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Abstract. We develop a numerical method for the computation of a minimal convex and compact set, B ⊂ RN ,
in the sense of mean width. This minimisation is constrained by the requirement that maxb∈B⟨b, u⟩ ≥ C(u) for all
unit vectors u ∈ SN−1 given some Lipschitz function C.

This problem arises in the construction of environmental contours under the assumption of convex failure sets.
Environmental contours offer descriptions of extreme environmental conditions commonly applied for reliability
analysis in the early design phase of marine structures. Usually, they are applied in order to reduce the number of
computationally expensive response analyses needed for reliability estimation.

We solve this problem by reformulating it as a linear programming problem. Rigorous convergence analysis is
performed, both in terms of convergence of mean widths and in the sense of the Hausdorff metric. Additionally,
numerical examples are provided to illustrate the presented methods.

2020 Mathematics Subject Classification. 65D18, 90B25, 90C05.
Keywords. Environmental Contours, Linear Programming, Structural Reliability.

1. Introduction

Environmental contours are mathematical tools applied to analyse the reliability of marine structures,
often used in the early design phase of e.g. ships or oil platforms. They provide a summary statistic of
the relevant environmental factors which reduces the number of computationally expensive response
analyses needed. Due to this, environmental contours are widely used in reliability analysis of various
marine structures [1, 4, 5, 22], and is listed in the recommended practices - environmental conditions
and environmental loads document by DNV (Det Norske Veritas) [3]. The latter document provides
algorithms for practical computation of environmental contours, with certain parts relying on heuristic
methods. In this article, we provide algorithms to resolve this issue.

We consider N environmental factors governed by a stochastic process in RN . A marine structure
is then assumed to have a failure set F ⊂ RN of environmental conditions it cannot safely handle.
Let τF = inf{t : Vt ∈ F} be the first hitting time of the failure set. Generally, an environmental
contour is the boundary of a set B ⊂ RN , representing safe environmental conditions the structure
should withstand. Since the exact shape of the failure set F is often unknown in the early design
stages, the environmental contour is chosen to restrain the time to failure, τF , for any failure set F
not overlapping with the chosen set B. Usually, this restriction comes in the form of an indirect lower
bound on the return period E[τF ].

Note that while this formulation considers failure sets, it is a slight abuse of terminology. The defi-
nition of environmental contours is often decoupled from the structural response, effectively ignoring
it. The response of a structure to environmental stress is usually considered to be stochastic, even
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for fixed environmental conditions. As such, the worst response may randomly occur outside of F .
The formulation in terms of τF is still used in, or is equivalent to, most definitions of environmen-
tal contours, and more succinctly expresses the underlying ideas behind environmental contours. For
a few examples on how these contours are connected with structural response in practise we refer
to [5, 18]. Both discuss the use of environmental contours in order to find a singular point, referred to
as the design point, around which the most critical environmental conditions lie. Based on this point,
an importance sampling procedure can be carried out. It is also worth mentioning that [5] also uses
quantiles of the response distribution along the contour to estimate so-called characteristic extreme
response.

Several methods for defining and computing environmental contours exist, the most popular of
which is the inverse first order reliability method (IFORM) developed in [8, 23]. For a thorough
summary and comparison of different contour methods we refer to [7, 17], and several models for the
environmental variables along with their resulting contours are compared in [13].

In this article, we will consider methods based on the additional assumption that all possible failure
sets are convex. Several approaches within this setting exist, such as the method based on direct Monte
Carlo simulation developed in [11, 12]. This method was recently included alongside IFORM in the
aforementioned best practices document for environmental loads by DNV [3], and has been further
studied and extended in several other papers. For example, convexity properties of the resulting
contours, as well as the inclusion of omission factors, was studied in [10] and the extension of buffered
contours was introduced in [2]. There are also other similar approaches, such as [9, 14, 21], which
consider serial correlation of V , and [19], which extends the theory of [12] to a serially dependent and
non-stationary setting. The common factor of these approaches, is that convexity of the failure sets
allows the requirements on B to be stated as minimum outreach requirements. Specifically, all the
requirements are lower bounds on the outreach function of B. The outreach is defined as B(B, u) =
maxb∈B⟨b, u⟩ for directions u on the standard hypersphere SN−1.

The requirements can be succinctly stated as B(B, u) ≥ C(u) for all u ∈ SN−1, where C is some
function computed to ensure the desired restriction of the failure time, usually a lower bound on the
return period, E[τF ]. If this inequality holds, we say that ∂B is a valid contour. The goal is then to find
a valid contour which is minimal in some sense. Whenever there exists a B satisfying B(B, u) = C(u),
that B is trivially optimal. When this is the case, we will refer to ∂B as a proper contour. However,
a proper contour does not always exist. In [10], they discuss how estimation errors in C can lead to
the absence of proper contours. To correct this they suggest inflating C by adding a sufficiently large
constant, ensuring that the resulting contour is valid, as well as proper with respect to the inflated C.
Similarly, in [6], examples of distributions for V are given which allow for no proper contours, regardless
of estimation errors. The article also proposes the following method for constructing valid contours in
this setting. They construct an invalid contour based on C, and then extend it in all directions in order
to ensure validity. However, both these methods fail to establish minimal valid contours in a general
sense. The contour is intended to represent the most extreme safe conditions for a structure. However,
if the contour is made too big it imposes stronger constraints on the class of structures it applies to,
thereby shrinking this class. As such it is of interest to construct contours which are minimal in some
sense, which would allow us to apply the contour, and the resulting restrictions on τF , to as wide a
class as possible.

Our goal in this article is to present a method for constructing valid contours that are minimal
in the sense of mean width (a generalisation of the perimeter length to more than two dimensions).
We show how to solve this by casting it as a linear programming problem. We prove bounds on the
sub-optimality incurred by discretisation of the continuous problem, and give convergence results to
ensure that our method can find solutions with mean width arbitrarily close to the optimum.

In Section 2, we provide a simple explanation of our main goal and results for the two-dimensional
case. To proceed, we first cover some necessary definitions and results in Section 3, before moving
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on to Section 4, where we present our main results in a general setting. Specifically, we prove that
our method provides arbitrarily near-optimal solutions. In order to illustrate our results, we present
numerical examples in Section 5. Next, we present several results that guarantee convergence of our
method in the Hausdorff metric in Section 6. As it turns out that our method can be simplified and
improved in the two-dimensional case, we briefly present the improved method in Section 7. Finally, as
part of our method, we use quadratures for numerical integration with certain properties. We present
some simple constructions for generating such quadratures in Section 8.

2. Main Results in Two Dimensions

We state our main results in two dimensions here, and wait until the necessary setup has been made
before stating the general result in Theorem 4.13. This is only to give a simplified statement, our
method and proofs are developed for general dimensions.

We are interested in finding the convex, compact shape B with the smallest perimeter, which has
a given outreach in each direction. Specifically, the data to our problem is a LC-Lipschitz function
from the unit circle to the real numbers, C : S1 → R. We denote the maximum absolute outreach
requirement ∥C∥∞ := supu∈S1 |C(u)|. Formally, the outreach requirement on B is this: For all directions
u ∈ S1, there exists some p ∈ B such that ⟨p, u⟩ ≥ C(u).

Numerically, we only access C through a finite number of samples. In two dimensions, we can
sample m evenly spaced directions {ui}m

i=1. If we restrict B to polygons with sides perpendicular to
the directions {ui}m

i=1, and only consider outreach requirements in those directions, we can formulate
the resulting problem as a linear programming problem (4.5). In two dimensions there is also a more
efficient formulation (7.3). These linear programs can be solved efficiently using standard techniques,
giving an optimal solution B̃ to the discretised problem.

Our theory shows that B̃ is nearly an optimal solution to the continuous problem. Specifically, if
we inflate B̃ (in the sense of Lemma 4.7) by a small amount O

(
1
m(LC + ∥C∥∞)

)
, it is guaranteed

to satisfy the outreach requirements in all directions. Furthermore, the inflated B̃ has a perimeter at
most O

(
1
m(LC + ∥C∥∞)

)
more than the optimal perimeter over all convex, compact shapes satisfying

the outreach requirements.
When the number of dimensions is more than two, the perimeter is generalised to the mean width

(Definition 3.4), and evenly spaced sample directions are generalised to ϵ-accurate quadratures (Defi-
nition 3.6) with low dispersion (Definition 3.7). We define these concepts in the next section.

3. Basic Intro to Needed Theory

In this section we will define the main functions we will need throughout the article.

3.1. Standard Notation

As in Section 2 we denote by ∥·∥ and ⟨ · , · ⟩ the canonical norm and inner product on RN . Furthermore,
the hypersphere in RN is defined by SN−1 = {u ∈ RN : ∥u∥ = 1}. We will also need the uniform
probability measure on SN−1, denoted by σ.

3.2. Convexity

A key concept when dealing with convex sets is their outreach.
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Definition 3.1. For any set B ⊂ RN we define the outreach function of B as

B(B, u) = sup
b∈B

⟨b, u⟩.

This function is also commonly referred to as the support function of B.

A closely related concept is the idea of a hyperplane.

Definition 3.2. We define the hyperplane for some b ∈ R, u ∈ SN−1 as

Π(u, b) = {v ∈ RN : ⟨u, v⟩ = b}.

We further define the half-spaces

Π−(u, b) = {v ∈ RN : ⟨u, v⟩ ≤ b},
Π+(u, b) = {v ∈ RN : ⟨u, v⟩ ≥ b}.

Consider then b ∈ R, u ∈ SN−1, and some non-empty, convex, and compact B ⊂ RN . Since B
is compact we have that B(B, u) is finite. We can even guarantee some regularity of B(B, · ) by the
following result.

