Maximum-principle-satisfying second-order Intrusive Polynomial Moment scheme
The SMAI journal of computational mathematics, Volume 5 (2019) , pp. 23-51.

Using standard intrusive techniques when solving hyperbolic conservation laws with uncertainties can lead to oscillatory solutions as well as nonhyperbolic moment systems. The Intrusive Polynomial Moment (IPM) method ensures hyperbolicity of the moment system while restricting oscillatory over- and undershoots to specified bounds. In this contribution, we derive a second-order discretization of the IPM moment system which fulfills the maximum principle. This task is carried out by investigating violations of the specified bounds due to the errors from the numerical optimization required by the scheme. This analysis gives weaker conditions on the entropy that is used, allowing the choice of an entropy which enables choosing the exact minimal and maximal value of the initial condition as bounds. Solutions calculated with the derived scheme are nonoscillatory while fulfilling the maximum principle. The second-order accuracy of our scheme leads to significantly reduced numerical costs.

Published online:
DOI: https://doi.org/10.5802/smai-jcm.42
Classification: 35L65,  35R60,  65M08
Keywords: uncertainty quantification, conservation laws, maximum principle, moment system, hyperbolic, oscillations
@article{SMAI-JCM_2019__5__23_0,
     author = {Jonas Kusch and Graham W. Alldredge and Martin Frank},
     title = {Maximum-principle-satisfying second-order {Intrusive} {Polynomial} {Moment} scheme},
     journal = {The SMAI journal of computational mathematics},
     pages = {23--51},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {5},
     year = {2019},
     doi = {10.5802/smai-jcm.42},
     mrnumber = {3928534},
     zbl = {07090178},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.42/}
}
Jonas Kusch; Graham W. Alldredge; Martin Frank. Maximum-principle-satisfying second-order Intrusive Polynomial Moment scheme. The SMAI journal of computational mathematics, Volume 5 (2019) , pp. 23-51. doi : 10.5802/smai-jcm.42. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.42/

[1] G. Alldredge; C. D Hauck; A. L. Tits High-order entropy-based closures for linear transport in slab geometry II: A computational study of the optimization problem, SIAM Journal on Scientific Computing, Volume 34 (2012) no. 4, p. B361-B391 | MR 2970411 | Zbl 1297.82032

[2] G. W. Alldredge; C. D. Hauck; D. P. OĹeary; A. L. Tits Adaptive change of basis in entropy-based moment closures for linear kinetic equations, Journal of Computational Physics, Volume 258 (2014), pp. 489-508 | Article | MR 3145290 | Zbl 1349.82066

[3] J. B. Bell; C. N. Dawson; G. R. Shubin An unsplit, higher order Godunov method for scalar conservation laws in multiple dimensions, Journal of Computational Physics, Volume 74 (1988) no. 1, pp. 1-24 | Zbl 0684.65088

[4] C. Canuto; A. Quarteroni Approximation results for orthogonal polynomials in Sobolev spaces, Mathematics of Computation, Volume 38 (1982) no. 157, pp. 67-86 | Article | MR 637287 | Zbl 0567.41008

[5] K. M Case; P. F. Zweifel Linear transport theory, Addison-Wesley Pub. Co., 1967 | Zbl 0162.58903

[6] S. Chandrasekhar Stochastic problems in physics and astronomy, Reviews of modern physics, Volume 15 (1943) no. 1, pp. 1-89 | Article | MR 8130 | Zbl 0061.46403

[7] P. Colella Multidimensional upwind methods for hyperbolic conservation laws, Journal of Computational Physics, Volume 87 (1990) no. 1, pp. 171-200 | MR 1043308 | Zbl 0694.65041

[8] B. Després; G. Poëtte; D. Lucor Robust Uncertainty Propagation in Systems of Conservation Laws with the Entropy Closure Method (2013), pp. 105-149

[9] B. Dubroca; A. Klar Half-moment closure for radiative transfer equations, Journal of Computational Physics, Volume 180 (2002) no. 2, pp. 584-596 | Zbl 1143.85301

[10] C. K. Garrett; C. Hauck; J. Hill Optimization and large scale computation of an entropy-based moment closure, Journal of Computational Physics, Volume 302 (2015), pp. 573-590 | Article | MR 3404536 | Zbl 1349.65580

[11] R. G Ghanem; P. D. Spanos Stochastic Finite Elements: A Spectral Approach, Dover, 2003 | Zbl 0953.74608

