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Abstract. For approximating parametric problem solutions, Reduced Basis Methods (RBMs) are frequently pro-
posed. They intend to reduce the computational costs of High Fidelity (HF) codes while maintaining the HF
accuracy. They generally require an offline/online decomposition and a significant modification of the HF code
in order for the online computation to be performed in short (or even real) time. We focus on the Non-Intrusive
Reduced Basis (NIRB) two-grid method in this paper. Its main feature is the use of the HF code as a “black-box”
on a coarse mesh for a new parameter during the online process, followed by an accuracy improvement based on the
reduced basis paradigm that is realized in a very short time. Unlike other more intrusive methods, this approach
does not necessitate code modification. As a result, it costs significantly less than an HF evaluation. This method
was developed for elliptic equations with finite elements and has since then been extended to finite volume schemes.

In this paper, we extend the NIRB two-grid method to parabolic equations. We recover optimal estimates in
natural norms, using the heat equation as a model problem and present several numerical results on the heat
equation and on the Brusselator problem.

2020 Mathematics Subject Classification. 65K05, 65N08.
Keywords. Non-intrusive reduced basis, parabolic equations, finite elements method.
Supplementary Materials. The paper is accompanied by programs that can be downloaded on the article
webnotice (https://doi.org/10.5802/smai-jcm.100). Running the codes requires FreeFem++ with IOVTK
module and Python3 with package vtk (see Readme therein).

1. Introduction

Reduced Basis Methods (RBMs) can be used to approximate the solutions of a parametric problem
for a large number of parameter values (e.g. for applications of parameter fitting), as well as for a
single new parameter value (e.g. for real time simulations). They plan to lower the computational
costs of High Fidelity (HF) codes while preserving HF accuracy. In order to do so, they rely on a HF
traditional code (e.g. finite elements or finite volume methods) and on an offline/online decomposition
of the RBM algorithm. They work as driven processes and necessitate well-chosen solutions, called
snapshots, that must be computed offline with the HF solver.

Non-Intrusive Reduced Basis (NIRB) methods are an alternative to classical RBMs for approxi-
mating the solutions of such problems [9, 10] (see also different NIRB methods [1, 6, 15] from the
two-grid method). They may be more practical to implement from an engineering standpoint than
other RBMs, as they require the execution of the HF code as a “black-box” solver only, unlike other
more intrusive RBMs that require code modification.

Let µ ∈ RP denotes the parameter of interest of a parametric problem P in a given set G. The NIRB
methods, like most RBMs, rely on the assumption that the solution manifold S = {u(µ), µ ∈ G} has a
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small Kolmogorov n-width [27] (in what follows, uh(µ) refers to the HF solution for the parameter µ).
The snapshots are used offline to construct a linear finite dimensional space, denoted XN

h , and known
as the reduced space, that must be as close as possible to S. The Kolmogorov n-width measures the
capacity of approaching the whole solution manifold by linear spaces of dimension n. The online stage
then seeks an approximation on this reduced space and must run significantly faster than an HF
execution.

We focus in this paper on the NIRB two-grid method [9]. Let us first recall the latter for stationary
problems.

1.1. Reminders on the NIRB two-grid method for stationary problems

Let Ω be a bounded domain in Rd, with d ≤ 3 and a smooth enough boundary ∂Ω, and consider
a parametric elliptic problem P, well-posed in Ω. For each parameter value µ ∈ G, we have a new
function u(µ) ∈ V , where V is a suitable Banach space. In what follows, we consider homogeneous
boundary conditions, and V := H1

0 (Ω), with the associated norm | · |H1(Ω).
In the context of a finite element or a finite volume HF solver, the two-grid method involves two

partitioned meshes (or “grids”), one fine mesh Mh and one coarse MH , where the respective sizes h
and H of the meshes are such that h ≪ H.

The fine mesh is used “offline” to construct basis functions that are employed to build the reduced
space with an accuracy that corresponds to the target of the global procedure. These functions form
the Reduced Basis (RB) of the reduced space XN

h := Span{uh(µi) | i = 1, . . . , N}, generated using
N snapshots. The solution for a new parameter is then roughly and quickly approximated “online”,
using the coarse mesh. The latter, as well as offline-online decomposition of the algorithm, are crucial
components in reducing complexity. Below are recalled the main steps of the NIRB two-grid algorithm:

• “Offline stage”:
The RB functions (or modes) that belong to the reduced space XN

h are first prepared on the
fine mesh Mh with a Greedy procedure [4, 32] (an alternative is to use a Proper Orthogonal
Decomposition (POD) [2, 25]). The Greedy algorithm computes the modes by an iterative
selection of some suitable parameters µ1, . . . , µN ∈ G and by computing the approximate
solutions uh(µ1), . . . , uh(µN ). Thus, this stage of the algorithm is time-consuming, but it is only
performed once, as with other RBMs. It also contains a Gram–Schmidt orthonormalization
procedure, which results in N L2-orthonormalized RB functions, denoted (Φh

i )i=1,...,N . In order
to improve the accuracy of the online reconstruction (as detailed in Section 4), we solve the
following eigenvalue problem:

Find Φh ∈ XN
h , and λ ∈ R such that:

∀v ∈ XN
h ,

∫
Ω

∇Φh · ∇v dx = λ

∫
Ω

Φh · v dx,
(1.1)

and we obtain an increasing sequence of eigenvalues λi, as well as orthogonal eigenfunctions,
still denoted (Φh

i )i=1,...,N , orthonormalized in L2(Ω) and orthogonal in H1(Ω), which define a
new basis of the space XN

h .
As written above, a coarse approximation for a new parameter µ ∈ G will be used during the
online stage. As we will see later, for any parameter µk, k = 1, . . . , N , the proposed NIRB
approximation differs from the HF uh(µk), even though this accurate solution is known. Thus,
as proposed in [8], we can use a “rectification post-processing” and introduce a rectification
matrix, denoted R, defined so as to remove the discrepancies associated to these particular
choices of µ = µk, k = 1, . . . , N . As a result, it improves NIRB accuracy for other instances
of µ.
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NIRB with parabolic equations

In addition to the fine snapshots, the same parameters are used to compute coarse snapshots
on MH . The rows of the matrix R are then given for i = 1, . . . , N by

Ri = (AT A + δIN )−1AT Bi, (1.2)

where ∀µk ∈ G, Ak,i =
∫

Ω
uH(µk) · Φh

i dx, and Bk,i =
∫

Ω
uh(µk) · Φh

i x, (1.3)

and where IN refers to the identity matrix and δ is a regularization parameter [9].

• “Online stage”:
Then, for a new parameter µ ∈ G for which we want to estimate the solution, a coarse approx-
imation of the latter, denoted uH(µ), is computed “online.” This coarse approximation is, of
course, not of sufficient precision, but it is calculated much faster than the HF one. The NIRB
post-processing then improves precision significantly by projecting uH(µ) on the RB in a very
short run-time [7, 9, 10, 17]. The classical NIRB approximation is given by

uN
Hh(µ) :=

N∑
i=1

(uH(µ), Φh
i ) Φh

i . (1.4)

where ( · , · ) denotes the L2(Ω)-inner product. Now, to further improve the NIRB precision,
this approximation can be “rectified” thanks to the rectification matrix R computed offline.
In that case, the NIRB approximation reads

R[uN
Hh](µ) :=

N∑
i,j=1

Rij (uH(µ), Φh
j ) Φh

i . (1.5)

Note that, when the relaxation parameter δ is equal to 0 the rectification process allows to
retrieve the fine coefficients from the coarse ones (1.3) for the parameters µ = µk, k = 1, . . . , N .
In other words, with δ = 0, we have

R[uN
Hh](µk) = uh(µk), k = 1, . . . , N.

The two-grid method has been developed and analyzed for elliptic equations in the context of FEM
(with Céa’s and Aubin–Nitsche’s lemmas) in [8]. In this context, the following energy-error estimate
has been proven

|u(µ) − uN
Hh(µ)|H1(Ω) ≤ ε(N) + C1h + C2(N)H2, (1.6)

where C1 and C2 are constants independent of h and H, and C2 depends on N only. The term ε(N)
depends on a proper choice of the RB space as a surrogate for the best approximation space associated
to the Kolmogorov N -width. It decreases when N increases and it measures the error between the fine
solution and its projection on XN

h , given by∣∣∣∣uh(µ) −
N∑

i=1
(uh(µ), Φh

i ) Φh
i

∣∣∣∣
H1(Ω)

. (1.7)

The second and third terms in (1.6), C1 h and C2(N) H2, respectively, are contributions obtained by
applying Céa’s lemma on the HF solutions and Aubin–Nitsche’s lemma on the coarse grid approxi-
mation of u(µ). Note that since the constant C2 increases with N , a trade-off must be made between
increasing N and keeping a constant C2 as low as possible to obtain an accurate approximation.

The estimate (1.6) proves that, in the elliptic context with FEM, if the coarse mesh size is chosen so
that H2 = h and if ε(N) is small enough, the optimal H1 convergence rate is recovered. Furthermore,
it has been numerically shown that for a large range of H values, the rectification post-treatment
allows for the recovery of the fine solution accuracy while greatly reducing the run-time cost.

This two-grid method has also been generalized and analyzed in the context of finite volume
schemes [17], in which a surrogate to Aubin–Nitsche’s is used.
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1.2. Motivation and earlier works

The treatment of time-dependent equations by RB techniques is not obvious, particularly because a
classical projection-based RBM does not guarantee a stable approximation, and because the solution
manifold, obtained as time and parameters vary, must be of low dimension, which is not always the
case for several phenomena (for example convection-dominated problems [5]). For a general overview
of RBMs in the context of time-dependent problems, see [24]. Although NIRB strategies for time-
dependent equations are still in the early stages of development, we would like to mention the following
NIRB techniques, different from the two-grid algorithm, that have been applied to time-dependent
problems:

• Neural network framework has been used to learn the reduced operators, as in the POD-DL-
ROM algorithm [14] or in [12];

• Interpolations with Radial Basis Functions (POD-RBF) have also been operated in [35].

• The time-parameter grid structure has been exploited, as in [11], where RBF with two level
POD extraction is employed, or in [19], where a map is constructed between the time-parameter
grid values and the RB projection coefficients through a regression model.

• Also, in the context of inverse problems, the Parameterized-Background-Data-Weak (PBDW)
has been generalized to parabolic equations in [22].

It should be noted that in [18], the NIRB two-grid method has recently been adapted to solve the
sensitivity analysis equations with a regression model. As it was presented in the previous subsec-
tion, the two-grid method is of simple implementation and can be used for a variety of PDEs and
approximations; furthermore, because it is non-intrusive, it is suitable for a wide range of problems.
To the best of our knowledge, this method has not yet been studied or implemented in the context of
time-dependent problems [7, 9, 10, 33], aside from the sensitivity analysis framework [18].

This paper is about the application of NIRB to time-dependent problems and its numerical analysis
in the context of parabolic equations. The rest of this paper is organized as follows: The mathematical
context is described in Section 2. We define the NIRB approximation, with and without the adapted
rectification post-treatment, in the context of parabolic equations, as an extension of (1.4) and (1.5)
in Section 3. We prove then theoretically, in the Section 4, that we recover optimal error estimates
in L∞(0, T ; H1(Ω)) on a model problem, that of the heat equation. Theorem 4.1 is our main con-
vergence result. Finally, the implementation is discussed in the last Section 5, and the theoretical
results are illustrated with numerical results on the NIRB method with and without the rectification
post-treatment.

In the next sections, C will denote various positive constants independent of the size of the meshes h
and H and of the parameter µ, and C(µ) will denote constants independent of the sizes of the meshes
h and H but dependent of µ.

2. Mathematical Background

2.1. The continuous problem

We first consider the following heat equation on the domain Ω with homogeneous Dirichlet conditions,
which takes the form 

ut − µ∆u = f, in Ω × ]0, T ],
u( · , 0) = u0, in Ω,

u( · , t) = 0, on ∂Ω × ]0, T ],
(2.1)
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NIRB with parabolic equations

where f ∈ L2(Ω × [0, T ]), while u0 ∈ H1
0 (Ω) and 0 < µ ∈ G ⊂ R+ is the parameter. For almost any

t > 0, the solution u( · , t) ∈ H1
0 (Ω), and ut( · , t) ∈ L2(Ω) stands for the derivative of u with respect to

time. In Section 4, we denote by u(x, t; µ) (or u(µ)) the solution of (2.1) with the parameter µ. Note
that the initial condition may also depend on µ.

We use the conventional notations for space-time Sobolev spaces [28]

Lp(0, T ; V 0) :=
{

u(x, t)
∣∣∣∣∣ ∥u∥Lp(0,T ;V ) :=

(∫ T

0
∥u( · , t)∥p

V dt

)1/p

< ∞
}

, 1 ≤ p < ∞,

L∞(0, T ; V ) :=
{

u(x, t)
∣∣∣∣∣ ∥u∥L∞(0,T ;V ) := ess sup

0≤t≤T
∥u( · , t)∥V < ∞

}
,

where V is a real Banach space with an associated norm ∥ · ∥V . As in the previous Section 1.1, we
consider V := H1

0 (Ω), with the associated norm | · |H1(Ω). The variational form of (2.1) is given by:
Find u ∈ L2(0, T ; H1

0 (Ω)) with ut ∈ L2(0, T ; H−1(Ω)) such that
(ut(t, · ), v) + a(u(t, · ), v; µ) = (f(t, · ), v), ∀v ∈ H1

0 (Ω) and a.e. t ∈ (0, T ),
u( · , 0) = u0, in Ω,

(2.2)

where a is given by
a(w, v; µ) =

∫
Ω

µ∇w(x) · ∇v(x) dx, ∀w, v ∈ H1
0 (Ω). (2.3)

We remind that (2.2) is well posed (see [13] for the existence and the uniqueness of solutions to
problem (2.2)) and we refer to the notations of [13].

2.2. The various discretizations

As in previous work on the NIRB FEM applied to elliptic equations [8], described in Section 1.1, we
consider one fine mesh Mh for computing “offline” snapshots associated with few parameter values
and one coarse mesh MH for the coarse solution, with sizes denoted h and H, respectively (with
h ≪ H). The size h (respectively H) is defined as

h = max
K∈Mh

hK (respectively H = max
K∈MH

HK), (2.4)

where the diameter hK (or HK) of any element K in a mesh is equal to sup x, y ∈ K|x − y|, K ∈ Mh

(or ∈ MH).
These grids are used for the spatial discretizations of the weak formulation of problem (2.1). We

employ e.g. P1 finite elements to discretize in space, so let Vh and VH be continuous piece-wise linear
finite element functions (on fine and coarse mesh, respectively) that vanish on the boundary ∂Ω. We
consider the projection operator P 1

h on Vh (P 1
H on VH is defined similarly) which is given by

(∇P 1
h u, ∇v) = (∇u, ∇v), ∀v ∈ Vh. (2.5)

In the context of time-dependent problems, a time stepping method of finite difference type is used
to get a fully discrete approximation of the solution. We consider two different time grids for the NIRB
construction :

• One time grid, denoted F , is employed for the HF snapshots construction. To avoid making
notations more cumbersome, we will consider a uniform time step ∆tF . The time levels can
be written tn = n ∆tF , where n ∈ N∗.

• Another time grid, denoted G, is used for the coarse solution. By analogy with the fine grid,
we consider a uniform grid with time step ∆tG. Now, the time levels are written t̃m = m ∆tG,
where m ∈ N∗.
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As in the previous analysis with elliptic equations, the NIRB algorithm is designed to recover the
optimal estimate in space from a coarse grid approximation. However, there is no such argument
as the Aubin–Nitsche lemma for time stepping methods improving the time convergence rate, so we
must consider time discretizations that provide the same precision with larger time steps. Thus, we
consider a higher order time scheme for the coarse solution. We will use an Euler scheme (first order
approximation) for the HF solutions and a Crank–Nicolson scheme (second order approximation) for
the coarse solutions with our model problem. As a result, we must employ two types of notations for
the discretized solutions:

• uh(x, t) and uH(x, t) that respectively denote the fine and coarse solutions of the spatially
semi-discrete solution, at time t ≥ 0.

• un
h(x) and um

H(x) that respectively denote the fine and coarse full-discretized solutions at time
tn = n × ∆tF and t̃m = m × ∆tG.

Remark 2.1. To simplify the notations, we consider that both time grids end at time T here,
T = NT ∆tF = MT ∆tG.

The semi-discrete form of the variational problem (2.2) writes for the fine mesh (similarly for the
coarse mesh): 

Find uh(t) = uh( · , t) ∈ Vh for t ∈ [0, T ] such that
(∂tuh(t), vh) + a(uh(t), vh; µ) = (f(t), vh), ∀vh ∈ Vh and t ∈ ]0, T ],
uh( · , 0) = u0

h = P 1
h (u0).

(2.6)

The full discrete form of the variational problem (2.2) for the fine mesh with implicit Euler scheme
writes: 

Find un
h ∈ Vh for n = 0, . . . , NT such that

(∂un
h, vh) + a(un

h, vh; µ) = (f(tn), vh), ∀vh ∈ Vh and n = 1, . . . , NT ,

uh( · , 0) = u0
h,

(2.7)

where the time derivative in the variational form of the problem (2.6) has been replaced by a backward
difference quotient, ∂un

h = un
h−un−1

h
∆tF

. Note that for the initial condition u0
h, another optimal choice may

be the orthogonal projection of u0 onto Vh (respectively VH) with respect to the inner product in
L2(Ω).

For the coarse mesh with Crank–Nicolson scheme, and with the notation ∂um
H = um

H −um−1
H

∆tG
, it

becomes:
Find um

H ∈ VH for m = 0, . . . , MT , such that
(∂um

H , vH) + a(um
H +um−1

H
2 , vH ; µ) = (f(t̃m− 1

2 ), vH), ∀vH ∈ VH and m = 1, . . . MT ,

uH( · , 0) = u0
H ,

(2.8)

where t̃m− 1
2 = t̃m+t̃m−1

2 .
Let us recall a few results from [34], on the FEM classical estimates and on both finite difference

schemes used. These results will be useful for the proof of Theorem 4.1. In [34], these estimates are
proven on the solution of the heat equation without considering the dependence on µ ∈ G for the
diffusion coefficient. These precised estimates can be obtained by following the same steps as in [34].
In Appendix B, we detail the proof on the H1

0 estimate of Theorem 2.5 in order to highlight the
µ-dependence of the bound.

If u0 ∈ H2(Ω) and
∥∥u0

h − u0∥∥
L2(Ω) ≤ Ch2 ∥∥u0∥∥

H2(Ω), the following estimates are well known to hold:
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Theorem 2.2 (Corollary of [34, Thm. 1.2]). Let Ω be a convex polyhedron. Let u ∈ W 1,1(0, T ; H2(Ω))
be the solution of (2.1) and uh be the semidiscretized variational form (2.6). Then

∀t ≥ 0, ∥u(t) − uh(t)∥L2(Ω) ≤ Ch2
[∥∥∥u0

∥∥∥
H2(Ω)

+
∫ t

0
∥ut∥H2(Ω) ds

]
, (2.9)

where C does not depend on µ.