Proposition 3.3. Let B ⊂ RN be a non-empty, convex, and compact set. Denote the maximum radius
R := supp∈B ∥p∥2. Then B(B, u) = maxp∈B⟨p, u⟩ is R-Lipschitz as a function of u ∈ SN−1. Note also
|B(B, u)| ≤ R.

Proof. For fixed p ∈ B, the function ⟨ · , p⟩ is ∥p∥2-Lipschitz, hence R-Lipschitz. Since B(B, u) is the
supremum of R-Lipschitz functions, it is itself R-Lipschitz.

Proposition 3.3 guarantees that B(B, · ) is integrable which allows us to define our key measure of
size for convex compact sets.

Definition 3.4. The width of a non-empty, convex, and compact set B ⊂ RN along a vector u ∈ SN−1

can be written as B(B, u) −B(B,−u). As such, we define the mean width of B by∫
SN−1

(B(B, u) −B(B,−u))dσ(u).

Note that this equals

2
∫

SN−1
B(B, u)dσ(u).

For convex shapes in two dimensions, the mean width is equal to the perimeter divided by π.
Lastly, if B(B, u) ≤ b we must also have B ⊂ Π−(u, b). This leads to the following unique represen-

tation of compact convex sets. This result is a special case of Theorem 18.8 in [16].

Proposition 3.5. Let B ⊂ RN be convex and compact, we then have

B =
⋂

u∈SN−1

Π−(u,B(B, u)).

3.3. Numerical Definitions

In order to compute the mean width our convex sets we will need to employ a numerical integration
method providing universal bounds on the integration error. To address this we introduce the following.
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Definition 3.6. We say a set of points and weights {(ui, wi)}m
i=1 ⊂ SN−1 × [0,∞) is an ϵ-accurate

quadrature, if the following holds for all L-Lipschitz continuous functions f : SN−1 → R. For all
functions f satisfying |f(u) − f(v)| ≤ L ∥u− v∥2 for all u, v ∈ SN−1, we have∣∣∣∣∣

∫
S
f(u) dσ(u) −

m∑
i=1

f(ui)wi

∣∣∣∣∣ ≤ ϵ(L+ ∥f∥∞). (3.1)

In order to control this error we will also need a related concept characterising the spread of some
finite S ⊂ SN−1.

Definition 3.7. We define the dispersion of a set S ⊂ SN−1 by

disp(S) = sup
u∈SN−1

inf
v∈S

∥u− v∥.

Remark 3.8. In order to carry out the numerical integration necessary in this paper, we consider
a general grid S = {ui}m

i=1 ⊂ SN−1 and set of weights W = {wi}m
i=1, with some constraints on

disp(S) and the accuracy of {(ui, wi)}m
i=1. However, we also give specific constructions of ϵ-accurate

quadratures in Section 8.

4. Minimal Valid Contours

In this section, we aim to compute minimal valid contours in the sense of mean width. To set the scene.
We will start by defining relevant concepts about our original and approximating discrete problem,
for then to present several results guaranteeing control over estimation errors.

4.1. The Continuous Problem

The main problem we want to solve can be precisely formulated as follows.

minimise
∫

SN−1
B(B, u)dσ(u) (4.1)

subject to B(B, · ) ≥ C( · ), (4.2)
B convex and compact.

To examine this problem, we introduce the following notation.

Definition 4.1. We denote the set of feasible solutions to the continuous problem (4.1) by

C∞ =
{

B ⊂ RN | B convex and compact, B(B, · ) ≥ C( · )
}
.

The optimal value of the objective function is denoted by

V CP = inf
{∫

SN−1
B(B, u)dσ(u), B ∈ C∞

}
.

Lastly, we define the γ-near optimal solution space by

Cγ =
{

B ∈ C∞
∣∣∣ ∫

SN−1
B(B, u)dσ(u) − V CP ≤ γ

}
.

It turns out that this problem has an optimal solution under our running assumption that C is
continuous. This result is proven through consideration of the Hausdorff metric, as such the proof is
relegated to Theorem 6.3 in Section 6.
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4.2. The Discrete Problem

In what follows, we will consider a way of approximating optimal contours. To achieve this, we will
need to employ numerical methods, which necessitate discretisation. Therefore, we also consider valid
environmental contours with respect to some (usually finite) sub-collection of unit vectors S ⊆ SN−1.

We will say that ∂B is (S, C)-valid if B is convex, compact, and for all u ∈ S we have B(B, u) ≥ C(u).
If we take any S = {ui}m

i=1 and a (S, C)-valid contour ∂B, then for every ui ∈ S there must be
some pi ∈ B such that ⟨pi, ui⟩ = B(B, ui), which implies

⟨pi, ui⟩ ≥ C(ui) for i = 1, 2, . . . ,m. (4.3)

Furthermore, since for all i we have pi ∈ B, we must also have

⟨pi, uj⟩ ≤ B(B, uj) for i, j = 1, 2, . . . ,m. (4.4)

Conversely, assume we have a set of points {pi}m
i=1 satisfying (4.3) and (4.4) for some convex and

compact set B. By (4.4) we know that {pi}m
i=1 ⊂ B, which implies by (4.3) that B(B, ui) ≥ C(ui) for

all i, which means that ∂B is (S, C)-valid.
Consequently, there is a correspondence between (S, C)-valid contours and sets of points, {pi}m

i=1.
Hence, we consider the following linear programming problem. Note that in order to approximate
optimisation in mean width, we will refer to this as the linear program based on (S,W ) where W =
(wi)m

i=1 is a set of weights such that {(ui, wi)}m
i=1 forms an ϵ-accurate quadrature for some ϵ ∈ R+.

minimise
m∑

i=1
wiBi (4.5)

subject to ⟨pi, ui⟩ ≥ C(ui) i = 1, 2, . . . ,m
⟨pi, uj⟩ ≤ Bj i, j = 1, 2, . . . ,m
pi ∈ RN i = 1, 2, . . . ,m
ui ∈ SN−1 i = 1, 2, . . . ,m
C(ui), Bi ∈ R i = 1, 2, . . . ,m

We then note two facts about this problem. Firstly, the values pi = ∥C∥∞ui, Bi = ∥C∥∞ for all i
with ∥C∥∞ = maxu∈SN−1 |C(u)|, satisfies the constraints and provides a feasible solution. Secondly,
since

∑m
i=1wiBi ≥

∑m
i=1wiC(ui) > −∞, the objective function is bounded. Combining these facts we

know that the problem must have at least one optimal solution, which yields a minimal (S, C)-valid
contour by the either of the following two constructions.

Proposition 4.2. Consider the linear programming problem (4.5), along with an optimal solution(
(p∗

i )m
i=1 , (B∗

i )m
i=1
)
. If convh( · ) denotes the convex hull we have that

B∗ = convh ({p∗
i }m

i=1) ,

defines a (S, C)-valid contour with B(B∗, ui) = Bi for all i.

60



Minimal Convex Environmental Contours

Proof. Firstly, we note that every b ∈ B∗ is a convex combination of the p∗
i s. This means b has the

representation b =
∑m

i=1 ai(b)pi where
∑m

i=1 ai(b) = 1, ai ≥ 0, which implies
B(B∗, ui) = max

b∈B∗
⟨b, ui⟩

= max
b∈B∗

m∑
k=1

ak(b)⟨pk, ui⟩

≤ max
j

⟨pj , ui⟩ max
b∈B∗

m∑
k=1

ak(b)

= max
j

⟨pj , ui⟩.

Conversely, {p∗
i }m

i=1 ⊆ B∗ implies maxj⟨pj , ui⟩ ≤ B(B∗, ui), which implies B(B∗, ui) = maxj⟨pj , ui⟩.
As a consequence we get

B(B∗, ui) ≥ ⟨pi, ui⟩ ≥ C(ui).
As the convex hull of a finite number of points, B∗, is compact and convex. These facts make ∂B∗ a
(S, C)-valid contour.

Corollary 4.3. Consider the linear programming problem (4.5), along with an optimal solution
(pi)m

i=1 , (Bi)m
i=1. We then have that

B′ =
m⋂

i=1
Π−(ui, Bi),

defines a (S, C)-valid contour with B(B′, ui) = Bi for all i.

Proof. We first note that since ⟨pi, uj⟩ ≤ Bj for all i, j, we must have pi ∈ B′ for all i. This implies
that when B∗ is as defined in Proposition 4.2, we have B∗ ⊆ B′ since B′ is convex. This immediately
implies that ∂B′ is (S, C)-valid.

Similarly to Definition 4.1, we consider the analogous concepts for this discrete problem, which will
aid our comparison between the continuous problem (4.1) and our discrete approximation (4.5).

Definition 4.4. We denote the set of valid solutions to the discrete problem (4.5) based on (S,W )
by

D∞(S,W ) =
{

B ⊂ RN | B convex and compact, B(B, u) ≥ C(u) for all u ∈ S
}
.

The optimal value of the objective function is denoted by

V DP (S,W ) = min
{

m∑
i=1

wiB(B, ui), B ∈ D∞
}
.

Lastly, we define the γ-near optimal solution space by

Dγ(S,W ) =
{

B ∈ C∞
∣∣∣ m∑

i=1
wiB(B, ui) − V DP ≤ γ

}
.

We will usually omit the dependence on (S,W ) whenever the meaning is clear or otherwise super-
fluous.

Remark 4.5. If we consider any B ∈ D∞ then we know from previous arguments that there exists a
feasible solution ((pi)m

i=1 , (Bi)m
i=1) with {pi}m

i=1 ⊂ B and Bi = B(B, ui). Consequently, if B∗ and B′

are defined as in Proposition 4.2 and Corollary 4.3, we see that B∗ ⊆ B ⊆ B′, which means that the
constructions of B∗ and B′ provide lower and upper bounds on all sets in D∞.
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4.3. Convergence and Near-Optimality

With these definitions established, we can more accurately state the goal of this chapter. We first
aim to show how one can construct (SN−1, C)-valid contours from any B ∈ Dγ for some γ ≥ 0.
Furthermore, we will prove that the optimal value of the discrete problem, V DP , can arbitrarily well
approximate V CP . Using this, we get explicit upper bounds on the near-optimality of the constructed
(SN−1, C)-valid contours.

In order to control the near-optimality of solutions to our discrete problems, we need to consider
two issues. The first problem we will tackle is the fact that a (S, C)-valid contour is not necessarily
(SN−1, C)-valid. To amend this, we will consider a method for inflating contours to ensure their
validity. Secondly, we will need to correct for the fact that (4.5) optimises for an approximation of
mean width, this can be handled by explicitly including the numerical error from discrete integration
of the mean width.

To construct valid contours from our discrete approximation, we will first need a bound on how
much a contour ∂B with B ∈ D∞ can violate the constraint of B(B, · ) ≥ C( · ).

Lemma 4.6. Fix some S ⊂ SN−1 with δ = disp(S) and let B ∈ D∞. Then for all u ∈ SN−1, we have
C(u) − δ(LC +R) ≤ B(B, u),

where LC is the Lipschitz constant of C, and R = maxp∈B ∥p∥.

Proof. Consider any u ∈ SN−1 and pick some v ∈ S such that ∥u− v∥ ≤ δ. This immediately yields
by the Lipschitz continuity of C that |C(u) − C(v)| ≤ δLC . We then choose some pv ∈ ∂B such that
⟨pv, v⟩ = B(B, v) ≥ C(v) and get

B(B, u) ≥ ⟨pv, u⟩
= ⟨pv, v⟩ + ⟨pv, u− v⟩
≥ C(v) − δ∥pv∥
≥ C(u) − δLC − δR

= C(u) − δ(LC +R).

With this result, we can quantify how far our (S, C)-valid contours are from being (SN−1, C)-valid.
The main idea in constructing (SN−1, C)-valid contours is to use the bound of Lemma 4.6, and then
use following result to inflate the contour.

Lemma 4.7. Assume we have a subset S ⊆ SN−1 and a convex and compact set B. If we then define

Be =
⋂

v∈S
Π− (v,B(B, v) + e) ,

we have that B(Be, u) ≥ B(B, u) + e for all u ∈ SN−1, and B(Be, v) = B(B, v) + e for all v ∈ S.

Proof. For any u ∈ SN−1 there exists a b(u) ∈ B such that ⟨b(u), u⟩ = B(B, u), we then have
immediately that ⟨b(u) + eu, u⟩ = B(B, u) + e. Furthermore, since b(u) ∈ B, we have for every v ∈
S, u ∈ SN−1 that ⟨b(u), v⟩ ≤ B(B, v) which further yields

⟨b(u) + eu, v⟩ ≤ B(B, v) + e⟨u, v⟩ ≤ B(B, v) + e.

As a consequence, we must have b(u)+eu ∈ Be, which implies B(Be, u) ≥ B(B, u)+e for all u ∈ SN−1.
Lastly, by definition of Be, we have B(Be, v) ≤ B(B, v) + e for any v ∈ S, which coupled with the
previous inequality implies that B(Be, v) = B(B, v) + e for all v ∈ S.
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These results imply that for any γ ≥ 0, B ∈ Dγ , we may inflate the contour in order to guarantee
that the resulting Be provides a (SN−1, C)-valid contour. Note that this construction depends on
maxp∈B ∥p∥. In order to extend these results and guarantee universal bounds on the necessary inflation,
we will need the following results which limit the size of maxp∈B ∥p∥ for all B in Dγ . However, to achieve
this bound we will first need a small technical computation.

Lemma 4.8. For any v ∈ SN−1, we have∫
SN−1

⟨v, u⟩+dσ(u) ≥ 1
3
√
N
,

where ( · )+ denotes max( · , 0).

Proof. We rewrite as an expectation of absolute values as follows∫
SN−1

⟨v, u⟩+dσ(u) = 1
2Eu∈Unif(SN−1) (|⟨v, u⟩|)

=
Ez∈N (0,IN ) ∥z∥ Eu∈Unif(SN−1) (|⟨v, u⟩|)

2Ez∈N (0,IN ) ∥z∥
.

Noting that the multivariate normal distribution has uniformly random direction, we may calculate
the numerator as

Ez∈N (0,IN ) ∥z∥ Eu∈Unif(SN−1) (|⟨v, u⟩|) =

Ez∈N (0,IN ) (|⟨v, z⟩|) = Ez1∈N (0,1)|z1| =
√

2
π
.

The denominator can be bounded by 2Ez∈N (0,IN ) ∥z∥ ≤ 2
√
Ez∈N (0,IN ) ∥z∥2 = 2

√
N . In total, we get∫

SN−1
⟨v, u⟩+dσ(u) ≥

√
2
π

2
√
N
>

1
3
√
N
.

Lemma 4.9. Let B be a compact set satisfying maxp,q∈B ∥p − q∥ ≥ K for some K ∈ R+. We then
have that the halved mean width of B satisfies∫

SN−1
B(B, u)dσ(u) ≥ K

3
√
N
.

Proof. We start by picking p0, p ∈ B such that ∥p− p0∥ ≥ K and note that
B(B, u) ≥ max(⟨p, u⟩, ⟨p0, u⟩) = ⟨p− p0, u⟩+ + ⟨p0, u⟩.

If we then note that
∫

SN−1⟨p0, u⟩dσ(u) = 0, we can define v = p−p0
|p−p0| to get∫

SN−1
B(B, u)dσ(u) ≥

∫
SN−1

(
⟨p− p0, u⟩+ + ⟨p0, u⟩

)
dσ(u) = K

∫
SN−1

⟨v, u⟩+dσ(u).

By Lemma 4.8 this implies the desired result.

With these results, we can now universally bound maxp∈B ∥p∥ for all B in Dγ , which will also provide
a universal bound on the amount of inflation needed in Lemma 4.7 to yield a (SN−1, C)-valid contour.

Lemma 4.10. Assume that {(ui, wi)}m
i=1 ⊂ S × [0,∞) is an ϵ-accurate quadrature with δ := disp(S)

satisfying ϵ, δ ≤ 1
10

√
N

. Furthermore, let B ∈ Dγ, then

max
p∈B

∥p∥ ≤ 12
√
N(∥C∥∞ + γ).
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Proof. First, we pick some pmax ∈ ∂B such that ∥pmax∥ = maxp∈B ∥p∥. If ∥pmax∥ = 0 then the
desired bound holds trivially. As such we assume, without loss of generality, that ∥pmax∥ > 0 and
define w = pmax/∥pmax∥. We then consider some v ∈ S such that ∥(−w) − v∥ ≤ δ and note that there
must be some p0 ∈ ∂B such that ⟨p0, v⟩ = B(B, v) ≥ C(v) ≥ −∥C∥∞. This means that

⟨p0, w⟩ = ⟨p0, w + v⟩ − ⟨p0, v⟩
≤ δ∥p0∥ + ∥C∥∞

≤ δ∥pmax∥ + ∥C∥∞,

which further yields
∥pmax − p0∥ ≥ ⟨pmax − p0, w⟩ ≥ ∥pmax∥(1 − δ) − ∥C∥∞.

This means that
max
p,q∈B

∥p− q∥ ≥ ∥pmax∥(1 − δ) − ∥C∥∞,

which, by Lemma 4.9, gives∫
SN−1

B(B, u)dσ(u) ≥ ∥pmax∥(1 − δ) − ∥C∥∞

3
√
N

.

On the other hand, since pi = ∥C∥∞ui, Bi = ∥C∥∞ for all i is a feasible solution of the linear program,
we must also have

m∑
i=1

wiB(B, ui) ≤ V DP + γ ≤
m∑

i=1
wiC(ui) + γ ≤ (1 + ϵ)∥C∥∞ + γ.

Finally, by Proposition 3.3 and the definition of an ϵ-accurate quadrature, we have that∣∣∣∣∣
∫

SN−1
B(B, u)dσ(u) −

m∑
i=1

wiB(B, ui)
∣∣∣∣∣ ≤ 2ϵ∥pmax∥.

Putting these facts together, we get

(1 + ϵ)∥C∥∞ + γ ≥
m∑

i=1
wiB(B, ui)

≥
∫

SN−1
B(B, u)dσ(u) − 2ϵ∥pmax∥

≥ ∥pmax∥(1 − δ) − ∥C∥∞

3
√
N

− 2ϵ∥pmax∥.

Using the assumptions ϵ, δ ≤ 1
10

√
N

and N ≥ 2, we get

max
p∈B

∥p∥ ≤ 3
√
N((1 + ϵ)∥C∥∞ + γ) + ∥C∥∞

1 − δ − 6
√
Nϵ

≤ 12
√
N(∥C∥∞ + γ).

Combining Lemmas 4.6, 4.7 and 4.10, we can construct (SN−1, C)-valid contours from our discrete
approximation. This allows us to directly compare our discrete solutions from (4.5) to the theoretical
ones of (4.1). However, we still need to address the error stemming from the numerical integration
of B(B, · ). To handle this, we note that the integration error of an ϵ-accurate quadrature involves
maxp∈B ∥p∥, which is bounded for B ∈ Dγ by Lemma 4.10. To finish our preparations for the main
theorem, we prove the analogous result for B ∈ Cγ .

