reduced,
ie. &Mt = (™Y with a given reduction factor 0 < w < 1, and we start from the previous time step,

ie. (gb"’q*l,A”’qH,A”’qH) = ((;S”,A",A”). Finally, the velocity @} ™! is estimated using (3.6).

4. Simulations

We illustrate the validity of our coupled numerical model by some one dimensional computations. In
the following we take g = 9.81 and p = 1. The mesh is a regular grid with the space step { = d5.

The relaxation parameter is chosen as A = /05, see [20] for more details about this choice. The
regularization parameter -y is set to 2. It is slightly increased compared to the optimal value necessary
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to get the entropy estimate see Lemma 3.1. This has a regularizing effect (see [33]) and prevents
oscillations which can be observed with the CPR scheme in the vicinity of a shock.

All the test cases are computed with the different strategies presented above, i.e. (3.12) and (3.13).
When the difference between the results of the two strategies are not significative, only the result with
the entropy-satisfying scheme (3.13) is illustrated. The numerical parameters (see Section 3.4) are set
t0 enew = 10710, 4,00 = 20 and w = 0.5.

Let us give a brief motivation of the following test cases. In Section 4.1 we compare the solution
computed with the numerical strategy presented above to an analytical solution established in [27].
This test case emphasizes the convergence of the proposed numerical strategy. However, the two
different discretizations (3.12) and (3.13) cannot be compared in this context since the horizontal
displacement and the rotation of the buoy are frozen, and the two schemes are equivalent in this
context. We compare the two different discretizations (3.12) and (3.13) in Section 4.2, by performing
a test case where all the degrees of freedom of the buoy are free. In addition, this test case emphasizes
the robustness of the scheme to detect the regions where the buoy reaches the water. Eventually, in
Section 4.3, we propose a simple but realistic configuration of a wave energy converter to illustrate
possible applications of this work.

4.1. Return to equilibrium

To illustrate the consistency of the scheme, we compare the computed solution to an analytical solution.
In [27, Corollary 1], the analytical solution of a return to equilibrium is established. It corresponds
to the vertical movement of a rectangular buoy, of horizontal length L, freely floating above a water
initially at rest and with a flat bottom B = 0. A similar analytical solution in axisymmetric framework
is established in [8]. Note this configuration satisfies neither Hypothesis 1, Hypothesis 2 nor the
assumption of the derivation of the fluid equations (2.1)-(2.2), see [20, 27]. However, for what concerns
the numerical scheme, it can be written without difficulty and this test case validates the accuracy of
the method in a dynamic context.
The equilibrium of the system is defined by @ = 0, a fixed hey € Ry and ¢ = (¢4 such that

Mg = /Q pdx = p/Q (heq —(S(z— XEQ)eeq) + Ceq))+ dx (4.1)

where x¢q € R and 6.4 € [—7, 7] are fixed. For simplicity we set xeq = 0 = 0. In other words the
equilibrium is the situation where the surface pressure balances out the weight of the buoy. Only a
vertical movement is considered for this test case. More precisely we suppose that

Fy = / PO, R dx, Ty = —/ POyR dx and Fe=0 (4.2)
Qy Qz

which expresses the fact that the horizontal and angular degrees of freedom are fixed.

Initially the water is at rest so that h° = min (heq, S (z,0) + ¢°) and @” = 0. The length of the roof
is L = 0.8 and the roof is defined so that it is symmetric with respect to its center of mass. For the
above defined configuration, the position of the center of mass is determined by

(J‘If + 32c (§)3> (= gL (¢~ Ce) = v (&) +1(Q) (4.3)

with the coefficients
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FIGURE 4.2. Return to equilibrium: Convergence rate in L?-norm for d.

The coefficient 7 is given by 7 (r) = % (N/heq +C(r)+ (’;(67‘3 ) with

1
3 8 3 / 4 3\\°
C(’r‘):2<—47"+27h¢§q+4 T(T‘—27 gq)> .

In this test case, we consider a buoy of mass M = 0.5 with the equilibrium elevation (., = 1 and
the water depth h., computed to satisfy (4.1). Initially the state of the buoy is ¢"=1.2 and ¢° = 0.

For the computation, we set Q, = [—20, 20] with wall condition at boundaries.

The simulation is compared to the solution of (4.3) in Figure 4.1, where 6 = ( —(c4. The agreement
between the two solutions is good and the solution tends to the equilibrium position as expected. The
convergence rate in norm L? in time until the end of the simulation (here fixed to 4) of d is shown in
Figure 4.2. A convergence rate slightly better than one is observed. We recall that a first order scheme

is expected since the full implicit Newmark scheme and the fluid scheme are first order.
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Remark 4.1. Because of the symmetry of the test case, the external forces actually read F, = Tp = 0.
However, this equilibrium is unstable since small perturbations, such as those introduce by the machine
errors, break the symmetry. For this reason, even with an axisymmetric buoy, the external forces (4.2)
are imposed.