Once fully discretized on a fine mesh with the backward Euler Galerkin method, the estimate (2.9)
is replaced by the estimate below.

Theorem 2.3 (Corollary of [34, Thm. 1.5]). Let Ω be a convex polyhedron, and let the solution of (2.1)
u be in W 1,1(0, T ; H2(Ω)) ∩ W 2,1(0, T ; L2(Ω)) and un

h be the solution of (2.7). We have

∀n = 0, . . . , NT ,

∥u(tn) − un
h∥L2(Ω) ≤ Ch2

[∥∥∥u0
∥∥∥

H2(Ω)
+

∫ tn

0
∥ut∥H2(Ω) ds

]
+ C ∆tF

∫ tn

0
∥utt∥L2(Ω) ds. (2.10)

On the energy error estimate, the following theorems hold.

Theorem 2.4 (Corollary of [34, Thm. 1.4]). Let Ω be a convex polyhedron, and let the solution of (2.1)
u be in H1(0, T ; H1(Ω)) ∩ L2(0, T ; H2(Ω)) and uh be the semidiscretized variational form (2.6). We
have

∀t ≥ 0, ∥∇u(t) − ∇uh(t)∥L2(Ω) ≤ C(µ)h
[∥∥∥u0

∥∥∥
H2(Ω)

+ ∥u(t)∥H2(Ω) +
(∫ t

0
∥ut∥2

H1(Ω) ds

)1/2]
. (2.11)

The estimate (2.11) with the full discretization leads to the following theorem.

Theorem 2.5. Let Ω be a convex polyhedron. Let u ∈ H2(0, T ; H1(Ω)) ∩ H1(0, T ; H2(Ω)) be the
solution of (2.1) and let un

h be the fully-discretized solution of the variational form (2.6). We have

∀n = 0, . . . NT , ∥∇un
h − ∇u(tn)∥L2(Ω) ≤ C(µ)h

[∥∥∥u0
∥∥∥

H2(Ω)
+

(∫ tn

0
∥ut∥2

H2(Ω) ds

)1/2]

+ C(µ) ∆tF

(∫ tn

0
∥∇utt∥2

L2(Ω) ds

)1/2
. (2.12)

Finally, using the Crank–Nicolson scheme, we can recover the estimate in H2 and ∆t2
G in the L2

norm

Theorem 2.6 (Corollary of [34, Thm. 1.6]). Let Ω be a convex polyhedron, and let the solution of (2.1)
u be in H2(0, T ; H2(Ω)) ∩ H3(0, T ; L2(Ω)). Let um

H be the solution given by (2.8), associated to Crank–
Nicolson discretization on the time and spatial coarse grids. Let

∥∥u0
H − u0∥∥

L2(Ω) ≤ CH2 ∥∥u0∥∥
H2(Ω),

then
∀m = 0, . . . , MT ,∥∥∥u(t̃m) − um

H

∥∥∥
L2(Ω)

≤ C H2
[∥∥∥u0

∥∥∥
H2(Ω)

+
∫ t̃m

0
∥ut∥H2(Ω) ds

]

+ C ∆t2
G

[(∫ t̃m

0
∥uttt ds∥2

L2(Ω)

)1/2
+

(∫ t̃m

0
∥∆utt∥2

L2(Ω) ds

)1/2]
. (2.13)

Now, let ũH
n be the quadratic interpolation in time of the coarse solution at time tn ∈ Im =

[t̃m−1, t̃m] defined on [t̃m−2, t̃m] from the values um−2
H , um−1

H , and um
H , for all m = 2, . . . , MT . To this

end, we define the parabola on [t̃m−2, t̃m] with the values um−2
H , um−1

H , um
H :
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For m ≥ 2, ∀n ∈ Im = [t̃m−1, t̃m],

ũH
n(µ) = um−2

H (µ)
(t̃m − t̃m−2)(t̃m−2 − t̃m−1)

[
− (tn)2 + (t̃m−1 + t̃m)tn − tm−1tm]

+ um−1
H (µ)

(t̃m−2 − t̃m−1)(t̃m−1 − t̃m)
[

− (tn)2 + (t̃m + t̃m−2)tn − tmtm−2]
+ um

H(µ)
(t̃m−1 − t̃m)(t̃m − t̃m−2)

[
− (tn)2 + (t̃m−2 + t̃m−1)tn − tm−2tm−1]

. (2.14)

For tn ∈ I1 = [t̃0, t̃1], we use the same parabola defined by the values u0
H , u1

H , u2
H as the one used over

[t̃1, t̃2]. Note that we choose this interpolation in order to keep an approximation of order 2 for all time
steps in F (it works also with other quadratic interpolations). With this interpolated approximation,
we have the following result.

Corollary 2.7 (of Theorem 2.6). Under the assumptions of Theorem 2.6, let ũH
n be the quadratic

interpolation in time of the coarse solution, defined above, then
∀n = 0, . . . , NT ,∥∥∥u(t̃n) − ũH

n
∥∥∥

L2(Ω)
≤ C(µ)H2

[∥∥∥u0
∥∥∥

H2(Ω)
+

∫ t̃m

0
∥ut∥H2(Ω) ds

]

+ C(µ)∆t2
G

[(∫ t̃m

0
∥uttt ds∥2

L2(Ω)

)1/2
+

(∫ t̃m

0
∥∆utt∥2

L2(Ω) ds

)1/2]
. (2.15)

We will also need the following inverse inequality [34]

Theorem 2.8 (Inverse inequality). ∀vh ∈ Vh,

∥∇vh∥L2(Ω) ≤ Ch−1 ∥vh∥L2(Ω) . (2.16)

Let us proceed with the NIRB algorithm description in the context of parabolic equations.

3. The Non-Intrusive Reduced Basis method (NIRB) in the context of parabolic
equations

This section describes the main steps of the two-grid method algorithm in the context of parabolic
equations, and especially, how to define the RB using a Greedy algorithm [4] (greedy both in parameter
selection and in time) or a POD-Greedy [20, 21, 26]. For evolution PDEs, a single solution associated
with a parameter µ ∈ G is made up of a sequence of potentially hundreds of snapshots over time (each
snapshot being an HF finite element approximation in space at a time tn, n = 0, . . . , NT ). As a result,
each step in the Greedy algorithm is combined with a temporal compression step, performed by a
POD in the latter version. Let us go over the different steps of our offline-online decomposition. The
first four points are completed offline, while the remaining three points are executed online.

• “Offline step”
(1) We define Gtrain =

⋃
i∈{1,...,Ntrain} µi and assume that it is large enough so that the space

spanned by the snapshots {u( · , · ; µi)}i∈{1,...Ntrain} is “representative” enough of the whole
manifold

S = {un(µ, t), µ ∈ G, n = 0, . . . , NT }.

We refer to [29] for a Greedy algorithm with adaptive choice of optimal training set,
adapted to a target accuracy.
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(2) From the training parameters (µi)i∈{1,...,Ntrain}, we compute HF snapshots
{un

h(µi)}i∈{1,...Ntrain} with the HF solver.
(3) We generate the RB functions (time-independent) (Φh

i )i=1,...,N through a POD-Greedy
algorithm from the above snapshots, as presented in Algorithm 3, in Appendix A, or a full
Greedy algorithm as in Algorithm 1, that contains a Gram–Schmidt orthonormalization
procedure. In that case, for each selected parameter µi, i = 1, . . . , Nµ, a small number
N i of snapshots with different time steps are chosen (see Algorithm 1 with the setting
Nµ = N to simplify notations). The RB space, with N :=

∑Nµ

i=1 N i, is defined as

XN
h := Span

{
u

nj
i

h (µi)
∣∣∣∣ nj

i ⊂ {0, . . . , NT }, i = 1, . . . , Nµ, j = 1, . . . , N i
}

. (3.1)

In the following Greedy algorithm, a tolerance threshold is used instead of an a priori
given number of modes.

Algorithm 1 Greedy algorithm
Input tol, {un

h(µi)} with µi ∈ Gtrain, n ∈ F = {0, . . . , NT }}.

Output: Reduced basis {Φh
1 , . . . , Φh

N }.

Choose µ1, n1 = argmaxµ∈Gtrain, n∈F ∥un
h(µ)∥L2(Ω) .

Set Φh
1 = u

n1
h

(µ1)
∥u

n1
h

(µ1)∥
L2

.

Set G1 = {µ1, n1} and X1
h = span{Φh

1}.
for k = 2 to N do:

µk, nk = argmaxµ∈Gtrain\Gk−1,n∈F

∥∥∥un
h(µ) − P k−1(un

h(µ))
∥∥∥

L2
,

with P k−1(uh(µ)) :=
∑Nk−1

i=1 (uh(µ), Φh
i )L2Φh

i .

Compute Φ̃h
k = unk

h (µk) −
∑k−1

i=1 (un
h(µk), Φh

i )L2(Ω)Φh
i and set Φh

k = Φ̃h
k∥∥∥Φ̃h

k

∥∥∥
L2(Ω)

.

Set Gk = Gk−1 ∪ {µk} and Xk
h = Xk−1

h ⊕ span{Φh
k}.