Corollary 4.11. Assume B ∈ Cγ for some γ ≥ 0, we then have that
max
p∈B

∥p∥ ≤ 4
√
N (∥C∥∞ + γ) ,

where ∥C∥∞ = maxu∈SN−1 |C(u)|.
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Proof. First, we pick some pmax ∈ B such that ∥pmax∥ = maxp∈B ∥p∥. If ∥pmax∥ = 0 then the
desired bound holds trivially. As such we assume, without loss of generality, that ∥pmax∥ > 0 and
define v = pmax/∥pmax∥. Since ∂B is (SN−1, C)-valid, there must also exist some p0 ∈ ∂B such that
⟨p0,−v⟩ ≥ C(−v) ≥ −∥C∥∞, which implies

∥pmax − p0∥ ≥ ⟨pmax − p0, v⟩ = ⟨pmax, v⟩ + ⟨p0,−v⟩ ≥ ∥pmax∥ − ∥C∥∞.

As a consequence, we note that since maxp,q∈B ∥p− q∥ ≥ ∥pmax∥ − ∥C∥∞, Lemma 4.9 implies that∫
SN−1

B(B, u)dσ(u) ≥ ∥pmax∥ − ∥C∥∞

3
√
N

.

Furthermore, we have that ∥C∥∞S
N−1 ∈ C∞ which means that V CP ≤ ∥C∥∞ and therefore B ∈ Cγ

implies
∫

SN−1 B(B, u)dσ(u) ≤ ∥C∥∞ + γ.
Combining these facts with N ≥ 1 yields

∥pmax∥ ≤ 3
√
N(∥C∥∞ + γ) + ∥C∥∞ ≤ 4

√
N(∥C∥∞ + γ).

With these universal bounds established, we can discuss the two main results of this chapter, which
guarantee that our discrete problem (4.5) indeed approximates (4.1).

Theorem 4.12. Fix some ϵ-accurate quadrature {(ui, wi)}m
i=1 and assume that S = {ui}m

i=1 with
δ = disp(S) satisfies ϵ, δ ≤ 1

10
√

N
. Then

V CP − V DP ≤ 12
√
N∥C∥∞(2ϵ+ δ) + LCδ,

V DP − V CP ≤ 8
√
N∥C∥∞ϵ.

Proof. For the first statement, let
(
(p∗

i )m
i=1 , (B∗

i )m
i=1
)

be an optimal solution of the linear program-
ming problem (4.5) and choose any BDP ∈ D0 with B(BDP , ui) = B∗

i for i = 1, 2, . . . ,m. We then
denote RDP = maxp∈BDP ∥p∥ and note that Proposition 3.3 along with the definition of an ϵ-accurate
quadratures imply ∣∣∣∣∣

m∑
i=1

wiB
∗
i −

∫
SN−1

B(BDP , u)dσ(u)
∣∣∣∣∣ ≤ 2ϵRDP .

By Lemma 4.6, we know C(u) − δ(LC +RDP ) ≤ B(BDP , u), which motivates us to define Be as
Be =

⋂
u∈SN−1

Π−
(
u,B(BDP , u) + δ(LC +RDP )

)
.

By Lemma 4.7 we know that B(Be, u) = B(BDP , u) + δ(LC + RDP ) ≥ C(u) for all u ∈ SN−1. This
yields firstly that ∫

SN−1
B(Be, u)dσ(u) =

∫
SN−1

B(BDP , u)dσ(u) + δ(LC +RDP ).

Secondly, it implies that Be is a feasible solution for the continuous problem, and therefore

V CP ≤
∫

SN−1
B(Be, u)dσ(u)

=
∫

SN−1
B(BDP , u)dσ(u) + δ(LC +RDP )

≤
m∑

i=1
wiB

∗
i + 2ϵRDP + δ(LC +RDP )

= V DP + 2ϵRDP + δ(LC +RDP ).
Combining with Lemma 4.10, this implies V CP − V DP ≤ 12

√
N∥C∥∞(2ϵ+ δ) + δLC .
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As for the other direction, we consider some optimal solution of the continuous problem BCP and
denote RCP = maxp∈BCP ∥p∥. We know that for all i = 1, 2, . . . ,m there is some pCP

i ∈ BCP such that
⟨pCP

i , ui⟩ ≥ C(ui). This means that
((
pCP

i

)m

i=1
,
(
B(BCP , ui)

)m

i=1

)
is a feasible solution of the linear

programming problem. As a consequence, we have

V DP ≤
m∑

i=1
wiB(BCP , ui)

≤
∫

SN−1
B(BCP , u)dσ(u) + 2ϵRCP

= V CP + 2ϵRCP ,

which concludes the proof by recalling that Corollary 4.11 says RCP ≤ 4
√
N∥C∥∞.

This means that we can arbitrarily well approximate V CP by considering the linear programming
problem (4.5). As a consequence of this result, we can also guarantee that the (SN−1, C)-valid contours
constructed using Lemma 4.7 can be made universally near-optimal in terms of the original continuous
problem (4.1), by means of the following result.

Theorem 4.13. Fix some ϵ-accurate quadrature {(ui, wi)}m
i=1 and assume that S = {ui}m

i=1 with
δ = disp(S) satisfies ϵ, δ ≤ 1

10
√

N
. Let

e = δ
(
LC + 12

√
N(∥C∥∞ + γ)

)
, Be =

⋂
u∈S

Π− (u,B(B, u) + e))

for some B ∈ Dγ, γ ≥ 0.
We then have

Be ∈ Cγ+β,

where β = 4e+ 32
√
N(∥C∥∞ + γ) ϵ.

Proof. We know from Lemmas 4.6, 4.7 and 4.10 that Be satisfies
B(Be, u) ≥ B(B, u) + e ≥

(
C(u) − e

)
+ e = C(u),

for all u ∈ SN−1, which implies Be ∈ C∞. Furthermore, we have
m∑

i=1
wiB(Be, ui) =

m∑
i=1

wi
(
B(B, ui) + e

)
≤ V DP + γ + (1 + ϵ)e,

which yields Be ∈ Dγ+(1+ϵ)e. This, along with the definition of ϵ-accurate quadratures, Proposition 3.3
and Lemma 4.10, implies∣∣∣∣∣

m∑
i=1

wiB(Be, ui) −
∫

SN−1
B(Be, u)dσ(u)

∣∣∣∣∣ ≤ 24
√
N
(
∥C∥∞ + γ + (1 + ϵ)e

)
ϵ.

For ease of notation we denote α = 24
√
N
(
∥C∥∞ + γ + (1 + ϵ)e

)
ϵ. Combining these facts with

Theorem 4.12 then yields∫
SN−1

B(Be, u)dσ(u) ≤
m∑

i=1
wiB(Be, ui) + α

≤ V DP + γ + (1 + ϵ)e+ α

≤ V CP + 8
√
N∥C∥∞ϵ+ γ + (1 + ϵ)e+ α

≤ V CP + β + γ,

which implies Be ∈ Cγ+β.
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Figure 5.1. We discretise the true outreach requirement (black circle) into only nine
directions (blue). This highlights the difference between B∗ from Proposition 4.2 (green)
and B′ from Corollary 4.3 (orange). B∗ always lies inside of B′.

5. Numerical Examples

Example 5.1 (Difference between B∗ and B′). Figure 5.1 highlights the difference between the convex
hull B∗ from Proposition 4.2, and the intersection of half-spaces B′ from Corollary 4.3. We use the
unit circle outreach requirement C = 1 and sample it in nine evenly spaced directions. We see that the
half-spaces defining B′ each tangent the unit circle from the outside. On the other hand, the corners
defining B∗ lie on the circle, giving a convex hull inside the circle.

This means that using B′ will be a more conservative estimate, and therefore a safer choice. In
this particular case we even have B′ ∈ C∞, making it a (C, SN−1)-valid contour without the need for
inflation as per Theorem 4.13.

Example 5.2 (Multiple optimal shapes). We construct a Lipschitz-continuous outreach requirement
(Figure 5.2, left) which requires the shape to reach outreach 1 in each of the four cardinal directions. For
this requirement, there are infinitely many shapes with the optimal perimeter. There are two distinct
solution minimising the area: the two diagonal line segments with zero area. However, interpolating
the two diagonal extremes are infinitely many 45 degree tilted rectangles, also with optimal perimeter.

Example 5.3 (Comparing with naive method). In [12], they compute C under the assumption that
the environmental loads, V , are modeled as a sequence of i.i.d. random variables {Wn}∞

n=0. Specifically,
they assume that Vt = W⌊t/∆t⌋ for a time increment ∆t ∈ R+, where ⌊·⌋ denotes the floor function.
They then define C(u) by the upper pe-quantile of ⟨W,u⟩, for a target exceedance probability pe.
This will guarantee that the mean time to failure for any convex failure set not intersecting with a
(C, SN−1)-valid contour is at least ∆t/pe. We select pe = 1/29200 and ∆t = 3 hours, implying a 10
year lower bound on the mean time to failure.

The suggested method presented in the aforementioned article [12], as well as the recommended
practises of DNV [3], is the following. Find a model for W , simulate a number of samples, and use
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Figure 5.2. Left: Periodic constraint function C constructed such that Equation (4.1)
has several shapes with minimal perimeter. Right: The outreach requirement boils down
to requiring the shape to touch the four sides of a square (blue). A specific numerical
implementation of our method (7.3) output the green shape. We highlight two other
optimal shapes (orange).
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Figure 5.3. The naive method fails to output a convex shape satisfying the require-
ments, when the outreach function C contains noise. We highlight a violated outreach
constraint in blue. The plots are the same, with the right one being zoomed in.

the empirical quantiles of ⟨W,u⟩ as an estimate of C(u) for a finite selection of directions. We choose
3 × 105 samples in 360 uniformly spaced directions.

In [12], W was modelled as W = (H,T ). Here H is a 3-parameter Weibull-distributed random
variable in R representing significant wave height. H has scale 2.259, shape 1.285, and location 0.701.
Similarly, T represents the zero-upcrossing wave period and is assumed to follow a conditional log-
normal distribution, i.e. ln(T ) is normally distributed with conditional mean 1.069 + 0.898H0.243, and
conditional standard deviation 0.025 + 0.263e−0.148H .

