FEM and BEM simulations with the Gypsilab framework
The SMAI Journal of computational mathematics, Volume 4 (2018), pp. 297-318.

Gypsilab is a Matlab framework which aims at simplifying the development of numerical methods that apply to the solution of problems in multiphysics, in particular, those involving FEM or BEM simulations. The peculiarities of the framework, with a focus on its ease of use, are shown together with the methodology that have been followed for its development. Example codes that are short though representative enough are given both for FEM and BEM applications. A performance comparison with FreeFem++ is provided, and a particular emphasis is made on problems in acoustics and electromagnetics solved using the BEM and for which compressed -matrices are used.

Published online:
DOI: 10.5802/smai-jcm.36
Classification: 65N30, 65N38, 65Y99
Keywords: Finite Element Method, Boundary Element Method, $\protect \mathcal{H}$-matrices, Matlab

François Alouges 1; Matthieu Aussal 1

1 CMAP - Ecole Polytechnique, Université Paris-Saclay, Route de Saclay, 91128, Palaiseau Cedex, France
License: CC-BY-NC-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{SMAI-JCM_2018__4__297_0,
     author = {Fran\c{c}ois Alouges and Matthieu Aussal},
     title = {FEM and {BEM} simulations with the {Gypsilab} framework},
     journal = {The SMAI Journal of computational mathematics},
     pages = {297--318},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {4},
     year = {2018},
     doi = {10.5802/smai-jcm.36},
     zbl = {1416.65429},
     mrnumber = {3883671},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.36/}
}
TY  - JOUR
AU  - François Alouges
AU  - Matthieu Aussal
TI  - FEM and BEM simulations with the Gypsilab framework
JO  - The SMAI Journal of computational mathematics
PY  - 2018
SP  - 297
EP  - 318
VL  - 4
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.36/
DO  - 10.5802/smai-jcm.36
LA  - en
ID  - SMAI-JCM_2018__4__297_0
ER  - 
%0 Journal Article
%A François Alouges
%A Matthieu Aussal
%T FEM and BEM simulations with the Gypsilab framework
%J The SMAI Journal of computational mathematics
%D 2018
%P 297-318
%V 4
%I Société de Mathématiques Appliquées et Industrielles
%U https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.36/
%R 10.5802/smai-jcm.36
%G en
%F SMAI-JCM_2018__4__297_0
François Alouges; Matthieu Aussal. FEM and BEM simulations with the Gypsilab framework. The SMAI Journal of computational mathematics, Volume 4 (2018), pp. 297-318. doi : 10.5802/smai-jcm.36. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.36/

[1] J. Alberty; C. Carstensen; S. A. Funken Remarks around 50 lines of Matlab: short finite element implementation, Numerical Algorithms, Volume 20 (1999) no. 2-3, pp. 117-137 | DOI | MR | Zbl

[2] F. Alouges; M. Aussal The sparse cardinal sine decomposition and its application for fast numerical convolution, Numerical Algorithms, Volume 70 (2015) no. 2, pp. 427-448 | DOI | MR | Zbl

[3] F. Alouges; M. Aussal; A. Lefebvre-Lepot; F. Pigeonneau; A. Sellier Application of the sparse cardinal sine decomposition to 3D Stokes flows, International Journal of Computational Methods and Experimental Measurements, Volume 5 (2017) no. 3, pp. 387-394 | DOI

[4] F. Alouges; M. Aussal; E. Parolin Fast Boundary Element Method for acoustics with the Sparse Cardinal Sine Decomposition, European Journal of Computational Mechanics, Volume 26 (2017) no. 4, pp. 377-393 | DOI | MR

[5] I. Anjam; J. Valdman Fast Matlab assembly of FEM matrices in 2D and 3D: Edge elements, Applied Mathematics and Computation, Volume 267 (2015), pp. 252-263 | DOI | MR | Zbl

[6] https://imacs.polytechnique.fr/ASERIS.htm ([Accessed - Sept. 2018])

[7] H. Bang; Y. W Kwon The finite element method using Matlab, CRC press, 2000

[8] D. Colton; R. Kress Inverse acoustic and electromagnetic scattering theory, 93, Springer Science & Business Media, 2012

[9] https://www.comsol.fr ([Accessed - Sept. 2018])

[10] F. Cuvelier; C. Japhet; G. Scarella An efficient way to assemble finite element matrices in vector languages, BIT Numerical Mathematics, Volume 56 (2016) no. 3, pp. 833-864 | DOI | MR | Zbl

[11] https://www.esi-group.com/software-solutions/virtual-environment/electromagnetics/cem-one/efield-time-domain-solvers ([Accessed - Sept. 2018])

[12] http://www.feelpp.org ([Accessed - Sept. 2018])

[13] https://fenicsproject.org ([Accessed - Sept. 2018])

[14] http://firedrakeproject.org ([Accessed - Sept. 2018])

[15] http://www.cims.nyu.edu/cmcl/fmm3dlib/fmm3dlib.html ([Accessed - Sept. 2018])

[16] S. Funken; D. Praetorius; P. Wissgott Efficient implementation of adaptive P1-FEM in Matlab, Computational Methods in Applied Mathematics Comput. Methods Appl. Math., Volume 11 (2011) no. 4, pp. 460-490 | DOI | MR | Zbl

[17] C. Geuzaine, PAMM: Proceedings in Applied Mathematics and Mechanics, Volume 7(1) (2007), pp. 1010603-1010604 (See also "http://getdp.info") | DOI

[18] L. Greengard The rapid evaluation of potential fields in particle systems, MIT press, 1988 | DOI | Zbl

[19] www.cmap.polytechnique.fr/~aussal/gypsilab Gypsilab is freely available under GPL 3.0 license. (It is also available on GitHub at "https://github.com/matthieuaussal/gypsilab")

[20] W. Hackbusch Hierarchische Matrizen: Algorithmen und Analysis, Springer Science & Business Media, 2009 | Zbl

[21] F. Hecht New development in FreeFem++, Journal of numerical mathematics, Volume 20 (2012) no. 3-4, pp. 251-266 (See also http://www.freefem.org) | DOI | MR | Zbl

[22] J.-C. Nédélec Acoustic and electromagnetic equations: integral representations for harmonic problems, 144, Springer Science & Business Media, 2001 | Zbl

[23] T. Rahman; J. Valdman Fast Matlab assembly of FEM matrices in 2D and 3D: Nodal elements, Applied mathematics and computation, Volume 219 (2013) no. 13, pp. 7151-7158 | DOI | MR | Zbl

[24] W. Śmigaj; T. Betcke; S. Arridge; J. Phillips; M. Schweiger Solving boundary integral problems with BEM++, ACM Transactions on Mathematical Software (TOMS), Volume 41 (2015) no. 2, 6 pages | DOI | MR | Zbl

[25] O. J. Sutton The virtual element method in 50 lines of Matlab, Numerical Algorithms, Volume 75 (2017) no. 4, pp. 1141-1159 | DOI | MR | Zbl

[26] https://www.esi-group.com/fr/solutions-logicielles/performance-virtuelle/vibro-acoustique ([Accessed - Sept. 2018])

[27] https://uma.ensta-paristech.fr/soft/XLiFE++/ ([Accessed - Sept. 2018])

Cited by Sources: