The topological ligament in shape optimization: a connection with thin tubular inhomogeneities
The SMAI journal of computational mathematics, Volume 7 (2021), pp. 185-266.

In this article, we propose a formal method for evaluating the asymptotic behavior of a shape functional when a thin tubular ligament is added between two distant regions of the boundary of the considered domain. In the contexts of the conductivity equation and the linear elasticity system, we relate this issue to a perhaps more classical problem of thin tubular inhomogeneities: we analyze the solutions to versions of the physical partial differential equations which are posed inside a fixed “background” medium, and whose material coefficients are altered inside a tube with vanishing thickness. Our main contribution from the theoretical point of view is to propose a heuristic energy argument to calculate the limiting behavior of these solutions with a minimum amount of effort. We retrieve known formulas when they are available, and we manage to treat situations which are, to the best of our knowledge, not reported in the literature (including the setting of the 3d linear elasticity system). From the numerical point of view, we propose three different applications of the formal “topological ligament” approach derived from these expansions. At first, it is an original way to account for variations of a domain, and it thereby provides a new type of sensitivity for a shape functional, to be used concurrently with more classical shape and topological derivatives in optimal design frameworks. Besides, it suggests new, interesting algorithms for the design of the scaffold structure sustaining a shape during its fabrication by a 3d printing technique, and for the design of truss-like structures. Several numerical examples are presented in two and three space dimensions to appraise the efficiency of these methods.

Published online:
DOI: https://doi.org/10.5802/smai-jcm.76
Classification: 35C20,  49Q10,  65K10,  74B05
Keywords: Shape and topology optimization, small inhomogeneities, asymptotic analysis, linear elasticity
Charles Dapogny 1

1. Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK, 38000 Grenoble, France.
@article{SMAI-JCM_2021__7__185_0,
     author = {Charles Dapogny},
     title = {The topological ligament in shape optimization: a connection with thin tubular inhomogeneities},
     journal = {The SMAI journal of computational mathematics},
     pages = {185--266},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {7},
     year = {2021},
     doi = {10.5802/smai-jcm.76},
     language = {en},
     url = {https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.76/}
}
TY  - JOUR
AU  - Charles Dapogny
TI  - The topological ligament in shape optimization: a connection with thin tubular inhomogeneities
JO  - The SMAI journal of computational mathematics
PY  - 2021
DA  - 2021///
SP  - 185
EP  - 266
VL  - 7
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.76/
UR  - https://doi.org/10.5802/smai-jcm.76
DO  - 10.5802/smai-jcm.76
LA  - en
ID  - SMAI-JCM_2021__7__185_0
ER  - 
%0 Journal Article
%A Charles Dapogny
%T The topological ligament in shape optimization: a connection with thin tubular inhomogeneities
%J The SMAI journal of computational mathematics
%D 2021
%P 185-266
%V 7
%I Société de Mathématiques Appliquées et Industrielles
%U https://doi.org/10.5802/smai-jcm.76
%R 10.5802/smai-jcm.76
%G en
%F SMAI-JCM_2021__7__185_0
Charles Dapogny. The topological ligament in shape optimization: a connection with thin tubular inhomogeneities. The SMAI journal of computational mathematics, Volume 7 (2021), pp. 185-266. doi : 10.5802/smai-jcm.76. https://smai-jcm.centre-mersenne.org/articles/10.5802/smai-jcm.76/

[1] Robert A. Adams; John Fournier Sobolev spaces, 140, Academic Press Inc., 2003

[2] Grégoire Allaire Shape optimization by the homogenization method, 146, Springer, 2002 | Article

[3] Grégoire Allaire; Beniamin Bogosel Optimizing supports for additive manufacturing, Struct. Multidiscip. Optim., Volume 58 (2018) no. 6, pp. 2493-2515 | Article | MR 3878711

[4] Grégoire Allaire; Charles Dapogny; Rafael Estevez; Alexis Faure; Georgios Michailidis Structural optimization under overhang constraints imposed by additive manufacturing technologies, J. Comput. Phys., Volume 351 (2017), pp. 295-328 | Article | MR 3713427 | Zbl 1375.74076

[5] Grégoire Allaire; Charles Dapogny; Alexis Faure; Georgios Michailidis Shape optimization of a layer by layer mechanical constraint for additive manufacturing, C. R. Math. Acad. Sci. Paris, Volume 355 (2017) no. 6, pp. 699-717 | Article | MR 3661554 | Zbl 1370.49037

[6] Grégoire Allaire; Charles Dapogny; Pascal Frey Topology and geometry optimization of elastic structures by exact deformation of simplicial mesh, C. R. Math. Acad. Sci. Paris, Volume 349 (2011) no. 17-18, pp. 999-1003 | Article | MR 2838253 | Zbl 1368.74045

[7] Grégoire Allaire; Charles Dapogny; Pascal Frey Shape optimization with a level set based mesh evolution method, Comput. Methods Appl. Mech. Eng., Volume 282 (2014), pp. 22-53 | Article | MR 3269890

[8] Grégoire Allaire; Charles Dapogny; François Jouve Shape and topology optimization, Geometric partial differential equations, part II (Handbook of Numerical Analysis), Volume 22, Elsevier, 2021, pp. 1-132 | Article | MR 4254134 | Zbl 07412766

[9] Grégoire Allaire; Frédéric De Gournay; François Jouve; Anca-Maria Toader Structural optimization using topological and shape sensitivity via a level set method, Control Cybern., Volume 34 (2005) no. 1, p. 59 | MR 2211063 | Zbl 1167.49324

[10] Grégoire Allaire; Lukas Jakabčin Taking into account thermal residual stresses in topology optimization of structures built by additive manufacturing, Math. Models Methods Appl. Sci., Volume 28 (2018) no. 12, pp. 2313-2366 | Article | MR 3871728 | Zbl 1411.49028

[11] Grégoire Allaire; François Jouve; Anca-Maria Toader Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys., Volume 194 (2004) no. 1, pp. 363-393 | Article | MR 2033390 | Zbl 1136.74368

[12] Grégoire Allaire; Marc Schoenauer Conception optimale de structures, 58, Springer, 2007

[13] Luigi Ambrosio; Carlo Mantegazza Curvature and distance function from a manifold, J. Geom. Anal., Volume 8 (1998) no. 5, pp. 723-748 | Article | MR 1731060 | Zbl 0941.53009

[14] Luigi Ambrosio; H Mete Soner Level set approach to mean curvature flow in arbitrary codimension, J. Differ. Geom., Volume 43 (1994), pp. 693-737 | MR 1412682 | Zbl 0868.35046

[15] Oded Amir; Yoram Mass Topology optimization for staged construction, Struct. Multidiscip. Optim., Volume 57 (2018) no. 4, pp. 1679-1694 | Article | MR 3785651

[16] Habib Ammari; Elena Beretta; Elisa Francini Reconstruction of thin conductivity imperfections, Appl. Anal., Volume 83 (2004) no. 1, pp. 63-76 | Article | MR 2031608 | Zbl 1047.35130

[17] Habib Ammari; Elena Beretta; Elisa Francini Reconstruction of thin conductivity imperfections, II. The case of multiple segments, Appl. Anal., Volume 85 (2006) no. 1-3, pp. 87-105 | Article | MR 2198833 | Zbl 1092.35115

[18] Habib Ammari; Hyeonbae Kang Reconstruction of small inhomogeneities from boundary measurements, Springer, 2004 | Article

[19] Habib Ammari; Hyeonbae Kang Polarization and moment tensors: with applications to inverse problems and effective medium theory, 162, Springer, 2007

[20] Habib Ammari; Hyeonbae Kang; Hyundae Lee A boundary integral method for computing elastic moment tensors for ellipses and ellipsoids, J. Comput. Math. (2007), pp. 2-12 | MR 2292423

[21] Habib Ammari; Hyeonbae Kang; Gen Nakamura; Kazumi Tanuma Complete asymptotic expansions of solutions of the system of elastostatics in the presence of an inclusion of small diameter and detection of an inclusion, J. Elasticity, Volume 67 (2002) no. 2, pp. 97-129 | Article | MR 1985444

[22] Habib Ammari; Shari Moskow; Michael S. Vogelius Boundary integral formulae for the reconstruction of electric and electromagnetic inhomogeneities of small volume, ESAIM, Control Optim. Calc. Var., Volume 9 (2003), pp. 49-66 | Article | Numdam | MR 1957090 | Zbl 1075.78010

[23] Habib Ammari; Jin Keun Seo An accurate formula for the reconstruction of conductivity inhomogeneities, Adv. Appl. Math., Volume 30 (2003) no. 4, pp. 679-705 | Article | MR 1977849 | Zbl 1040.78008

