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Abstract. We consider a variational method to solve the optical flow problem with varying illumination.
We apply an adaptive control of the regularization parameter which allows us to preserve the edges and fine
features of the computed flow. To reduce the complexity of the estimation for high resolution images and the
time of computations, we implement a multi-level parallel approach based on the domain decomposition with
the Schwarz overlapping method. The second level of parallelism uses the massively parallel solver MUMPS.
We perform some numerical simulations to show the efficiency of our approach and to validate it on classical
and real-world image sequences.

Keywords. optical flow, varying illumination, domain decomposition, adaptive control, finite element method,
variational method, multi-level parallelism.

1. Introduction

In the last decades, the estimation of the optical flow has become a popular and central problem
in computer vision ([18], [9], [19], [2]). It is involved, for example, in almost all the movies and
pictures compression processes, or in the obstacle detection in the new smart cars and in robotics. The
modelling and the detection of the motion in a scene involve numerous difficulties (e.g. the aperture
problem, occlusions, . . . [18]). Among such difficulties, for the optical flow estimation, one with growing
importance is the cost of the method in term of computation time (and the storage), which rises with
the increasing resolution of the images due the technological devices progress. Up to now, there exist
numerous methods for the optical flow estimation among which the Partial Differential Equations and
particularly, the variational methods turn to be very efficient. They offer a complete framework which
consists of mathematically founded continuous models, and a large number of numerical methods
([18], [9], [19], [2]). They allow to cope with the ill-posedness of the optical flow problem, due to
the aperture problem [9], by including a large range of regularization procedures. In this article, we
consider a variational method based on the linear Horn and Schunck approach [12] but with a variable
regularization parameter. This method introduced in [5] is proved to be an efficient approach to solve
the optical flow problem in the sense that it is edge preserving and low cost (in term of degrees of
freedom) [6]. A large part of the research works in the literature deals with the determination of
optical flow under an assumption of constant illumination. This assumption is not satisfied in general
and becomes a source of inaccurate estimation and serious limitations in many applications. Besides,
modelling a varying illumination is quite complex and increases the ill-posed character of the problem.
In this article, following Gennert and Negahdaripour [10], we assume given an a priori law for the
illumination variations and we introduce a supplementary variable, which models the illumination, in
the system of equations. We show that the obtained partial differential equations system solved in
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the framework of the adaptive variational approach [5] is an efficient and innovative method for the
optical flow estimation with varying illumination.

A classical criticism against the variational methods is their "complexity" and their potential time
consuming character, particularly when using unstructured meshes and finite element method dis-
cretization. In a previous work [4], we have used a parallel in time algorithm to reduce the compu-
tational time. To go further, we are going to implement a decomposition domain method. The main
contribution of this article is to propose and to validate an efficient massively parallel multi-level
solver using domain decomposition method to solve the optical flow problem with varying illumina-
tion, following the variational adaptive approach proposed in [5]. We obtain the optical flow with an
accurate estimation and a significant reduction of the time of computations. We validate our method
on a classical benchmark and two real-world image sequences.

In Section 1, we recall the Horn and Schunck model for the optical flow estimation and we give
the system of equations to solve in the case where we allow illumination variations. In Section 2, we
briefly recall the finite element method and we will rewrite the discrete optical flow system. We also
define the adaptive strategy and give the resulting algorithm. In Section 3, we will consider the domain
decomposition method with overlapping and the additive Schwarz method used to solve the algebraic
problem. The Section 4 concerns the numerical simulations. We present some results obtained with
our method, in particular, we give in detail the optical flow estimation for the so-called RubberWhale
sequence to show the performances of the approach. We also perform the analysis of the computation
time of the massively parallel algorithm. Finally, we will present two examples of the computation of
the optical flow for real-world sequences.

2. Optical flow problem

We consider a sequence of two successive frames where Ω ⊂ R2 is the image domain. The intensity of
a pixel (x, y) at an instant t is defined by the function:

I: Ω× [0, T ] → R
(x, y), t 7→ I(x, y, t).

As it is usually done [3], we use a convolution with a Gaussian kernel Kσ of standard deviation σ to
work with smoothed images. We define the smoothed image sequence by:

f(x, y, t) = (Kσ ? I)(x, y, t).

The optical flow u = (u1, u2) represents the vector field describing the motion of each pixel in the
sequence. Following Horn and Schunck [12], we first consider the brightness constancy assumption. It
means that the brightness intensity stays the same between two successive frames:

f(x, y, t) = f(x+ u1, y + u2, t+ 1) (2.1)

which is equivalent to say that the variation in time is null:
∂f

∂t
(x, y, t) = 0.

Since the displacements are supposed to be small, we can assume that f is C1([0,∞[ ;R). So by using
a first order Taylor expansion, we obtain the fundamental constraint of the optical flow:

∂f

∂t
+ ∂f

∂x

∂x

∂t
+ ∂f

∂y

∂y

∂t
= 0. (2.2)

The time derivatives of x and y represent the component u1 and u2 of the optical flow. Hence, with
the notation f∗ = ∂f

∂∗ the equation (2.2) becomes:
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fxu1 + fyu2 + ft = 0. (2.3)
In this way, we have to determine two unknowns u1 and u2 with only one equation. This is the so-
called aperture problem illustrated in the figure 2.1. On each sub-figure, we represent by an arrow
the spottable motion in a local neighborhood. In the example 1, if the line is moving horizontally, we
can’t see any difference. The only visible motion is the vertical displacement. In the same way, in the
example 2, only the horizontal motion can be detected. The example 3 represents the case where we
are on a corner. In this case, both horizontal and vectical motions can be detected.

1 2 3

Figure 2.1. Representation of the aperture problem.

To go through this ill-posedness, Lucas and Kanade [14] assume that the motion is constant in a
neighborhood of size ρ. Contrary to this local assumption, Horn and Schunck propose [12] a global
approach to overcome the aperture problem. They introduce a regularization parameter α which acts
as a penalizer and leads to a smoother flow field (the bigger α is, the smoother the flow is). The idea
of Bruhn and Weickert [9] is, to combine both methods and minimize the functional:∫

Ω
Kρ ? (fxu1 + fyu2 + ft)2 + α(|∇u1|2 + |∇u2|2)dxdy (2.4)

where Kρ is a Gaussian deviation of parameter ρ and α is a constant regularization parameter.

On real-world images, the assumption of the brightness constancy is no longer verified. Occlusions,
shadows or glints don’t meet this constraint. Hence, the estimation of the previous model is not
accurate so we need to consider another assumption. Different approaches were proposed to model
illumination variations, such as the assumption of the constancy of the gradient amplitude [8] or, in the
case of color images, we can cite the work with variables less sensitive to such illumination changes [16].
In this article, following Gennert and Negahdaripour [10], we consider a varying illumination obeying
an affine transformation. This assumption, even covering a wide range of applications, might appear
as a strong one. Moreover, it introduces a supplementary unknown, enforcing the ill-posedness of
the optical flow estimation. To balance such potential shortcomings, we couple this modelling with
an adaptive control of the regularization of the parameter associated to the new unknown. In this
article, we restrict ourselves to smooth variations, keeping the parameter large enough. The assumption
allowing a linear motion of the brightness intensity between the two images becomes:

f(x+ u1, y + u2, t+ 1) = M(x, y, t)f(x, y, t) + T (x, y, t)

where M is the multiplier and T is the translator. In our case, we suppose that the translator is
negligible. The smaller the displacement is, the closer to 1 M is. In this way, we can set:

M = 1 + δm (2.5)
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where δm tends to zero when the displacement is very small. That gives the new equation of the
optical flow:

fxu1 + fyu2 + ft − fmt = 0 (2.6)
where mt is the derivative ofM . For more details, we refer the reader to [10]. The optical flow problem
allowing varying illumination consists finally of minimizing the functional:∫

Ω
Kρ ? (fxu1 + fyu2 + ft −mtf)2 + α(|∇u1|2 + |∇u2|2) + λ|∇mt|2dxdy. (2.7)

According to Euler-Lagrange equations, we have the system:


−div(Λ∇UΛ) +AρUΛ = F in Ω, (2.8)
∂UΛ
∂n

= 0 on ∂Ω,

with

Λ =

αα
λ

 , UΛ =

u1
u2
mt

 , Aρ =

 Kρ ? (fx)2 Kρ ? (fxfy) −Kρ ? (fxf)
Kρ ? (fyfx) Kρ ? (fy)2 −Kρ ? (fyf)
−Kρ ? (ffx) −Kρ ? (ffy) Kρ ? (f)2

 ,
and

F =

−Kρ ? (fxft)
−Kρ ? (fyft)
Kρ ? (fft)

 .
One can note that in the case where f(x, y, t) = 0, the coefficient f2 of the matrix Aρ is null which

implies that this matrix is no longer degenerated. To prevent this issue, when we are in this situation
we consider the term f2 + ε instead of f2 where ε is a small parameter in practice equals to 10−8.

It is well known that taking α and λ constant, even well chosen, leads to undesired oversmoothing
and blurs the edges of an image. Thus, following the idea of ([5], [6]), we will consider the general
setting where α and λ are discontinuous and piecewise constant functions in order to prevent these
smoothing effects. Indeed, as proved in [6], choosing a small value of α in regions where there are edges
gives sharper edges, then an improved restitution of the motion and its segmentation. We refer to [6]
for more details. In particular, we consider a subdivision of the whole space Ω:

Ω = ∪
i∈I

Ωi.

On this subdivision, we define the two piecewise functions α and λ by:
α = (αi), λ = (λi).

We denote by αm and αM , the non-negative minimal and maximal values of α. In the same way, we
define λm and λM . Under these notations, we have the following theorem.

Theorem 2.1. The problem (2.8) has a unique solution in H1(Ω).

The well-posedness is obtained from the Lax-Milgram lemma. By assuming that Ω is Lipschitz, we
can work in the Hilbert space H1(Ω). We define the norm:

‖U‖2ρ,Λ = ‖Λ
1
2∇U‖2L2(Ω) + ‖A

1
2
ρ U‖2L2(Ω)

where ‖A
1
2
ρ U‖2L2(Ω) = (AρU,U). Let denote βM = max(αM , λM ) and

βm = min(αm, λm), a straightforward extension of ([6], proposition 2.7) gives the following proposition.
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Proposition 2.2. Let U be a solution of (2.6). There exists C > 0 independent of α such that for
UΛ, the solution of the optical flow problem where the regularization is a piecewise constant function,
the following inequalities hold:

‖UΛ‖ρ,Λ ≤ C‖A
1
2
ρ U‖L2(Ω). (2.9)

and

‖U−UΛ‖ρ,Λ ≤ C
(
βM
βm

) 1
2
‖α

1
2∇UΛ‖L2(Ω). (2.10)

From now on, we denote U in place of UΛ for brevity.

3. Finite elements implementation

3.1. Variational form

In order to solve the system (2.8), we use the finite element method. To do so, we need to write this
equation under its variational form. We multiply the first equation of (2.8) by a test function ϕ, we
integrate over Ω and by using the Green formula on the first integral, we have:

∫
Ω

Λ∇U∇ϕdx +
∫

Ω
AρUϕdx =

∫
Ω

Fϕdx, ∀ϕ ∈ (H1(Ω))3. (3.1)

3.2. Discretization

We consider a regular triangular mesh Th where each pixel of the image consists of two triangles as it
is shown on the figure 3.1.

1 pixel

Figure 3.1. Representation of the initial mesh Th. Each square represents a pixel of
the image and consists of two triangles.

We define the space of approximations by:

Vh = {Vh ∈ C(Ω̄), Vh|K ∈ P1(K)}

where P1(K) is the space of the linear functions on K ∈ Th. If we set Aρ,h a finite element approxi-
mation of Aρ, the discrete problem of the optical flow states: Find Uh ∈ V3

h, such that∫
Th

Λ∇Uh · ∇Vhdxdy +
∫
Th

VT
hAρ,hUhdxdy =

∫
Th

Fh ·Vhdxdy, ∀Vh ∈ V3
h.