It is further suggested to construct B by

B =
⋂

u∈SN−1

Π−(u,C(u)). (5.1)
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Figure 5.4. Shape found by Equation (4.5) for the 3d example described in Exam-
ple 5.4.

We will henceforth refer to (5.1) as the naive method.
The estimated C is slightly noisy. As pointed out in e.g. [6, 10], this noise may causes the naive

method to fail to satisfy the outreach requirements. For an explanation on why this occurs, we refer
to either [6, 10] or the discussion around Figure 7.1.

As seen in Figure 5.3, the naive method outputs an improper contour. Using the naive method with
the C from Example 5.2, would cause it to output the single point (0, 0), which does not satisfy the
outreach requirements.

Example 5.4 (Three dimensions). To demonstrate our method in three dimensions, we use an exam-
ple from [20]. The construction of C is similar to Example 5.3. The sequence W = (H,T, U) distributed
as follows. H follows a 3-parameter Weibull distribution with scale 1.798, shape 1.214 and location
0.856. Given H, ln(T ) is normally distributed with mean −1.010 + 2.847H0.075 and standard devia-
tion 0.161 + 0.146e−0.683H . Finally, given H, U follows a 2-parameter Weibull distribution with scale
2.58 + 0.12H1.6 and shape 4.6 + 2.05H. We use the empirical quantiles with 106 samples of ⟨W,u⟩ to
estimate C(u), and select pe = 1

29200 .
For discretization, we sample C according to the cubed hypersphere quadrature with 10 subdivi-

sions (Proposition 8.1). Then we solve Equation (4.5) and compute the convex hull B∗ defined in
Proposition 4.2. Figure 5.4 visualizes the resulting contour.

Example 5.5 (Empirical convergence rate). Figure 5.5 demonstrates the empirical convergence rate
of our method on a 3-Lipschitz function consisting of three spikes. The optimal shape, i.e. the sole
element of C0, is an equilateral triangle. Since C is only sampled in a finite number of directions, and
these directions rarely exactly match the spikes of C, the samples underestimate C. This leads the
direct (not inflated) discrete solution B′ to violate the constraint (4.2) in unseen directions. We plot
the largest such constraint violation, i.e., supu∈S1 C(u)−B(B′, u), and see that it is indeed bounded as
per Theorem 4.13, which guarantees convergence of order O(1/m). The perimeter difference between
the solution B′ found by our method and the optimal solution B∗, i.e.,

2π
∣∣∣∣∫

S1
B(B′, u)dσ(u) −

∫
S1
B(B∗, u)dσ(u)

∣∣∣∣ ,
also converges like O(1/m) as predicted by the bound from Theorem 4.13.
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Figure 5.5. Left: A 3-Lipschitz continuous constraint function C. Right: The em-
pirical convergence rate of our method matches the rate O(1/m) given by our theory
(Theorem 4.13).
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Figure 5.6. Left: A outreach function corresponding to the outreach function of an
equilateral triangle. Right: The empirical convergence rate for this case seems to be
O(1/m2).

Example 5.6 (Empirical convergence is often O(1/m2)). While the convergence rate O(1/m) can
not be improved in general, as seen in Example 5.5, in practice, we often see the faster rate O(1/m2).
For example, we may choose C as the outreach function of an equilateral triangle, i.e.,

C(u) = max{cos(θ), cos(θ − 2π/3), cos(θ − 4π/3)},
for u = (cos(θ), sin(θ)). In this case, the solution B′ found by our method always satisfies the continuous
constraints (4.2) perfectly, and we empirically find a convergence rate of O(1/m2). Note that while C
is

√
3/2-Lipschitz continuous, it is not everywhere differentiable, and the optimal shape (equilateral

triangle) has sharp corners.

6. Connection with Hausdorff Topology

While the previous section guarantees the construction of arbitrarily near-optimal (SN−1, C)-valid
contours, there is still the question of whether all elements of C0 can be approximated in this way. In
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order to examine this question, we will need the concept of the Hausdorff metric. The resulting topology
turns out to be a natural framework for examining convergence of the discrete approximations of our
continuous problem, but it will also allow us to properly prove our earlier claim that the continuous
problem indeed has optimal solutions.

6.1. Basic Concepts and Definitions

The main tool we will use here is the Hausdorff metric, defined as follows.

Definition 6.1. Let (X, d) be a metric space, and let F (X) denote the collection of all non-empty, com-
pact subsets of X. For any x ∈ X and A, B ∈ F (X), we can define d(x,B) = d(B, x) = minb∈B d(x, b)
and

dH(A,B) = max
(

max
a∈A

d(a,B), max
b∈B

d(A, b)
)
.

The set-function dH is referred to as the Hausdorff distance.

We have the following basic properties of dH, for a proof of these properties we refer to [15].

Proposition 6.2. The space (F (X), dH) is a metric space. Furthermore, if (X, d) is a complete and
compact metric space, then (F (X), dH) is complete and compact as well. Lastly, if X is a Banach
space and {An}∞

n=1 ⊂ F (X) is a sequence of convex sets converging to some set A ∈ F (X), then A is
also convex.

In what follows, we will consider (RN , d) where d is the canonical Euclidean metric on RN . This
allows us to define the Hausdorff metric on F (RN ), but also allows us to discuss F (F (RN )), i.e.
compact collections (in dH) of compact subsets of RN and the associated metric, dHH . With these
definitions we can discuss dHH(C0,Dγ) which quantifies how well our discrete problem can approximate
the entirety of C0.

6.2. Existence of Solutions to the Continuous Problem

Our first point of order is our previous claim of existence of solutions to Equation (4.1).

Theorem 6.3. Define the objective function ϕ : C∞ 7→ [V CP ,∞) by

ϕ(B) =
∫

SN−1
B(B, u)dσ(u).

We then have that ϕ is Lipschitz continuous in (F (RN ), dH) with Lipschitz constant 1. Furthermore,
for any γ ≥ 0, Cγ ⊂ F (RN ) is non-empty and compact in the resulting Hausdorff topology. As a specific
consequence of this, the continuous problem (4.1) has at least one optimal solution.

Proof. In what follows, we will need the following relation. If B1, B2 ⊂ RN are compact then
|B(B1, u) − B(B2, u)| ≤ dH(B1,B2) for all u ∈ SN−1. To see this, we pick p1 ∈ B1 such that ⟨p1, u⟩ =
B(B1, u). From the definition of the Hausdorff distance, there must be some p2 ∈ B2 such that ∥p1 −
p2∥ ≤ dH(B1,B2) which yields

B(B1, u) = ⟨p1, u⟩
= ⟨p1 − p2, u⟩ + ⟨p2, u⟩
≤ dH(B1,B2) +B(B2, u).

This proves that B(B1, u) − B(B2, u) ≤ dH(B1,B2), and an identical argument with B1 and B2 in-
terchanged gives B(B2, u) −B(B1, u) ≤ dH(B1,B2). This implies that for any u ∈ SN−1, the function
B 7→ B(B, u) is Lipschitz continuous with Lipschitz constant 1.
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Next, we fix some γ ≥ 0 and aim to prove compactness of Cγ , leaving non-emptiness for later. Note
that Cγ is either non-empty or trivially compact, as such we can, without loss of generality, assume
that Cγ is non-empty. Furthermore, by Corollary 4.11, we note that for every B ∈ Cγ we have B ⊂ Kγ

where
Kγ = {x ∈ RN : ∥x∥ ≤ 4

√
N(∥C∥∞ + γ)}.

If we denote by F (Kγ) the collection of all compact subsets of Kγ , we have that Cγ ⊂ F (Kγ).
Furthermore, by Proposition 6.2, we have that F (Kγ) ⊂ F (RN ) equipped with the Hausdorff metric
is a complete and compact metric space.
We next aim to prove that Cγ is a closed (and therefore compact) subset of F (Kγ) in the Hausdorff
topology. To see this, consider any convergent sequence {Bn}∞

n=1 ⊂ Cγ ⊂ F (Kγ) with Bn → B.
By Proposition 6.2 we have that B is convex, and by completeness of F (Kγ) we have B compact.
Furthermore, by continuity of B 7→ B(B, u), we have for any u ∈ SN−1 that

B(B, u) = lim
n→∞

B(Bn, u) ≥ C(u),

implying B ∈ C∞. Lastly, by B(Bn, u) ≤ maxp∈Bn ∥p∥ ≤ 4
√
N(∥C∥∞ + γ) for all u ∈ SN−1, we can

apply the dominated convergence theorem to get∫
SN−1

B(B, u)dσ(u) =
∫

SN−1
lim

n→∞
B(Bn, u)dσ(u)

= lim
n→∞

∫
SN−1

B(Bn, u)dσ(u)

≤ V CP + γ,

which implies B ∈ Cγ . As a consequence, for any γ ≥ 0, Cγ is a closed subset of the compact space
F (Kγ), and therefore itself compact.
As for non-emptiness of Cγ we first remark that Cγ is non-empty for any γ > 0. To see this, note by
the definition of V CP that there exists either an optimal solution in C0 with mean width V CP or a
sequence of near-optimal solutions with mean width converging to V CP . Either way, this implies that
Cγ is non-empty for any γ > 0.
Next, assume γ > 0 and note that for any B1, B2 ∈ Cγ we have

|ϕ(B1) − ϕ(B2)| =
∣∣∣∣∫

SN−1
(B(B1, u) −B(B2, u))dσ(u)

∣∣∣∣
≤
∫

SN−1
|B(B1, u) −B(B2, u)| dσ(u)

≤
∫

SN−1
dH(B1,B2)dσ(u)

= dH(B1,B2).
This means that ϕ is Lipschitz, so it must attain a minimal value on Cγ for any γ > 0. This minimum,
by definition, will also be a minimum on C∞. Consequently, this minimal point, Bmin, must satisfy
ϕ(Bmin) = V CP , yielding C0 non-empty.