Stop when
∥∥∥un

h(µ) − P k−1(un
h(µ))

∥∥∥
L2

≤ tol, ∀µ ∈ Gtrain, ∀n ∈ F.

end for

Note that the Greedy algorithm is generally less expensive (thanks to a posteriori error
estimates), but for time dependent problems, the POD-Greedy might be more reasonable
when the snapshots are computed for all time steps since it avoids performing an additional
forloop on the time steps [21]. Yet, in this algorithm, since an additional rectification
post-treatment can be performed (detailed later), the use of a Greedy algorithm (with an
additional selection over the time steps) Algorithm 1 makes more sens and might lead to
more accurate approximations [16].
After generating the RB functions, we solve the following eigenvalue problem:

Find Φh ∈ XN
h , and λ ∈ R such that:

∀v ∈ XN
h ,

∫
Ω

∇Φh · ∇v dx = λ

∫
Ω

Φh · v dx,
(3.2)

where XN
h = Span{Φh

1 , . . . , Φh
N }. We get an increasing sequence of eigenvalues λi, and

orthogonal eigenfunctions, still denoted (Φh
i )i=1,...,N , which do not depend on time, or-

thonormalized in L2(Ω) and orthogonalized in H1(Ω). Note that with the Gram–Schmidt
process, we only obtain an L2-orthonormalized RB.
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(4) To perform the rectification post-treatment, we generate the equivalent coarse snapshots
and rectification matrices with algorithm 2, in analogy with the elliptic case. The coarse
snapshots, which have the same parameters as for the HF one, are now quadratically
interpolated in time (2.14). We resort to the following algorithm.

Algorithm 2 Offline rectification post-treatment
Input: {(un

h(µi), with µi ∈ Gtrain, n ∈ F}; {um
H(µi), with µi ∈ Gtrain ⊂ G, m ∈ G};

RB {Φh
i }i=1,...,N .

Output: Rectification matrices Rn
i,j , 1 ≤ i, j ≤ N, n = 0, . . . , NT .

Realize the quadratic interpolation of the coarse snapshots in time, denoted ũH
n, n ∈ F with (2.14).

for n = 0, . . . , NT do
Calculate the fine and coarse coefficients
∀i = 1, . . . , N, and ∀µk ∈ Gtrain, An

k,i =
∫

Ω ũH
n(µk) · Φh

i dx, and Bn
k,i =

∫
Ω un

h(µk) · Φh
i dx,

For i = 1, . . . , N, set Rn
i = ((An)T An + δIN )−1(An)T Bn

i .
end for

Remark 3.1. In algorithm 1, the term∥∥∥un
h(µ) − P k−1(un

h(µ))
∥∥∥

L2(Ω)
(3.3)

can be calculated either with a set of training snapshots as presented in Algorithm 1 or
evaluated with an a posteriori estimate. Since at each step k, all sets added in the basis are
in the orthogonal complement of Xk−1

h , it yields an L2 orthogonal basis without further
processing. In practice, the algorithm is halted with a stopping criterion such as an error
threshold or a maximum number of basis functions to generate.
Remark 3.2. Every time step has its own rectification matrix. Indeed, in our experiments,
the results obtained with a global rectification matrix were less accurate. Because there
are several time steps for each parameter in Gtrain, we have Ntrain ≤ N in our context.
Hence, ∀n ∈ {1, . . . , NT }, An ∈ RNtrain×N is a rectangular “flat” matrix, and (An)T An is
not invertible and requires the parameter δ for the inversion. Note that in previous NIRB
two-grid studies, the parameter δ was used only as a regularization parameter.

• “Online step”
(5) Now for the online part, we solve the coarse problem (e.g. (2.1) for the heat equation) on

MH for a new parameter µ ∈ G, at each time step m = 0, . . . , MT .
(6) We quadratically interpolate in time the coarse solution on the fine time grid with (2.14).
(7) Then, we linearly interpolate ũH

n(µ) on Mh in order to compute the L2(Ω)-inner product
with the RB functions. The approximation used in the two-grid method is

For n = 0, . . . , NT , uN,n
Hh (µ) :=

N∑
i=1

(ũH
n(µ), Φh

i ) Φh
i , (3.4)

and with the rectification post-treatment step [9, 17], it becomes

Rn[uN
Hh](µ) :=

N∑
i=1

Rn
ij (ũH

n(µ), Φh
j ) Φh

i , (3.5)

where Rn is the rectification matrix at time tn (see algorithm 2).

In the next section, we prove the optimal error in L∞(0, T ; H1(Ω)).
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4. NIRB error estimate with parabolic equations

Main result. Our main result is the following theorem.

Theorem 4.1. (NIRB error estimate for parabolic equations.) Let us consider the problem 2.1 with its
exact solution u(x, t; µ), and the full discretized solution un

h(x; µ) to the problem 2.7. Let (Φh
i )i=1,...,N

be the L2-orthonormalized and H1-orthogonalized RB generated with the POD-Greedy 3 or the full
Greedy algorithm 1 from the HF solutions of (2.7). We make the further assumption that the inverse
inequality 2.16 is bounded on XN where XN stands for the continuous version of XN

h .
Let us consider the NIRB approximation, defined by (3.4). Then, ∀n = 0, . . . , NT , the following

estimate holds∣∣∣u(tn)(µ) − uN,n
Hh (µ)

∣∣∣
H1(Ω)

≤ ε(N) + C1(µ)h + C2(N)H2 + C3(µ)∆tF + C4(N)∆t2
G, (4.1)

where C1, C2, C3 and C4 are constants independent of h and H, ∆tF and ∆tG. The term ε(N) measures
the error given by (1.7) and depends on the Kolmogorov N -width which shows how well the solution
manifold can be approximated by N dimensional linear reduced spaces.

Remark 4.2. This theorem can be generalized to Pk FEM space, with k > 1.

Corollary 4.3 (of Theorem 4.1). Under the same assumptions than Theorem 4.1, and if H is such
as H2 ∼ h and ∆t2

G ∼ ∆tF , then (4.1) yields

∀n = 0, . . . , NT ,
∣∣∣u(tn)(µ) − uN,n

Hh (µ)
∣∣∣
H1(Ω)

≤ ε(N) + O(h + ∆tF ), (4.2)

if ε(N) is small enough, this inequality states that we recover optimal error estimates in
L∞(0, T ; H1(Ω)).

Remark 4.4. ε(N) depends on the Kolmogorov N -width, and we discuss its behaviour as a function
of N in Appendix C.

With the L2 norm, we obtain the following theorem.

Theorem 4.5. With the same assumptions as in the Theorem 4.1, with the L2-orthonormalized RB,
the following estimate holds

∀n = 0, . . . ,
∆tF

T
,

∥∥∥u(tn)(µ) − uN,n
Hh (µ)

∥∥∥
L2(Ω)

≤ ε′(N) + C ′
1(H2 + ∆t2

G) + C ′
2(h2 + ∆tF ), (4.3)

where C ′
1 and C ′

2 are constants independent of h, H and N , and ε′(N) depends on N , and corresponds
to the L2 error between the fine solution and its projection on the reduced space of dimension N .

Remark 4.6. Note that now C ′
2 does not depend on N , unlike C2 or C4 above.

We now go on with the proof of Theorem 4.1.
Proof. The NIRB approximation at time step n = 0, . . . , NT , for a new parameter µ ∈ G is defined
by (3.4). Thus, the NIRB error can be decomposed in three contributions∣∣u(tn; µ) − uN,n

Hh (µ)
∣∣
H1(Ω)

≤
∣∣u(tn; µ) − un

h(µ)
∣∣
H1(Ω) +

∣∣un
h(µ) − uN,n

hh (µ)
∣∣
H1(Ω) +

∣∣uN,n
hh (µ) − uN,n

Hh (µ)
∣∣
H1(Ω)

=: T1 + T2 + T3,

where the term

uN,n
hh (µ) :=

N∑
i=1

(un
h(µ), Φh

i ) Φh
i , (4.4)

is the L2-projection of un
h(µ) on XN

h .
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• The first term T1 may be estimated using the inequality (2.12), such that∣∣∣u(tn; µ) − un
h(µ)

∣∣∣
H1(Ω)

≤ C(µ) (h + ∆tF ). (4.5)

• We denote by Sh = {un
h(µ, t), µ ∈ G, n = 0, . . . NT } the set of all the solutions. For our model

problem, this manifold has a low complexity. It means that∣∣∣un
h(µ) −

N∑
i=1

(un
h(µ), Φh

i ) Φh
i

∣∣∣
H1(Ω)

≤ ε(N). (4.6)

where ε(N) depends on the Kolmogorov N -width.
• For the third term T3, let us consider the Greedy approach with a Gram–Schmidt procedure and

an eigenvalue problem (3.2), which yields an orthogonalization in L2(Ω) and in H1(Ω). Therefore,∣∣∣uN,n
hh − uN,n

Hh

∣∣∣2
H1(Ω)

=
N∑

i=1
|(un

h(µ) − ũH
n(µ), Φh

i )|2|Φh
i |2H1(Ω), (4.7)

where ũH
n(µ) is the quadratic interpolation of the coarse snapshots on time tn, ∀n = 0, . . . , NT ,

defined by (2.14). From the RB orthonormalization in L2(Ω), the equation (3.2) yields

|Φh
i |2H1 = λi

∥∥∥Φh
i

∥∥∥2

L2(Ω)
= λi ≤ max

j=1,...,N
λj = λN ,

such that the equation (4.7) yields
|uN,n

hh − uN,n
Hh |2H1(Ω) ≤ CλN ∥un

h(µ) − ũH
n(µ)∥2

L2(Ω) . (4.8)
Now by definition of ũH

n(µ) and by Corollary 2.15 and Theorem 2.3, for tn ∈ Im,

∥un
h(µ) − ũH

n(µ)∥L2(Ω) ≤ C(H2 + ∆t2
G + h + ∆tF ),

and we end up for equation (4.8) with
|uN,n

hh − uN,n
Hh |H1(Ω) ≤ C

√
λN (H2 + ∆t2

G + h + ∆tF ), (4.9)
where C does not depend on N . Combining these estimates (4.5), (C.2) and (4.9), we obtain the
estimate (4.1) and that concludes the proof. In appendix, Section C, the reader may see the values of
λN obtained for the heat equation and for the Brusselator.

We proceed with the proof of Theorem 4.5.
Proof. In analogy with the H1 estimate, we have ∀n = 0, . . . , NT ,∥∥∥u(tn; µ) − uN,n

Hh (µ)
∥∥∥

L2(Ω)

≤ ∥u(tn; µ) − un
h(µ)∥L2(Ω) +

∥∥∥un
h(µ) − uN,n

hh (µ)
∥∥∥

L2(Ω)
+

∥∥∥uN,n
hh (µ) − uN,n

Hh (µ)
∥∥∥

L2(Ω)

=: T1 + T2 + T3.

• For the first term T1, it follows from Theorem 2.3 that
T1 ≤ C(h2 + ∆tF ). (4.10)

• As with the H1 estimate, T2 can be estimated with equation (4.6) and thus, for an accuracy
ε′ = ε′(N) ≤ ε(N) (where ε(N) bounds the H1 error)

T2 ≤ ε′. (4.11)
• For the last term T3, by L2-orthonormality,∥∥∥uN,n

hh (µ) − uN,n
Hh (µ)

∥∥∥2

L2(Ω)
=

N∑
i=1

|(un
h(µ) − un

H(µ), Ψn
h,i)|2

∥∥∥Ψn
h,i

∥∥∥2

L2(Ω)

≤ C ∥un
h(µ) − un

H(µ)∥2
L2(Ω) .
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Note that, the dependence in N is removed in the previous inequality. By Theorem 2.13 and triangle
inequality, it leads to ∥∥∥uN,n

hh (µ) − uN,n
Hh (µ)

∥∥∥
L2(Ω)

≤ C (H2 + ∆t2
G + h2 + ∆tF ). (4.12)

Combining (4.10), (4.11), and (4.12) concludes the proof.

5. Numerical results

In this section, we have applied the NIRB algorithm on several numerical tests. For each case, we
compare the plain NIRB errors (without the rectification post-treatment) with the rectified NIRB
errors given by algorithm 2:

• first, on the heat equation (2.1) with ∆tG ≃ H ≃ 2 h ≃ 2 ∆tF . Note that in some situations,
because of the constants C2 and C4 in the estimate of Theorem 4.1, the best size for the coarse
mesh may not be ∆t

1/2
F .

• then, on the heat equation with ∆t2
G ≃ H ≃

√
h ≃ ∆tF .

• finally, we also tested our problem on a more complex problem, the Brusselator system.

We have implemented both schemes (Euler and Crank–Nicolson) using FreeFem++ (version 4.9)
[23] to compute the fine and coarse snapshots, and the solutions have been stored in VTK format.
Then we have applied the plain NIRB and the NIRB rectified algorithm with python, in order to
highlight the non-intrusive side of this method (as in [16]). After saving the NIRB approximations
with Paraview module on Python, the errors have been computed with FreeFem++. These tests
are available on GitHub https://github.com/grosjean1/parabolic, and the NIRB method is also
available on Feel++[31].

5.1. The heat equation with ∆tG ≃ H ≃ 2 h ≃ 2 ∆tF

5.1.1. Convergence results

We have taken the parameter set G = [0.5, 9.5].
Note that for µ = 1, we can calculate an analytical solution, which is given by

u(t, x; 1) = 10(t + 1)x2(1 − x)2y2(1 − y)2, (5.1)

for a right-hand side function

f(t, x) = 10[x2(x − 1)2y2(y − 1)2 − 2(t + 1)((6x2 − 6x + 1)(y2(y − 1)2) + (6y2 − 6y + 1)(x2(x − 1)2))],

where x = (x, y). The initial solutions solve the elliptic equation (with homogeneous Dirichlet boundary
conditions)

−µ∆u0 = f0, with f0(x) = −20[(6x2 − 6x + 1)(y2(y − 1)2) + (6y2 − 6y + 1)(x2(x − 1)2)].

As a result, we have employed for µ = 1 the Ritz projection (2.5) to compute the initial solution u0
h

with u0 = u(0, x; 1) as in (2.6).
We have retrieved several snapshots on t = [0, 1] (note that the coarse time grid must belong to the

interval of the fine one), and tried our algorithms on several size of meshes, always with ∆tF ≃ h and
∆tG ≃ H (both schemes are stable).
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We have first taken 18 parameters in G for the RB construction such that µi = 0.5i, i = 1, . . . , 19, i ̸=
2, and the true solution (5.1), with µ = 1. In 5.1 and 5.2, we present the errors of the FEM solu-
tions and compare them to the ones obtained with the NIRB algorithms with N = 5 to observe the
convergence rates.

We recall that the rectification post-processing step is done for each time step and that the corre-
sponding NIRB method is given by (3.5), where the rectification matrix R may be seen as a family of
2nd-order tensors indexed by n.

The NIRB error in the l∞(0, . . . , NT ; H1
0 (Ω)) norm is defined as∥∥∥u(1) − uN
Hh(1)

∥∥∥
l∞(0,...,NT ; H1

0 (Ω))

∥u(1)∥l∞(0,...,NT ; H1
0 (Ω))

, (5.2)

and with the rectification post-treatment we have∥∥∥u(1) − R[uN
Hh](1)

∥∥∥
l∞(0,...,NT ; H1

0 (Ω))

∥u(1)∥l∞(0,...,NT ; H1
0 (Ω))

, (5.3)

where R[uN
Hh] is defined by (3.5), and these relative errors are compared to the FEM ones defined

(resp. for fine solutions and coarse ones) as
∥u(1) − uh(1)∥l∞(0,...,NT ; H1

0 (Ω))

∥u(1)∥l∞(0,...,NT ; H1
0 (Ω))

and
∥u(1) − uH(1)∥l∞(0,...,MT ; H1

0 (Ω))

∥u(1)∥l∞(0,...,MT ; H1
0 (Ω))

. (5.4)

Figure 5.1. ∆tG ≃ H ≃ 2 h ≃ 2 ∆tF . Convergence rate for µ = 1 (as a new
parameter): FEM L∞(0, . . . , NT ; H1

0 (Ω)) (fine) and L∞(0, . . . , MT ; H1
0 Ω)) (coarse)

relative errors (5.4) for several sizes of mesh (left) compared to the NIRB method with
(N = 5) and without the rectification post-treatment (N = 5) (right) (5.3)

We plot the l∞(0, . . . , NT ; L2(Ω)) relative errors in Figure 5.2.
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Figure 5.2. ∆tG ≃ H ≃ 2 h ≃ 2 ∆tF . Convergence rate for µ = 1 (as a new param-
eter): FEM L∞(0, . . . , NT ; L2(Ω)) (fine) and L∞(0, . . . , MT ; L2Ω)) (coarse) relative
errors (5.4) for several sizes of mesh (left) compared to the NIRB method with (N = 5)
and without the rectification post-treatment (N = 5) (right)

Table 5.1. Relative errors in l∞(0, . . . , NT ; H1
0 (Ω)) over the parameters (NIRB errors

with H ≃ 2h compared to the true RB projection (4.4) and to the FEM fine and coarse
projection) with N = 5 with h = 0.01

NIRB rectified error max
µ∈Gtrain\{0.5,9.5}

∥uref (µ)−R[uN
Hh](µ)∥

l∞(0,...,NT ; H1
0 (Ω))

∥uref (µ)∥
l∞(0,...,NT ; H1

0 (Ω))
1.63620 × 10−2

NIRB error (without rectification) max
µ∈Gtrain\{0.5,9.5}

∥uref (µ)−uN
Hh(µ)∥

l∞(0,...,NT ; H1
0 (Ω))

∥uref (µ)∥
l∞(0,...,NT ; H1

0 (Ω))
1.65037 × 10−2

RB projection max
µ∈Gtrain\{0.5,9.5}

∥uref (µ)−uN
hh(µ)∥

l∞(0,...,NT ; H1
0 (Ω))

∥uref (µ)∥
l∞(0,...,NT ; H1

0 (Ω))
1.63617 × 10−2

Fine FEM projection max
µ∈Gtrain\{0.5,9.5}

∥uref (µ)−uh(µ)∥
l∞(0,...,NT ; H1

0 (Ω))

∥uref (µ)∥
l∞(0,...,NT ; H1

0 (Ω))
1.63617 × 10−2

Coarse FEM projection max
µ∈Gtrain\{0.5,9.5}

∥uref (µ)−uH(µ)∥
l∞(0,...,MT ; H1

0 (Ω))

∥uref (µ)∥
l∞(0,...,MT ; H1

0 (Ω))
3.58067 × 10−2

Then, we have taken 19 parameters in G for the RB construction such that µi = 0.5i, i = 1, . . . , 19
and have applied the “leave-one-out” strategy. It involves removing each training test parameter from
the RB in order to obtain its associated NIRB approximation. It allows us to evaluate the NIRB
algorithm with respect to the parameters. Table 5.1 presents the maximum l∞(0, . . . , NT ; H1

0 (Ω))-error
of the NIRB approximations over the parameters. To represent the true solution, we have computed
a P1 reference approximation uref (µ) on a finer mesh with href ≃ ∆tref = 0.0025. We have excluded
0.5 and 9.5 to not extrapolate over the parameters.
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5.1.2. Time execution (min,sec)

We present the FEM and NIRB run-times in Table 5.2.