[24] Habib Ammari; Michael S. Vogelius; Darko Volkov Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II. The full Maxwell equations, J. Math. Pures Appl., Volume 80 (2001) no. 8, pp. 769-814 | Article | MR 1860816 | Zbl 1042.78002

[25] Samuel Amstutz Sensitivity analysis with respect to a local perturbation of the material property, Asymptotic Anal., Volume 49 (2006) no. 1-2, pp. 87-108 | MR 2260558 | Zbl 1187.49036

[26] Samuel Amstutz; Heiko Andrä A new algorithm for topology optimization using a level-set method, J. Comput. Phys., Volume 216 (2006) no. 2, pp. 573-588 | Article | MR 2235384 | Zbl 1097.65070

[27] Samuel Amstutz; Charles Dapogny; Àlex Ferrer A consistent relaxation of optimal design problems for coupling shape and topological derivatives, Numer. Math. (2016), pp. 1-60 | Zbl 1393.74145

[28] Jean Pierre Aubin Behavior of the error of the approximate solutions of boundary value problems for linear elliptic operators by Galerkin’s and finite difference methods, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 21 (1967) no. 4, pp. 599-637 | Numdam | Zbl 0276.65052

[29] Martin P. Bendsøe; Aharon Ben-Tal; Jochem Zowe Optimization methods for truss geometry and topology design, Structural optimization, Volume 7 (1994) no. 3, pp. 141-159 | Article

[30] Martin Philip Bendsoe; Ole Sigmund Topology optimization: theory, methods, and applications, Springer, 2013

[31] Elena Beretta; Eric Bonnetier; Elisa Francini; Anna L. Mazzucato Small volume asymptotics for anisotropic elastic inclusions, Inverse Probl. Imaging, Volume 6 (2012) no. 1, pp. 1-23 | Article | MR 2887190 | Zbl 1238.35152

[32] Elena Beretta; Yves Capdeboscq; Frédéric De Gournay; Elisa Francini Thin cylindrical conductivity inclusions in a three-dimensional domain: a polarization tensor and unique determination from boundary data, Inverse Probl., Volume 25 (2009) no. 6, p. 065004 | Article | MR 2506849 | Zbl 1173.35721

[33] Elena Beretta; Elisa Francini An asymptotic formula for the displacement field in the presence of thin elastic inhomogeneities, SIAM J. Math. Anal., Volume 38 (2006) no. 4, pp. 1249-1261 | Article | MR 2274482 | Zbl 1117.35016

[34] Elena Beretta; Elisa Francini; Michael S. Vogelius Asymptotic formulas for steady state voltage potentials in the presence of thin inhomogeneities. A rigorous error analysis, J. Math. Pures Appl., Volume 82 (2003) no. 10, pp. 1277-1301 | Article | MR 2020923 | Zbl 1089.78003

[35] Elena Beretta; Arup Mukherjee; Michael S. Vogelius Asymptotic formulas for steady state voltage potentials in the presence of conductivity imperfections of small area, Z. Angew. Math. Phys., Volume 52 (2001) no. 4, pp. 543-572 | Article | MR 1856987 | Zbl 0974.78006

[36] Vladimir I. Bogachev Measure theory, 1, Springer, 2007 | Article

[37] Mathilde Boissier; Grégoire Allaire; Christophe Tournier Scanning path optimization using shape optimization tools (2020) (to appear in Structural and Multidisciplinary Optimization; https://hal.archives-ouvertes.fr/hal-0241048v1)

[38] Haim Brezis Functional analysis, Sobolev spaces and partial differential equations, Springer, 2010

[39] Martin Brühl; Martin Hanke; Michael S. Vogelius A direct impedance tomography algorithm for locating small inhomogeneities, Numer. Math., Volume 93 (2003) no. 4, pp. 635-654 | Article | MR 1961882 | Zbl 1016.65079

[40] Martin Burger; Benjamin Hackl; Wolfgang Ring Incorporating topological derivatives into level set methods, J. Comput. Phys., Volume 194 (2004) no. 1, pp. 344-362 | Article | MR 2033389 | Zbl 1044.65053

[41] F. Calignano Design optimization of supports for overhanging structures in aluminum and titanium alloys by selective laser melting, Materials & Design, Volume 64 (2014), pp. 203-213 | Article

[42] Piermarco Cannarsa; Pierre Cardaliaguet Representation of equilibrium solutions to the table problem of growing sandpiles, J. Eur. Math. Soc., Volume 6 (2004) no. 4, pp. 435-464 | Article | MR 2094399 | Zbl 1084.35015