4.2. Throwing

To illustrate the robustness of the scheme, we propose the simulation of a buoy thrown into the water.
This simulation can be compared to a block of ice falling in water from an iceberg, except that the
parameters such as the mass and the angular moment are not physically relevant.

We consider a closed domain €, = [0, 2] with wall boundary conditions and a flat bottom B = 0.
The water is initially at rest, i.e. h® = 1 and @° = 0. The buoy is defined following the strategy
explained in Section 3.4.1 with

S={(3) (). vsrenent)
<

( )Z( ) _ 0.3 cos (V) + 0.03 cos (49) ) 7

0.2sin (¢) — 0.03 cos (49) — 0.06
its mass is M = 1072 and its angular moment is 7 = 10~2. We do not consider any additional force,
i.e. F\, = F; = Tp = 0. The initial state of the buoy is X0 =0,¢=15,6= 5 x'=1,¢"=1and
0° = 0.

In Figure 4.3, the buoy position, the water height and the surface pressure at different times are
shown with the numerical parameters 6, = 1073 and Np = 360. At the beginning the fluid is at rest
and the buoy is not in contact with the fluid. At the impact an energy transfer from the buoy to the
water is observed and waves are created. It is easy to verify that the non-penetration constraint (2.2)
is qualitatively met, more precisely at the order A, see [20]. Let us consider the mechanical energy
E" + E™ without the potential energy of the water at rest £ and normalized by the energy of the buoy
at the initial state EY, i.e.

n

o E B

EO

At the initial state, the main part of the energy of the system is the potential energy of the water. By
removing the potential energy of the water at rest, the direction of energy variation is unchanged but
the amplitude of the variation is significantly increased.

The evolution of the energy ratio e” is shown in Figure 4.4 (first line) for both discretizations (3.12)
and (3.13) and for two different space steps. To give an idea of the cost of the simulation, let us
indicate some CPU times for computations done on a personal laptop to reach time ¢ = 3: for the
discretization (3.12), the CPU times are 0,474s for §, = 1072 and 10.7s for §, = 10~3, while for the
discretization (3.13) the CPU times are 0.533s for §, = 1072 and 12.7s for §, = 107 3.

Accordingly to the theoretical result of Proposition 3.4, the mechanical energy is decreasing for the
discretization (3.13), see Figure 4.4 (first line). The dissipation of mechanical energy is low (few %o)
even with a coarse resolution. Note that even at convergence, we do not expect that the mechanical
energy is preserved. In particular, when the buoy reaches the water surface for the first time, the
surface pressure is discontinuous and it yields a strong dissipation of energy, see time t = 0.35. In
practice the centered discretization (3.12) leads to satisfactory results except for coarse resolution.
With 6, = 1072, the mechanical energy is increasing at time ¢ = 1.5 and the results is significantly
affected, in particular for the horizontal position, see Figure 4.4 (second line).
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FIGURE 4.3. Throwing: Buoy (black dotted line), water height (blue solid line), velocity
(filled surface in the water — blue<0 <red) and surface pressure (green filled surface in
the buoy) at several times.
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4.3. Wave energy converter

To illustrate the ability of the strategy to optimize a wave energy converter, a restoring and a damping
force are introduced, see Figure 4.5. The structure is allowed to move vertically and to rotate around

its center of mass and it is fixed in the horizontal direction, i.e. Fy = —l -k (C — f), Ty = 0 and
Py = Jo, POrRdz. The damping (resp. stiffness) coefficients are denoted by ¢ € Ry (resp. £ € Ry).

The equilibrium length of the spring is denoted by (. Let us rewrite the equations from Section 2.2
in the case where we add a spring. The proofs of the following results are not detailed since they are
simple adaptations of Lemma 3.2 and Proposition 3.4.

The planar movement of the energy wave converter is described by the system

Mfz—Mg—i—/Qrpdx—c('—/@@—C)
Jé)‘:/Q pOpR da.

The following energy estimates can be obtained

Lemma 4.2. The solution of (4.4) satisfies the following energy law

atE:/ p@ngxé—}—/ pdazl — e?
Qr Qr

with E (¢,0) = 0% + %52+Mg<+g(g—§)2.

Proposition 4.3. Considering a no-flur boundary on Q, any smooth solution of (2.1)-(2.2)-(2.11)-
(2.12)-(4.4) satisfies the following energy balance law

Oy (g—l- E’) = /Q (p + pgh) 0,Bdx — P, with P, = (2.

x

The term P. is a dissipation term due to the damping of the spring. A part of this energy could be
recovered for energy production.