[12] D. Gottlieb; D. Xiu Galerkin method for wave equations with uncertain coefficients, Commun. Comput. Phys, Volume 3 (2008) no. 2, pp. 505-518 | MR 2389809 | Zbl 1195.65009

[13] S. Gottlieb; C.-W. Shu; E. Tadmor Strong stability-preserving high-order time discretization methods, SIAM review, Volume 43 (2001) no. 1, pp. 89-112 | Article | MR 1854647 | Zbl 0967.65098

[14] J.-L. Guermond; M. Nazarov; B. Popov; Y. Yang A second-order maximum principle preserving Lagrange finite element technique for nonlinear scalar conservation equations, SIAM Journal on Numerical Analysis, Volume 52 (2014) no. 4, pp. 2163-2182 | Article | MR 3249370 | Zbl 1302.65225

[15] C. Hauck; R. McClarren Positive P N Closures, SIAM Journal on Scientific Computing, Volume 32 (2010) no. 5, pp. 2603-2626 | MR 2684730 | Zbl 1385.70034

[16] C. D. Hauck High-order entropy-based closures for linear transport in slab geometry, Commun. Math. Sci, Volume 9 (2011) no. 1, pp. 187-205 | Article | MR 2836842 | Zbl 1284.82050

[17] H. Holden; N. H. Risebro Front tracking for hyperbolic conservation laws Volume 152, Springer, 2015 | MR 3443431 | Zbl 1346.35004

[18] J. Kusch Uncertainty Quantification for Hyperbolic Equations, RWTH Aachen University (2015), pp. 1-23

[19] R. J. LeVeque Numerical Methods for Conservation Laws, Birkhäuser Verlag Basel, 1992 | Zbl 0847.65053

[20] R. J. LeVeque Nonlinear conservation laws and finite volume methods, Computational methods for astrophysical fluid flow, Springer, 1998, pp. 1-159 | Zbl 0931.76052

[21] C. D. Levermore Moment closure hierarchies for kinetic theories, Journal of Statistical Physics, Volume 83 (1996) no. 5-6, pp. 1021-1065 | Article | MR 1392419 | Zbl 1081.82619

[22] E. E. Lewis; W. F. Miller Computational Methods of Neutron Transport, John Wiley and Sons, Inc., New York, NY, 1984 | Zbl 0594.65096

[23] X.-D. Liu A maximum principle satisfying modification of triangle based adapative stencils for the solution of scalar hyperbolic conservation laws, SIAM journal on numerical analysis, Volume 30 (1993) no. 3, pp. 701-716 | Article | MR 1220647

[24] X.-D. Liu; S. Osher Nonoscillatory high order accurate self-similar maximum principle satisfying shock capturing schemes I, SIAM Journal on Numerical Analysis, Volume 33 (1996) no. 2, pp. 760-779 | Article | MR 1388497 | Zbl 0859.65091

[25] G. Poëtte; B. Després; D. Lucor Uncertainty quantification for systems of conservation laws, Journal of Computational Physics, Volume 228 (2009) no. 7, pp. 2443-2467 | Article | MR 2501693

[26] G. Poëtte; B. Després; D. Lucor Treatment of uncertain material interfaces in compressible flows, Computer Methods in Applied Mechanics and Engineering, Volume 200 (2011) no. 1, pp. 284-308 | MR 2740823 | Zbl 1216.65009

[27] G. Poëtte; B. Després; D. Lucor Uncertainty propagation for systems of conservation laws, high order stochastic spectral methods, Spectral and High Order Methods for Partial Differential Equations, Springer, 2011, pp. 293-305 | Article | Zbl 1216.65009

[28] G. C. Pomraning The Equations of Radiation Hydrodynamics, Oxford, 1973

[29] C.-W. Shu Total-variation-diminishing time discretizations, SIAM Journal on Scientific and Statistical Computing, Volume 9 (1988) no. 6, pp. 1073-1084 | Article | MR 963855 | Zbl 0662.65081

[30] N. Wiener The homogeneous chaos, American Journal of Mathematics, Volume 60 (1938) no. 4, pp. 897-936 | MR 1507356 | Zbl 64.0887.02

[31] D. Xiu; G. Em Karniadakis Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos, Computer Methods in Applied Mechanics and Engineering, Volume 191 (2002) no. 43, pp. 4927-4948 | Article | MR 1932024 | Zbl 1016.65001

[32] X. Zhang; C.-W. Shu On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes, Journal of Computational Physics, Volume 229 (2010) no. 23, pp. 8918-8934 | Article | MR 2725380 | Zbl 1282.76128

[33] X. Zhang; C.-W. Shu Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (2011) | Zbl 1222.65107