6.3. Convergence in Hausdorff Metric

With existence of solutions settled, along with some useful properties of ϕ and Cγ , we can move on to
our main goal of this section: To prove that we can arbitrarily well approximate the entirety of C0 by
D0 or Dγ . To do so we will consider

dHH(C0,Dγ) = max
(

max
B′∈C0

min
B∈Dγ

dH(B,B′), max
B′∈Dγ

min
B∈C0

dH(B,B′)
)
. (6.1)
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The primary goal of this section is to show that for a sequence of quadratures, {(Sn,Wn)}∞
i=1, we

have {γn}∞
i=1, with γn → 0 such that dHH(C0,Dγn(Sn,Wn)) → 0. This would imply that for any given

B′ ∈ C0 there is some set B ∈ Dγn(Sn,Wn) that approximates it, meaning that all optimal solutions
can be approximated by our discrete solutions. Conversely, for any B ∈ Dγn(Sn,Wn), we know it will
be close to some B ∈ C0 in Hausdorff distance, implying that our discrete solutions will get closer and
closer to our continuous solutions.

It turns out that if we are only interested in guaranteeing that our discrete solutions are close to a
continuous solution we can drop the inclusion of γn. In particular we will have

max
B′∈D0(Sn,Wn)

min
B∈C0

dH(B,B′) → 0.

Furthermore, if the continuous problem (4.1) has a unique solution, then dHH(C0,D0(Sn,Wn)) → 0.
However, in order to even consider this distance we will first need to guarantee that Dγ is a compact

set in the Hausdorff metric.
Corollary 6.4. Assume that {(ui, wi)}m

i=1 ⊂ S × [0,∞) is an ϵ-accurate quadrature with δ := disp(S)
satisfying ϵ, δ ≤ 1

10
√

N
. We then have that Dγ is compact in dH.

Proof. We first note that Lemma 4.10 yields Dγ ⊂ F (K ′
γ) for

K ′
γ = {x ∈ RN : ∥x∥ ≤ 12

√
N(∥C∥∞ + γ)}.

By defining

ψ(B) =
m∑

i=1
wiB(B, ui),

we can then repeat the arguments of Theorem 6.3 with K ′
γ , ψ replacing Kγ , ϕ, which proves the desired

result.

With this established we know that (6.1) is well defined, and what remains is finding ways to bound
it. We remark that maxB′∈C0 minB∈Dγ dH(B,B′) in (6.1) can be bounded by considering the triangular
inequality

dH(B,B′) ≤ dH(B,Be) + dH(Be,B′), (6.2)
where Be =

⋂
v∈SN−1 Π− (v,B(B, v) + e) for some appropriate e.

The first term of the right side is easily dealt with by extending the results of Lemma 4.7 to the
setting of dH.
Lemma 6.5. Let B be a convex and compact set and define

Be =
⋂

v∈SN−1

Π− (v,B(B, v) + e) .

We then have that dH(B,Be) = e.
Proof. Consider the alternative construction

B̂ = {x ∈ RN : d(x,B) ≤ e}.
We immediately see that B̂ is a compact convex set satisfying dH(B, B̂) = e, so all we need is to show
Be = B̂.
To prove this, we note that for all x ∈ B̂ we can decompose x = b + c where b ∈ B and ∥c∥ ≤ e.
Conversely, if b ∈ B and ∥c∥ ≤ e we have b+ c ∈ B̂. Using this we get, for any u ∈ SN−1, that

B(B̂, u) = max{⟨x, u⟩ : x ∈ B̂}
= max{⟨b, u⟩ + ⟨c, u⟩ : b ∈ B, ∥c∥ ≤ e}
= B(B, u) + e.
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We may also recall from Lemma 4.7 that B(Be, u) = B(B, u) + e = B(B̂, u), for all u ∈ SN−1. This
implies that Be = B̂ by Proposition 3.5, which guarantees uniqueness of representation by B.

The second term of the right side of (6.2) requires two steps to control. By Theorem 4.12, we can
bound the mean width of Be by the following result. This result is almost identical to Theorem 4.13.
In that result, however, we consider the set Be to be an inflation of B only in directions u ∈ S. In the
following result we consider an inflation of B in all directions u ∈ SN−1.

Proposition 6.6. Fix some ϵ-accurate quadrature {(ui, wi)}m
i=1 and assume that S = {ui}m

i=1 with
δ = disp(S) satisfies ϵ, δ ≤ 1

10
√

N
. Let

e = δ
(
LC + 12

√
N(∥C∥∞ + γ)

)
, Be =

⋂
u∈SN−1

Π− (u,B(B, u) + e))

for any B ∈ D∞. Note here that we consider u ∈ SN−1 and not u ∈ S as in Theorem 4.13.
Then, for any B ∈ Dγ, γ ≥ 0, we have that

Be ∈ Cγ+β,

where β = e+ 32
√
N(∥C∥∞ + γ) ϵ.

Proof. We know from Lemmas 4.6, 4.7 and 4.10 that Be satisfies
B(Be, u) = B(B, u) + δ(LC + 12

√
N(∥C∥∞ + γ))

≥
(
C(u) − e

)
+ δ(LC + 12

√
N(∥C∥∞ + γ))

= C(u)
for all u ∈ SN−1, which implies Be ∈ C∞. Furthermore, we have by the definition of ϵ-accurate
quadratures, Proposition 3.3 and Lemma 4.10 that∣∣∣∣∣

m∑
i=1

wiB(B, ui) −
∫

SN−1
B(B, u)dσ(u)

∣∣∣∣∣ ≤ 24
√
N(∥C∥∞ + γ)ϵ.

Combining these facts with Theorem 4.12 then yields∫
SN−1

B(Be, u)dσ(u) =
∫

SN−1
B(B, u)dσ(u) + e

≤
m∑

i=1
wiB(B, ui) + 24

√
N(∥C∥∞ + γ)ϵ+ e

≤ V DP + γ + 24
√
N(∥C∥∞ + γ)ϵ+ e

≤ V CP + 8
√
N∥C∥∞ϵ+ γ + 24

√
N(∥C∥∞ + γ)ϵ+ e

≤ V CP + γ + β,

which implies Be ∈ Cγ+β.

With this result, for any B′ ∈ C0 and Be defined as in Proposition 6.6, we have dH(B′,Be) ≤
dHH(Cγ , C0). This can be controlled by the following.

Proposition 6.7. Consider the Hausdorff metric on the set F (C∞), i.e. the set of all compact subsets
of C∞ where C∞ itself is also equipped with a Hausdorff metric. We then have that

lim
γ→0

dHH(Cγ , C0) = 0.
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Proof. We first recall from Theorem 6.3 that Cγ is compact and that ϕ : C∞ → [V CP ,∞) defined by
ϕ(B) =

∫
SN−1 B(B, u)dσ(u) is a Lipschitz continuous function with Lipschitz constant 1. Also, note

that since C0 ⊂ Cγ , we have
dHH(Cγ , C0) = max

B∈Cγ
min

B′∈C0
dH(B,B′).

Next, pick some γ, β > 0. Since Cγ is compact, we can consider a finite open covering {Ui}I
i=1 such that

diam(Ui) ≤ β for all i = 1, . . . , I. Note that by Lipschitz continuity of ϕ, we have for all i = 1, . . . , I
that ϕ(B) ≤ γ + β for any B ∈ Ui. As a consequence, if we then define Ui as the closure of Ui in the
Hausdorff metric, we know for all i = 1, . . . , I, that Ui must be a closed subset of the compact set
Cγ+β, which implies that Ui is compact as well.
This implies that ϕ must attain a minimum on U i which lets us define {ψi}I

i=1 by ψi = minB∈Ui ϕ(B).
We then separate the sets that overlap with C0 by defining I = {i = 1, . . . , I : ψi = V CP } and
J = {i = 1, . . . , I : ψi > V CP }. If we then define ψmin = minj∈J ψj > V CP , we can pick some
α ∈

(
0,min(γ, ψmin − V CP )

)
which implies that ϕ(B) ≥ ψmin > V CP + α for any B ∈ ∪j∈J U j . As a

consequence, we have ⋃
j∈J

U j ∩ Cα = ∅.

However, since {Ui}I
i=1 is a covering of Cγ ⊃ Cα we must have that

Cα ⊆
⋃
i∈I

U i.

This implies that for every B ∈ Cα we have B ∈ U i′ for some i′ ∈ I. Since ψi′ = V CP , there is some
B′ ∈ U i′ such that ϕ(B′) = V CP which implies B′ ∈ C0. By diam(U i) = diam(Ui) ≤ β we then finally
get that dH(B,B′) ≤ β, but since B was arbitrary we also have dHH(C0, Cα) ≤ β.
In summary, we see that for every β > 0 there exists some α > 0 such that dHH(C0, Cα) ≤ β, which
implies limγ→0 dHH(C0, Cγ) = 0 by monotonicity.

It turns out that the triangle inequality of (6.2) is not sufficient to control (6.1). In particular, we
also need to handle maxB′∈Dγ minB∈C0 dH(B,B′), which equals 0 if C0 ⊂ Dγ . Fortunately, a γ such
that this is satisfied can be attained.

Lemma 6.8. Fix some ϵ-accurate quadrature {(ui, wi)}m
i=1 and assume that S = {ui}m

i=1 with δ =
disp(S) satisfies ϵ, δ ≤ 1

10
√

N
.

Then C0 ⊂ Dγ for γ = 16
√
N∥C∥∞(2ϵ+ δ) + LCδ.

Proof. Take any B ∈ C0, we then have, for all u ∈ S, that B(B, u) ≥ C(u), which implies B ∈ D∞.
Furthermore, Proposition 3.3 and Corollary 4.11 give us∣∣∣∣∣V CP −

m∑
i=1

wiB(B, ui)
∣∣∣∣∣ ≤ 8

√
N∥C∥∞ϵ.