[43] Yves Capdeboscq; Roland Griesmaier; Marvin Knöller An asymptotic representation formula for scattering by thin tubular structures and an application in inverse scattering, Multiscale Model. Simul., Volume 19 (2021) no. 2, pp. 846-885 | Article | MR 4259906 | Zbl 1470.35128

[44] Yves Capdeboscq; Michael S. Vogelius A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction, ESAIM, Math. Model. Numer. Anal., Volume 37 (2003) no. 1, pp. 159-173 | Article | Numdam | MR 1972656 | Zbl 1137.35346

[45] Donna J. Cedio-Fengya; Shari Moskow; Michael S. Vogelius Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction, Inverse Probl., Volume 14 (1998) no. 3, p. 553 | Article | MR 1629995 | Zbl 0916.35132

[46] Matthew Charnley; Michael S. Vogelius A uniformly valid model for the limiting behaviour of voltage potentials in the presence of thin inhomogeneities I. The case of an open mid-curve (2019) (to appear in Asymptotic Analysis)

[47] Matthew Charnley; Michael S. Vogelius A uniformly valid model for the limiting behaviour of voltage potentials in the presence of thin inhomogeneities II. A local energy approximation result (2019) (to appear in Asymptotic Analysis)

[48] Isaac Chavel Riemannian geometry: a modern introduction, 98, Cambridge University Press, 2006 | Article

[49] Philippe G. Ciarlet The finite element method for elliptic problems, 40, Society for Industrial and Applied Mathematics, 2002 | Article

[50] Marc Dambrine; Djalil Kateb On the ersatz material approximation in level-set methods, ESAIM, Control Optim. Calc. Var., Volume 16 (2010) no. 3, pp. 618-634 | Article | Numdam | MR 2674629 | Zbl 1202.49051

[51] Charles Dapogny A connection between topological ligaments in shape optimization and thin tubular inhomogeneities (2019) (https://arxiv.org/abs/1912.11810)

[52] Charles Dapogny; Cécile Dobrzynski; Pascal Frey Three-dimensional adaptive domain remeshing, implicit domain meshing, and applications to free and moving boundary problems, J. Comput. Phys., Volume 262 (2014), pp. 358-378 | Article | MR 3163123 | Zbl 1349.76598

[53] Charles Dapogny; Cécile Dobrzynski; Pascal Frey; Algiane Froelhy mmg, 2019 (https://www.mmgtools.org)

[54] Charles Dapogny; Michael S. Vogelius Uniform asymptotic expansion of the voltage potential in the presence of thin inhomogeneities with arbitrary conductivity, Chin. Ann. Math., Ser. B, Volume 38 (2017) no. 1, pp. 293-344 | Article | MR 3592165 | Zbl 1368.35095

[55] Michel C. Delfour; Jean-Paul Zolésio Shapes and geometries: metrics, analysis, differential calculus, and optimization, Society for Industrial and Applied Mathematics, 2011 | Article

[56] W. Dorn Automatic design of optimal structures, J. Méc., Paris, Volume 3 (1964), pp. 25-52

[57] Jérémie Dumas; Jean Hergel; Sylvain Lefebvre Bridging the gap: automated steady scaffoldings for 3D printing, ACM Trans. Graph., Volume 33 (2014) no. 4, pp. 1-10 | Article

[58] Lawrence Craig Evans; Ronald F. Gariepy Measure theory and fine properties of functions, CRC Press, 2015 | Article

[59] Florian Feppon; Grégoire Allaire; Felipe Bordeu; Julien Cortial; Charles Dapogny Shape optimization of a coupled thermal fluid–structure problem in a level set mesh evolution framework, SeMA J. (2019), pp. 1-46 | MR 3990998 | Zbl 1422.49038

[60] Florian Feppon; Grégoire Allaire; Charles Dapogny Null space gradient flows for constrained optimization with applications to shape optimization (2019) (submitted, https://hal.archives-ouvertes.fr/hal-01972915/)

[61] Florian Feppon; Grégoire Allaire; Charles Dapogny; Pierre Jolivet Topology optimization of thermal fluid–structure systems using body-fitted meshes and parallel computing, J. Comput. Phys. (2020), p. 109574 | Article | MR 4106709 | Zbl 1437.74021

[62] Gerald B. Folland Introduction to partial differential equations, Princeton University Press, 1995