Table 5.2. FEM and NIRB run-times (N = 10)

FEM high fidelity solver FEM coarse solution
00:03 00:02

NIRB Offline Rectified NIRB online
1:45 00:02

5.2. The heat equation with H2 ≃ h ≃ ∆t2
G ≃ ∆tF

5.2.1. Convergence results

As previously, we display the convergence rate of the FEM approximations (left) and of the NIRB
approximations (with and without rectification and with N = 5) in Figure 5.3. For all meshes, we
choose µ = 1 and as expected, we observe that both NIRB l∞(1, . . . , NT ; H1

0 (Ω)) errors converge in
O(h + ∆tF ), and we retrieve the HF accuracy with the rectified NIRB approximation.

Figure 5.3. H2 ≃ h ≃ ∆t2
G ≃ ∆tF . Convergence rate for µ = 1 (as a new param-

eter): FEM L∞(0, . . . , NT ; H1
0 (Ω)) (fine) and L∞(0, . . . , MT ; H1

0 Ω)) (coarse) relative
errors (5.4) for several sizes of mesh (left) compared to the NIRB method with (N = 5)
and without the rectification post-treatment (N = 5) (right) (5.3)

We also plot the l∞(1, . . . , NT ; L2(Ω)) errors in Figure 5.4. Finally, in order to evaluate the NIRB
algorithm with respect to the parameters, Table 5.3 presents the maximum l∞(1, . . . , NT ; H1

0 (Ω))-error
of the approximations over the parameters.
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Figure 5.4. H2 ≃ h ≃ ∆t2
G ≃ ∆tF . Convergence rate for µ = 1 (as a new param-

eter): FEM L∞(0, . . . , NT ; L2(Ω)) (fine) and L∞(0, . . . , MT ; H1
0 Ω)) (coarse) relative

errors (5.4) for several sizes of mesh (left) compared to the NIRB method with (N = 5)
and without the rectification post-treatment (N = 5) (right) (5.3)

Table 5.3. Relative l∞(0, . . . , NT ; H1
0 (Ω)) errors over the parameters (NIRB errors

with H ≃ h1/2 compared to the true RB projection (4.4) and to the FEM fine and
coarse projection) with N = 5 with h = 0.01

NIRB rectified error max
µ∈Gtrain\{0.5,9.5}

∥uref (µ)−R[uN
Hh](µ)∥

l∞(0,...,NT ; H1
0 (Ω))

∥uref (µ)∥
l∞(0,...,NT ; H1

0 (Ω))
1.63620 × 10−2

NIRB error (without rectification) max
µ∈Gtrain\{0.5,9.5}

∥uref (µ)−uN
Hh(µ)∥

l∞(0,...,NT ; H1
0 (Ω))

∥uref (µ)∥
l∞(0,...,NT ; H1

0 (Ω))
6.23300 × 10−2

RB projection max
µ∈Gtrain\{0.5,9.5}

∥uref (µ)−uN
hh(µ)∥

l∞(0,...,NT ; H1
0 (Ω))

∥uref (µ)∥
l∞(0,...,NT ; H1

0 (Ω))
1.63617 × 10−2

Fine FEM projection max
µ∈Gtrain\{0.5,9.5}

∥uref (µ)−uh(µ)∥
l∞(0,...,NT ; H1

0 (Ω))

∥uref (µ)∥
l∞(0,...,NT ; H1

0 (Ω))
1.63617 × 10−2

Coarse FEM projection max
µ∈Gtrain\{0.5,9.5}

∥uref (µ)−uH(µ)∥
l∞(0,...,MT ; H1

0 (Ω))

∥uref (µ)∥
l∞(0,...,MT ; H1

0 (Ω))
1.55981 × 10−1

In Figure 5.5, the maximum H1
0 (Ω) errors are displayed for µ = 1 and different number of modes

N , and we observe that the errors without the rectification post-treatment increases with N due to
the role of the constants C2 and C4 in the estimate of Theorem 4.1, whereas with the post-treatment
they remain stable.
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Figure 5.5. For h = 0.01: H = 2h (left), h = H2 (right) µ = 1, NIRB relative H1
0

errors and rectified NIRB (+ rectification post-treatment) H1
0 compared to FEM errors

with different modes N

Remark 5.1. We may also consider NIRB aproximations of (2.7) under the form

uN,n
Hh (x; µ) =

N∑
i=1

αH
i (µ, tn) Φn

h,i(x), n ≥ 0, (5.5)

with (Φn
h,i)i=1,...,N time-dependent basis functions. This time, the Greedy algorithm 1 is executed for

each time step and thus, this method is less efficient (in term of storage) since we have to store N
times the number of time steps of the reduced basis.

With this decomposition, we obtained the following results (see Figure 5.6).

5.2.2. Time execution (min,sec)

We present the FEM and NIRB run-times in Table 5.4.

Table 5.4. FEM and NIRB run-times (N = 10)

FEM high fidelity solver FEM coarse solution
00:03 00:01

NIRB Offline classical rectified NIRB online
1:32 00:02
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Figure 5.6. For h = 0.01: H = 2h (left), h = H2 (right) µ = 1, NIRB relative H1
0

errors and rectified NIRB (+ rectification post-treatment) H1
0 compared to FEM errors

with different modes N using the other NIRB decomposition (5.5)

5.3. Comments on the results

• On the first tests, with ∆tG ≃ H ≃ 2 h ≃ 2 ∆tF , we observe the following facts:

– with and without the rectification post-treatment, the method converges in O(h + ∆tF ),
as expected from the estimates of Theorem 4.1 for the plain NIRB (see Figure 5.1).

– we obtain the same accuracy as with the HF solutions in the H1
0 norm in both cases.

– we find an optimal L2 error estimate for the NIRB with the rectification post-treatment,
in O(h2 + ∆tF ), whereas the error for the plain NIRB is not enhanced by the NIRB
algorithm (compared to the coarse FEM approximation), as predicted by Theorem 4.5
(see Figure 5.2).

The rough mesh size is finer than
√

h. In that case, the plain NIRB algorithm is sufficient to
retrieve the optimal H1 accuracy.

• Then, on the heat equation with ∆t2
G ≃ H ≃

√
h ≃ ∆tF , we remark that

– with both algorithms, the error converge in O(h + ∆tF ) (see Figure 5.3).
– The plain NIRB method allows us to reduce the H1

0 error compared to the coarse FEM
approximation. Yet, the fine accuracy is recovered only while adding the rectification
post-treatment.

– We retrieved the rates of convergence expected from Theorem 4.5 in O(h2 + ∆tF ), yet
only the NIRB with the rectification post-treatment yields an accuracy very close to the
HF ones (see Figure 5.4).
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Table 5.5. Relative l∞(0, . . . , NT ; H1(Ω)) errors (and l∞(0, . . . , MT ; H1(Ω)) for the
coarse ones) with leave-one-out strategy N = 30

Parameters a-b-α Fine error Coarse error True projection uN
hh NIRB + rectification classical NIRB

3-2-0.002 4.54 × 10−2 1.70 × 10−1 4.56 × 10−2 5.07 × 10−2 1.54 × 10−1

4-2-0.01 3.54 × 10−2 1.75 × 10−1 3.79 × 10−2 6.01 × 10−2 1.30 × 10−1

4-3-0.005 3.80 × 10−2 1.86 × 10−1 3.80 × 10−2 3.97 × 10−2 1.69 × 10−1

4-4-0.0002 5.04 × 10−2 8.56 × 10−2 5.04 × 10−2 5.04 × 10−2 8.90 × 10−2

5-2-0.001 4.84 × 10−2 1.72 × 10−1 4.83 × 10−2 6.24 × 10−2 1.66 × 10−1

5-3-0.008 3.61 × 10−2 1.73 × 10−1 3.61 × 10−2 3.61 × 10−2 1.71 × 10−1

5.4. The parameterized Brusselator equations

The Brusselator problem [30] involves chemical reactions. It is a more complex test from a simulation
point of view. The chemical concentrations in this problem are controlled by parameters throughout
the reaction process, making it an interesting application of a NIRB method. Let us introduce the
Brusselator problem in a spatial domain Ω = [0, 1]2. The nonlinear system of this two-dimensional
reaction-diffusion problem writes

∂tu1 = a + u1u2
2 − (b + 1)u1 + α∆u1, in Ω × ]0, T ]

∂tu2 = bu1 − u1 u2
2 + α∆u2, in Ω × ]0, T ],

u1(x, 0) = u0(x) = 2 + 0.25y, in Ω
u2(x, 0) = v0(x) = 1 + 0.8x, in Ω,

∂nu1 = 0, ∂Ω,

∂nu2 = 0, ∂Ω.

(5.6)

We now have to deal with a nonlinearity as well as two unknowns. Our parameter, denoted µ = (a, b, α),
belongs to [2, 6] × [1, 8] × [0.0001, 0.05]. We have taken an ending time T = 5. These parameters are
standard [30] and we note that, for b ≤ 1 + a2, the solutions are global, and for α small enough, they
converge to (ul, vl) = (a, b

a).
We use an Euler implicit scheme for fine solutions with the Newton algorithm to deal with the

nonlinearity and a Runge–Kutta 2 (RK2) scheme for the coarse mesh. Indeed, solutions blow up with
an explicit Euler scheme, whereas they remain stable for our parameters with an order 2 scheme.