Combining these facts with Theorem 4.12 yields
m∑

i=1
wiB(B, ui) ≤ V CP + 8

√
N∥C∥∞ϵ

≤ V DP + 12
√
N∥C∥∞(2ϵ+ δ) + LCδ + 8

√
N∥C∥∞ϵ

≤ V DP + γ,

which implies B ∈ Dγ .

With all our technical results, we are ready to prove the second main result of this section.
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Theorem 6.9. Consider a sequence, {(Sn,Wn)}∞
i=1, with Sn = (un

i )In
i=1 and Wn = (wn

i )In
i=1 such that

{(un
i , w

n
i )}In

i=1 ⊂ Sn ×Wn forms an ϵn-accurate quadrature. Further assume that ϵn and δn = disp(Sn)
both converge to 0 and satisfy ϵn, δn ≤ 1

10
√

N
for all n ∈ N+. For ease of notation, we will denote

Dγ(Sn,Wn) by Dγ
n for any γ ≥ 0.

If we define
γn = 16

√
N∥C∥∞(2ϵn + δn) + LCδn,

we then have that
lim

n→∞
dHH

(
Dγn

n , C0
)

= 0, and lim
n→∞

max
B∈D0

n

min
B′∈C0

dH(B,B′) = 0.

Furthermore, if there is a unique optimal solution to the continuous problem, i.e. C0 = {BCP} for
some BCP ⊂ RN , we have

lim
n→∞

dHH

(
D0

n, C0
)

= 0.

Proof. We first note that Lemma 6.8 implies C0 ⊂ Dγn
n , which yields

dHH

(
Dγn

n , C0
)

= max
B∈Dγn

n

min
B′∈C0

dH(B,B′).

Consider therefore any B ∈ Dγn
n . From Lemmas 4.6, 4.10 and 6.5 along with Proposition 6.6, we get

that if we define Ben by
Ben =

⋂
v∈SN−1

Π− (v,B(B, v) + en) ,

where en = δn(LC + 12
√
N(∥C∥∞ + γn)), we have that dH(B,Ben) = en and that Ben ∈ Cγn+βn for

βn = 32
√
N(∥C∥∞ + γn)ϵn + en.

As a consequence, we have by the triangle inequality that
min

B′∈C0
dH(B,B′) ≤ min

B′∈C0
dH(Ben ,B′) + dH(B,Ben)

≤ max
B′′∈Cγn+βn

min
B′∈C0

dH(B′′,B′) + en

= dH(Cγn+βn , C0) + en.

By noting that limn→∞ γn + βn = 0, we have dHH(Cγn+βn , C0) → 0 by Proposition 6.7. This further
yields

max
B∈Dγn

n

min
B′∈C0

dH(B,B′) → 0,

which yields the first part of the proof. Furthermore, the second equation follows from
max
B∈D0

n

min
B′∈C0

dH(B,B′) ≤ max
B∈Dγn

n

min
B′∈C0

dH(B,B′) → 0

Similarly, if C0 = {BCP},

dHH

(
D0

n, C0
)

= max
(

max
B∈D0

n

min
B′∈C0

dH
(
B,B′) , max

B′∈C0
min

B∈D0
n

dH
(
B,B′))

= max
(

max
B∈D0

n

dH
(
B,BCP

)
, min

B∈D0
n

dH
(
B,BCP

))
= max

B∈D0
n

dH(B,BCP)

= max
B∈D0

n

min
B′∈C0

dH(B,B′) → 0,

which completes the proof.
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This theorem tells us that the optimal solution space of the continuous problem can be effectively
approximated by a near-optimal solution space of a linear program. Furthermore, if the continuous
solution is unique, then the optimal discrete solution space is sufficient to approximate this solution.
Lastly, Theorem 6.9 also proves that all optimal solutions of our discrete problem can be made arbi-
trarily close to a continuous one in terms of Hausdorff distance. This complements Theorem 4.12, and
provides an alternate perspective on how our discrete problem approximates the continuous optimal
solutions.

7. Minimal Valid Contours in 2-D

In the linear program (4.5), we have several constraints in place to ensure that the output corresponds
to a convex set. In two dimensions, however, there is a more efficient way of phrasing this property.
This relates to the presence of loops in the contour as discussed in e.g. [10].

To discuss this, we consider a finite S = {ui}m
i=1 ⊂ S1 and parameterise any u ∈ S by the unique

angle θ(u) ∈ [0, 2π) such that u = (cos(θ), sin(θ)). Using this parameterisation, we will consider S to
be an ordered set S = (ui)m

i=1 such that θ(ui) < θ(ui+1). Finally, we also denote um+1 = u1, u0 = um,
and θi = θ(ui) for any 0 ≤ i ≤ m+ 1.

In (4.5) we have defined our constraints to ensure the Bi = B(B, ui) for some convex B, to rephrase
those constraints for N = 2 we define

B =
m⋂

i=1
Π− (ui, Bi) , (7.1)

and examine when B(B, ui) = Bi holds. To do so we will denote the hyperplane Πj = Π(uj , Bj) and
the crossing point Xj = Πj ∩ Πj−1 for all j.

We see from Figure 7.1a that when B(B, ui) = Bi, the hyperplane Πi supports B. Furthermore, we
can compute the length, Li of the line segment B ∩ Πi, which equals the distance between Xi and
Xi−1, by

Li =Bi+1 − ⟨ui+1, ui⟩Bi

sin(θi+1 − θi)
+ Bi−1 − ⟨ui−1, ui⟩Bi

sin(θi − θi−1) . (7.2)

The key observation comes from Figure 7.1b, where the resulting contour satisfies B(B, ui) < Bi, and
as such we have B ∩Πi = ∅. In particular, we note that Xi and Xi−1 switch sides. Since Equation (7.2)
is based on projecting Xi and Xi−1 along Πi, if we were to compute Li by (7.2), we would see that while
it still provides the distance between Xi and Xi−1, the sign of Li is now negative. This observation
tells us that the condition B(B, ui) = Bi, for all i, is equivalent to Li ≥ 0 for all i.

Using this equivalence we can restate our linear program for a quadrature, (S,W ), as follows.

minimise
m∑

i=1
wiBi (7.3)

subject to Li ≥ 0 i = 1, 2, . . . ,m
Bi ≥ C(ui) i = 1, 2, . . . ,m
ui ∈ SN−1 i = 1, 2, . . . ,m
C(ui), Bi ∈ R i = 1, 2, . . . ,m

Here, Li is defined as in (7.2). Furthermore, the restrictions Li ≥ 0 and Bi ≥ C(ui) for all i imply
that a B defined by B =

⋂m
i=1 Π− (ui, Bi) must be a convex set satisfying B(B, ui) = Bi ≥ Ci. As such

there exists a collection of points {pi}m
i=1 ⊂ B such that ⟨pi, ui⟩ ≥ Ci, implying that ((pi)m

i=1 , (Bi)m
i=1)

is a feasible solution of our original linear problem (4.5). This, along with our earlier discussion, shows
that (7.3) is equivalent to (4.5), but phrased with far less numerically demanding constraints.
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B

Xi Xi−1

Πi+1

Πi

Πi−1

(a) Good Case: B(B, ui) = Bi and Li ≥ 0

XiXi−1

Πi+1

Πi

Πi−1

B

(b) Bad Case: B(B, ui) < Bi and Li < 0

Figure 7.1. Two cases for B (purple), defined by (7.1). The condition B ∩ Πi ̸= ∅ fails
based on the orientation of Xi and Xi−1 (red).

However, due to no longer explicitly storing the points (pi)m
i=1, we are now limited in our explicit

construction of sets. We can no longer define B∗ = convh
(
{p∗

i }m
i=1
)

from Proposition 4.2 based on our
linear program outputs, and as such exclusively rely on B′ =

⋂m
i=1 Π−(ui, Bi). This construction, as

mentioned in Remark 4.5 and shown in Example 5.1, is more conservative and therefore a safer choice
than B∗. As such we do not lose much in considering this more efficient method.

Nevertheless, since Li represents the length of the i’th side this restriction allows us to consider
an alternative linear program where we instead minimise

∑
i Li, which equals the circumference of

B′. Optimising in mean width and circumference turns out to be equivalent in the case where S is
uniformly distributed and wi = 1/m for all i. When this is the case we have θi − θi−1 = 2π/m for all
i = 2, 3, . . . ,m and 2π + θ1 − θm = 2π/m, which yields

m∑
i=1

Li =
m∑

i=1

Bi+1 − ⟨ui+1, ui⟩Bi

sin(θi+1 − θi)
+ Bi−1 − ⟨ui−1, ui⟩Bi

sin(θi − θi−1)

=
m∑

i=1

Bi+1 − cos(2π/m)Bi

sin(2π/m) + Bi−1 − cos(2π/m)Bi

sin(2π/m)

= 1
sin(2π/m)

(
m∑

i=1
Bi+1 +

m∑
i=1

Bi−1 − 2
m∑

i=1
cos(2π/m)Bi

)

= (2m)1 − cos(2π/m)
sin(2π/m)

m∑
i=1

Bi/m.

Since any optimal (Bi)m
i=1 would minimise

∑
iwiBi it must also minimise

∑
i Li, making them equiva-

lent objective functions in this case. For a uniformly distributed S, we have that the optimal weights,
W = {wi}m

i=1, wi = 1/m, yield at least a π
2m -accurate quadrature. Using the quadrature (S,W ) will

therefore allow us to optimise both mean width and circumference with optimal accuracy. In addition,
we can use the efficient formulation of (7.3) which significantly increases the computation speed.