[63] Avner Friedman; Michael S. Vogelius Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence, Arch. Ration. Mech. Anal., Volume 105 (1989), pp. 299-326 | Article | MR 973245 | Zbl 0684.35087

[64] Stéphane Garreau; Philippe Guillaume; Mohamed Masmoudi The topological asymptotic for PDE systems: the elasticity case, SIAM J. Control Optimization, Volume 39 (2001) no. 6, pp. 1756-1778 | Article | MR 1825864 | Zbl 0990.49028

[65] Ian Gibson; David W Rosen; Brent Stucker et al. Additive manufacturing technologies, 17, Springer, 2014

[66] David Gilbarg; Neil S. Trudinger Elliptic partial differential equations of second order, Springer, 2015

[67] Roland Griesmaier Reconstruction of thin tubular inclusions in three-dimensional domains using electrical impedance tomography, SIAM J. Imaging Sci., Volume 3 (2010) no. 3, pp. 340-362 | Article | MR 2679431 | Zbl 1193.78012

[68] Roland Griesmaier A general perturbation formula for electromagnetic fields in presence of low volume scatterers, ESAIM, Math. Model. Numer. Anal., Volume 45 (2011) no. 6, pp. 1193-1218 | Article | Numdam | MR 2833178 | Zbl 1277.78021

[69] Xu Guo; Weisheng Zhang; Wenliang Zhong Doing topology optimization explicitly and geometrically–a new moving morphable components based framework, J. Appl. Mech., Volume 81 (2014) no. 8

[70] Wolfgang Hackbusch Integral equations: theory and numerical treatment, 120, Birkhäuser, 2012

[71] Frédéric Hecht New development in FreeFem++, J. Numer. Math., Volume 20 (2012) no. 3-4, pp. 251-266 | MR 3043640 | Zbl 1266.68090

[72] Antoine Henrot; Michel Pierre Shape Variation and Optimization, EMS Tracts in Mathematics, 28, European Mathematical Society, 2018 | Article

[73] Hesaneh Kazemi; Ashkan Vaziri; Julián A Norato Topology optimization of structures made of discrete geometric components with different materials, Journal of Mechanical Design, Volume 140 (2018) no. 11

[74] Abdessatar Khelifi; Habib Zribi Asymptotic expansions for the voltage potentials with two-dimensional and three-dimensional thin interfaces, Math. Methods Appl. Sci., Volume 34 (2011) no. 18, pp. 2274-2290 | Article | MR 2861742 | Zbl 1231.35307

[75] Marcelo H. Kobayashi; Robert A. Canfield; Raymond M. Kolonay On a cellular developmental method for layout optimization via the two-point topological derivative, Struct. Multidiscip. Optim., Volume 64 (2021) no. 4, pp. 2343-2360 | Article | MR 4321890

[76] Rainer Kress Inverse scattering from an open arc, Math. Methods Appl. Sci., Volume 18 (1995) no. 4, pp. 267-293 | Article | MR 1319999 | Zbl 0824.35030

[77] Rainer Kress Linear integral equations, 82, Springer, 2012

[78] Ohin Kwon; Jin Keun Seo; Jeong-Rock Yoon A real time algorithm for the location search of discontinuous conductivities with one measurement, Commun. Pure Appl. Math., Volume 55 (2002) no. 1, pp. 1-29 | Article | MR 1857878 | Zbl 1032.78005

[79] Nicolas Lebbe; Charles Dapogny; Edouard Oudet; Karim Hassan; Alain Gliere Robust shape and topology optimization of nanophotonic devices using the level set method, J. Comput. Phys., Volume 395 (2019), pp. 710-746 | Article | MR 3979097 | Zbl 1452.65109

[80] Quhao Li; Wenjiong Chen; Shutian Liu; Liyong Tong Structural topology optimization considering connectivity constraint, Struct. Multidiscip. Optim., Volume 54 (2016) no. 4, pp. 971-984 | MR 3557352

[81] Jikai Liu; Andrew Gaynor; Shikui Chen; Zhan Kang; Krishnan Suresh; Akihiro Takezawa; Lei Li; Junji Kato; Jinyuan Tang; Charlie Wang et al. Current and future trends in topology optimization for additive manufacturing, Struct. Multidiscip. Optim., Volume 57 (2018), pp. 2457-2483

[82] Carlo Mantegazza; Andrea Carlo Mennucci Hamilton-Jacobi Equations and Distance Functions on Riemannian Manifolds., Appl. Math. Optim., Volume 47 (2003) no. 1 | MR 1941909 | Zbl 1048.49021