Using again the Newmark scheme (3.9) with A = (g), (4.4) is discretized in the following way

ME = —Mg+ 3" by — o€ =k (¢" = Q)
. ~ ’“keT . (4.5)
keT

The following discrete estimates can be obtained

Lemma 4.4. The scheme (3.9)-(4.5) satisfies for any 0 < n < N the following energy law

n+1 | 7 51?—’—1 2\ 2 _ —n+1qk pn n+1 —n qn+1
o B+ (O)7) =3 (apptobrr) opto+ 3 tphpop+'c
keT keT

n+1
o4
[ —

_ pcn+1 _ 5

(or+1¢)’
with E" = E (¢",6") and Prt+! = ¢ ((8?“4)2 + (Wz“")?)-
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FIGURE 4.6. Spring: energy ratio for different values of the damping coefficient

Proof. The proof is similar to the proof of Lemma 3.2. The coefficients are (with obvious notations)

o —Mg + K¢+ Yper Lk}
ket (PR O R ’

0

0

~ M 0 ~ c ~ k 0
Cl:(O j)’ C’gz(o ) and 03:(0 O)' -

Proposition 4.5. Consider a no-fluz boundary on . Under the CFL condition (3.7) the scheme
(3.5)-(3.6)-(3.9)-(4.5) with O R™ = Ok R™ given by (3.13) admits for any 0 < n < N the following
dissipation law

P! (5 +E+ 5?; (é)2> <> (b (pghi + 3 ) OBy ) — PRt - n‘sfb; Cae
keT

The optimization of wave energy converters is a key point in the development of such devices. To
show the feasibility of an optimization procedure, a naive estimate of the recoverable energy is done.
The recovered energy, depending on the technology used to convert wave energy, is a part of the

recoverable energy defined by
N

E.=Y 6P
n=1
where N is the number of time iterations and P! is defined in Lemma 4.4.

In the following a simple case of a wave energy converter attached to a spring over a flat bottom
B = 0 is simulated. An elliptical shaped buoy with semi-minor and semi-major axis respectively equal
to 0.2 and 0.4 is considered, see Section 2.2 for the description of the buoy geometry. The mass is
M = 1072 and the moment of inertia J = 5 - 1073. The stiffness coefficient is k = 1072 and the
characteristic elevation is { = 1.4. Initially, the water and the buoy are at equilibrium. More precisely,
the initial state of the buoy reads y = 1.5, { = 1.4, % = 5,¢=0and 09 = 0, and the water state reads
7’ = 0 and h® = min (hey, S (z — X, 0°) + ¢°) with heg so that the buoy is at equilibrium, see (4.1).
The computational domain is 2, = [0, 3].

At the left, a fixed water depth boundary condition is considered, see [30, §21.8|, with h (0,t) =
heq + 0.05sin (47t). At the right boundary a wall boundary condition is considered.
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In Figure 4.6 the ratio between the recoverable energy F. and the total energy introduced &y is
shown at time ¢ = 1 with the space step 6, = 3 - 1073 and for several values of c¢. The total energy
introduced is computed by considering a similar simulation without the buoy. More precisely it is
defined by & = ENV — EV.

The recoverable energy E. is about 10% of the total energy &, that is not negligible considering
that many parameters can also be optimized (shape, mass and moment of inertia of the buoy). In
this case, the best choice seems to be obtained around ¢ = 0.3. Physically a small stiffness allows the
spring to move as much as possible. Furthermore a small damping coefficient would not be able to
absorb any energy. In contrary if the damping coefficient is too high, the buoy will be slowed down
due to the damping and the recoverable energy would not be optimal.

5. Conclusion

A strong coupling between a congested shallow water type model and Newton’s second law of motion
is presented for the modeling of floating structures. We have taken a particular care to the energy
transfer between the solid and the water. An entropy correction is made at the discrete level in order
to ensure an entropy dissipation law and the numerical scheme proposed in [20] is adapted to take into
account a freely floating body. Finally numerical simulations are proposed to validate the approach
and to show the feasibility of physically relevant cases.

Now real life applications need an extension to the two dimensional case. Since the computations
become CPU costly in higher dimensions, some scientific computing issues should be resolved before-
hand. One can think of linking our method with a less CPU consuming scheme for free surface flow
far from the congested area.

The physical description of water waves is important when considering wave energy converters.
More complex models such as dispersive models [12, 28], layerwise vertical discretization [3] or the
combination of both [17] could be used to represent the flow. Dispersive models do not neglect the
vertical acceleration and are therefore more adapted to characterize heave effets. In any numerical
strategies where the dispersive terms are introduce as a correction of a shallow water scheme [2, 9,
16, 29, 32|, the strategy presented in the current work can be use instead of the classical shallow
water scheme to obtain floating body modeling with a dispersive model. In addition, a layerwise
discretization can better reproduce wind effects and friction on the body by considering a vertical
profile of the velocity. We expect that the improvement of our results with a layerwise discretization
not raise particular difficulties since the velocity is computed separately to the constraint in the current
numerical strategy. Last but not least, our method is directly adaptable to take into account several
bodies, as long as no collision between them appear. It is in particular interesting for the simulation
and optimization of farms of wave energy converters [35]. A logical follow-up in another direction is
to consider the collisions between floating bodies. It should be essential to study the drift of floating
fragments during flooding. Since these phenomena take place on a large space scale, the proposed model
seems well adapted. Eventually, a challenging objective is the handling of submerged body [15, 22].
This issue seems not at hand at the moment since a more complex description of the flow is required.
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