(3.2)

We can show, by using the Lax-Milgram lemma that this weak formulation admits a unique solution.
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3.3. Adaptive regularization

In this part, we are interested in controlling the parameter α. The regularization parameter is now
considered as a piecewise constant function. This local choice of α is based on an a posteriori strategy
analysis and was proposed by Belhachmi and Hecht [5]. The choice of the regularization is motivated
by the fact that a small value is usefull to correctly approximate the Neumann boundary conditions
on the edges of objects. However, it increases the maximum value of the optical flow. So, in order to
have a better estimation, we prefer a large regularization. The local choice of α allows to decrease its
value on regions where we need a small α and keep a large value in the rest of the image. In our case,
we have the additional unknown mt with its regularization parameter λ and in a first time, we keep
this parameter constant.
Since we want to locally choose the regularization parameter, we will have a large ratio βM

βm
, so we will

use the inequality (2.10) in the error indicator. The control of the regularization is done through an
error indicator which is given for each element K ∈ Th by:

ηK = Λ−
1
2

K hK‖Fh + div(ΛK∇UΛ,h) +Aρ,hUΛ,h‖L2(K)2 + 1
2
∑
e∈εK

Λ−
1
2

e h
1
2
e ‖[Λ∇UΛ,h · ne]e‖L2(e)2 (3.3)

where εK represents the set of all edges e of K. The diameter of K is noted hK and the diameter of
an edge e is he. ne represents the normal vector from e, Λe is the maximum between the Λ of the two
neighbors of an edge, and [.]e represents the jump over the edge e which means the difference between
the outside and inside values. The error indicator ηK describes the finite element error and the model
error. On the potential set of discontinuities, this value is large because ∇UΛ,h is large. In fact, when
the brightness is abruptly changing in an area, it means that we are close to an edge for the optical
flow. So, to improve the solution, we decrease α from the two first components of Λ and the third
component λ stays constant. The decreasing formula for α is given by:

αn+1
K = max

 αnK

1 + κmax
(

ηK
‖ηK‖∞

− η, 0
) , αth

 (3.4)

where κ is an arbitrary control parameter and αth is a threshold. In this way, if the relative error
(measured with ηK) is greater than a given value η we reduce in K, the value of α. On the other
hand, if it is less than η the denominator is equal to one and so α remains unchanged. This local and
adaptive control of α is implemented with the algorithm below.

(1) Compute of a first approximation U0
α of the optical flow. This estimation is done on a cartesian

grid T 0
h where we have one cell per pixel. Define i = 0.

(2) i = i+ 1. Build an adapted mesh T ih with the metric error indicator.

(3) Update of αi(x, y) on T ih.

(4) Compute Ui
α on T ih.

(5) Go to step 2.

The first value of the regularization α0 is arbitrarily chosen to be a large value. Typically, we take
α0 = 2000. In this way, the homogeneous part will be well estimated. On edges, the regularization will
be reduced by the procedure in order to avoid a lack of precision on discontinuities. The convergence
of this algorithm when the mesh size goes to zero is proved in [6]. In practice, the iterative algorithm
stops when the L2 error between Un

Λ and Un+1
Λ reaches a threshold set at 10−3. In the numerical result

section we will see that only a few iterations of mesh adaptation is enough to obtain a well adapted
mesh.
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3.4. Adaptive control of parameter λ

As for the regularization parameter α, we propose to study the effect of a control of the parameter λ.
In the problem (2.8), the variable mt increases with respect to the illumination variation. We want to
reduce the effect of this variable in regions where the brightness remains unchanged without changing
anything where it is varying. To do so, we are going to apply the same strategy than the adaptation
of α on the parameter λ using the following formula:

λn+1
K = max

 λnK

1 + ζ max
(
‖mt‖2
‖mt‖∞

− ζ ′, 0
) , λs

 (3.5)

with ζ a constant parameter controlling the speed of decrease of λ and ζ ′ a threshold. As we will see
in the numerical results, even if this work is just at its beginning, the first estimations seem to be
encouraging. This part will be more detailed in a forthcoming work.