We have randomly chosen 8 training parameters and have applied a “leave-one-out” strategy (we
have excluded from the tested parameters the set extremities). A sign of a good reduced basis is
the estimation of a small Kolmogorov N -width by rapid decay of projection errors of these training
solutions onto the N -dimensional RB space. In figure 5.7, we see the maximal relative projection errors
in l∞(0, . . . , NT ; H1(Ω)) norm as a function of N .

We have employed a refined mesh to represent the solution of reference (with href = ∆tref = 0.005).
In Table 5.5, we have compared the l∞(0, . . . , NT ; H1(Ω)) error of the fine FEM solutions to the
corresponding NIRB errors with and without the rectification post-treatment with N = 30 modes
with h = 0.02 = ∆tF ≃ H2 = ∆t2

G (∆TG = H = 0.2). In order to then observe the effect of the
number of modes N on the NIRB approximation, we plot the errors of the NIRB approximation
with and without the rectification post-treatment and of the FEM fine and coarse approximations in
Figure 5.7 and compare the errors to the true projection for the worst-case scenario (with a = 4, b = 2
and α = 0.01).

In 5.8 follows the NIRB rectified solution for N = 10 modes at time T = 5 for the two variables u1
and u2 with the parameter (a, b, α) = (3, 2, 0.002). The approximation is close to (a, b

a) = (3, 2/3) as
expected.
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Figure 5.7. Worst-case scenario: test with l∞(0, . . . , NT ; H1(Ω)) relative errors with
a new parameter (a, b, α) = (4, 2, 0.01), t0 = 0, T = 5, Ω = [0, 1] × [0, 1] (NIRB errors
compared to fine and coarse FEM errors)

(a) u1 (b) u2

Figure 5.8. NIRB rectified approximations (u1 (left) and u2 (right)) for T = 5 with
N = 10 modes (close to (a, b

a) = (3, 2/3))

5.4.1. Time execution (min,sec)

Finally, the computational costs are significantly reduced during the online part of the algorithm as
highlighted by this example. Indeed, since there is a nonlinearity, the system must be solved with
several iterations for each time step, and thus is quite expensive for a HF approximation. We recall
that with an explicit Euler scheme, the solution blows up whereas with the RK2 scheme (without
iteration), the solution converges to the expected values (a, b

a).
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We present the FEM and NIRB run-times in Table 5.6.

Table 5.6. FEM and NIRB run-times (N = 10, h:min:sec)

FEM high fidelity solver FEM coarse solution
00:04:52 00:00:02

NIRB Offline classical rectified NIRB online
01:53:00 00:00:04

6. Conclusion

In this paper, we extend the NIRB 2-grid method to parabolic equations. For this purpose, the of-
fline part of the algorithm is modified allowing a compression of the solutions in both directions of
parameters and time. The RB functions are time independent and the NIRB accuracy is improved by
a time-dependent rectification post-treatment described in Section 3.

In Section 4, we prove that we recover optimal estimates for the NIRB approximations in
L∞(0, T ; H1(Ω)) on a model problem, which is the heat equation. Our main result is given by Theo-
rem 4.1 which announces the precise L∞(0, T ; H1(Ω)) error estimate. We also prove an L∞(0, T ; L2(Ω))
estimate.

Finally, we present in Section 5 several numerical results on the heat equation and on the Brusselator
problem, that are consistent with the theory. On the heat equation, we have tested the method with
several grid sizes: ∆tG ≃ H ≃ 2 h ≃ 2 ∆tF and then with ∆t2

G ≃ H ≃
√

h ≃ ∆tF . We observe, as
described in Section 5.3, that the HF accuracy is recovered with the rectification post-treatment in
both cases, in the L∞(0, T ; H1(Ω)) norm. Without this post-treatment, the NIRB method reduces the
error and retrieves the fine accuracy in the first case. The optimal convergence rates are recovered in
both cases. We also illustrate the method with several results on the L2(Ω) norm and demonstrate its
efficiency to retrieve the HF accuracy with the rectification post-treatment.

The brusselator problem is more complex than the heat equation from a simulation standpoint. As
a matter of fact, we observe that more RB functions are required to retrieve the fine precision (see
Figure 5.7). Yet, we still observe very good results as presented in Table 5.5 thanks to the rectification
post-treatment. Indeed, with a leave-one-out strategy, we observe with ∆t2

G ≃ H ≃
√

h ≃ ∆tF that
it yields the fine accuracy in almost all cases presented in table 5.5 and that the NIRB error with
this post-treatment is very close to the fine error in the worst-case scenario.These tests highlight the
great capability of this method in reducing simulation costs: run-times are indeed significantly reduced
compared to an HF evaluation, as observed in Table 5.6.

248



NIRB with parabolic equations

Appendix A. POD-Greedy algorithm

Algorithm 3 POD-Greedy algorithm
Input: Nmax, {un

h(µ1), . . . , un
h(µNtrain) with µi ∈ Gtrain, n = 0, . . . , NT }.

Output: Reduced basis {Φh
1 , . . . , Φh

N }, N ≤ Nmax.

Choose µ1 = argmaxµ∈Gtrain ∥uh(µ)∥l∞(0,...,NT ; L2(Ω)).
Then produce the modes {Φh

1 , . . . , Φh
N1

} through a POD on {un
h(µ1), n = 0, . . . , NT }.

Set G1 = µ1 and X1
h = span{Φh

1 , . . . , Φh
N1

}.

while
∑N

k=2 Nk < Nmax do

Choose µk = argmaxµ∈Gtrain\Gk−1

∥uh(µ)−P k−1(uh(µ))∥
l∞(0,...,NT ;L2(Ω))

∥uh(µ)∥l∞(0,...,NT ;L2(Ω))
,

with P k−1(uh(µ)) :=
∑Nk−1

i=1 (uh(µ), Φh
i )L2Φh

i .
Then produce the modes {Φh

Nk−1+1, . . . , Φh
Nk

} through a POD on
{un

h(µk) − P k−1(un
h(µk)), n = 0, . . . , NT }.

Set Gk = Gk−1 ∪ µk and Xk
h = Xk−1

h ⊕ span{Φh
k−1, . . . , Φh

Nk
}.

end while

Appendix B. Proof of Theorem 2.5

Proof. We first decompose the error with two components θ and ρ such that
∀n = 1, . . . NT , en := √

µ(∇un
h − ∇u(tn)) = √

µ((∇un
h − ∇P 1

h u(tn)) + (∇P 1
h u(tn) − ∇u(tn))),

= √
µ(∇θn + ∇ρn). (B.1)

• For the estimate on ρn, a classical FEM estimate [3, 34] is∥∥∥P 1
h v − v

∥∥∥
L2(Ω)

+ h
∥∥∥∇(P 1

h v − v)
∥∥∥

L2(Ω)
≤ Ch2 ∥v∥H2(Ω) , ∀v ∈ H2 ∩ H1

0 ,

which leads to
∥∇ρn∥L2(Ω) ≤ Ch ∥u(tn)∥H2(Ω) , ∀n = 0, . . . NT ,

and then to
∥∇ρn∥L2(Ω) ≤ Ch

[∥∥∥u0
∥∥∥

H2(Ω)
+

∫ tn

0
∥ut∥H2(Ω) ds

]
. (B.2)

• For the estimate on θ, let us consider v ∈ Vh. Since the operators P 1
h and ∂ commute, we may write

(∂θn, v) + µ(∇θn, ∇v) = (∂un
h, v) − (P 1

h ∂u(tn), v) + µ(∇un
h, ∇v) − µ(∇P 1

h u(tn), ∇v).
The weak formulations (2.2) and (2.7) (fully-discretized solution with the Euler scheme) imply

(∂θn, v) + µ(∇θn, ∇v) = (f, v) − (P 1
h ∂u(tn), v) − µ(∇P 1

h u(tn), ∇v),
= (f, v) − (P 1

h ∂u(tn), v) − µ(∇u(tn), ∇v), by definition of P 1
h ,

= (ut(tn), v) − (P 1
h ∂u(tn), v).

Then, with the triangle inequality, it yields
(∂θn, v) + µ(∇θn, ∇v) = −((P 1

h − I)∂u(tn), v) − ((∂u(tn) − ut(tn)), v)
:= −(wn

1 + wn
2 , v) = −(wn, v). (B.3)

Instead of replacing v by θn as in the L2 estimate, here we replace v by ∂θn, thus the equation (B.3)
takes the form

(∂θn, ∂θn) + µ(∇θn, ∂∇θn) = −(wn, ∂θn).
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Therefore, by definition of ∂ for the Backward Euler discretization,

(∂θn, ∂θn) + µ
∥∇θn∥2

L2(Ω)
∆tF

− µ
(∇θn, ∇θn−1)

∆tF︸ ︷︷ ︸
Ta

= −(wn, ∂θn).

Young’s inequality yields

(∇θn, ∇θn−1) ≤ 1
2 ∥∇θn∥2

L2(Ω) + 1
2

∥∥∥∇θn−1
∥∥∥2

L2(Ω)
,

therefore∥∥∥∂θn
∥∥∥2

L2(Ω)
+ µ

∥∇θn∥2
L2(Ω)

2∆tF
− µ

∥∥∇θn−1∥∥2
L2(Ω)

2∆tF
≤ Ta ≤ 1

2 ∥wn∥2
L2(Ω) + 1

2

∥∥∥∂θn
∥∥∥2

L2(Ω)
,

and it results in

∥∥∥∂θn
∥∥∥2

L2(Ω)
+ µ

∥∇θn∥2
L2(Ω)

∆tF
≤ µ

∥∥∇θn−1∥∥2
L2(Ω)

∆tF
+ ∥wn∥2

L2(Ω) .

Since
∥∥∥∂θn

∥∥∥2

L2(Ω)
≥ 0, it follows that

∀n = 1, . . . , NT , ∥∇θn∥2
L2(Ω) ≤

∥∥∥∇θn−1
∥∥∥2

L2(Ω)
+ ∆tF

µ
∥wn∥2

L2(Ω) ,

and we recursively obtain

∀n = 1, . . . , NT , ∥∇θn∥2
L2(Ω) ≤

∥∥∥∇θ0
∥∥∥2

L2(Ω)
+ ∆tF

µ

n∑
j=1

∥∥∥wj
∥∥∥2

L2(Ω)
.

By definition of θ (and P 1
h ),∥∥∥∇θ0

∥∥∥
L2(Ω)

=
∥∥∥∇u0

h − ∇P 1
h (u0)

∥∥∥
L2(Ω)

≤
∥∥∥∇u0

h − ∇u(t0)
∥∥∥

L2(Ω)
+

∥∥∥∇u0 − ∇P 1
h (u0)

∥∥∥
L2(Ω)

≤
∥∥∥∇u0

h − ∇u0
∥∥∥

L2(Ω)
+ Ch

∥∥∥u0
∥∥∥

H2(Ω)
.

It remains to estimate the L2 norm of the wj , defined by (B.3).
− Let us first consider the construction for w1

wj
1 = (P 1

h − I)∂u(tj)

= 1
∆tF

(P 1
h − I)

∫ tj

tj−1
ut ds,

= 1
∆tF

∫ tj

tj−1
(P 1

h − I)ut ds, since P 1
h and the time integral commute.

Thus, from Hölder’s inequality,
∆tF

µ

n∑
j=1

∥∥∥wj
1

∥∥∥2

L2(Ω)
≤ ∆tF

µ

n∑
j=1

∫
Ω

[ 1
∆t2

F

∫ tj

tj−1
((P 1

h − I)ut)2 ds ∆tF

]
≤ 1

µ

n∑
j=1

∫ tj

tj−1

∥∥∥(P 1
h − I)ut

∥∥∥2

L2(Ω)
ds,

≤ C

µ
h4

n∑
j=1

∫ tj

tj−1
∥ut∥2

H2(Ω) , by the definition of,P 1
h

≤ C

µ
h4

∫ tn

0
∥ut∥2

H2(Ω) ds. (B.4)
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− To estimate the L2 norm of the w2, we write

wj
2 = 1

∆tF
(u(tj) − u(tj−1)) − ut(tj),

= − 1
∆tF

∫ tj

tj−1
(s − tj−1)utt(s) ds,

such that we end up with
∆tF

µ

n∑
j=1

∥∥∥wj
2

∥∥∥2

L2(Ω)
≤ 1

µ

n∑
j=1

∥∥∥∥∥
∫ tj

tj−1
(s − tj−1)utt(s) ds

∥∥∥∥∥
2

L2(Ω)
≤ ∆t2

F

µ

∫ tn

0
∥utt∥2

L2(Ω) ds.

Combining the estimates on ρ and θ concludes the proof.

Appendix C. Remarks on λN and ε(N)

Let us start with the N -behavior of the maximum eigenvalue λN . First of all let us remind that, in
this paper, we have considered h small enough so that all finite element errors are negligible with
respect to the target accuracy that is expected. In this spirit, we consider that the reduced modes,
and the eigenvalues all converge to “continuous” entities as the finite element discretization improves
(h → 0). This allows to state that, what we named XN

h in the paper almost coincide with the associated
“continuous” entities, i.e. the reduced space XN (similarly, the discrete eigenvalues λi are close the
their continuous counterparts).

We present in Table C.1 the values of
√

λN (more precisely
√

λh
N ) for N = 1, . . . , 10 in both cases,

the heat equation and the Brusselator. Of course, all eigenvalues, in particular λN , are larger than
the inverse of the squared Poincaré constant since for any v ∈ H1

0 (Ω), ∥v∥L2(Ω) ≤ C ∥∇v∥L2(Ω). More
importantly, the maximum eigenvalue appears in the inverse inequality for functions in XN , meaning
that

∀v ∈ XN , ∥∇v∥L2(Ω) ≤
√

λN ∥v∥L2(Ω) (C.1)

Table C.1. Values of
√

λN defined in (3.2) and appearing in the inverse inequal-
ity (C.1) (for N = 1, . . . , 10, 21, . . . , 30)

N = 1 2 3 4 5 6 7 8 9 10
Heat equation 4.44 8.89 9.94 13.34 14.16 16.04 21.19 22.48 30.95 58.58

Brusselator 0.04 34.85 87.66 131.76 191.78 197.26 199.04 206.96 232.37 233.83
N = 21 22 23 24 25 26 27 28 29 30

Heat equation 389.41 389.96 393.61 394.51 395.47 396.52 397.64 400.90 401.50 402.36
Brusselator 294.04 297.39 314.95 324.08 331.77 336.42 341.12 341.61 342.48 342.93

Naturally,
√

λN increases with N , however, for both equations, it looks like from our numerical
simulations, that it is saturating around 300 - 400. This is consistent with the intuition that, over the
set S of all solutions to the parameter dependent problem ((2.1) or (5.6)), when the parameter varies
in some compact set, the inverse inequality, that we conjecture:
Conjecture. ∀v ∈ S, ∥∇v∥L2(Ω) ≤ C∥v∥L2(Ω), holds for some positive constant C.

We then proceed with ε(N), i.e. the proxy of the Kolmogorov N-width, given by the error between
the elements in S and their approximation by the orthogonal projection on XN . Actually, there

251



E. Grosjean & Y. Maday

are numerous approaches for handling these approximations, which stem from the definition of the
projection operators and the norms in which the approximations are evaluated.

We thus introduce the operators Π0
N and Π1

N defined as the L2(Ω) and H1(Ω) projection operators
on the space XN spanned by the RB {Φh

i }i,...,N .
Due to the L2-normalization of the RB, and (3.2), Π0

N and Π1
N verify

∀u ∈ L2(Ω), Π0
N u :=

N∑
i = 1(u, Φh

i )L2(Ω) Φh
i , and ∀u ∈ H1(Ω), Π1

N u :=
N∑

i=1
(u, Φh

i )H1(Ω)
Φh

i

λi
.

The assumption we made on S is that

ε0
N :=argmaxu∈S

∥∥∥u − Π0
N u

∥∥∥
L2(Ω)

and ε1
N :=argmaxu∈S

∥∥∥u − Π1
N u

∥∥∥
H1(Ω)

both decrease rapidly (note that ε0
N ≤ ε1

N ).
Of interest may also be to consider the quantities (as in the proof of Theorem 4.5 in the present

paper), ε1′
N := argmaxu∈S

∥∥u − Π1
N u

∥∥
L2(Ω) and ε0′

N := argmaxu∈S
∥∥u − Π0

N u
∥∥

H1(Ω).
First of all, let us remark that ε1′

N ≤ ε1
N , since the L2(Ω)-norm is upper bounded by the H1(Ω)-norm.

Then, we split
∥∥u − Π0

N u
∥∥

H1(Ω) into two contributions:∥∥∥u − Π0
N u

∥∥∥
H1(Ω)

=
∥∥∥(I − Π1

N )u + (Π1
N − Π0

N )u
∥∥∥

H1(Ω)
,

≤
∥∥∥(I − Π1

N )u
∥∥∥

H1(Ω)
+

∥∥∥(Π1
N − Π0

N )u
∥∥∥

H1(Ω)
,

≤ ε1
N +

√
λN

∥∥∥(Π1
N − Π0

N )u
∥∥∥

L2(Ω)
, from (C.1)

≤ ε1
N +

√
λN (ε0

N + ε1′
N ).

which yields

T2 =
∥∥∥∥∥un

h(µ) −
N∑

i=1
(un

h(µ), Φh
i ) Φh

i

∥∥∥∥∥
H1(Ω)

≤ ε′(N), (C.2)

with ε′(N) ≤ ε1
N +

√
λN (ε0

N + ε1′
N ). In addition if ε0

N ≃ ε1′
N , we obtain

T2 ≤ ε1
N + 2

√
λN ε0

N .

In order to better appreciate the different behaviours of ε0
N , ε1

N , ε0′
N and ε1′

N we have performed
some numerical experiments on these quantities, both for the heat equation and the Brusselator. We
report in Figures C.1 and C.3, the N -convergence concerning ε0

N and ε1′
N for both cases. We can see

that both quantities are rapidly decreasing, at about the same rate. Similarly, we report in Figures C.2
and C.4, the N -convergence for ε0′

N and ε1
N in both cases. We can see that these quantities are rapidly

decreasing, at about the same rates for ε0
N and ε1′

N on the one hand and ε1
N and ε0′

N on the other hand.
Second, we observe that the ratio between these quantities scale as one might expect, i.e.

√
λN ε0

N ≃ ε1
N

(but this is just a conjecture, not so important in the frame of this paper).
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Figure C.1. Heat equation: relative error for ε0
N (left) and ε1′

N (right) as a function
of N = 1, . . . , 30 with h = 0.01

Figure C.2. Heat equation: relative error for ε0′
N (left) and ε1

N (right) as a function
of N = 1, . . . , 30 with h = 0.01
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Figure C.3. Brusselator: relative error for ε0
N (left) and ε1′

N (right) as a function of
N = 1, . . . , 30 with h = 0.02

Figure C.4. Brusselator: relative error for ε0′
N (left) and ε1

N (right) as a function of
N = 1, . . . , 30 with h = 0.02
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