8. Approximating the Mean Width

In this section, we approximate the mean width of a convex shape using point samples in the sense of
Definition 3.6.
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In two dimensions, the simplest example of an ϵ-accurate quadrature is the uniform quadrature{((
cos

(
2πi
m

)
, sin

(
2πi
m

) )
, 1

m

)}m

i=1
⊂ SN−1. To see this, we bound the difference (3.1). By symmetry,

we can split the integral into 2m identical segments of 2π
2m radians each, where each part has one

endpoint on a quadrature point. Using the fact that f is L-Lipschitz, the approximation error is hence
at most

2m
2π

∫ 2π
2m

0
L
√

sin2(θ) + (1 − cos(θ))2 dθ = 8Lm
π

sin2
(
π

4m

)
≤ π

2mL.

Hence, the uniform quadrature in two dimensions is π
2m -accurate. It is also straightforward to see that

the uniform quadrature has dispersion 2 sin
(

π
2m

)
< π

m .
As concrete examples of accurate quadratures in general dimensions, we may use the composite

midpoint rule on the cubed hypersphere, which is defined as follows. Let s ∈ N+ be the number of
subdivisions per dimension. Let U =

{
2i−s−1

s : i ∈ {1, . . . , s}
}

denote s uniformly distributed points
on the segment [−1, 1]. Then we can define a grid on the faces orthogonal on the ith dimension of the
hypercube by taking Cartesian products

vi := U × · · · × U︸ ︷︷ ︸
i−1 times

×{−1, 1} × U × · · · × U︸ ︷︷ ︸
N−i times

.

The combined grid becomes V :=
⋃N

i=1 vi. We number the points in V from 1 to m := 2NsN−1. Then,{(
1

∥Vi∥2
Vi,

1
∥Vi∥2

(
2
s

)N−1
)}m

i=1
⊂ SN−1 defines a quadrature which we call the cubed hypersphere

quadrature with s subdivisions.

Proposition 8.1. The cubed hypersphere quadrature with s subdivisions is N2N
√

N−1
s -accurate and

has dispersion bounded by
√

N−1
s .

The proof is deferred to the end of this section.
Once we have an ϵ-accurate quadrature, we can transform any set {u}m

i=1 with small dispersion into
an accurate quadrature using the following.

Proposition 8.2. Let S = {ui}m
i=1 ⊂ SN−1 have dispersion δ = disp(S), and {(vj , zj)}m

j=1 be an
ϵ-accurate quadrature. For j = 1, . . . ,m, let pj be the index of a point in S closest to vj. Let p−1

i :=
{j ∈ {1, . . . ,m} : pj = i} be a set of indices of points in {vj}m

j=1 closest to ui. For i = 1, . . . ,m, let
wi =

∑
j∈p−1

i
zj. Then {(ui, wi)}m

i=1 is a δ + ϵ(1 + δ)-accurate quadrature.

Proof. Let f : SN−1 → R be L-Lipschitz and have absolute value bounded by ∥f∥∞, then since
{(vj , zj)}m

j=1 is an ϵ-accurate quadrature, we have∣∣∣∣∣∣
∫

S
f(u) dσ(u) −

m∑
j=1

f(vj)zj

∣∣∣∣∣∣ ≤ ϵ(L+ ∥f∥∞). (8.1)

Expanding the definitions of wi and p−1, we get
m∑

i=1
f(ui)wi =

m∑
i=1

f(ui)
∑

j∈p−1
i

zj =
m∑

i=1

∑
j∈p−1

i

f(vj)zj + zj(f(ui) − f(vj))

=
m∑

j=1
f(vj)zj +

m∑
j=1

zj(f(upj ) − f(vj)).
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The second term can be bounded by f being Lipschitz continuous, giving∣∣∣∣∣∣
m∑

j=1
zj(f(upj ) − f(vj))

∣∣∣∣∣∣ ≤
m∑

j=1
zjL

∥∥∥upj − vj

∥∥∥
2
.

Furthermore, by the definition of pj as the index of a closest points in S, and the definition of disp(S),
we have

∥∥∥upj − vj

∥∥∥
2

≤ δ for j = 1, . . . ,m. Finally, we can bound
∑m

j=1 zj ≤ 1 + ϵ by inserting the
constant function f = 1 into (8.1).
Combining everything, we get∣∣∣∣∣∣

∫
S
f(u) dσ(u) −

m∑
j=1

f(uj)wj

∣∣∣∣∣∣ ≤

∣∣∣∣∣∣
∫

S
f(u) dσ(u) −

m∑
j=1

f(vj)zj

∣∣∣∣∣∣+ δL(1 + ϵ)

≤ ϵ(L+ ∥f∥∞) + δL(1 + ϵ) ≤ (δ + ϵ(1 + δ))(L+ ∥f∥∞).
Which is the definition of being a δ + ϵ(1 + δ)-accurate quadrature.

Proof of Proposition 8.1

Proof. Let Fi denote the ith of the 2N faces of t he hypercube in N dimensions and let Si be its
projection on the unit hypersphere SN−1. Then,∫

SN−1
f(u) dσ(u) =

2N∑
i=1

∫
Si

f(u) dσ(u).

We perform a transformation of variables u = 1
∥v∥2

v to transform the integral over Si to one over Fi.∫
Si

f(u) dσ(u) =
∫

Fi

f

(
1

∥v∥2
v

)
1

∥v∥2
dv. (8.2)

The cubed hypersphere quadrature corresponds to approximating the integral (8.2) with the com-
posite midpoint rule. That is, the integral is divided into sN−1 hypercubes with side lengths 2

s , each
approximated by the value at their midpoint. Let the jth of these hypercubes be called Fij .∫

Fi

f

(
1

∥v∥2
v

)
1

∥v∥2
dv =

sN−1∑
j=1

∫
Fij

f

(
1

∥v∥2
v

)
1

∥v∥2
dv.

Note that for all v ∈ Fi, we have ∥v∥2 ≥ 1. So since f is L-Lipschitz, f
(

1
∥v∥2

v
)

is also L-Lipschitz for
v ∈ Fi. Additionally, 1

∥v∥2
is 1-Lipschitz for v ∈ Fi. Hence, for u, v ∈ Fi,∣∣∣∣∣f

(
1

∥u∥2
u

)
1

∥u∥2
− f

(
1

∥v∥2
v

)
1

∥v∥2

∣∣∣∣∣
≤
∣∣∣∣∣f
(

1
∥u∥2

u

)
− f

(
1

∥v∥2
v

)∣∣∣∣∣ 1
∥u∥2

+
∣∣∣∣∣f
(

1
∥v∥2

v

)(
1

∥u∥2
− 1

∥v∥2

)∣∣∣∣∣
≤ ∥u− v∥2 (L+ ∥f∥∞).

So f
(

1
∥v∥2

v
)

1
∥v∥2

is Lipschitz over Fi with constant L + ∥f∥∞, where ∥f∥∞ is an upper bound on
the absolute value of f . Consider the jth hypercube, let its midpoint be Vj . Inside the hypercube,
the maximum distance to the midpoint is

√
N−1
s , so we get an error bounded by

√
N−1
s (L + ∥f∥∞).
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Specifically, ∣∣∣∣∣
∫

Fij

f

(
1

∥v∥2
v

)
1

∥v∥2
dv −

∫
Fij

f

(
1

∥Vj∥2
Vj

)
1

∥Vj∥2
dv
∣∣∣∣∣

≤
∫

Fij

√
N − 1
s

(L+ ∥f∥∞) dv.

Next, note that the volume of Fij is
(

2
s

)N−1
, so∫

Fij

f

(
1

∥Vi∥2
Vi

)
1

∥Vi∥2
dv = f

(
1

∥Vi∥2
Vi

)
1

∥Vi∥2

(2
s

)N−1
= f(ui)wi,

where ui and wi are the cubed hypersphere quadrature. Hence the ith hypercube contributes an error
at most ∣∣∣∣∣

∫
Fij

f

(
1

∥v∥2
v

)
1

∥v∥2
dv − f(ui)wi

∣∣∣∣∣ ≤
√
N − 1
s

(L+ ∥f∥∞)
(2
s

)N−1
.

Summing over the m = 2NsN−1 hypercubes, we get an error at most∣∣∣∣∣
∫

S
f(u) dσ(u) −

m∑
i=1

f(u)wi

∣∣∣∣∣ ≤ 2NsN−1
√
N − 1
s

(L+ ∥f∥∞)
(2
s

)N−1

= N2N
√
N − 1
s

(L+ ∥f∥∞).

Hence the quadrature is N2N
√

N−1
s -accurate.

The dispersion can also be bounded by considering the hypercubes Fij . Again, all points in the jth
hypercube of the ith face are within a distance

√
N−1
s from the midpoint. Distances in the hypercube

only get smaller when they are projected onto the unit hypersphere SN−1, and the projected midpoints
are exactly the cubed hypersphere quadrature points. Hence, the dispersion is bounded by

√
N−1
s .

9. Conclusion and Final Remarks

In conclusion, this paper has presented a novel algorithm for the computation of valid environmental
contours. The proposed algorithm ensures that the contours satisfy the outreach requirements while
maintaining a minimal mean width. We have also presented a streamlined algorithm for two dimen-
sions, which improves computation speed for this specific case. Both of the considered methods have
been illustrated by numerical examples.

Furthermore, as these methods rely on numerical integration, we also provided a generic construction
for making arbitrarily accurate quadratures.

Lastly, rigorous examination of convergence and existence of solutions has been conducted, ensuring
the reliability and accuracy of the proposed methods. Convergence properties have been thoroughly
analyzed, including the convergence of the optimal approximate mean width to the optimal mean
width, as well as convergence in terms of the Hausdorff metric. These analyses ensure that any ap-
proximate solution will give an arbitrarily near-optimal contour, and that any optimal contour can be
found by searching the near-optimal approximations.
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