4. Domain Decomposition

4.1. Image decomposition

In the case where we want to estimate the optical flow between two large images, we have implemented
a domain decomposition. Indeed, as we have seen on the figure 3.1, if we have large number of pixels
on the picture, we have a large number of triangles in the mesh. In the finite element method, the
resolution consists of solving a large system with a large number of degrees of freedom. The aim is
that every Central Processing Unit (CPU) computes the optical flow of one part of the image (see
figure 4.1). So, the size of the problem to solve is reduced by a factor equivalent to the number of
CPU used. The domain decomposition method allows us to obtain performances which are difficult
to reach with classical variational methods and even worse with the adaptive process to control the
parameter α.

CPU 0 CPU 1

CPU 3CPU 2

Figure 4.1. Decomposition of an image for four CPU.

Since the optical flow estimation is sensitive at the boundaries, we use an additive Schwarz method
to improve the estimation on the interfaces. This method requires an overlapping between the subdo-
mains.

4.2. Model decomposition

We note Ωi the part of the image corresponding to the CPUi and Ji the set of all indexes j which are
neighbors to i. We define Σi,j = Ωi ∩ Ωj and Γi,j = ∂Σi,j\∂Ωj (See figure 4.2).
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Ω0 Ω1

Ω2 Ω3

Σ2,0

Σ2,3

Γ0,2

Γ2,0

Γ2,3Γ3,2

Figure 4.2. Example of notations for CPU i = 2.

By using the additive Schwarz method to find an estimation Ui of the optical flow in the part Ωi,
the iterative problem related to (2.8) is given at the iteration k by:


−div(Λk∇Uk

i ) +AρUk
i = F in Ωi,

∂Uk
i

∂n
= 0 on ∂Ωi\Γi,j , ∀j ∈ Ji, (4.1)

Uk
i = Uk−1

j on Γi,j , ∀j ∈ Ji.

Thanks to this method, each sequence (Uk
i ) converges to its corresponding solution U|Ωi

. The rate
of convergence increases with respect to the size of Σi,j . However, the size of the overlap should be
smaller than the half size of a part otherwise all parts Ωi which are not on edges would be fully covered
by their neighbors. Moreover, the solution of the optical flow problem is sensitive to boundaries, so if
we do too many splits, the size of each part will be too small to obtain satisfying results. For all these
reasons, we don’t choose a large overlap. We will see later that the best compromise in our case is an
overlap of five pixels.

In order to combine the adaptive strategy of the regularization with the domain decomposition
method, we consider each subdomain as a single image and we apply the adaptive algorithm on each
part. It means that we compute the error indicator independently on each part of the split image
and we perform a local choice of the regularization and the mesh adaptation on each subdomain. This
choice implies that the unstructured submeshes don’t match on the overlap so the corresponding value
is found by FreeFem++ through an interpolation. At the end, to store and visualize the solution, we
perform a last interpolation of the solution on the initial mesh to obtain a motion vector for each pixel
of the image.

4.3. Multi-level parallel method

To solve the system with the finite element method we use the software FreeFem++ [11]. The default
solver of this software for linear systems is UMFPACK (Unsymmetric MultiFrontal method) which
allows to use non-symmetric matrices. The drawback of this library is that it can only solve problems
smaller than 4GB. It means that we can’t deal with image subdomains larger than about 500 × 500
pixels per CPU. So we need to cut the whole image enough in the case of large images. This implies
to have a large number of CPU which is not always the case depending on the machine we work with.

To overcome this issue, we use the MUMPS (MUltifrontal Massively Parallel sparse direct Solver)
[1] library which allows the resolution of sparse linear problems in parallel. The advantage of this solver
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is that it is not limited by the size of the problem, so we are able to use high definition sequences.
However, using the MUMPS library enforces to apply an initial LU decomposition of the mass matrix
which can be time consuming (see figure 5.11). Combining the domain decomposition method with
the use of the MUMPS library allows to implement a multi-level parallel method that can reduce the
computation time of such high definition sequences.

Group 0 Group 1

Group 3Group 2

Figure 4.3. Decomposition of an image for four groups of CPU.

To implement this multi-level method, we split the domain Ω thanks to the same strategy used for
the previous domain decomposition method. For each subdomain, we create a group of processors. As
it is shown in the figure 4.3, each group of processors is assigned to a single subdomain. The processors
are ordered as follow: the number of the group the CPUi belongs to is given by:

group(CPUi) = i

where the binary operator a by b and nbPart is the total number of subdomains of the split image. The
rest of the implementation is the same that the domain decomposition method except that we now
act on a group of processors instead of a single one. We perform the local choice of the regularization
parameter and the mesh adaptation independently on each subdomain.

5. Numerical Results

We use the RubberWhale sequence (figure 5.1) given by the Middleburry website at www.vision.
middleburry.edu/flow/ in order to validate our algorithms. All the tests of this section are done
using the method corresponding to the problem (2.8) which deals with illumination variations.

Figure 5.1. Frames 10 and 11 of the RubberWhale sequence.

Following their convention, we represent the estimated vector field thanks to a color map (figure 5.2)
which assigns a color to each vector with respect to its orientation and its norm.
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Figure 5.2. Vector field and its corresponding color map.

To validate our implementation, we compare our results with the exact solution also provided by
Middelburry (figure 5.3).

Figure 5.3. Ground truth solution of the RubberWhale sequence.

For optical flow problems, the accuracy of the method is usually evaluated by computing the Average
Angular Error (AAE) given by:

AAE = acos
u1,hu1,e + u2,hu2,e + 1√

(u2
1,h + u2

2,h + 1)(u2
1,e + u2

2,e + 1)
,

and the Endpoint Error (EE) given by:

EE =
√

(u1,h − u1,e)2 + (u2,h − u2,e)2,

where uh = (u1,h, u2,h) is an approximation of the vector field and ue = (u1,e, u2,e) represents the exact
optical flow. For the RubberWhale test case, using the resolution of the system (2.7) which deals with
varying illumination, our algorithm reaches an average angular error equals to 20.89 and an endpoint
error equals to 0.38. In the litterature, the best angular errors go from 1 to 15 and the endpoint
errors from 0.07 to 0.39 for the equivalent evaluation test case called Army (see the evaluation table
at http://vision.middlebury.edu/flow/eval/results/results-a1.php). There are two reasons
to explain that our error is large compared to these values. First, we recall that FreeFem++ [11] uses
unstructured meshes and the computation of the angular error is not invariant with respect to the
choice of the mesh. The other reason is that, even if we obtain a good approximation of the vector field
direction (see the results presented below), due to the large value of the regularization in the non-egde
areas, we under-estimate the vector norms. There exists some iterative strategy to improve this value
but since we are principally interested in improving the computational time and in the adaptation of
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the regularization parameter, we don’t use it. In addition, note that the results of Middleburry do not
all use algorithms allowing varying illumination a priori.

We present in the following results the estimation obtained with our model solving the problem (2.8)
with an adaptive control of the regularization parameter α. The initial value of α is set to 2000. For
the parameter λ we choose a very large constant value, λ = 106. In a further work we will study a
local adaptive method for this parameter to improve the solution when the brightness variation is not
regular. The standard deviation parameters of the gaussian convolutions σ and ρ are both set to 2.
All these parameters are found empirically.

To validate the domain decomposition, we need to verify the convergence of the Schwarz method
which means that:

| Uk −Uk+1 | −→
k→∞

0.

We have split the image in four parts and tested the impact of the size of the overlap by using three
different values. On the figure 5.4, we present the evolution of the error through ten iterations of the
method for these three different overlaps.

Figure 5.4. Convergence of the Schwarz method for three different overlaps.

We can see that the Schwarz method has a fast convergence and that the speed of convergence
increases with the size of the overlap. However, if the overlap is large, the running time of the algorithm
increases, see figure 5.5. Hence, we need to choose the size of the overlap considering an optimal ratio
between the rate of convergence and the speed of computation time. Therefore, we choose an overlap
of five pixels in the following tests.

2 4 6 8 10

300

320

340

Overlap (pixels)

T
im

e
(s
)

Figure 5.5. Computation time with respect to the overlap.
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On the figure 5.6, we present the evolution of the estimation according to the iterations of the
Schwarz method. We can see that since the third iteration, we already have a good estimation of the
solution at the interfaces.

Figure 5.6. Results for a 2x2 separation, one image per iteration of Schwarz and with
an overlap of five pixels.

We present in the figure 5.7 the final mesh after ten iterations of adaptation. Since the meshes
of the subdomains don’t match with each other, the communications of the values located at the
intersections are made thanks to interpolations.

Figure 5.7. Final mesh of the RubberWhale test case after 10 iterations of adaptation.

In the figure 5.8, we give the evolution of the number of degrees of freedom. This number is strongly
reduced during the first mesh adaptation. After that, it stays relatively constant. Hence, applying only
a few iterations of mesh adaptation, in our case two, is enough.

In order to evaluate the implementation of the multi-level parallelism, we have launched the same
test case for different splittings of the image (2, 4 and 8 parts) and different numbers of CPU Per Part
(CPP). In all cases, we have done ten iterations of the Schwarz method and we have kept an overlap
of five pixels. On the figure 5.9, we present the improvement of the global computation times.
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Figure 5.8. Degrees of freedom with respect to iterations of adaptation for the Rub-
berWhale test case.
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Figure 5.9. Computation times of different configurations of the multi-level parallelism.

To understand the low efficiency of the multi-level implementation in the case where we use 32 CPU
and split the image in 8 subdomains, we first represent on the figure 5.10 the communication times
obtained in the different cases.
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Figure 5.10. Communication times with respect to the number of CPU and the
splitting (does not include the intern communications due to the MUMPS solver).

The increase of the communication times is not enough to explain the result obtained. Indeed,
in every parallel implementations, the communication times increase with respect to the number of
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CPU used but it is usually balanced with the time saved in the computations. So, in order to give
more details, we present in the figure 5.11 the times of the two main parts of the computation: the
construction of the mass matrix and the LU factorization with the resolution part. We can see that
adding more CPU to a part slightly increases the time of construction of the mass matrix. However,
it allows to decrease the time of the LU factorization. On our architecture, if we split the images into
several parts, the main part of the computation is the mass matrix construction. If we use a large
number of CPU per part, we reduce the difference between the time saved in the LU decomposition
and the time lost in the matrix construction. More, we increase the communication times and the
MUMPS parallel solver doesn’t balance that.
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Figure 5.11. Detailed computations times.

This last result confirms that we must keep subdomains large enough to obtain a good efficiency
with our multi-level implementation.

The next test consists of evaluating the efficiency of the adaptive regularization of the parameter
α. The computation is done for the RubberWhale test case with a 2× 2 domain decomposition. The
local choice of α and the mesh adaptation are done in each subdomain independently. The adaptation
steps are done with the Schwartz iterations. We can see on the figure 5.12 that we obtain a better
definition of the edges without altering the solution on the homogeneous area.

Figure 5.12. Estimated optical flow after ten iterations of adaptation (result for a 2x2 separation).

To evaluate the accuracy of the computed flow in the case of varying illumination, we first use the
RubberWhale test case where we have modified the first frame by uniformly increasing the brightness
intensity (see figure 5.13). For this test, we use the control of the regularization α but we keep the
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parameter λ constant. Since we haven’t modified the motion between the two pictures, the exact
solution is the same that in the previous test case.

Figure 5.13. Modified first frame of the RubberWhale sequence for the varying illu-
mination test case.

On the figure 5.14, we present the result obtained with and without the treatment of the brightness
variation. On the right hand side, we can see that the solution without treatment is not well estimated.
On the other hand, the model which uses the modified assumption (2.6) allowing the brightness
variation gives a much more accurate optical flow.

Figure 5.14. Left: Estimation with (right) and without (left) treatment of the varying
illumination. The images were split in four parts.

On the figure 5.15, we can see that the adaptive regularization is still working for the test with
non-constant brightness. In this case, the edges are even better defined.

Figure 5.15. Estimated optical flow after ten iterations of adaptation for the test
with varying illumination (results for a 2x2 separation).

To test the impact of the adaptation of the parameter λ, we now use an other modification of the
RubberWhale sequence where variations of the brightness intensity are only localised on few spots in
the second frame, see figure 5.16.
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Figure 5.16. RubberWhale sequence with non regular brightness variation.

As we show in the figure 5.17, using a constant parameter λ is not optimal if the brightness variation
is not uniform. If λ is chosen too big it leads to a non accurate optical flow and on the other hand, a
smaller value of λ leads to a vector field strongly regularized.

Figure 5.17. Optical flow estimation for the test case figure 5.16 with different values
of the constant parameter λ. From left to right: λ = 104, λ = 106, λ = 107.

On the figure 5.18, we present the solution given using both adaptive choices of the parameters α
and λ. It finally gives a good estimation of the optical flow in the whole image and still preserves
defined edges on discontinuities.

Figure 5.18. Optical flow estimation for the sequence of the figure 5.16 with an
adaptive control of α and λ.

Finally, on the figures 5.19 and 5.20, we have used two sequences of real images provided by the
Centre d’études et d’expertise sur les risques, l’environnement, la mobilité et l’aménagement (Cerema).
These pictures present two main interests. First, the high resolution. We have 2028× 1098 pixels for
the highway sequence and 1524× 1092 pixels for the wall sequence which corresponds to a vector field
of about two billions of pixels to determine. The second interest is that the brightness and the texture
are natural.
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The highway sequence presents a non-constant brightness with a more complex texture and a lot of
occlusions as the white lines on the road or the large motion of the car. We can see on the figure 5.19,
the difference between the model with and without the varying illumination. On the left hand side, we
have the solution without treatment. Again, we see that this is not correctly estimated because of the
variation of the natural lighting. On the right, despite the occlusion areas which could be improved
with a large displacement algorithm, we obtain a better approximation.

Figure 5.19. Up: Test case of the Highway sequence given by the Cerema. Bottom:
Optical flow estimation obtained with (right) and without (left) treatment of the vary-
ing illumination. The images were divided in sixteen parts.

The figure 5.20 represents a wall of a tunnel. On this sequence the motion to estimate is linear. The
challenge is to deal with irregular textures. This figure shows that our method is still efficient in this
case. Indeed, the solution is quite smooth and linear except for the white square (bottom right) which
may be improved by using a large displacement algorithm. This approach will be implemented in a
further work.

In the figure 5.21, we give the computation times obtained with the two high definition tests. We
recall that the pictures have about two billions of pixels and were not reduced. As in the previous
cases, we perform ten iterations of the Schwarz algorithm.

6. Conclusion

In this article we have used the finite element method to solve the optical flow problem with varying
illumination. Thanks to the additive Schwarz method, we have implemented the domain decomposition
in order to parallelize the computations. We have shown that this method is an efficient way to decrease
the computation time and to handle high resolution sequences.

We have also used a second level of parallelism in order to reduce the execution time even more
and we have shown that such a massively parallel approach yields to an important gain of time. There
exists other methods without overlapping which may be theoretically faster [13]. In a forthcoming
work, we will consider this class of methods which requires a different managment of the boundary
conditions (see [13]). However, as we have seen, an overlap of 5 pixels is enough so for large images
the additional time can be neglected.

The finite element method has also permitted to use an adaptive strategy of the regularization
parameter, hence to efficiently combine the quality of the optical flow estimation with a method that
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Figure 5.20. Up: Test case of the Wall sequence given by the Cerema. Bottom: Op-
tical flow estimation obtained with (right) and without (left) treatment of the varying
illumination. The images were divided in sixteen parts.
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Figure 5.21. Computation times of the high definition tests for different splittings.

preserves the edges and the fine features of the computed flow. Finally, we have proposed a local choice
of the parameter λ in order to obtain a good estimation of the optical flow even if the brightness vari-
ation isn’t regular. This point will be the object of a forthcoming work.
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