[83] William Charles Hector McLean Strongly elliptic systems and boundary integral equations, Cambridge University Press, 2000

[84] Dorina Mitrea Distributions, partial differential equations, and harmonic analysis, Springer, 2013 | Article

[85] Dietrich Morgenstern; István Szabó Vorlesungen über theoretische Mechanik, 112, Springer, 2013

[86] F. Murat; J. Simon Sur le contrôle par un domaine géométrique (1976) Pré-publication du Laboratoire d’Analyse Numérique (76015)

[87] Serguei A. Nazarov; Andrey Slutskij; Jan Sokołowski Topological derivative of the energy functional due to formation of a thin ligament on a spatial body, Folia Math., Volume 12 (2005), pp. 39-72 | MR 2282635 | Zbl 1130.49033

[88] Serguei A. Nazarov; Jan Sokołowski The topological derivative of the Dirichlet integral due to formation of a thin ligament, Sib. Math. J., Volume 45 (2004) no. 2, pp. 341-355 | Article | Zbl 1071.35037

[89] Serguei A. Nazarov; Jan Sokołowski Self-adjoint extensions of differential operators and exterior topological derivatives in shape optimization, Control Cybern., Volume 34 (2005), pp. 903-925 | MR 2208977 | Zbl 1167.49330

[90] Jean-Claude Nédélec Acoustic and electromagnetic equations: integral representations for harmonic problems, 144, Springer, 2001 | Article

[91] Hoai-Minh Nguyen; Michael S. Vogelius A representation formula for the voltage perturbations caused by diametrically small conductivity inhomogeneities. Proof of uniform validity, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 26 (2009) no. 6, pp. 2283-2315 | Article | Numdam | MR 2569895 | Zbl 1178.35357

[92] Joachim Nitsche Ein kriterium für die quasi-optimalität des ritzschen verfahrens, Numer. Math., Volume 11 (1968) no. 4, pp. 346-348 | Article | Zbl 0175.45801

[93] Antonio André Novotny; Jan Sokołowski Topological derivatives in shape optimization, Springer, 2012

[94] Stanley Osher; James A Sethian Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., Volume 79 (1988) no. 1, pp. 12-49 | Article | MR 965860 | Zbl 0659.65132

[95] Claus Pedersen; Peter Allinger Industrial implementation and applications of topology optimization and future needs, IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials (2006), pp. 229-238 | Article

[96] Olivier Pironneau Optimal shape design for elliptic systems, Springer, 1982

[97] Lalaina Rakotondrainibe; Grégoire Allaire; Patrick Orval Topology optimization of connections in mechanical systems, Struct. Multidiscip. Optim. (2020), pp. 1-17 | MR 4119050

[98] Junuthula Narasimha Reddy Theory and analysis of elastic plates and shells, CRC Press, 2006 | Article

[99] Ole Sigmund; Kurt Maute Topology optimization approaches, Struct. Multidiscip. Optim., Volume 48 (2013) no. 6, pp. 1031-1055 | Article | MR 3138124

[100] William S Slaughter The linearized theory of elasticity, Springer, 2012

[101] Jan Sokołowski; Antoni Zochowski On the Topological Derivative in Shape Optimization, SIAM J. Control Optimization, Volume 37 (1999) no. 4, pp. 1251-1272 | Article | MR 1691940

[102] Jan Sokołowski; Jean-Paul Zolésio Introduction to shape optimization, Springer, 1992 | Article

[103] Michael Spivak A comprehensive introduction to differential geometry, Vol. 1, 2nd Edition, Publish or Perish Inc., 1979

[104] Daniel Stojanov; Xinhua Wu; Brian G. Falzon; Wenyi Yan Axisymmetric structural optimization design and void control for selective laser melting, Struct. Multidiscip. Optim., Volume 56 (2017) no. 5, pp. 1027-1043 | Article

[105] Michael Yu Wang; Xiaoming Wang; Dongming Guo A level set method for structural topology optimization, Comput. Methods Appl. Mech. Eng., Volume 192 (2003) no. 1-2, pp. 227-246 | Article | MR 1951408 | Zbl 1083.74573

[106] Xi Zhao; Mingdong Zhou; Ole Sigmund; Casper Schousboe Andreasen A “poor man’s approach” to topology optimization of cooling channels based on a Darcy flow model, Int. J. Heat Mass Transfer, Volume 116 (2018), pp. 1108-1123 | Article

Cited by Sources: