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Abstract. We consider a two-phase Darcy flow in a heterogeneous porous medium while taking into account
the effects of temperature. The set of governing equations consists of the usual equations derived from the mass
conservation of both fluids along with the Darcy–Muskat, the capillary pressure laws, and the energy balance
equation. The problem is written in terms of the fractional flow formulation, i.e. the saturation of one phase, the
nonisothermal global pressure and the temperature are primary unknowns. The spatial and temporal discretizations
are carried out applying a vertex-centered finite volume scheme and the implicit Euler scheme, respectively, resulting
in the final system of fully coupled nonlinear equations. Under some realistic assumptions on the data, we establish
a sufficient condition on the mesh to demonstrate the discrete maximum principle for saturation and temperature.
Various a priori estimates are derived that yield an existence result for discrete solutions. Based on preliminary
estimates and compactness arguments, we prove the convergence of the numerical scheme to a weak solution of the
continuous model. The open source platform DuMuX has been used to implement the resulting algorithm. Two
numerical experiments are presented to illustrate the effectiveness and the robustness of the scheme.

2020 Mathematics Subject Classification. 35K65, 35Q35, 65N12, 76S05, 76M12, 80A19.
Keywords. Nonlinear degenerate system, Finite volume, Two-phase flow, Nonisothermal, Heterogeneous
porous media, DuMuX .

1. Introduction

Multiphase flows in porous media are involved in many applications related to reservoir simulation,
subsurface environment and energy issues. We can mention non exhaustively production of geothermal
energy, geological sequestration of gas (H2, CO2, CH4) or nuclear waste management. Although differ-
ent, these applications actually have many similarities. Finite volume schemes are the most commonly
used methods for solving the systems modeling these problems. They are locally mass conservative
schemes which is essential when solving such applications.

During recent decades, several finite volume discretizations have been developed for the resolution of
coupled systems describing immiscible incompressible two-phase flows in porous media [2, 7, 14, 16, 17,
21, 22, 29]. Let us mention that in [2] and [29], nonlinear finite volume methods are discussed. In these
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works and the references therein, the authors were mainly interested in and addressed the difficulties
raised in the isothermal setting, namely the construction of stable and consistent fluxes on irregular
grids with anisotropy as well as the presence or absence of the discontinuous capillary pressure. They
elaborated the key elements to establish the convergence analysis of the proposed numerical schemes.
It turns out that the isothermal framework is not sufficient to handle the physics of some applications
arising for instance in the simulation of geothermal energy production, high-level radioactive waste
repositories or geological sequestration of gas. Incorporating thermal behavior is essential for such
systems, and this work is motivated by that need. Despite some progress in the numerical simulation
of two-phase problems under nonisothermal conditions, see for instance [3, 10, 20, 23, 28], the numerical
analysis of these models is still lacking. To our best knowledge, the convergence analysis of finite volume
schemes for nonisothermal two-phase flows in porous media are missed in the existing literature.
Up to this point, there have been only one other recently published paper [5] on the subject. A
convergence study was performed for the discretization of nonisothermal compressible two-phase flow
in porous media using the cell-centered Two-Point Flow Approximation (TPFA) finite volume method.
Concerning the mathematical analysis of such systems for nonisothermal flows, only recently few results
have been obtained, for more details we refer to [6, 11, 12].

The aim of this paper is to investigate a two-phase model for heterogeneous porous media that takes
into account the different reservoir temperatures to accurately capture flow physics. More precisely, we
integrate temperature effects into immiscible incompressible two-phase flow in porous media. The basic
equations for nonisothermal two-phase flow in a porous medium involve mass conservation, Darcy’s
law, energy conservation, saturation, and capillary pressure constraint equations. The governing fluid
and heat transport equations used to model thermal recovery processes are highly nonlinear. As
temperature variations influence fluid properties, and fluids transport heat as they move (convective
flow), there is a strong coupling between the mass balance and energy balance equations. The problem
is written in terms of the fractional flow formulation, i.e. the saturation of one phase, the nonisothermal
global pressure [13] and the temperature are primary unknowns.

In this paper, we focus our attention on the study of nonisothermal immiscible, incompressible two-
phase flow in heterogeneous porous media taking into account capillary effects using a fully coupled
fully implicit finite volume scheme. We combine the advantages of the CVFE (control volume finite
element) method to accurately solve the diffusion terms with an upwind method for space discretiza-
tion on regular or unstructured grids. Time integration is based on implicit Euler scheme to allow
large enough time steps. This work is an extension of [21] to nonsisothermal two-phase porous media
flow problems. The presence of the temperature brings additional difficulties in obtaining a priori
estimates and passage to the limit, and makes the proof essentially more involved. Indeed, the proof
of the maximum principle for the temperature requires an appropriate combination of the three model
equations. Moreover, as the system of equations is degenerate, obtaining estimates on the gradients
is not straightforward. Therefore, we have introduced the nonisothermal global pressure and capillary
term, because the latter present various regularity properties that physical pressures and saturation
are lacking. Lastly, contrary to the isothermal case, there is a strong coupling induced by the energy
equation and the pressure equation is no longer decoupled. This requires the use of some special test
functions in order to control the energy of the system.

We have chosen the fully implicit CVFE discretization for many reasons. Indeed, the Euler implicit
scheme is taken into account in order to avoid severe constraints on the time stepping. Furthermore,
the possible low regularity of the saturation could make higher order schemes in time inefficient.
With regards to the spatial discretization, the CVFE method has many advantages. First, it ensures
the flux conservation at the interfaces between the control volumes. Second, it can deal well with
anisotropies as only nodal degrees of freedom are required, contrary to many gradient schemes where
auxiliary unknowns are employed. Lastly, it enables the coercivity of the gradient, see e.g. [18], which
is an important key in the convergence analysis of the numerical scheme. Let us note that for other
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approaches like the MPFA (multi-point flux approximation) methods, the coercivity property holds
under some conditions on both the mesh and the permeability tensor, see for instance [1, 18].

This paper is organized as follows: In Section 2, the mathematical formulation of the model is pre-
sented. Then we formulate the main assumptions on the data. The general finite volume discretization
framework is brought up in Section 3. In Section 4, the discretization of the system provided by a
fully coupled implicit approach using a finite volume (FV) scheme is presented. A number of auxil-
iary results, including the discrete maximum principle, energy estimates for the scheme, the existence
of discrete solutions to the FV scheme and compactness, are demonstrated in Section 5. Finally, in
Section 6, as discretization parameters go to zero, we pass to the limit in the discrete equations, the
proposed scheme converges to a weak solution to the continuous two-phase flow model, which com-
pletes the convergence proof. Let us note that to reduce the paper’s length, some technical details are
removed, but a thorough analysis of the additional difficulties that temperature brings is provided.
Then, in Section 7, we consider two test cases in 2D, for which numerical results are exhibited. The
first test case is a simulation in a homogeneous reservoir evidencing the numerical convergence of the
scheme. The second test case adapted from [28] relates to the injection of CO2 into a 2D heterogeneous
porous domain that is fully saturated with water. The paper is concluded in Section 8.

2. Formulation of the problem

We consider the nonisothermal flow of two immiscible incompressible fluids in a porous medium
Ω ⊂ Rd, d = 1, 2 or 3, capillary effect being taken into account. We set Q = Ω × ]0, tf [ where tf > 0 is
a fixed time. For the presentation simplicity, we restrict the study to a horizontal field, i.e. the gravity
effects are neglected. Now we will fix some notations and assumptions before giving the coupled system
of PDEs modeling such flow. In the sequel, we denote by (w) the wetting phase, by (o) the nonwetting
phase and by (s) the solid matrix.

(A.1) The porosity of the porous medium ϕ ∈ L∞(Ω) and there exists two positive constants ϕ1 and
ϕ2 such that: ϕ1 ≤ ϕ(x) ≤ ϕ2 < 1 a.e. in Ω.

(A.2) The absolute permeability K ∈ (L∞(Ω))d×d is a positive definite and symmetric tensor, and
there exist constants such that 0 < K1 < K2 and K1|ξ|2 ≤ (K(x)ξ) · ξ ≤ K2|ξ|2, ∀ ξ ∈ Rd and
a.e. in Ω. The effective thermal conductivity κT is assumed isotropic such that κT = κ(x)I,
where κ ∈ L∞(Ω) is a scalar function such that: 0 < K1 ≤ κ(x) ≤ K2 a.e. in Ω.

(A.3) The densities of the wetting phase ρw, nonwetting phase ρo and the solid matrix ρs are positive
constants.

(A.4) The capillary pressure function Pc ∈ C1([0, 1];R+). Moreover, it is a nonincreasing function of
the saturation, i.e., P ′

c(S) < 0 in [0, 1] and Pc(1) = 0.

(A.5) The relative permeabilities krw and kro are in C(R) and verify the following properties:
(i) 0 ≤ krw, kro ≤ 1 on R;
(ii) krw(S) = 0 for S ≤ 0 and kro(S) = 0 for S ≥ 1; krw(S) = 1 for S ≥ 1 and kro(S) = 1 for

S ≤ 0;
(iii) krw(S) > 0 and kro(S) > 0 for S ∈ (0, 1);
(iv) there exists a positive constant k0 such that krw(S) + kro(S) ≥ k0 for all S ∈ R.

(A.6) The viscosities µw, µo ∈ C1(R) are functions of the temperature T, and there exists positive
constants mw, mo, Mw and Mo such that for every T ∈ R:

mw ≤ µw(T ) ≤ Mw, |µ′
w(T )| ≤ Mw; mo ≤ µo(T ) ≤ Mo, |µ′

o(T )| ≤ Mo.
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The mathematical model can be written as
0 ≤ S ≤ 1 in Q,
Po − Pw = Pc(S) in Q,

ϕ
∂S

∂t
− div(λwK∇Pw) = 0 in Q,

− ϕ
∂S

∂t
− div(λoK∇Po) = 0 in Q,

∂(ψT )
∂t

− div(λwcwTK∇Pw) − div(λocoTK∇Po) − div(κT∇T ) = 0 in Q,

where the unknowns are the phase pressures Pw and Po, the wetting phase saturation S, and the
temperature T . Furthermore, λw = krw

µw
, λo = kro

µo
are respectively mobility of the phase w, o. We set

λ = λw + λo, the total mobility and ψ(ϕ, S) = [cwS + co(1 − S)]ϕ+ cs(1 − ϕ), where for α ∈ {w, o, s},
cα = ραCα with ρα, Cα are respectively the phase densities, the specific heat capacities for each phase.

As in [6, 13], the governing equations can be rewritten in a fractional flow formulation where the
following new variable P called the nonisothermal global pressure is introduced:

P = Po −
∫ S

1

λw
λ

(s, T )P ′
c(s) ds.

Then, the mathematical model can be rewritten as (cf. [6, 13])
0 ≤ S ≤ 1 in Q,

ϕ
∂S

∂t
− div(ληwK∇P ) − div(ληwBoK∇T ) − div(Λ0K∇β(S)) = 0 in Q,

− ϕ
∂S

∂t
− div(ληoK∇P ) − div(ληoBoK∇T ) + div(Λ0K∇β(S)) = 0 in Q,

∂(ψT )
∂t

− div{λ(ηwcw + ηoco)TK∇P} + div{(co − cw)Λ0TK∇β(S)}

− div{λ(ηwcw + ηoco)BoTK∇T} − div(κT∇T ) = 0 in Q,

(2.1)

where the primary unknowns are P , the wetting phase saturation S and the temperature T . Further-
more, our model uses the following functions:

Bo(S, T ) = −
∫ S

1

∂

∂T
[λo
λ

(s, T )]P ′
c(s) ds; Λ0(S, T ) = MoMw

momw

kro(S)mw + krw(S)mo

kro(S)µw(T ) + krw(S)µo(T ) ,

ηw = λw
λ

; ηo = λo
λ

; β(S) =
∫ S

1
γ(s) ds; γ(S) = −α(S)P ′

c(S); α(S) =
krw(S)
Mw

kro(S)
Mo

krw(S)
mw

+ kro(S)
mo

,

where β(S) is the Kirchhoff transformation [4]. Further assumptions on the physical data and nonlin-
earities are given in the following.

(A.7) β−1 (the inverse of the restriction of β to [0, 1]) is a θ-Hölder function for some θ ∈ (0, 1), on
the interval [0, β(1)], i.e.:

∃ Cβ > 0 , ∀ u1, u2 ∈ [0, β(1)] : |β−1(u1) − β−1(u2)| ≤ Cβ|u1 − u2|θ.

(A.8) The initial data for the phases pressures are such that P 0
o , P

0
w ∈ L2(Ω) and 0 ≤ P 0

o −P 0
w ≤ Pc(0).

Furthermore, the initial saturation 0 ≤ S0 ≤ 1 is defined by the capillary pressure law: P 0
o −

P 0
w = Pc(S0). Moreover, the initial temperature T 0 ∈ L∞(Ω) and satisfies Tmin ≤ T 0 ≤ Tmax

a.e. in Ω, for some constants Tmin and Tmax such that Tmin ≤ 0 ≤ Tmax.
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The system (2.1) has to be completed by appropriate boundary conditions. We assume that the
boundary ∂Ω is comprised of two parts ΓD and ΓN such that ΓD ∩ ΓN = ∅, ∂Ω = ΓD ∪ ΓN and
|ΓD| > 0. The boundary conditions are as follows:

P = 0, [β(S)] = 0, T = 0 on ΓD × (0, tf ),
λw(K∇Pw).n⃗ = 0, λo(K∇Po).n⃗ = 0, (κT∇T ).n⃗ = 0 on ΓN × (0, tf ).

Remark 2.1.

(1) The assumptions (A.1)–(A.8) are classical and physically meaningful for two-phase flows in
porous media. They are similar to the assumptions made in [6] that dealt with the existence
of a weak solution of the studied problem.

(2) Assumptions (A.4) and (A.5) imply that the function γ ∈ C([0, 1];R+). Moreover, γ(0) =
γ(1) = 0 and γ > 0 on (0, 1). Therefore, the restriction of β to [0, 1] is bijective.

(3) Assumptions (A.5) and (A.6) imply the existence of some positive constants λ1 and λ2 such
that: λ1 ≤ λ(S, T ) ≤ λ2 , ∀ S, T ∈ R.

(4) In the mathematical model (2.1), we assumed that the densities are constant and that the
porosity is only a function of the space variable. In addition, we consider a model with a single
type of rock, i.e. the capillary pressure depends only on the saturation, and that it is not degen-
erate. Up to our knowledge, this is the first work and first step that deals with the convergence
analysis for a CVFE scheme of nonisothermal flows in porous media. Due to the complexity
of the equations and the coupling, the authors think that adding temperature dependency on
the densities and porosity and the case of discontinuous and degenerate capillary pressures
could render the analysis complicated and needs more paging to elaborate. Moreover, even the
existence of weak solutions for the nonisothermal model under these assumptions is still an
open problem. This could be treated in future contributions.

(5) Assumption (A.6) is in good accordance, for example, with the Reynolds model for shear
viscosity (see, e.g., [30]). Namely, µ(T ) = µ0 exp(−bT ), where µ0 and b are constants.

3. CVFE mesh and notations

We assume that the porous medium Ω is a polygonal open subset of Rd (where d = 1, 2 or 3). We
associate a primal mesh T to the domain Ω, which is a geometrically conforming simplicial triangu-
lation in the finite elements sense, in other words, the intersection of 2 simplices is either a common
face, edge, vertex or the empty set. We denote by V (resp. Vτ ) the set of all nodes (vertices) of T
(resp. τ ∈ T ). For a given simplex τ ∈ T , xτ denotes the barycenter of τ , hτ = diam(τ) the diameter
and |τ | its Lebesgue measure. Moreover, let ϱτ be the diameter of the inscribed circle of the simplex τ .
We denote by h and θT , the size and the regularity of the partition T , respectively. They are defined
as follows:

h := max
τ∈T

(hτ ) and θT := max
τ∈T

hτ
ϱτ
.

For a given node L ∈ V, we denote by τL the set of all primal mesh simplices with the common
vertex L. Furthermore, we construct a barycentric dual mesh in the following manner. For every node
L ∈ V, we associate a unique control volume denoted by ωL, of the dual mesh. Each dual control
volume is made by connecting the barycenter of every τ ∈ τL to the midpoint of edges of τ which
have L as a vertex. For 2 vertices L,M ∈ Vτ , we denote by στLM the dual interface located inside τ
and intersects the segment [LM ]. We denote by |στLM | the d − 1 Lebesgue measure of the interface
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στLM and by n⃗στ
LM

the unit normal to στLM pointing from L to M . We also denote Eτ the set of dual
interfaces that are inside τ . Moreover, for L ∈ V, |ωL| denotes the d-Lebesgue measure of ωL.

Let us state the main assumptions made about the mesh.

(A.9) We assume the regularity of the primal mesh, i.e. there exists some constant C0 such that for
every sequence of discretizations {Tm}m∈N of the initial mesh, there holds: θTm ≤ C0.

(A.10) We assume that there exists some constant C1 such that for every τ ∈ Tm and every L,M ∈ Vτ :
diam(ωL) + diam(ωM ) ≤ C1d(xL, xM ), where diam(ωL) is the diameter of ωL and d(xL, xM )
is the Euclidean distance between L and M .

(A.11) We assume in 2D that the triangulation Tm is weakly acute, i.e. no triangle has an angle greater
than π/2 and in 3D the faces of the tetra elements fulfill the angle condition. In other words,
the dihedral angles must be nonobtuse in order that the discrete maximum principle holds
for the solution of the temperature. Example of meshes satisfying this condition are described
in [9, 26].

In regards to the time interval [0, T ], we consider the following discretization (tn)n∈J0,lK: 0 = t0 <

t1 < · · · < tl−1 < tl = tf . We set δt = tn+1 −tn for n ∈ J0, l−1K and define δt := maxn∈J0,l−1K(δtn). For
the sake of simplicity, we consider a constant time step. Our approach is easily extendable to variable
time stepping by assuming that αδt < minn∈J0,l−1K(δtn) for some α ∈ (0, 1). In practice, the time step
remains between δtmin and δtmax.

For the numerical approximation of our model (2.1), we will use an implicit Euler scheme in time
and a vertex-centered finite volume scheme in space. An upwind method is used to treat the convection
terms and P1 finite elements are used for the approximation of the gradients.

Now, let us define the approximation spaces for the discrete unknowns. Additionally, we will describe
the construction of the discrete functions. In this sense, let us denote by Xh the space of piecewise
linear functions on the primal mesh and by Wh the space of piecewise constant functions on the dual
mesh. Therefore, Xh and Wh are finite-dimensional spaces. Moreover, there holds:

Xh = {φ ∈ C0(Ω) : φ|τ ∈ P1,∀ τ ∈ T } ⊂ H1(Ω).

Let us define the space

X0
h = {φ ∈ Xh : φ(xL) = 0, ∀ L ∈ V such that xL ∈ ΓD}.

Under the assumption that ΓD is polygonal and that its limiting vertices belong to V, the following
inclusion holds X0

h ⊂ H1
ΓD

(Ω) := {v ∈ H1(Ω) such that v|ΓD
= 0}. Next, we denote by (φL)L∈V the

global basis functions which are associated to each node in the finite elements sense. For L,M ∈ V,
there holds

φL(xM ) = δLM , (Kronecker delta).
For τ ∈ T , one has:

∑
L∈Vτ

φL|τ = 1τ . Furthermore, the following formulas hold:

∑
L∈V

φL = 1,
∑
L∈V

∇φL = 0 and ∇φL|τ = −|στL|
2|τ |

n⃗στ
L
,

where στL is the face of triangle τ facing vertex L and n⃗στ
L

the unit outer normal associated to the
boundary of τ . In the sequel, we define:

S0
L = 1

|ωL|

∫
ωL

S(x, 0)dx, P 0
L = 1

|ωL|

∫
ωL

P (x, 0)dx, T 0
L = 1

|ωL|

∫
ωL

T (x, 0)dx.
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The unknowns are (SnL, PnL , TnL )L∈V for n ∈ J1, lK, where

SnL ≃ 1
|ωL|

∫
ωL

S(x, tn)dx, PnL ≃ 1
|ωL|

∫
ωL

P (x, tn)dx, TnL ≃ 1
|ωL|

∫
ωL

T (x, tn)dx.

Finally, let F be a function of (S, P, T ). We denote by
[
F̃ (S;P ;T )

]
h,δt

(x, t) the finite volume recon-
struction which is defined almost everywhere in Q, and by [F (S;P ;T )]h,δt(x, t) the finite element
reconstruction, i.e.

[F̃ (S;P ;T )]h,δt(x, t) :=
∑
L∈V

1ωL(x)F (S0
L;P 0

L;T 0
L)1{0}(t) +

∑
L∈V

1ωL(x)
l−1∑
n=0

F (Sn+1
L ;Pn+1

L ;Tn+1
L )1(tn,tn+1](t),

[F (S;P ;T )]h,δt(x, t) :=
∑
L∈V

F (S0
L;P 0

L;T 0
L)φL(x)1{0}(t) +

∑
L∈V

l−1∑
n=0

F (Sn+1
L ;Pn+1

L ;Tn+1
L )φL(x)1(tn,tn+1](t).

4. Finite volume discretization

For the discretization of the coupled system (2.1), we first integrate the three equations of (2.1) over
ωL (for L ∈ V) and then in time over the interval [tn, tn+1) (for n ∈ J0, l − 1K). Afterwards, we apply
the Green formula and approximate properly the fluxes at each interface ∂ωL.

After integrating the first equation of (2.1) in space over ωL and in time over the interval [tn, tn+1),
then by Green’s formula, we get

A1 +A2 +A3 +A4 = 0,
where

A1 = |ωL|ϕL(Sn+1
L − SnL), A2 = −

∫ tn+1

tn
δt

∫
∂ωL

ληw(K∇P ) · n⃗ωLdΓ,

A3 = −
∫ tn+1

tn
δt

∫
∂ωL

ληw(B+
o −B−

o )(K∇T ) · n⃗ωLdΓ, A4 = −
∫ tn+1

tn
δt

∫
∂ωL

Λ0(K∇β(S)) · n⃗ωLdΓ.

We recall the following notation: for c ∈ R, c+ := max(c, 0) and c− := max(−c, 0). Moreover, we have
denoted ϕL = 1

|ωL|
∫
ωL
ϕ(x)dx = 1

|ωL|
∑
τ∈τL

∫
τ∩ωL

ϕ(x)dx. In the sequel, we discretize each of the terms
A2, A3 and A4. As for the term A2, we use the following approximation:

A2 ≃ −δt
∑
τ∈τL

∑
M∈Vτ \{L}

λn+1
τ Gw((S;T )n+1

L ; (S;T )n+1
M ;Kτ

LMδ
n+1
LM P )Kτ

LMδ
n+1
LM P,

where

λn+1
τ := 1

#Vτ

∑
M∈Vτ

λ(Sn+1
M , Tn+1

M ),Kτ
LM := −

∫
τ
(K∇φL) · ∇φMdx, δn+1

LM P = Pn+1
M − Pn+1

L ,

and

Gw(a; b; c) :=
{
ηw(b) if c ≥ 0,
ηw(a) otherwise.

Similarly to A2, we use the following approximation for A3:

A3 ≃


− δt

∑
τ∈τL

∑
M∈Vτ \{L}

λn+1
τ H1

w((S;T )n+1
L ; (S;T )n+1

M ;Kτ
LMδ

n+1
LM T )Kτ

LMδ
n+1
LM T

+ δt
∑
τ∈τL

∑
M∈Vτ \{L}

λn+1
τ H2

w((S;T )n+1
L ; (S;T )n+1

M ; −Kτ
LMδ

n+1
LM T )Kτ

LMδ
n+1
LM T

 ,
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where

H1
w(a; b; c) :=

{
[ηwB+

o ](b) if c ≥ 0,
[ηwB+

o ](a) otherwise,
H2
w(a; b; c) :=

{
[ηwB−

o ](b) if c ≥ 0,
[ηwB−

o ](a) otherwise.

Before discretizing the term A4, recall that there exists some constants C2, Λ0,min and Λ0,max such
that for every S, T ∈ R:

|Bo(S, T )| ≤ C2 and 0 < Λ0,min ≤ Λ0(S;T ) ≤ Λ0,max < +∞. (4.1)

By assuming that S is regular enough, we deduce that: ∇β(S) = −α(S)P ′
c(S)∇S.

Hence by defining: γ(S) := −α(S)P ′
c(S), we get:

Λ0(K∇β(S)) = Λ0(S;T )γ(S)(K∇S).

Lastly, regarding the term A4, we use the following approximation:

A4 ≃ −δt
∑
τ∈τL

∑
M∈Vτ \{L}

[Λ0]n+1
τ γn+1

LM Kτ
LMδ

n+1
LM S,

where

[Λ0]n+1
τ := 1

#Vτ

∑
M∈Vτ

Λ0(Sn+1
M ;Tn+1

M ) and γn+1
LM :=

maxS∈In+1
LM

γ(S) if Kτ
LM ≥ 0,

minS∈In+1
LM

γ(S) otherwise,

where In+1
LM = [Sn+1

L , Sn+1
M ].

Finally, the discretization of the first equation of system (2.1) writes as follows:

|ωL|
δt

ϕL(Sn+1
L − SnL) −

∑
τ∈τL

M∈Vτ \{L}

λn+1
τ ηw(;P )Kτ

LMδ
n+1
LM P −

∑
τ∈τL

M∈Vτ \{L}

[Λ0]n+1
τ γn+1

LM Kτ
LMδ

n+1
LM S

−
∑
τ∈τL

M∈Vτ \{L}

λn+1
τ ([ηwB+

o ](;T ) − [ηwB−
o ](;−T ))Kτ

LMδ
n+1
LM T = 0.

For the sake of legibility, we introduced the following notation: for some function f of variables S and
T , some node L ∈ V, simplex τ ∈ τL, node M ∈ Vτ \ {L} and H = P , T or "−T ", we denote

f(;H ) = Gf ((S;T )n+1
L ; (S;T )n+1

M ;Kτ
LMδ

n+1
LM H), andGf (a; b; c) :=

{
f(b) if c ≥ 0,
f(a) otherwise,

where δn+1
LM (−T ) := −Tn+1

M + Tn+1
L = −δn+1

LM T .
In the same way, we discretize the other two equations. Finally, the numerical scheme for the coupled

system (2.1) writes as follows:

|ωL|
δt

ϕL(Sn+1
L − SnL) −

∑
τ∈τL

M∈Vτ \{L}

λn+1
τ ηw(;P )Kτ

LMδ
n+1
LM P −

∑
τ∈τL

M∈Vτ \{L}

[Λ0]n+1
τ γn+1

LM Kτ
LMδ

n+1
LM S

−
∑
τ∈τL

M∈Vτ \{L}

λn+1
τ ([ηwB+

o ](;T ) − [ηwB−
o ](;−T ))Kτ

LMδ
n+1
LM T = 0,
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− |ωL|
δt

ϕL(Sn+1
L − SnL) −

∑
τ∈τL

M∈Vτ \{L}

λn+1
τ ηo(;P )Kτ

LMδ
n+1
LM P +

∑
τ∈τL

M∈Vτ \{L}

[Λ0]n+1
τ γn+1

LM Kτ
LMδ

n+1
LM S

−
∑
τ∈τL

M∈Vτ \{L}

λn+1
τ ([ηoB+

o ](;T ) − [ηoB−
o ](;−T ))Kτ

LMδ
n+1
LM T = 0, (4.2)

|ωL|
δt

[ψ(ϕL;Sn+1
L )Tn+1

L − ψ(ϕL;SnL)TnL ] −
∑
τ∈τL

M∈Vτ \{L}

λn+1
τ [(cwηw + coηo)T ](;P )Kτ

LMδ
n+1
LM P

−
∑
τ∈τL

M∈Vτ \{L}

λn+1
τ [(cwηw + coηo)B+

o T ](;T )Kτ
LMδ

n+1
LM T +

∑
τ∈τL

M∈Vτ \{L}

λn+1
τ [(cwηw + coηo)B−

o T ](;−T )Kτ
LMδ

n+1
LM T

−
∑
τ∈τL

M∈Vτ \{L}

(cw[T ](;S ) − co[T ](;−S ))[Λ0]n+1
τ γn+1

LM Kτ
LMδ

n+1
LM S −

∑
τ∈τL

M∈Vτ \{L}

(κT )τLMδ
n+1
LM T = 0,

where (κT )τLM := −
∫
τ (κT∇φL) · ∇φMdx.

5. Stability properties and existence of the numerical scheme

5.1. Maximum principle for the saturation

The techniques used for the proof of the maximum principle for the saturation are similar with the
ones in the isothermal case as done for instance in [21], and are therefore skipped here.

Proposition 5.1. Let (Sn+1
L , Pn+1

L , Tn+1
L )L∈V,n∈J0,l−1K be a solution to the numerical scheme (4.2). If

(S0
L)L∈V belongs to [0, 1], then (S̃h,δt) remains in [0, 1].

5.2. Maximum principle for the temperature

Now, we turn to the proof of the maximum principle for the temperature.

Proposition 5.2. Under the assumptions (A.1) and (A.11), let (Sn+1
L , Pn+1

L , Tn+1
L )L∈V,n∈J0,l−1K be a

solution to the numerical scheme (4.2). Then (T̃ h,δt) remains in [Tmin, Tmax].

Proof. We proceed by induction on n. The property is trivial for n = 0. Now, assume that the
sequence (TnL )L∈V ⊂ [Tmin, Tmax] for all n ∈ J0, l − 2K and let us prove that (Tn+1

L )L∈V ⊂ [Tmin, Tmax].
For some fixed L ∈ V we multiply the 1st equation of (4.2) by [−cwTn+1

L ] and the 2nd equation by
[−coTn+1

L ]. Adding up the two equations gives:

− |ωL|[ψ(ϕL;Sn+1
L ) − ψ(ϕL;SnL)]Tn+1

L + δt
∑
τ∈τL

M∈Vτ \{L}

λn+1
τ [cwηw + coηo](;P )Tn+1

L Kτ
LMδ

n+1
LM P

+ δt
∑
τ∈τL

M∈Vτ \{L}

(cw − co)Tn+1
L [Λ0]n+1

τ γn+1
LM Kτ

LMδ
n+1
LM S+ δt

∑
τ∈τL

M∈Vτ \{L}

λn+1
τ [(cwηw + coηo)B+

o ](;T )Tn+1
L Kτ

LMδ
n+1
LM T

+ δt
∑
τ∈τL

M∈Vτ \{L}

λn+1
τ [(cwηw + coηo)B−

o ](;−T )Tn+1
L (−Kτ

LMδ
n+1
LM T ) = 0. (5.1)
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Indeed, one has:
ψ(ϕL;Sn+1

L ) − ψ(ϕL;SnL) = [cwSn+1
L + co(1 − Sn+1

L )]ϕL + cs(1 − ϕL)
− {[cwSnL + co(1 − SnL)]ϕL + cs(1 − ϕL)}

= [cw(Sn+1
L − SnL) − co(Sn+1

L − SnL)]ϕL
= ϕL(cw − co)(Sn+1

L − SnL).
Adding up equation (5.1) and the 3rd equation of (4.2), one gets:

An+1
L = 0, (5.2)

where
An+1
L := |ωL|ψ(ϕL;SnL)(Tn+1

L − TnL ) − δt
∑
τ∈τL

M∈Vτ \{L}

[cwηw + coηo](;P )([T ](;P ) − Tn+1
L )Kτ

LMδ
n+1
LM P

− δt
∑
τ∈τL

M∈Vτ \{L}

cw([T ](;S ) − Tn+1
L )[Λ0]n+1

τ γn+1
LM Kτ

LMδ
n+1
LM S

+ δt
∑
τ∈τL

M∈Vτ \{L}

co([T ](;−S ) − Tn+1
L )[Λ0]n+1

τ γn+1
LM Kτ

LMδ
n+1
LM S

− δt
∑
τ∈τL

M∈Vτ \{L}

λn+1
τ [(cwηw + coηo)B+

o ](;T )([T ](;T ) − Tn+1
L )Kτ

LMδ
n+1
LM T

− δt
∑
τ∈τL

M∈Vτ \{L}

λn+1
τ [(cwηw + coηo)B−

o ](;−T )([T ](;−T ) − Tn+1
L )(−Kτ

LMδ
n+1
LM T ) − δt

∑
τ∈τL

M∈Vτ \{L}

(κT )τLMδ
n+1
LM T.

Now, note that for τ ∈ τL, M ∈ Vτ \ {L} and H = P , T , "−T ", S or "−S", one writes
[T ](;H )Kτ

LMδ
n+1
LM H = Tn+1

M (Kτ
LMδ

n+1
LM H)+ − Tn+1

L (Kτ
LMδ

n+1
LM H)−,

Therefore, one infers
([T ](;H ) − Tn+1

L )Kτ
LMδ

n+1
LM H = [Tn+1

M (Kτ
LMδ

n+1
LM H)+ − Tn+1

L (Kτ
LMδ

n+1
LM H)−]

− Tn+1
L [(Kτ

LMδ
n+1
LM H)+ − (Kτ

LMδ
n+1
LM H)−]

= (Tn+1
M − Tn+1

L )(Kτ
LMδ

n+1
LM H)+

= δn+1
LM T (Kτ

LMδ
n+1
LM H)+.

This allows us to reformulate An+1
L as follows

An+1
L = |ωL|ψ(ϕL;SnL)(Tn+1

L − TnL ) − δt
∑
τ∈τL

M∈Vτ \{L}

λn+1
τ [cwηw + coηo](;P )δn+1

LM T (Kτ
LMδ

n+1
LM P )+

− δt
∑
τ∈τL

M∈Vτ \{L}

[Λ0]n+1
τ γn+1

LM δn+1
LM T [cw(Kτ

LMδ
n+1
LM S)+ + co(Kτ

LMδ
n+1
LM S)−]

− δt
∑
τ∈τL

M∈Vτ \{L}

λn+1
τ [(cwηw + coηo)B+

o ](;T )δn+1
LM T (Kτ

LMδ
n+1
LM T )+

− δt
∑
τ∈τL

M∈Vτ \{L}

λn+1
τ [(cwηw + coηo)B−

o ](;−T )δn+1
LM T (Kτ

LMδ
n+1
LM T )− − δt

∑
τ∈τL

M∈Vτ \{L}

(κT )τLMδ
n+1
LM T.
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Now, let L ∈ V be such that Tn+1
L = min{Tn+1

M }M∈V . For every τ ∈ τL and M ∈ Vτ \ {L}, one has
−δn+1

LM T ≤ 0. As a consequence

− δt
∑
τ∈τL

M∈Vτ \{L}

λn+1
τ [cwηw + coηo](;P )δn+1

LM T (Kτ
LMδ

n+1
LM P )+

− δt
∑
τ∈τL

M∈Vτ \{L}

[Λ0]n+1
τ γn+1

LM δn+1
LM T [cw(Kτ

LMδ
n+1
LM S)+ + co(Kτ

LMδ
n+1
LM S)−]

− δt
∑
τ∈τL

M∈Vτ \{L}

λn+1
τ [(cwηw + coηo)B+

o ](;T )δn+1
LM T (Kτ

LMδ
n+1
LM T )+

− δt
∑
τ∈τL

M∈Vτ \{L}

λn+1
τ [(cwηw + coηo)B−

o ](;−T )δn+1
LM T (Kτ

LMδ
n+1
LM T )−

− δt
∑
τ∈τL

M∈Vτ \{L}

(κT )τLMδ
n+1
LM T ≤ 0.

Note that by virtue of assumption (A.11), (κT )τLM ≥ 0. Moreover, all the involved quantities are
nonnegative. Taking into account (5.2), there holds

|ωL|ψ(ϕL;SnL)(Tn+1
L − TnL ) ≥ 0.

Thus, noting that ψ(ϕL;SnL) > 0, one finally obtains Tn+1
L ≥ TnL ≥ Tmin. As a result, Tn+1

M ≥ Tmin,
∀ M ∈ V. Similarly, one can establish the upper bound on the Tn+1

M , which concludes the proof.

5.3. A priori estimates for the gradients

The following Lemmas were both stated in [21]. The first one is required to tackle the difficulty induced
by negative transmissibility coefficients. The second one is nothing more than the discrete integration
by parts.

Lemma 5.3. Under the assumption (A.9), there exists some constant CK , depending only on K and
C0, such that:

∀ uh =
∑
L∈V

uLφL ∈ Xh :
∑
τ∈T

∑
στ

LM ∈Eτ

|Kτ
LM |(uM − uL)2 ≤ CK

∫
Ω

(K∇uh) · ∇uhdx.

Lemma 5.4. For every uh, vh ∈ Xh, there holds:∫
Ω

(K∇uh) · ∇vh dx =
∑
τ∈T

∑
στ

LM ∈Eτ

Kτ
LM (uM − uL)(vM − vL).

Proposition 5.5. Under the assumptions (A.1)–(A.11), let (Sn+1
L , Pn+1

L , Tn+1
L )L∈V,n∈J0,l−1K be a so-

lution to the numerical scheme (4.2). Then, one has:

AT :=
l−1∑
n=0

δt
∑
τ∈T

∑
στ

LM ∈Eτ

(κT )τLM (δn+1
LM T )2

≤ 1
2
∑
L∈V

|ωL|[ψ(ϕL;S0
L)(T 0

L)2 − ψ(ϕL;SlL)(T lL)2]. (5.3)
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Moreover, there exist some constants CT , CP and Cβ, depending only on the constants |Ω|, ρw, ρo,
ρs, cw, co, cs, K1, K2, λ1, λ2, ∥T 0∥L2(Ω), CK , C2 and Λ0,min, such that:

l−1∑
n=0

δt
∑
τ∈T

∑
στ

LM ∈Eτ

(κT )τLM (δn+1
LM T )2 ≤ CT , (5.4)

l−1∑
n=0

δt
∑
τ∈T

∑
στ

LM ∈Eτ

Kτ
LM (δn+1

LM P )2 ≤ CP , (5.5)

∑
L∈V

|ωL|ϕL[φ(SlL) − φ(S0
L)] + Λ0,min

2

l−1∑
n=0

δt
∑
τ∈T

∑
στ

LM ∈Eτ

Kτ
LM (δn+1

LM β(S))2 ≤ Cβ, (5.6)

where φ′(s) = β(s).

Proof. The proof is conducted in several steps.
• Temperature estimation. We start by multiplying the discrete energy equation of (4.2) by Tn+1

L ,
then we sum over L ∈ V and n ∈ J0, l − 1K. This gives

A1 +A2 +A3 +A4 +A5 +A6 = 0, (5.7)
where we rearranged each summation by simplices by the dual interfaces to obtain

A1 =
∑
L∈V

|ωL|
l−1∑
n=0

[ψ(ϕL;Sn+1
L )(Tn+1

L )2 − ψ(ϕL;SnL)TnLTn+1
L ],

A2 =
l−1∑
n=0

δt
∑
τ∈T

λn+1
τ

∑
στ

LM ∈Eτ

[cwηw + coηo](;P )[T ](;P )δn+1
LM T · Kτ

LMδ
n+1
LM P,

A3 =
l−1∑
n=0

δt
∑
τ∈T

[Λ0]n+1
τ

∑
στ

LM ∈Eτ

(cw[T ](;S ) − co[T ](;−S ))γn+1
LM δn+1

LM T · Kτ
LMδ

n+1
LM S,

A4 =
l−1∑
n=0

δt
∑
τ∈T

λn+1
τ

∑
στ

LM ∈Eτ

[(cwηw + coηo)B+
o ](;T )[T ](;T )δn+1

LM T · Kτ
LMδ

n+1
LM T,

A5 =
l−1∑
n=0

δt
∑
τ∈T

λn+1
τ

∑
στ

LM ∈Eτ

[(cwηw + coηo)B−
o ](;−T )[T ](;−T )δn+1

LM T · (−Kτ
LMδ

n+1
LM T ),

A6 =
l−1∑
n=0

δt
∑
τ∈T

∑
στ

LM ∈Eτ

(κT )τLM (δn+1
LM T )2.

Next, we multiply the 1st equation of (4.2) by
[
−1

2cw(Tn+1
L )2], we sum over L ∈ V and n ∈ J0, l − 1K.

One has
B1 +B2 +B3 +B4 +B5 = 0, (5.8)

where

B1 = −1
2
∑
L∈V

|ωL|
l−1∑
n=0

ϕLcw(Sn+1
L − SnL)(Tn+1

L )2,

B2 = −
l−1∑
n=0

δt
∑
τ∈T

λn+1
τ

∑
στ

LM ∈Eτ

cwηw(;P )[T ]n+1
LM δn+1

LM T · Kτ
LMδ

n+1
LM P,
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B3 = −
l−1∑
n=0

δt
∑
τ∈T

λn+1
τ

∑
στ

LM ∈Eτ

cw[ηwB+
o ](;T )[T ]n+1

LM δn+1
LM T · Kτ

LMδ
n+1
LM T,

B4 = −
l−1∑
n=0

δt
∑
τ∈T

λn+1
τ

∑
στ

LM ∈Eτ

cw[ηwB−
o ](;−T )[T ]n+1

LM δn+1
LM T · (−Kτ

LMδ
n+1
LM T ),

B5 = −
l−1∑
n=0

δt
∑
τ∈T

[Λ0]n+1
τ

∑
στ

LM ∈Eτ

cwγ
n+1
LM [T ]n+1

LM δn+1
LM T · Kτ

LMδ
n+1
LM S.

We used the following notation

[T ]n+1
LM := Tn+1

L + Tn+1
M

2 .

At last, we multiply the 2nd equation of (4.2) by [−1
2co(T

n+1
L )2], we sum over L ∈ V and n ∈ J0, l− 1K.

The resulting equation reads

G1 +G2 +G3 +G4 +G5 = 0, (5.9)

where

G1 = −1
2
∑
L∈V

|ωL|
l−1∑
n=0

ϕLco[(1 − Sn+1
L ) − (1 − SnL)](Tn+1

L )2,

G2 = −
l−1∑
n=0

δt
∑
τ∈T

λn+1
τ

∑
στ

LM ∈Eτ

coηo(;P )[T ]n+1
LM δn+1

LM T · Kτ
LMδ

n+1
LM P,

G3 = −
l−1∑
n=0

δt
∑
τ∈T

λn+1
τ

∑
στ

LM ∈Eτ

co[ηoB+
o ](;T )[T ]n+1

LM δn+1
LM T · Kτ

LMδ
n+1
LM T,

G4 = −
l−1∑
n=0

δt
∑
τ∈T

λn+1
τ

∑
στ

LM ∈Eτ

co[ηoB−
o ](;−T )[T ]n+1

LM δn+1
LM T · (−Kτ

LMδ
n+1
LM T ),

G5 = −
l−1∑
n=0

δt
∑
τ∈T

[Λ0]n+1
τ

∑
στ

LM ∈Eτ

coγ
n+1
LM [T ]n+1

LM δn+1
LM T · (−Kτ

LMδ
n+1
LM S).

Finally, adding up the relationships (5.7), (5.8) and (5.9), one gets
H1 +H2 +H3 +H4 +H5 +H6 = 0, (5.10)

where
H1 = A1 +B1 +G1; H2 = A2 +B2 +G2; H3 = A3 +B5 +G5,

H4 = A4 +B3 +G3; H5 = A5 +B4 +G4; H6 = A6.

Let us compute H1. Observe that

B1 +G1 = −1
2
∑
L∈V

|ωL|
l−1∑
n=0

[ψ(ϕL;Sn+1
L ) − ψ(ϕL;SnL)](Tn+1

L )2.

Therefore

H1 = 1
2
∑
L∈V

|ωL|[ψ(ϕL;SlL)(T lL)2 − ψ(ϕL;S0
L)(T 0

L)2] + 1
2
∑
L∈V

|ωL|
l−1∑
n=0

ψ(ϕL;SnL)(Tn+1
L − TnL )2.

275



B. Amaziane, M. El Ossmani, et al.

Now, the fact that ψ(ϕ;S) ≥ 0 implies that:

H1 ≥ 1
2
∑
L∈V

|ωL|[ψ(ϕL;SlL)(T lL)2 − ψ(ϕL;S0
L)(T 0

L)2]. (5.11)

Before computing the terms H2, H3, H4 and H5, note that for τ ∈ τL, M ∈ Vτ \ {L} and H = P , T ,
“−T”, S or “−S”, the following identity is satisfied

([T ](;H ) − [T ]n+1
LM )Kτ

LMδ
n+1
LM H = (Tn+1

M − [T ]n+1
LM )(Kτ

LMδ
n+1
LM H)+ − (Tn+1

L − [T ]n+1
LM )(Kτ

LMδ
n+1
LM H)−

= 1
2δ

n+1
LM T |Kτ

LMδ
n+1
LM H|.

As a result

H2 =
l−1∑
n=0

δt
∑
τ∈T

λn+1
τ

∑
στ

LM ∈Eτ

[cwηw + coηo](;P )(δn+1
LM T )2 · |Kτ

LMδ
n+1
LM P |,

H3 =
l−1∑
n=0

δt
∑
τ∈T

[Λ0]n+1
τ

∑
στ

LM ∈Eτ

(cw + co)γn+1
LM (δn+1

LM T )2 · |Kτ
LMδ

n+1
LM S|,

H4 =
l−1∑
n=0

δt
∑
τ∈T

λn+1
τ

∑
στ

LM ∈Eτ

[(cwηw + coηo)B+
o ](;T )(δn+1

LM T )2 · |Kτ
LMδ

n+1
LM T |,

H5 =
l−1∑
n=0

δt
∑
τ∈T

λn+1
τ

∑
στ

LM ∈Eτ

[(cwηw + coηo)B−
o ](;−T )(δn+1

LM T )2 · |Kτ
LMδ

n+1
LM T |.

It is clear that the quantities H2, H3, H4 and H5 are positive. Therefore, from (5.10) and (5.11), we
deduce

A6 + 1
2
∑
L∈V

|ωL|[ψ(ϕL;SlL)(T lL)2 − ψ(ϕL;S0
L)(T 0

L)2] ≤ 0.

The latter inequality entails the first estimation

A6 =
l−1∑
n=0

δt
∑
τ∈T

∑
στ

LM ∈Eτ

(κT )τLM (δn+1
LM T )2 ≤ 1

2
∑
L∈V

|ωL|[ψ(ϕL;S0
L)(T 0

L)2 − ψ(ϕL;SlL)(T lL)2].

Now, noting that 0 ≤ S0
L ≤ 1 and 0 ≤ ϕ ≤ 1, one gets

ψ(ϕL;S0
L) = [cwS0

L + co(1 − S0
L)]ϕL + cs(1 − ϕL) ≤ cw + co + cs := C3.

The discrete integration by part together with Jensen’s inequality yield∫
Q

(κT∇Th,δt) · ∇Th,δt dx dt ≤
C3∥T 0∥L2(Ω)

2 .

Thus
l−1∑
n=0

δt
∑
τ∈T

∑
στ

LM ∈Eτ

(κT )τLM (δn+1
LM T )2 ≤ C4, (5.12)

for some constant C4 > 0 independent of the discretization steps.
• Global pressure estimation. We first sum the 1st and 2nd equation of (4.2). Then

−δt
∑
τ∈τL

M∈Vτ \{L}

Kτ
LMδ

n+1
LM P − δt

∑
τ∈τL

M∈Vτ \{L}

λn+1
τ ([B+

o ](;T ) − [B−
o ](;−T ))Kτ

LMδ
n+1
LM T = 0.

Next, we multiply this equality by (Pn+1
L ) then we sum over L ∈ V and n ∈ J0, l − 1K to get

D1 +D2 = 0, (5.13)
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where

D1 = −
l−1∑
n=0

∑
τ∈τL

M∈Vτ \{L}

λn+1
τ Kτ

LMδ
n+1
LM P Pn+1

L =
l−1∑
n=0

δt
∑
τ∈T

λn+1
τ

∑
στ

LM ∈Eτ

Kτ
LM (δn+1

LM P )2,

D2 =
l−1∑
n=0

δt
∑
τ∈T

λn+1
τ

∑
στ

LM ∈Eτ

([B+
o ](;T ) − [B−

o ](;−T ))Kτ
LMδ

n+1
LM Pδn+1

LM T.

Now, recall that 0<λ1 ≤λ and that for τ ∈ T , thanks to Lemma 5.4 one has
∑
στ

LM ∈Eτ
Kτ
LM (δn+1

LM P )2 ≥
0. As a consequence,

∑
στ

LM ∈Eτ
Kτ
LM (δn+1

LM P )2 ≥ 0 for every τ ∈ T and thus

D1 ≥ λ1

l−1∑
n=0

δt
∑
τ∈T

∑
στ

LM ∈Eτ

Kτ
LM (δn+1

LM P )2. (5.14)

Notice that |Bo| ≤ C2 and 0 < λ ≤ λ2. By virtue of the triangle inequality:

|D2| ≤ 2C2λ2

l−1∑
n=0

δt
∑
τ∈T

∑
στ

LM ∈Eτ

|Kτ
LM ||δn+1

LM P ||δn+1
LM T |.

Therefore, for ε > 0, one has in light of Young’s inequality:

|D2| ≤ 2εC2λ2

l−1∑
n=0

δt
∑
τ∈T

∑
στ

LM ∈Eτ

|Kτ
LM |(δn+1

LM P )2 + C2λ2
2ε

l−1∑
n=0

δt
∑
τ∈T

∑
στ

LM ∈Eτ

|Kτ
LM |(δn+1

LM T )2.

According to Lemma 5.3, one can set ε = λ1
4C2λ2CK

and deduce from (5.4) that

|D2| ≤ λ1
2

l−1∑
n=0

δt
∑
τ∈T

∑
στ

LM ∈Eτ

Kτ
LM (δn+1

LM P )2 + 2 (C2λ2CK)2

λ1
K2C

′
4.

Here C ′
4 = C4K2/K1. Hence, it follows from (5.14) that

l−1∑
n=0

δt
∑
τ∈T

∑
στ

LM ∈Eτ

Kτ
LM (δn+1

LM P )2 ≤ 4
(
C2λ2CK

λ1

)2
K2C

′
4.

Consequently, the pressure estimate (5.5) is valid where CP = 4 (C2λ2CK
λ1

)2K2C
′
4.

• Saturation estimation. We multiply the 1st equation of (4.2) by β(Sn+1
L ), then we sum over L ∈ V

and n ∈ J0, l − 1K. This yields

F1 + F2 + F3 + F4 + F5 = 0, (5.15)

where

F1 =
∑
L∈V

|ωL|ϕL
l−1∑
n=0

(Sn+1
L − SnL)β(Sn+1

L ),

F2 =
l−1∑
n=0

δt
∑
τ∈T

λn+1
τ

∑
στ

LM ∈Eτ

ηw(;P )Kτ
LM [δn+1

LM β(S)]δn+1
LM P,

F3 =
l−1∑
n=0

δt
∑
τ∈T

λn+1
τ

∑
στ

LM ∈Eτ

[ηwB+
o ](;T )Kτ

LM [δn+1
LM β(S)]δn+1

LM T,

F4 = −
l−1∑
n=0

δt
∑
τ∈T

λn+1
τ

∑
στ

LM ∈Eτ

[ηwB−
o ](;−T )Kτ

LM [δn+1
LM β(S)]δn+1

LM T,
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F5 = −
l−1∑
n=0

δt
∑
τ∈T

[Λ0]n+1
τ

∑
στ

LM ∈Eτ

Kτ
LM [δn+1

LM β(S)](γn+1
LM δn+1

LM S).

Let φ be a function such that φ′(S) = β(S). The accumulation term can be bounded from below with
a telescopic series leading to

F1 ≥
∑
L∈V

|ωL|ϕL[φ(SlL) − φ(S0
L)]. (5.16)

Moreover, the fact that γ(S) = β′(S) implies that for τ ∈ T and L,M ∈ Vτ :
∃ S∗ ∈ In+1

LM : β(Sn+1
M ) − β(Sn+1

L ) = γ(S∗)(Sn+1
M − Sn+1

L ). (5.17)
Regardless the sign of Kτ

LM , one always has
Kτ
LMγ

n+1
LM ≥ Kτ

LMγ(S∗).
Thanks to the fact that β is nondecreasing and (5.17), one finds

Kτ
LMγ

n+1
LM [δn+1

LM β(S)]δn+1
LM S ≥ Kτ

LM (δn+1
LM β(S))2.

Because of Λ0 ≥ Λ0,min > 0, one infers

F4 ≥ Λ0,min

l−1∑
n=0

δt
∑
τ∈T

∑
στ

LM ∈Eτ

Kτ
LM (δn+1

LM β(S))2. (5.18)

Recall that 0 < λ ≤ λ2 and 0 ≤ ηw ≤ 1. Similarly to the pressure estimation, one computes

|F2| ≤ λ2

l−1∑
n=0

δt
∑
τ∈T

∑
στ

LM ∈Eτ

|Kτ
LM ||δn+1

LM β(S)||δn+1
LM P |

≤ Λ0,min
4

l−1∑
n=0

δt
∑
τ∈T

∑
στ

LM ∈Eτ

Kτ
LM (δn+1

LM β(S))2 + (λ2CK)2

Λ0,min
CP . (5.19)

In the same fashion for F3 and F4, but this time using the fact that |Bo| ≤ C2 implies

|F3| + |F4| ≤ Λ0,min
4

l−1∑
n=0

δt
∑
τ∈T

∑
στ

LM ∈Eτ

Kτ
LM (δn+1

LM β(S))2 + 4 (λ2CK)2

Λ0,min
K2C4. (5.20)

Now, from (5.15), one has
F1 + F5 = −F2 − F3 − F4 ≤ |F2| + |F3| + |F4|.

Therefore, by virtue of inequalities (5.16), (5.18), (5.19) and (5.20), we finally find∑
L∈V

|ωL|ϕL[φ(SlL) − φ(S0
L)] + Λ0,min

2

l−1∑
n=0

δt
∑
τ∈T

∑
στ

LM ∈Eτ

Kτ
LM (δn+1

LM β(S))2 ≤ Cβ,

where Cβ = (λ2CK)2

Λ0,min
(CP + 4K2C4). Hence, this establishes the capillary term estimate (5.6). By

setting φ(S) =
∫ S

1 β(u)du, one has 0 ≤ φ ≤ φ(0) < +∞. Thus
φ(SlL) − φ(S0

L) ≤ φ(0).
Additionally, from inequality (5.6), there holds

Λ0,min
2

l−1∑
n=0

δt
∑
τ∈T

∑
στ

LM ∈Eτ

Kτ
LM (δn+1

LM β(S))2 ≤ Cβ +
∑
L∈V

|ωL|ϕL[φ(S0
L) − φ(SlL)]

≤ Cβ + φ(0)|Ω|,
which yields to the requested estimation. The proof is concluded.
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We now state the existence result to the proposed finite volume scheme. The proof follows standard
arguments of the literature as done for instance in [21], and is therefore skipped here. It makes use of
the monotony criterion characterizing the zeros of vector fields (see [19, p. 529]).

Proposition 5.6. Under the assumptions on the physical data (A.1)–(A.11), there exists at least one
solution (Sn+1

L , Pn+1
L , Tn+1

L )L∈V,n∈J0,l−1K to the numerical scheme (4.2).

5.4. Saturation and temperature strong convergence

In this part, we show the strong convergence for some saturation and temperature subsequence. For
that purpose, we use Fréchet–Kolmogorov theorem. To apply the theorem, we start by showing some
compactness results.

5.4.1. Space compactness for the finite volume scheme

We begin by showing some space compactness results for the saturation and temperature finite volume
approximation.

Proposition 5.7. For a primal mesh T of Ω and a time discretization (tn)n∈J0,lK of [0, tf ] , let
(Sn+1
L , Pn+1

L , Tn+1
L )L∈V,n∈J0,l−1K be a solution to the associated numerical scheme (4.2). Define ũh,δt =

ϕ̃h S̃h,δt where ϕ̃h and S̃h,δt are the porosity and saturation finite volume approximations respectively.
For y ∈ Rd, we define

Ωy := {x ∈ Ω/[x, x+ y] ⊂ Ω}.
Under the assumptions (A.1)–(A.11), we have

lim
|y|,h→0+

∫
Ωy×(0,tf )

|ũh,δt(x+ y, t) − ũh,δt(x, t)| dx dt = 0.

Note that this limit is uniform in δt. Indeed, it does not depend on the time discretization.

Proof. Let y ∈ Rd. One has

Ayh,δt :=
∫ tf

0

∫
Ωy

|ũh,δt(x+ y, t) − ũh,δt(x, t)| dx dt

=
∫ tf

0

∫
Ωy

|ϕ̃h(x+ y) S̃h,δt(x+ y, t) − ϕ̃h(x) S̃h,δt(x, t)| dx dt

≤
∫ tf

0

∫
Ωy

|(ϕ̃h(x+ y) − ϕ̃h(x)) S̃h,δt(x+ y, t)|dx dt

+
∫ tf

0

∫
Ωy

|ϕ̃h(x) (S̃h,δt(x+ y, t) − S̃h,δt(x, t))| dx dt.

Therefore, noting that 0 ≤ S̃h,δt ≤ 1 and 0 ≤ ϕ̃h ≤ ϕ2, one gets
Ayh,δt ≤ tfB

y
h + ϕ2C

y
h,δt, (5.21)

where

By
h :=

∫
Ωy

|ϕ̃h(x+ y) − ϕ̃h(x)| dx;Cyh,δt :=
∫ tf

0

∫
Ωy

|S̃h,δt(x+ y, t) − S̃h,δt(x, t)| dx dt.

Firstly, we have

By
h ≤

∫
Ωy

|ϕ̃h(x+ y) − ϕ(x+ y)| dx+
∫

Ωy

|ϕ̃h(x) − ϕ(x)| dx+
∫

Ωy

|ϕ(x+ y) − ϕ(x)| dx

≤ 2
∫

Ω
|ϕ̃h(x) − ϕ(x)| dx+

∫
Ωy

|ϕ(x+ y) − ϕ(x)| dx. (5.22)
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Now, noting that ϕ ∈ L∞(Ω) and that Ω is bounded, one gets ϕ ∈ L1(Ω). Thus

lim
|y|→0+

∫
Ωy

|ϕ(x+ y) − ϕ(x)| dx = 0.

Moreover, the fact that ϕ ∈ L∞(Ω) implies that
ϕh −−−−→

h→0+
ϕ a.e. (almost everywhere) on Ω,

which yields:

lim
h→0+

∫
Ω

|ϕ̃h(x) − ϕ(x)| dx = 0.

Hence, from inequality (5.22), we deduce that
lim
h→0+

By
h = 0. (5.23)

Secondly, by virtue of assumption (A.7), one has

Cyh,δt ≤ Cβ

∫ tf

0

∫
Ωy

|β(S̃h,δt(x+ y, t)) − β(S̃h,δt(x, t))|θ dx dt.

Hölder’s inequality implies

Cyh,δt ≤ Cβ(tf |Ω|)1−θ(Dy
h,δt)

θ, (5.24)

where

Dy
h,δt :=

∫ tf

0

∫
Ωy

|β(S̃h,δt(x+ y, t)) − β(S̃h,δt(x, t))|dx dt

=
l−1∑
n=0

δt
∑
τ∈T

∑
L∈Vτ

∑
M∈V

|β(Sn+1
M ) − β(Sn+1

L )|µRd(x ∈ Ωy ∩ τ ∩ ωL/x+ y ∈ ωM )

≤
l−1∑
n=0

δt
∑
τ∈T

∑
στ

LM ∈Eτ

|β(Sn+1
M ) − β(Sn+1

L )|µRd(x ∈ Ωy/σ
τ
LM ∩ [x, x+ y] ̸= ∅).

Now, note that

µRd(x ∈ Ωy/σ
τ
LM ∩ [x, x+ y] ̸= ∅) ≤ C1

d |στLM ||y|,

where C1
d is a constant depending only on the space dimension d. Hence, one obtains

Dy
h,δt ≤ C1

d |y|
l−1∑
n=0

δt
∑
τ∈T

∑
στ

LM ∈Eτ

|στLM ||β(Sn+1
M ) − β(Sn+1

L )|

≤ C1
d |y|

l−1∑
n=0

δt
∑
τ∈T

∑
στ

LM ∈Eτ

|στLM |hτ |∇[β(S)]n+1
h,δt |τ

|.

Moreover, note that for every τ ∈ T and στLM ∈ Eτ , one has
|στLM | ≤ C2

d(hτ )d−1 and |τ | ≥ C3
d(ρτ )d,

for some positive constants C2
d and C3

d depending only on the space dimension d. Therefore

|στLM |hτ ≤ C2
d(hτ )d ≤ C2

d

(
hτ
ρτ

)d
(ρτ )d ≤ C2

d

C3
d

(
hτ
ρτ

)d
|τ |.

And, by virtue of the regularity assumption on the primal mesh (A.9), one gets

|στLM |hτ ≤ C2
d

C3
d

(C0)d|τ |.
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Therefore

Dy
h,δt ≤ C4

d |y|
l−1∑
n=0

δt
∑
τ∈T

|τ |
∑

στ
LM ∈Eτ

|∇[β(S)]n+1
h,δt |τ

|

≤ C5
d |y|

l−1∑
n=0

δt
∑
τ∈T

|τ ||∇[β(S)]n+1
h,δt |τ

|.

And, in light of Cauchy–Schwarz inequality, one gets

Dy
h,δt ≤ C5

d(tf |Ω|)
1
2 |y|(

l−1∑
n=0

δt
∑
τ∈T

|τ ||∇[β(S)]n+1
h,δt |τ

|2)
1
2

≤ C6
d |y|∥∇[β(S)]h,δt∥(L2(Q))d .

And, owing to inequality (5.24), one gets
Cyh,δt ≤ C7

d |y|θ∥∇[β(S)]h,δt∥θ(L2(Q))d .

Thus, by virtue of the capillary term a priori estimate, there holds
Cyh,δt ≤ C8

d |y|θ. (5.25)
Note that (Cid)4≤i≤8 are some positive constants depending only on the problem data. Finally, it
follows from formulas (5.21), (5.23) and (5.25) that

lim
|y|,h→0+

Ayh,δt = 0.

This concludes the proof.

Proposition 5.8. For a primal mesh T of Ω and a time discretization (tn)n∈J0,lK of [0, tf ] , let
(Sn+1
L , Pn+1

L , Tn+1
L )L∈V,n∈J0,l−1K be a solution to the associated numerical scheme (4.2). Define ψ̃h,δt =

ψ(ϕ̃h, S̃h,δt) and ũh,δt = ψ̃h,δt T̃ h,δt where ϕ̃h, S̃h,δt and T̃ h,δt are the porosity, saturation and temper-
ature finite volume approximations respectively. There holds

lim
|y|,h→0+

∫
Ωy×(0,tf )

|ũh,δt(x+ y, t) − ũh,δt(x, t)| dx dt = 0.

Note that this limit is uniform in δt. Indeed, it does not depend on the time discretization.
Proof. Let y ∈ Rd. One has

Ayh,δt :=
∫ tf

0

∫
Ωy

|ũh,δt(x+ y, t) − ũh,δt(x, t)| dx dt

=
∫ tf

0

∫
Ωy

|ψ̃h,δt(x+ y, t)T̃ h,δt(x+ y, t) − ψ̃h,δt(x, t) T̃ h,δt(x, t)|dx dt

≤
∫ tf

0

∫
Ωy

|(ψ̃h,δt(x+ y, t) − ψ̃h,δt(x, t))T̃ h,δt(x+ y, t)|dx dt

+
∫ tf

0

∫
Ωy

|ψ̃h,δt(x, t)(T̃ h,δt(x+ y, t) − T̃ h,δt(x, t))|dx dt.

And, by virtue of the temperature maximum principle, one has |T̃ h,δt| ≤ T2 := max{−Tmin, Tmax}.
Moreover 0 ≤ ψ̃h,δt ≤ ψ2, where ψ2 := cw + co + cs. Therefore

Ayh,δt ≤ T2E
y
h,δt + ψ2F

y
h,δt, (5.26)

where

Eyh,δt :=
∫ tf

0

∫
Ωy

|ψ̃h,δt(x+ y, t) − ψ̃h,δt(x, t)|dx dt;F yh,δt :=
∫ tf

0

∫
Ωy

|T̃ h,δt(x+ y, t) − T̃ h,δt(x, t)|dx dt.
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Firstly, one writes

Eyh,δt =
∫ tf

0

∫
Ωy

∣∣∣ϕ̃h(x+ y)[cwS̃h,δt(x+ y, t) + co(1 − S̃h,δt(x+ y, t))] + cs(1 − ϕ̃h(x+ y))

− ϕ̃h(x)[cwS̃h,δt(x, t) + co(1 − S̃h,δt(x, t))] − cs(1 − ϕ̃h(x))
∣∣∣dx dt

≤
∫ tf

0

∫
Ωy

{
|(cw − co)(ϕ̃h(x+ y) − ϕ̃h(x))S̃h,δt(x+ y, t)| + |(co − cs)ϕ̃h(x)(ϕ̃h(x+ y) − ϕ̃h(x))|

+ |(cw − co)ϕ̃h(x)(S̃h,δt(x+ y, t) − S̃h,δt(x, t))|
}

dx dt
Therefore

Eyh,δt ≤ C1
d

[∫
Ωy

|ϕ̃h(x+ y) − ϕ̃h(x)| dx+
∫ tf

0

∫
Ωy

|S̃h,δt(x+ y, t) − S̃h,δt(x, t)| dx dt
]

≤ C1
d(By

h + Cyh,δt), (5.27)
where

By
h :=

∫
Ωy

|ϕ̃h(x+ y) − ϕ̃h(x)| dx Cyh,δt :=
∫ tf

0

∫
Ωy

|S̃h,δt(x+ y, t) − S̃h,δt(x, t)| dx dt,

as in the proof of Proposition 5.7. C1
d is a positive constant depending only on the problem data.

Secondly, in the same fashion as in the proof of Proposition 5.7, one has:

F yh,δt ≤
l−1∑
n=0

δt
∑
τ∈T

∑
στ

LM ∈Eτ

|Tn+1
M − Tn+1

L |µRd(x ∈ Ωy/σ
τ
LM ∩ [x, x+ y] ̸= ∅)

≤ C2
d |y|

l−1∑
n=0

δt
∑
τ∈T

|τ |
∑

στ
LM ∈Eτ

|∇Tn+1
h,δt |τ

|

≤ C3
d |y|

l−1∑
n=0

δt
∑
τ∈T

|τ ||∇Tn+1
h,δt |τ

| ≤ C4
d |y|∥∇Th,δt∥(L2(Q))d .

And, by virtue of the temperature a priori estimate, there holds:
F yh,δt ≤ C5

d |y|. (5.28)
Note that (Cid)2≤i≤6 are some positive constants depending only on the problem data. Finally, it
follows from inequalities (5.26), (5.27) and (5.28) that

lim
|y|,h→0+

Ayh,δt = 0.

This concludes the proof.

5.4.2. Space compactness for the continuous in time approximations

For now, let ũh,δt = ϕ̃h S̃h,δt or ũh,δt = ψ(ϕ̃h, S̃h,δt) T̃ h,δt where ϕ̃h, S̃h,δt and T̃ h,δt are the porosity,
saturation and temperature finite volume approximations respectively. We define

uh,δt(x, t) :=
l−1∑
n=0

(tn+1 − t)ũh,δt(x, tn) + (t− tn)ũh,δt(x, tn+1)
δt

1[tn,tn+1)(t) + ũh,δt(x, tf )1[tf ,+∞)(t)

:=
∑
L∈V

1ωL(x)
l−1∑
n=0

(tn+1 − t)unL + (t− tn)un+1
L

δt
1[tn,tn+1)(t) + ulL1[tf ,+∞)(t),
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where unL = ϕLS
n
L if ũh,δt = ϕ̃h S̃h,δt and unL = ψ(ϕL, SnL)TnL if ũh,δt = ψ(ϕ̃h, S̃h,δt)T̃ h,δt, for

n ∈ J0, lK and L ∈ V.

Proposition 5.9. For ũh,δt = ϕ̃h S̃h,δt or ũh,δt = ψ(ϕ̃h, S̃h,δt) T̃ h,δt, there holds

lim
|y|,h,δt→0+

∫
Ωy×(0,tf )

|uh,δt(x+ y, t) − uh,δt(x, t)| dx dt = 0.

Proof. One has

Gyh,δt :=
∫ tf

0

∫
Ωy

|uh,δt(x+ y, t) − uh,δt(x, t)| dx dt

:=
l−1∑
n=0

∫ tn+1

tn

∫
Ωy

1
δt

{(tn+1 − t)(ũnh(x+ y) − ũnh(x)) + (t− tn)(ũn+1
h (x+ y) − ũn+1

h (x))} dx dt

≤
l−1∑
n=0

∫ tn+1

tn

∫
Ωy

(|ũnh(x+ y) − ũnh(x)| + |ũn+1
h (x+ y) − ũn+1

h (x)|) dx dt

≤ 2
∫ tf

0

∫
Ωy

|ũh,δt(x+ y, t) − ũh,δt(x, t)| dx dt+ δt0
∫

Ωy

|ũ0
h(x+ y) − ũ0

h(x)| dx dt

≤ 2Ayh,δt +By
h,δt, (5.29)

where

Ah,δt =
∫

Ωy×(0,tf )
|ũh,δt(x+ y, t) − ũh,δt(x, t)| dx dt;By

h,δt = 2δt
∫

Ω
|ũ0
h(x)| dx.

Now, note that (ũ0
h)h is uniformly bounded. Indeed, for ũh,δt = ϕ̃h S̃h,δt, one has: ũ0

h = ϕ̃h S̃
0
h, thus

|ũ0
h| ≤ ϕ2. Moreover, for ũh,δt = ψ(ϕ̃h, S̃h,δt) T̃ h,δt, one has: ũ0

h = ψ(ϕ̃h, S̃0
h)T̃ 0

h, thus, by virtue of
the temperature maximum principle, one gets: |ũ0

h| ≤ ψ2T2, where ψ2 = cw + co + cs and T2 =
max{−Tmin, Tmax}. Therefore

By
h,δt ≤ 2δt|Ω|C1

d = C2
dδt,

where C1
d and C2

d are some positive constants depending only on the problem data. Thus, inequal-
ity (5.29) becomes

Gyh,δt ≤ 2Ayh,δt + C2
dδt.

Now, from Propositions 5.7 and 5.8, it follows that
lim

|y|,h→0+
Ayh,δt = 0,

uniformly in δt. This yields, as |y|, h and δt tend to 0
lim

|y|,h,δt→0+
Gyh,δt = 0.

This concludes the proof.

5.4.3. Time compactness for the continuous in time approximations

The proof of this part follows that of Lemma A.1 in [8]. Let z > 0. For t ≥ 0, we define

wh,δt( · , t) = uh,δt( · , t+ z) − uh,δt( · , t),
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where ũh,δt = ϕ̃h S̃h,δt or ũh,δt = ψ(ϕ̃h, S̃h,δt) T̃ h,δt. Note that wh,δt( · , t) vanishes for t ≥ tf . We
introduce the notation:

Jh,δt(z) :=
∫ +∞

0

∫
Ω

|uh,δt(x, t+ z) − uh,δt(x, t)| dx dt (5.30)

=
∫ +∞

0

∫
Ω

|wh,δt(x, t)| dx dt,

which is well-defined.

Proposition 5.10. For ũh,δt = ϕ̃h S̃h,δt or ũh,δt = ψ(ϕ̃h, S̃h,δt) T̃ h,δt, there holds:

lim
z,h,δt→0+

Jh,δt(z) = 0.

Note that this limit does not depend on the space or time discretization.

Proposition 5.11. The sequences of finite volume approximations (ũh,δt)h,δt are relatively compact
in L1(Q).

Let us end this section by the following remark.

Remark 5.12. For simplified models (advection-diffusion, or for degenerate parabolic problems) in
the isothermal case, the convergence of the numerical schemes is proved rigorously either by com-
pactness arguments, or by obtaining a priori error estimates, see for instance [15] and the references
therein. In this paper, the convergence makes use of compactness arguments for passing to the limit
in nonlinearities. Deriving theoretical error estimates in the nonisothermal case is difficult because the
model is too complex. This could be treated in future contributions.

6. Convergence of the numerical scheme

6.1. Strong and weak convergence properties

Lemma 6.1. Under the assumptions (A.1)–(A.11), let us define ũh,δt = ϕ̃h S̃h,δt and uh,δt = ϕ̃h Sh,δt.
There holds

lim
h→0

∥uh,δt − ũh,δt∥L1(Q) = 0.

Proof. It can be checked that
Ah,δt := ∥uh,δt − ũh,δt∥L1(Q) =

∫
Q

|ϕ̃h Sh,δt − ϕ̃h S̃h,δt| dx dt ≤ ϕ2

∫
Q

|Sh,δt − S̃h,δt| dx dt.

In light of assumption (A.7), one gets

Ah,δt ≤ ϕ2Cβ

∫
Q

|β(Sh,δt) − β(S̃h,δt)|θ dx dt.

Thus, by virtue of Hölder’s inequality, one has:

Ah,δt ≤ C1
d

(∫
Q

|β(Sh,δt) − β(S̃h,δt)| dx dt
)θ

≤ C1
d(Bh,δt)θ, (6.1)
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where (Cid)i are some positive constants depending only on the problem data, and
Bh,δt := ∥β(Sh,δt) − β(S̃h,δt)∥L1(Q)

=
l−1∑
n=0

δt
∑
τ∈T

∑
L∈Vτ

∫
ωL∩τ

|β(Sn+1
h,δt ) − β(S̃n+1

h,δt )| dx

=
l−1∑
n=0

δt
∑
τ∈T

∑
L∈Vτ

∫
ωL∩τ

|β(Sh,δt(x, tn+1)) − β(S̃h,δt(xL, tn+1))| dx

≤ h
l−1∑
n=0

δt
∑
τ∈T

|τ | |∇[β(S)]n+1
h,δt |τ

| ≤ h

∫
Q

|∇[β(S)]h,δt| dx dt.

By virtue of the Cauchy–Schwarz inequality, one gets:
Bh,δt ≤ h (tf |Ω|)

1
2 ∥∇[β(S)]h,δt∥(L2(Q))d ≤ C2

d h. (6.2)
Finally, one shows limh→0Ah,δt = 0. This concludes the proof.

Lemma 6.2. Under the assumptions (A.1)–(A.11), let us define ṽh,δt = ψ(ϕ̃h, S̃h,δt) T̃ h,δt and vh,δt =
ψ(ϕ̃h, Sh,δt)Th,δt. There holds

lim
h→0

∥vh,δt − ṽh,δt∥L1(Q) = 0.

Proof. Let us set
Ch,δt := ∥vh,δt − ṽh,δt∥L1(Q) =

∫
Q

|ψ(ϕ̃h, Sh,δt)Th,δt − ψ(ϕ̃h, S̃h,δt) T̃ h,δt| dx dt.

And recalling that ψ(ϕ, S) = [cwS + co(1 − S)]ϕ+ cs(1 − ϕ), one gets

Ch,δt =
∫

Q

∣∣∣[ϕ̃h co + (1 − ϕ̃h)cs](Th,δt − T̃ h,δt) + ϕ̃h(cw − co)(Sh,δtTh,δt − S̃h,δtT̃ h,δt)
∣∣∣ dx dt.

Using the fact that 0 < ϕ̃h < 1 and the triangle inequality, one writes

Ch,δt ≤
[
(co + cs)

∫
Q

|Th,δt − T̃ h,δt| dx dt+ (cw + co)
∫

Q
ϕ̃h|Sh,δt − S̃h,δt||Th,δt| dx dt

+ (cw + co)
∫

Q
ϕ̃h S̃h,δt|Th,δt − T̃ h,δt| dx dt

]
.

Therefore, owing to the saturation and temperature maximum principles, one obtains
Ch,δt ≤ C4

d(Ah,δt +Dh,δt), (6.3)
where

Ah,δt =
∫

Q
ϕ̃h|Sh,δt − S̃h,δt| dx dt = ∥uh,δt − ũh,δt∥L1(Q),

and

Dh,δt =
∫

Q
|Th,δt − T̃ h,δt| dx dt.

Now, from Lemma 6.1, there holds

lim
h→0

Ah,δt = 0. (6.4)
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As a result

Dh,δt =
l−1∑
n=0

δt
∑
τ∈T

∑
L∈Vτ

∫
ωL∩τ

|Th,δt(x, tn+1) − T̃ h,δt(xL, tn+1)| dx

≤ h
l−1∑
n=0

δt
∑
τ∈T

|τ | |∇Tn+1
h,δt |τ

| ≤ h

∫
Q

|∇Th,δt| dx dt.

By virtue of Cauchy–Schwarz inequality, one infers
Dh,δt ≤ h (tf |Ω|)

1
2 ∥∇Th,δt∥(L2(Q))d ≤ C5

d h.

Thus
lim
h→0

Ah,δt = 0. (6.5)

Finally, from (6.3), (6.4) and (6.5), we deduce that
lim
h→0

Ch,δt = 0.

This concludes the proof.

Proposition 6.3. Under the assumptions (A.1)–(A.11), there exists a subsequence of (Sh,δt, Ph,δt, Th,δt,
S̃h,δt, P̃ h,δt, T̃ h,δt) such that the following convergence properties hold

ũh,δt, uh,δt −→ u strongly in Lr(Q), for r ≥ 1 and a.e. on Q. (6.6)
ṽh,δt, vh,δt −→ v strongly in Lr(Q), for r ≥ 1 and a.e. on Q. (6.7)

S̃h,δt, Sh,δt −→ S a.e. on Q, (6.8)

T̃ h,δt, Th,δt −→ T a.e. on Q, (6.9)
Ph,δt −−⇀ Pweakly in L2(Q), (6.10)

∇Ph,δt −−⇀ ∇P weakly in (L2(Q))d, (6.11)
∇[β(S)]h,δt −−⇀ ∇β(S) weakly in (L2(Q))d, (6.12)

∇Th,δt −−⇀ ∇T weakly in (L2(Q))d. (6.13)

Furthermore, T, β(S), P ∈ L2(0, tf ;H1
ΓD

(Ω)) satisfy the following:

0 ≤ S ≤ 1a.e. on Q, (6.14)
Tmin ≤ T ≤ Tmaxa.e. on Q, (6.15)

u = ϕSa.e. on Q, (6.16)
v = ψ(ϕ, S)Ta.e. on Q. (6.17)

Proof. By virtue of Proposition 5.11, (ũh,δt)h,δt and (ṽh,δt)h,δt are relatively compact in L1(Q). Thus,
the following strong convergence properties hold for some subsequence of (S̃h,δt, P̃ h,δt, T̃ h,δt)

ũh,δt −→ u and ṽh,δt −→ v strongly in L1(Q) and a.e. on Q,
Moreover, from Lemmas 6.1 and 6.2, one gets

uh,δt −→ u and vh,δt −→ v strongly in L1(Q) and a.e. on Q,
Furthermore, the fact that (uh,δt)h,δt and (vh,δt)h,δt are bounded yields

ũh,δt, uh,δt −→ u and ṽh,δt, vh,δt −→ v strongly in Lr(Q), for r ≥ 1 and a.e. on Q.
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Now, noting that ϕ̃h → ϕ a.e. on Ω (because ϕ ∈ L∞(Ω)), 0 < ϕ1 ≤ ϕ̃h and 0 < ϕ1 ≤ ϕ a.e. on Ω, one
has

S̃h,δt = ũh,δt

ϕ̃h
−→ u

ϕ
a.e. on Q, and Sh,δt = uh,δt

ϕ̃h
−→ u

ϕ
a.e. on Q.

Therefore, by defining S = u/ϕ a.e. on Q, one obtains
S̃h,δt, Sh,δt −→ S a.e. on Q. (6.18)

The saturation maximum principle implies 0 ≤ S ≤ 1 a.e. on Q. Moreover, u = ϕS a.e. on Q.
For now, recall that ψ(ϕ, S) = [cwS + co(1 − S)]ϕ + cs(1 − ϕ). Noting that ϕ̃h → ϕ a.e. on Ω and
S̃h,δt → S a.e. on Q, one infers ψ(ϕ̃h, S̃h,δt) → ψ(ϕ, S) a.e. on Q. In addition, there exists a constant
ψ1 > 0 such that ψ1 ≤ ψ, thus

T̃ h,δt = ṽh,δt

ψ(ϕ̃h, S̃h,δt)
−→ v

ψ(ϕ, S) a.e. on Q.

In the same fashion, one shows that
Th,δt −→ v

ψ(ϕ, S) a.e. on Q.

Therefore, by defining T = v
ψ(ϕ,S) a.e. on Q, one has:

T̃ h,δt, Th,δt −→ T a.e. on Q.
Owing to the temperature maximum principle, one deduces Tmin ≤ T ≤ Tmax a.e. on Q. Furthermore,
v = ψ(ϕ, S)T a.e. on Q.
In light of Proposition 5.5, the sequence (∇Ph,δt) is bounded in (L2(Q))d. Furthermore, by virtue of
the Poincaré inequality, we deduce that the sequence (Ph,δt) is bounded in L2(Q). Therefore, owing to
the fact that (Ph,δt) ⊂ L2(0, tf ;H1

ΓD
(Ω)), there exists P ∈ L2(0, tf ;H1

ΓD
(Ω)) such that the following

convergence properties hold for some subsequence of (Ph,δt):
Ph,δt −−⇀ Pweakly in L2(Q), and ∇Ph,δt −−⇀ ∇Pweakly in (L2(Q))d.

Analogously, one proves that there exists T ∗ ∈ L2(0, tf ;H1
ΓD

(Ω)) such that the following convergence
properties hold for a subsequence of (Th,δt)

Th,δt −−⇀ T ∗weakly in L2(Q), and ∇Th,δt −−⇀ ∇T ∗weakly in (L2(Q))d.
Now, note that Th,δt → T a.e. on Q. Thus, by virtue of the dominated convergence theorem together
with the temperature maximum principle, we deduce that Th,δt → T strongly in L2(Q). Therefore, by
identifying the limits, one gets T ∗ = T a.e. on Q.
Similarly, from Proposition 5.5, the sequence (∇[β(S)]h,δt) is bounded in (L2(Q))d and the sequence
([β(S)]h,δt) is bounded in L2(Q). Therefore, owing to the fact that ([β(S)]h,δt) ⊂ L2(0, tf ;H1

ΓD
(Ω))

(because Sh,δt = P−1
c (Po − Pw) = P−1

c (0) = 1 over ΓD × (0, tf ) and β(1) = 0 by the definition of β),
there exists β∗ ∈ L2(0, tf ;H1

ΓD
(Ω)) and ζ ∈ (L2(Q))d such that, up to a subsequence, one infers

[β(S)]h,δt −−⇀ β∗weakly in L2(Q), and ∇[β(S)]h,δt −−⇀ ζweakly in (L2(Q))d.
Moreover, combining (6.18) together with the continuity of β imply

β(S̃h,δt) −→ β(S) a.e. on Q.
And, in view of the saturation maximum principle, (β(S̃h,δt)) is bounded. Therefore, by virtue of the
dominated convergence theorem, one gets

β(S̃h,δt) −→ β(S) strongly in L2(Q). (6.19)
Mimicking the proof of Lemma 6.2, it can be established that

∥[β(S)]h,δt − β(S̃h,δt)∥L2(Q) ≤ hC6
d ∥∇[β(S)]h,δt∥(L2(Q))d

≤ C7
d h,
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where (Cid)i are some positive constants depending only on the problem data. Thus
lim
h→0

∥[β(S)]h,δt − β(S̃h,δt)∥L2(Q) = 0. (6.20)

Therefore, from (6.19) and (6.20), one gets:
[β(S)]h,δt −→ β(S) strongly in L2(Q).

The limit uniqueness forces β∗ = β(S) a.e. on Q. Hence, by identifying the limits, we deduce that
ζ = ∇β∗ = ∇β(S) a.e. on Q. As a result β(S) ∈ L2(0, tf ;H1

ΓD
(Ω)). The proof is concluded.

6.2. Weak solution to the continuous problem

Definition 6.4 (Weak solution). Let S0 and T 0 be two functions in L∞(Ω) such that 0 ≤ S0(x) ≤ 1
and Tmin ≤ T 0(x) ≤ Tmax a.e. for x ∈ Ω. We say that (S, P, T ) is a weak solution to the problem (2.1),
if it satisfies: 0 ≤ S ≤ 1, Tmin ≤ T ≤ Tmax and β(S), P, T ∈ L2(0, tf ;H1

ΓD
(Ω)). Moreover, for every

ξ ∈ C∞
c (Ω × [0, tf )) such that ξ(x, t) = 0 for (x, t) ∈ ΓD × [0, tf ), there holds:

−
∫

Q
ϕS ∂tξ dx d −

∫
Ω
ϕS0 ξ(x, 0) dx dt+

∫
Q
λ(S;T ) ηw(S;T ) (K∇P ) · ∇ξ dx dt

+
∫

Q
λ(S;T ) ηw(S;T )Bo(S;T ) (K∇T ) · ∇ξ dx dt

+
∫

Q
Λ0(S;T ) (K∇β(S)) · ∇ξ dx dt = 0, (6.21)

∫
Q
ϕS ∂tξ dx dt+

∫
Ω
ϕS0 ξ(x, 0) dx dt+

∫
Q
λ(S;T ) ηo(S;T ) (K∇P ) · ∇ξ dx dt

+
∫

Q
λ(S;T ) ηo(S;T )Bo(S;T ) (K∇T ) · ∇ξ dx dt

−
∫

Q
Λ0(S;T ) (K∇β(S)) · ∇ξ dx dt = 0, (6.22)

−
∫

Q
ψ(ϕ;S)T ∂tξ dxdt−

∫
Ω
ψ(ϕ;S0)T 0 ξ(x, 0) dxdt

+
∫

Q
[λ(cwηw + coηo)](S;T )T (K∇P ) · ∇ξ dxdt−

∫
Q

Λ0(S;T ) (co − cw)T (K∇β(S)) · ∇ξ dxdt

+
∫

Q
[λ(cwηw + coηo)Bo](S;T )T (K∇T ) · ∇ξ dxdt+

∫
Q

(κT∇T ) · ∇ξ dxdt = 0. (6.23)

6.3. Theorem of convergence towards a weak solution

Let us introduce the functions wh,δt, wh,δt defined a.e. on Q for all τ ∈ T and n ∈ J0, l − 1K by

wh,δt|τ×(tn,tn+1]
= wn+1

τ := inf
x∈τ

wh,δt(x, tn+1) = min
M∈Vτ

wn+1
M ,

wh,δt|τ×(tn,tn+1]
= wn+1

τ := sup
x∈τ

wh,δt(x, tn+1) = max
M∈Vτ

wn+1
M ,

Typically, the function w is either the saturation or the temperature. These upper and lower sequences
converge to the same limit. This is the object of the following result.

288



CVFE scheme for nonisothermal two-phase flow in porous media

Lemma 6.5. There holds
lim
h→0

∥Sh,δt − Sh,δt∥L2(Q) = 0 and lim
h→0

∥T h,δt − T h,δt∥L2(Q) = 0.

Proof. Firstly, one has

∥Sh,δt − Sh,δt∥2
L2(Q) =

l−1∑
n=0

δt
∑
τ∈T

|τ | |Sn+1
τ − Sn+1

τ |2

≤
l−1∑
n=0

δt
∑
τ∈T

|τ | |β(Sn+1
τ ) − β(Sn+1

τ )|2θ.

Now, by virtue of the mean value theorem, for every τ ∈ T and n ∈ J0, l − 1K, there holds:
|β(Sn+1

τ ) − β(Sn+1
τ )| ≤ h|∇[β(S)]n+1

h,δt |τ
|.

Thus

∥Sh,δt − Sh,δt∥2
L2(Q) ≤ h2θ

l−1∑
n=0

δt
∑
τ∈T

|τ | |∇[β(S)]n+1
h,δt |τ

|2θ

≤ h2θ
∫

Q
|∇[β(S)]h,δt|2θ dxdt.

Owing to Hölder’s inequality, one gets
∥Sh,δt − Sh,δt∥2

L2(Q) ≤ h2θ(tf |Ω|)1−θ∥∇[β(S)]h,δt∥2θ
(L2(Q))d .

Moreover, by virtue of the capillary term a priori estimate, one gets
∥Sh,δt − Sh,δt∥L2(Q) ≤ C1

dh
θ,

where (Cid)i are some positive constants depending only on the problem data. Hence
lim
h→0

∥Sh,δt − Sh,δt∥L2(Q) = 0.

Secondly, one writes

∥T h,δt − T h,δt∥2
L2(Q) =

l−1∑
n=0

δt
∑
τ∈T

|τ | |Tn+1
τ − Tn+1

τ |2

≤ h2
l−1∑
n=0

δt
∑
τ∈T

|τ | |∇Tn+1
h,δt |τ

|2 ≤ h2∥∇Th,δt∥2
(L2(Q))d .

By virtue of the temperature a priori estimate, one has
∥T h,δt − T h,δt∥2

L2(Q) ≤ C2
dh.

Thus
lim
h→0

∥T h,δt − T h,δt∥L2(Q) = 0.

The proof is complete.

In the sequel, we show the main result of this article, which states that any limit of the discrete
solutions is a weak solution to the continuous problem.

Theorem 6.6 (Passage to the limit). Under the assumptions of Proposition 6.3, the limit function
(S, P, T ) given in (6.8)–(6.9), is a weak solution to the problem (2.1) in the sense of Definition 6.4.

Proof. We divide the proof in three parts.
(a) Mass conservation equations. We will detail the proof in the case of the mass conservation
equation for the wetting phase. The mass conservation equation of the nonwetting phase is carried out
similarly. For that purpose, let ξ ∈ C∞

c (Ω × [0, tf )) be such that ξ(x, t) = 0 for (x, t) ∈ ΓD × [0, tf ).
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We start by multiplying the 1st equation of the numerical scheme (4.2) by δt ξnL where ξnL := ξ(xL, tn)
for L ∈ V \ VD (where VD is the set of the Dirichlet boundary vertices) and n ∈ J0, l− 1K, then we
sum over L and n. This yields

W h,δt
1 +W h,δt

2 +W h,δt
3 +W h,δt

4 +W h,δt
5 +W h,δt

6 = 0, (6.24)
where

W h,δt
1 =

l−1∑
n=0

∑
L∈V

|ωL|ϕL(Sn+1
L − SnL)ξnL,

W h,δt
2 = −

l−1∑
n=0

δt
∑
L∈V

∑
τ∈τL

M∈Vτ \{L}

[Λ0]n+1
τ Kτ

LM [β(Sn+1
M ) − β(Sn+1

L )] · ξnL,

W h,δt
3 = −

l−1∑
n=0

δt
∑
L∈V

∑
τ∈τL

M∈Vτ \{L}

[Λ0]n+1
τ Kτ

LM{γn+1
LM (Sn+1

M − Sn+1
L ) − [β(Sn+1

M ) − β(Sn+1
L )]} · ξnL,

W h,δt
4 = −

l−1∑
n=0

δt
∑
L∈V

∑
τ∈τL

M∈Vτ \{L}

λn+1
τ ηw(;P )Kτ

LMδ
n+1
LM P · ξnL,

W h,δt
5 = −

l−1∑
n=0

δt
∑
L∈V

∑
τ∈τL

M∈Vτ \{L}

λn+1
τ [ηwB+

o ](;T )Kτ
LMδ

n+1
LM T · ξnL,

W h,δt
6 =

l−1∑
n=0

δt
∑
L∈V

∑
τ∈τL

M∈Vτ \{L}

λn+1
τ [ηwB−

o ](;−T )Kτ
LMδ

n+1
LM T · ξnL.

First, rearranging the accumulation term W h,δt
1 and taking into account that ξlL = ξ(xL, tf ) = 0, one

gets

W h,δt
1 = −

l−1∑
n=0

∑
L∈V

∫ tn+1

tn

∫
ωL

ϕL S
n+1
L ∂tξ(xL, t) dxdt−

∑
L∈V

∫
ωL

ϕL S
0
L ξ(xL, 0) dx

= −
∫

Q
ϕ̃hS̃h,δtζ̃

1
h(x, t) dxdt−

∫
Ω
ϕ̃hS̃

0
hξ̃

0
h dx,

where
ζ̃1
h(x, t) := ∂tξ(xL, t) for x ∈ ωL and t ∈ [0, tf ),

S̃0
h(x) := S0

L, ξ̃0
h(x) := ξ(xL, 0) for x ∈ ωL.

And, noting that ξ ∈ C∞
c (Ω × [0, tf )) and S0 ∈ L∞(Ω), one infers

ζ̃1
h −→ ∂tξ a.e. on Q, S̃0

h −→ S0, ξ̃0
h −→ ξ( · , 0) a.e. on Ω.

From Proposition 6.3, it follows that
S̃h,δt −→ S a.e. on Q.

Therefore, by virtue of the dominated convergence theorem together with the fact that all involved
sequences of functions are bounded, one has

lim
h,δt→0

W h,δt
1 = −

∫
Q
ϕS∂tξ dxdt−

∫
Ω
ϕS0ξ(x, 0) dx. (6.25)

Next, let us show
lim

h,δt→0
W h,δt

2 =
∫

Q
Λ0(S;T ) (K∇β(S)) · ∇ξ dxdt.
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The discrete integration by part leads to

W h,δt
2 =

l−1∑
n=0

δt
∑
τ∈T

∑
στ

LM ∈Eτ

[Λ0]n+1
τ Kτ

LM [β(Sn+1
M ) − β(Sn+1

L )] · (ξnM − ξnL).

Introducing the following finite element reconstruction of the function ξ

ξbh,δt(x, t) :=
l−1∑
n=0

∑
L∈V

ξ(xL, tn)φL(x)1(tn,tn+1](t), ∀ (x, t) ∈ Ω × (0, tf ),

implies

W h,δt
2 =

l−1∑
n=0

δt
∑
τ∈T

[Λ0]n+1
τ

∫
τ
(K∇[β(S)]n+1

h,δt ) · ∇ξbh,δt(x, tn+1) dx.

In the sequel, we denote by

V h,δt
2 :=

∫
Q

Λ0(Sh,δt; T h,δt) (K∇[β(S)]h,δt) · ∇ξbh,δt dxdt

=
l−1∑
n=0

δt
∑
τ∈T

Λ0(Sn+1
τ ; Tn+1

τ )
∫
τ
(K∇[β(S)]n+1

h,δt ) · ∇ξbh,δt(x, tn+1) dx.

Now, the fact that Λ0 is continuous in S and T yields its uniform continuity on the compact set
[0, 1] × [Tmin, Tmax]. Hence, there exists a modulus of continuity ϵ1 : R+ → R+ such that for every
S1, S2 ∈ [0, 1] and every T1, T2 ∈ [Tmin, Tmax], there holds

|Λ0(S1, T1) − Λ0(S2, T2)| ≤ ϵ1(|S1 − S2| + |T1 − T2|). (6.26)
Moreover, ϵ1 is bounded and

lim
y→0

ϵ1(y) = 0.

Recall that for every τ ∈ T and n ∈ J0, l − 1K, one has

[Λ0]n+1
τ = 1

#Vτ

∑
M∈Vτ

Λ0(Sn+1
M ;Tn+1

M ).

Thus

[Λ0]n+1
τ − Λ0(Sn+1

τ ; Tn+1
τ ) = 1

#Vτ

∑
M∈Vτ

[Λ0(Sn+1
M ;Tn+1

M ) − Λ0(Sn+1
τ ; Tn+1

τ )].

Therefore, by virtue of inequality (6.26) together with the triangle inequality, one finds
|[Λ0]n+1

τ − Λ0(Sn+1
τ ; Tn+1

τ )| ≤ ϵ1(|Sn+1
τ − Sn+1

τ | + |Tn+1
τ − Tn+1

τ |).
Thus

Ah,δt2 := |W h,δt
2 − V h,δt

2 |

≤
l−1∑
n=0

δt
∑
τ∈T

∫
τ

|[Λ0]n+1
τ − Λ0(Sn+1

τ ; Tn+1
τ )| |(K∇[β(S)]n+1

h,δt ) · ∇ξbh,δt(x, tn+1)| dx

≤
∫

Q
ϵh,δt1 |(K∇[β(S)]h,δt).∇ξbh,δt| dxdt,

where

ϵh,δt1 := ϵ1(|Sh,δt − Sh,δt| + |T h,δt − T h,δt|).
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The Cauchy–Schwarz inequality gives

Ah,δt2 ≤
∫

Q
ϵh,δt1 |(K∇[β(S)]h,δt).∇[β(S)]h,δt|

1
2 |(K∇ξbh,δt) · ∇ξbh,δt|

1
2 dxdt

≤ K2

∫
Q
ϵh,δt1 |∇[β(S)]h,δt||∇ξbh,δt| dxdt

≤ K2∥∇ξbh,δt∥∞∥∇[β(S)]h,δt∥(L2(Q))d

∫
Q

(ϵh,δt1 )2 dxdt.

Therefore
Ah,δt2 ≤ C1

d∥∇ξbh,δt∥∞

∫
Q

(ϵh,δt1 )2 dxdt, (6.27)

where (Cid)i are some positive constants depending only on the problem data. The regularity of the
test function ξbh,δt entails

lim
h,δt→0

∥∇ξbh,δt − ∇ξ∥∞ = 0.

Thus
lim

h,δt→0
∥∇ξbh,δt∥∞ = ∥∇ξ∥∞ < +∞. (6.28)

Now, Lemma 6.5 ensures that
ϵh,δt1 = ϵ1(|Sh,δt − Sh,δt| + |T h,δt − T h,δt|) −→ 0 a.e. on Q.

As a consequence
lim

h,δt→0

∫
Q

(ϵh,δt1 )2 dxdt = 0. (6.29)

From (6.27), (6.28) and (6.29), we deduce that
lim

h,δt→0
Ah,δt2 = 0.

Hence
lim

h,δt→0
|W h,δt

2 − V h,δt
2 | = 0. (6.30)

It remains to show that
lim

h,δt→0
V h,δt

2 =
∫

Q
Λ0(S;T ) (K∇β(S)) · ∇ξ dxdt.

Notice that
∥Sh,δt − Sh,δt∥L2(Q) ≤ ∥Sh,δt − Sh,δt∥L2(Q) −→ 0, as h −→ 0.

The fact that Sh,δt → S a.e. on Q yields Sh,δt → S a.e. on Q. Similarly, one shows that Sh,δt → S a.e.
on Q and T h,δt, T h,δt → T a.e. on Q for some subsequences. Therefore, the continuity of Λ0 yields

Λ0(Sh,δt; T h,δt) −→ Λ0(S, T ) a.e. on Q.
Thus, owing to the fact that Λ0 is bounded together with the dominated convergence theorem„ one
gets

Λ0(Sh,δt; T h,δt) −→ Λ0(S, T ) strongly in L2(Q).
Moreover, one has

∇ξbh,δt −→ ∇ξ strongly in (L2(Q))d.
Therefore, the fact that K ∈ (L∞(Ω))d×d yields

Λ0(Sh,δt; T h,δt)K∇ξbh,δt −→ Λ0(S, T )K∇ξ strongly in (L2(Q))d.
As a result

lim
h,δt→0

∫
Q

Λ0(Sh,δt; T h,δt)(K∇ξbh,δt) · ∇[β(S)]h,δt dxdt =
∫

Q
Λ0(S;T )(K∇ξ) · ∇β(S) dxdt.
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Hence, the fact that K is symmetric and (6.30) yield

lim
h,δt→0

V h,δt
2 = lim

h,δt→0
W h,δt

2 =
∫

Q
Λ0(S;T ) (K∇β(S)) · ∇ξ dxdt. (6.31)

For now, let us establish
lim

h,δt→0
W h,δt

3 = 0.

Rearranging the terms of W h,δt
3 , it can be reformulated as follows

W h,δt
3 =

l−1∑
n=0

δt
∑
τ∈T

[Λ0]n+1
τ

∑
στ

LM ∈Eτ

Kτ
LM (γn+1

LM − γn+1
LM ).(Sn+1

M − Sn+1
L ).(ξnM − ξnL),

where

γn+1
LM :=


β(Sn+1

M ) − β(Sn+1
L )

Sn+1
M − Sn+1

L

if Sn+1
L ̸= Sn+1

M ,

γ(Sn+1
L ) if Sn+1

L = Sn+1
M .

Therefore

|W h,δt
3 | ≤ Λ0,max

l−1∑
n=0

δt
∑
τ∈T

∑
στ

LM ∈Eτ

|Kτ
LM |.|Sn+1

M − Sn+1
L |.|γn+1

LM − γn+1
LM |.|ξnM − ξnL|.

Using Cauchy–Schwarz inequality, one gets
|W h,δt

3 | ≤ Λ0,maxA
h,δt
3 .(Bh,δt

3 )
1
2 , (6.32)

where

Ah,δt3 :=
(
l−1∑
n=0

δt
∑
τ∈T

∑
στ

LM ∈Eτ

Kτ
LM (δn+1

LM S)2
)2

,

and

Bh,δt
3 :=

l−1∑
n=0

δt
∑
τ∈T

∑
στ

LM ∈Eτ

|Kτ
LM |.(γn+1

LM − γn+1
LM )2.(ξnM − ξnL)2.

The fact that β−1 is θ-Hölder yields
|Sn+1
M − Sn+1

L | ≤ Cβ|β(Sn+1
M ) − β(Sn+1

L )|θ.
Therefore, in light of Lemmas 5.3, 5.4 and a priori estimate (5.6), one writes

l−1∑
n=0

δt
∑
τ∈T

∑
στ

LM ∈Eτ

Kτ
LM (δn+1

LM S)2 ≤ C2
d . (6.33)

The uniform continuity of γ on the compact set [0, 1] yields the existence of a modulus of continuity
ϵ2 : R+ → R+ such that for every S1, S2 ∈ [0, 1], there holds:

|γ(S1) − γ(S2)| ≤ ϵ2(|S1 − S2|). (6.34)
Moreover, ϵ2 is bounded and

lim
y→0

ϵ2(y) = 0.

Thus, for every τ ∈ T , στLM ∈ Eτ and n ∈ J0, l − 1K, one has
|γn+1
LM − γn+1

LM | ≤ ϵ2(|Sn+1
τ − Sn+1

τ |).
Therefore

Bh,δt
3 ≤

l−1∑
n=0

δt
∑
τ∈T

[ϵ2(|Sn+1
τ − Sn+1

τ |)]2
∑

στ
LM ∈Eτ

|Kτ
LM |(ξnM − ξnL)2.
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Let us define
ϵh,δt2 := ϵ2(|Sh,δt − Sh,δt|).

From Lemma 5.3, one has

Bh,δt
3 ≤

∫
Q

(ϵh,δt2 )2(K∇ξbh,δt) · ∇ξbh,δt dxdt

≤ K2

∫
Q

(ϵh,δt2 )2|∇ξbh,δt|2 dxdt ≤ K2∥∇ξbh,δt∥2
∞

∫
Q

(ϵh,δt2 )2 dxdt. (6.35)

Because
lim

h,δt→0

∫
Q

(ϵh,δt2 )2 dxdt = 0,

one deduces
lim

h,δt→0
W h,δt

3 = lim
h,δt→0

Bh,δt
3 = 0

Next, let us prove

lim
h,δt→0

W h,δt
4 =

∫
Q
λ(S;T ) ηw(S;T ) (K∇P ) · ∇ξ dxdt.

For that purpose, we rewrite W h,δt
4 as

W h,δt
4 =

l−1∑
n=0

δt
∑
τ∈T

λn+1
τ

∑
στ

LM ∈Eτ

ηw(;P )Kτ
LMδ

n+1
LM P.δnLMξ.

Let us set
V h,δt

4 :=
∫

Q
λ(Sh,δt; T h,δt) ηw(Sh,δt; T h,δt) (K∇Ph,δt) · ∇ξbh,δt dxdt.

As previously, it can be checked that

lim
h,δt→0

V h,δt
4 =

∫
Q
λ(S;T ) ηw(S;T ) (K∇P ) · ∇ξ dxdt. (6.36)

Observe that
Ah,δt4 := |W h,δt

4 − V h,δt
4 |

≤
l−1∑
n=0

δt
∑
τ∈T

∑
στ

LM ∈Eτ

[ληw]n+1
LM |Kτ

LM ||δn+1
LM P ||δnLMξ|, (6.37)

where
[ληw]n+1

LM := |λn+1
τ ηw(;P ) − λ(Sn+1

τ ; Tn+1
τ ) ηw(Sn+1

τ ; Tn+1
τ )|,

for every τ ∈ T , στLM ∈ Eτ and n ∈ J0, l− 1K. Now, the fact that λ and ηw are continuous in S and T
yields their uniform continuity on the compact set [0, 1] × [Tmin, Tmax]. Hence, there exists two moduli
of continuity ϵ3, ϵ4 : R+ → R+ such that for every S1, S2 ∈ [0, 1] and every T1, T2 ∈ [Tmin, Tmax], there
holds:

|λ(S1, T1) − λ(S2, T2)| ≤ ϵ3(|S1 − S2| + |T1 − T2|),
and

|ηw(S1, T1) − ηw(S2, T2)| ≤ ϵ4(|S1 − S2| + |T1 − T2|).
Moreover, ϵ3 and ϵ4 are bounded and

lim
y→0

ϵ3(y) = lim
y→0

ϵ4(y) = 0.

Now, by virtue of the triangle inequality, one gets
[ληw]n+1

LM ≤
[
λn+1
τ |ηw(;P ) − ηw(Sn+1

τ ; Tn+1
τ )| + ηw(Sn+1

τ ; Tn+1
τ )|λn+1

τ − λ(Sn+1
τ ; Tn+1

τ )|
]
.
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Thus
[ληw]n+1

LM ≤ [λ2ϵ4(|Sn+1
τ − Sn+1

τ | + |Tn+1
τ − Tn+1

τ |) + ϵ3(|Sn+1
τ − Sn+1

τ | + |Tn+1
τ − Tn+1

τ |)]

≤ ϵ5(|Sn+1
τ − Sn+1

τ | + |Tn+1
τ − Tn+1

τ |), (6.38)
where ϵ5 := λ2ϵ4 + ϵ3 : R+ → R+ is bounded. Therefore

lim
y→0

ϵ5(y) = 0.

From (6.37) and (6.38), one gets

Ah,δt4 ≤
l−1∑
n=0

δt
∑
τ∈T

ϵ5(|Sn+1
τ − Sn+1

τ | + |Tn+1
τ − Tn+1

τ |)
∑

στ
LM ∈Eτ

|Kτ
LM ||δn+1

LM P ||δnLMξ|.

The Cauchy–Schwarz inequality gives
Ah,δt4 ≤ (Bh,δt

4 )
1
2 .(Dh,δt

4 )
1
2 , (6.39)

where

Bh,δt
4 :=

l−1∑
n=0

δt
∑
τ∈T

[ϵ5(|Sn+1
τ − Sn+1

τ | + |Tn+1
τ − Tn+1

τ |)]2
∑

στ
LM ∈Eτ

|Kτ
LM |(δnLMξ)2,

and

Dh,δt
4 :=

l−1∑
n=0

δt
∑
τ∈T

∑
στ

LM ∈Eτ

|Kτ
LM |(δn+1

LM P )2.

Using the pressure a priori estimate together with Lemma 5.3, one infers
Dh,δt

4 ≤ C3
d . (6.40)

Introducing
ϵh,δt5 := ϵ5(|Sh,δt − Sh,δt| + |T h,δt − T h,δt|),

allows to write
Bh,δt

4 ≤ CK

∫
Q

(ϵh,δt5 )2(K∇ξbh,δt) · ∇ξbh,δt dxdt

≤ C4
d

∫
Q

(ϵh,δt5 )2|∇ξbh,δt|2 dxdt ≤ C5
d∥∇ξbh,δt∥2

∞

∫
Q

(ϵh,δt5 )2 dxdt. (6.41)

By definition of ϵ5 and the dominated convergence theorem, there holds

lim
h,δt→0

∫
Q

(ϵh,δt5 )2 dxdt = 0. (6.42)

Thus, from (6.41), (6.28) and (6.42), one gets
lim

h,δt→0
Dh,δt

4 = 0. (6.43)

Hence, from (6.39), (6.40) and (6.43), we deduce that
lim

h,δt→0
Ah,δt4 = lim

h,δt→0
|W h,δt

4 − V h,δt
4 | = 0.

One finally obtains
lim

h,δt→0
W h,δt

4 =
∫

Q
λ(S;T ) ηw(S;T ) (K∇P ) · ∇ξ dxdt. (6.44)

Similarly, we show that

lim
h,δt→0

W h,δt
5 =

∫
Q
λ(S;T ) ηw(S;T )B+

o (S;T ) (K∇T ) · ∇ξ dxdt, (6.45)

by considering the function [ηwB+
o ] instead of ηw and the temperature gradient ∇Th,δt instead of

the pressure gradient ∇Ph,δt. Indeed, the continuity of the functions ηw and B+
o on the compact

set [0, 1] × [Tmin, Tmax] yields the continuity of the function [ηwB+
o ] on the same compact set. Thus,
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ηwB
+
o is uniformly continuous on [0, 1] × [Tmin, Tmax]. Therefore, there exists a bounded modulus of

continuity associated to [ηwB+
o ], and the same reasoning as for W h,δt

4 is applied to this case.
In the same fashion, by considering −B−

o instead of B+
o , one finds:

lim
h,δt→0

W h,δt
6 = −

∫
Q
λ(S;T ) ηw(S;T )B−

o (S;T ) (K∇T ) · ∇ξ dxdt.

This concludes the proof of (6.21). Mimicking the same arguments one can demonstrates (6.22).

(b) Energy conservation equation. Let ξ ∈ C∞
c (Ω × [0, tf )) be such that ξ(x, t) = 0 for (x, t) ∈

ΓD × [0, tf ). Multiply the 3rd equation of the numerical scheme (4.2) by δt ξnL where ξnL = ξ(xL, tn) for
L ∈ V \ VD and n ∈ J0, l − 1K, then sum over L and n. This yields

Y h,δt
1 + Y h,δt

2 + Y h,δt
3 + Y h,δt

4 + Y h,δt
5 + Y h,δt

6 + Y h,δt
7 + Y h,δt

8 + Y h,δt
9 = 0, (6.46)

where

Y h,δt
1 =

l−1∑
n=0

∑
L∈V

|ωL|[ψ(ϕL;Sn+1
L )Tn+1

L − ψ(ϕL;SnL)TnL ]ξnL,

Y h,δt
2 = −

l−1∑
n=0

δt
∑
L∈V

∑
τ∈τL

M∈Vτ \{L}

[Λ0]n+1
τ [cwT ](;S )Kτ

LM [β(Sn+1
M ) − β(Sn+1

L )]ξnL,

Y h,δt
3 = −

l−1∑
n=0

δt
∑
L∈V

∑
τ∈τL

M∈Vτ \{L}

[Λ0]n+1
τ [cwT ](;S )Kτ

LM{γn+1
LM (Sn+1

M − Sn+1
L ) − [β(Sn+1

M ) − β(Sn+1
L )]}ξnL,

Y h,δt
4

l−1∑
n=0

δt
∑
L∈V

∑
τ∈τL

M∈Vτ \{L}

[Λ0]n+1
τ [coT ](;S )Kτ

LM [β(Sn+1
M ) − β(Sn+1

L )]ξnL,

Y h,δt
5 =

l−1∑
n=0

δt
∑
L∈V

∑
τ∈τL

M∈Vτ \{L}

[Λ0]n+1
τ [coT ](;S )Kτ

LM{γn+1
LM (Sn+1

M − Sn+1
L ) − [β(Sn+1

M ) − β(Sn+1
L )]}ξnL,

Y h,δt
6 = −

l−1∑
n=0

δt
∑
L∈V

∑
τ∈τL

M∈Vτ \{L}

[Λ0]n+1
τ [coT ]λn+1

τ [(cwηw + coηo)T ](;P )Kτ
LMδ

n+1
LM PξnL,

Y h,δt
7 = −

l−1∑
n=0

δt
∑
L∈V

∑
τ∈τL

M∈Vτ \{L}

λn+1
τ [(cwηw + coηo)B+

o T ](;T )Kτ
LMδ

n+1
LM TξnL,

Y h,δt
8 =

l−1∑
n=0

δt
∑
L∈V

∑
τ∈τL

M∈Vτ \{L}

λn+1
τ [(cwηw + coηo)B−

o T ](;−T )Kτ
LMδ

n+1
LM TξnL,

Y h,δt
9 =

l−1∑
n=0

δt
∑
L∈V

∑
τ∈τL

M∈Vτ \{L}

(κT )τLMδ
n+1
LM TξnL.

The accumulation term is handled as done for W h,δt
1 in the 1st equation. After its processing, it can

be written under the form
Y h,δt

1 = −
∫

Q
ψ(ϕ̃h, S̃h,δt)T̃ h,δtζ̃1

h(x, t) dxdt−
∫

Ω
ψ(ϕ̃h, S̃0

h)T̃ 0
hξ̃

0
h dx,
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where

ζ̃1
h(x, t) = ∂tξ(xL, t) for x ∈ ωL and t ∈ [0, tf ),

S̃0
h(x) = S0

L for x ∈ ωL,

T̃ 0
h(x) := T 0

L for x ∈ ωL,

ξ̃0
h(x) = ξ(xL, 0) for x ∈ ωL.

Because ξ ∈ C∞
c (Ω × [0, tf )), S0 ∈ L∞(Ω) and T 0 ∈ L∞(Ω), one gets

ζ̃1
h −→ ∂tξ, S̃0

h −→ S0, T̃ 0
h −→ T 0, ξ̃0

h −→ ξ( · , 0) a.e. on Ω.
From Proposition 6.3, it follows that

ϕ̃h −→ ϕ a.e. on Ω, S̃h,δt −→ S a.e. on Q, T̃ h,δt −→ T a.e. on Q.
The dominated convergence theorem together with the fact that all involved sequences of functions
are bounded yield

lim
h,δt→0

Y h,δt
1 = −

∫
Q
ψ(ϕ, S)T∂tξ dxdt−

∫
Ω
ψ(ϕ, S0)T 0ξ(x, 0) dx. (6.47)

Similarly to W h,δt
2 in the 1st equation, one shows that

lim
h,δt→0

Y h,δt
2 =

∫
Q

Λ0(S;T ) cw T (K∇β(S)) · ∇ξ dxdt. (6.48)

For this purpose, one considers Λ0 instead of λ, [cwT ] instead of ηw and the capillary term gradient
∇[β(S)]h,δt instead of the pressure gradient ∇Ph,δt. Observe that [cwT ] is Lipschitz continuous in T .
Therefore, there exists a bounded modulus of continuity associated to [cwT ], and the same reasoning
as for W h,δt

4 is also applied to this case.
Bearing in mind the temperature maximum principle as well as the fact that the functions [cwT ], [coT ],
B+
o , B−

o are bounded. Using analogous arguments as in the proof of W h,δt
3 ,W h,δt

4 in the 1st equation,
it can be easily seen that

lim
h,δt→0

Y h,δt
3 = 0, (6.49)

lim
h,δt→0

Y h,δt
4 = −

∫
Q

Λ0(S;T ) co T (K∇β(S)) · ∇ξ dxdt, (6.50)

lim
h,δt→0

Y h,δt
5 = 0. (6.51)

lim
h,δt→0

Y h,δt
6 =

∫
Q

[λ(cwηw + coηo)](S;T )T (K∇P ) · ∇ξ dxdt, (6.52)

lim
h,δt→0

Y h,δt
7 =

∫
Q

[λ(cwηw + coηo)B+
o ](S;T )T (K∇T ) · ∇ξ dxdt, (6.53)

lim
h,δt→0

Y h,δt
8 = −

∫
Q

[λ(cwηw + coηo)B−
o ](S;T )T (K∇T ) · ∇ξ dxdt. (6.54)

Finally, regarding the term Y h,δt
9 , one writes

Y h,δt
9 =

l−1∑
n=0

δt
∑
L∈V

∑
τ∈τL

M∈Vτ \{L}

[Λ0]n+1
τ [coT ](κT )τLMδ

n+1
LM TξnL

=
l−1∑
n=0

δt
∑
τ∈T

λn+1
τ

∑
στ

LM ∈Eτ

(κT )τLMδ
n+1
LM T · δnLMξ =

∫
Q

(κT∇ξbh,δt) · ∇Th,δt dxdt. (6.55)
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Now, note that κT ∈ (L∞(Ω))d×d yields
κT∇ξbh,δt −→ κT∇ξ strongly in (L2(Q))d.

Moreover, one has
∇Th,δt −→ ∇T weakly in (L2(Q))d.

Thus
lim

h,δt→0
Y h,δt

9 = lim
h,δt→0

∫
Q

(κT∇ξbh,δt) · ∇Th,δt dxdt =
∫

Q
(κT∇ξ) · ∇T dxdt. (6.56)

Thus, by gathering all the limits (6.47), (6.48)–(6.56) in formula (6.46), one proves (6.23). This con-
cludes the proof of the passage to the limit theorem.

7. Numerical results

In this section, we present the numerical results for 2D test cases modeling different scenarios of
nonisothermal immiscible incompressible two-phase flow in porous media using the numerical scheme
studied above. The first test case is a simulation in a homogeneous reservoir while the second one
is in a heterogeneous domain. These test cases are presented to evaluate the efficiency, robustness
and accuracy of the developed finite volume scheme. All our developments have been implemented in
DuMuX [25]. It provides many tools to solve numerically PDEs and allowing, among other things, the
management of mesh, discretization or linear and nonlinear solvers. The code is an object-oriented
software written in C++ and has massively parallel computation capability. The modular concept of
DuMuX makes it easy to integrate new modules adapted to our numerical scheme. More precisely, we
have implemented a new module that utilizes the above-described scheme and the BBOX module of
DuMuX for spatial discretization. The simulation were performed on a laptop with Intel(R) Core(TM)
i7-4810MQ CPU Processor 2.80 GHz with 16 GB RAM.

7.1. Case 1: Homogeneous porous medium

In this test, we are interested in the accuracy evaluation of the proposed finite volume scheme, for a
nonisothermal two-phase flow through a 2D homogeneous porous medium. The purpose of this test
case is to show the numerical convergence in the L2 norm of the numerical scheme. This test case was
adapted from a numerical test in [28] modeling CO2 injection into a layered aquifer. We consider an
immiscible incompressible two-phase flow model instead of two-phase two-component flow.

The incompressible nonwetting phase is injected into a 2D rectangular aquifer. The domain is a
rectangle of length 200m and height 100m with a depth of the bottom boundary of 1200m. The porous
medium is a homogeneous reservoir with porosity ϕ = 0.2 and absolute permeabilityK = 3×10−14[m2].
The phase densities are ρw = 1000 kg.m−3, ρo = 635 kg.m−3 and ρs = 2700 kg.m−3. The specific heat
capacity of the solid matrix is Cs = 790 J.K−1.kg−1. The Brooks–Corey [24] model is considered
for the capillary pressure and the relative permeabilities functions with the parameters ν = 2, the
entry pressure Pe = 104 Pa and the residual saturations Swr = Sor = 0. Therefore, krw(Sw) = S4

w,
kro(Sw) = (1 − Sw)2(1 − S2

w) and Pc(Sw) = Pe S
− 1

2
w . The Somerton model [31] is considered for

the thermal conductivity. Due to the complexity of the model, we refer the reader to [28] and the
references therein, where all remaining parameters such as phase viscosities and thermal conductivity,
are provided.

The domain is initially fully saturated with brine H2O liquid. We assume hydrostatic pressure and
temperature at the start of the simulation, with temperature gradient 0.03K.m−1. The nonwetting
phase is injected over a period of 3.17 years from the left boundary over a height of 30m into the
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aquifer with a rate of 0.003 kg.s−1 which yields the energy flux equal to −10−4 ho(Tinj , Pinj), where
ho stands for the nonwetting enthalpy and is a function of the injection temperature Tinj = 305K and
pressure Pinj = 16 106 Pa. On the right boundary, we impose Dirichlet conditions in accordance with
the initial conditions. Elsewhere, a homogeneous Neumann boundary conditions is imposed.

Figure 7.1. Triangular mesh of Ω with 1600 triangles.

The numerical test was implemented with several meshes, including the most refined of structured
triangular mesh with 102400 triangles. The type of the used mesh is illustrated in Figure 7.1.

The nonlinear system is solved by the Newton method and a BiConjugate Gradient STABilized
(BiCGSTAB) method, preconditioned by an Algebraic Multigrid (AMG) solver, is used to solve the
linear systems. The tolerances for the Newton and the BICGSTAB methods are respectively 10−8

and 10−13. The simulation starts with an initial time step δt0 = 103 s and a maximal time step
δtmax = 105 s is imposed. A minimal time step of δtmin = 103 s was registered. Time step sizes
during transient simulations are dynamically recalculated depending on the convergence behavior of
the Newton method which can be increased or reduced, depending on the number of iterations allowed
in each nonlinear iteration. In this case, Newton’s method converges rapidly in less than 5 iterations.
The number of iterations before reaching the maximal time step is 8.

We can say that all quantities of interest: the nonwetting phase pressure (Po), saturation (So)
and the temperature T behave as expected without instabilities. The results of these simulations are
omitted since nothing startling was found. Instead, we concentrate to provide a quantitative study
for the numerical convergence of the proposed finite volume scheme. For that, we compute the L2

relative error on the nonwetting saturation and pressure, and the temperature on different structured
triangular meshes, with 1600, 6400 and 25600 triangles. We have considered the solution of the previous
simulation on a structured triangular mesh, with 102400 triangles, as a reference solution.

In order to clarify things, let’s begin by defining the L2 relative errors when utilizing the finest
mesh as a reference solution. For instance, if we consider the temperature variable, let V be the set of
vertices of the coarse mesh, (ωL)L∈V the set of control volumes of the coarse mesh, T l the approximate
solution on the coarse mesh, and T ref,l the approximate reference solution on the finest mesh at the
final time tl. In this case, the L2 relative error is computed at the final time tl = 3.17 years as follows:

Relative_Error = (
∑
L∈V |ωL|(T lL − T ref,lL )2)

1
2

(
∑
L∈V |ωL|(T ref,lL )2)

1
2

·
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Table 7.1. L2 relative errors on the nonwetting saturation, pressure, and the temper-
ature for 3 structured triangular meshes.

Refinement
level

Number
of triangles NDOF So Po T CPU time

1 1600 861 2.302e-01 1.337e-03 3.788e-04 2 mn
2 6400 3321 1.55e-01 7.817e-04 1.753e-04 16 mn
3 25600 13041 7.987e-02 3.334e-04 6.307e-05 1 h 25 mn
4 102400 51681 - - - 8 h 45 mn

Indeed, the solution on the coarse mesh is defined on the vertices. These same degrees of freedom are
also recovered from the refined mesh. Then, the results are compared to compute the error. Conse-
quently, the L2 relative errors for the 3 considered meshes are reported in Table 7.1. The associated
curves are represented in logarithmic scale (for both axes) in Figure 7.2. We can clearly see that the
errors diminish with each refinement step, the errors for the temperature and the nonwetting pressure
being smaller than that of the saturation. Table 7.1 also gives the CPU times for all 4 simulations.

Figure 7.2. L2 relative error in logarithmic scale (for both axes) for the temperature,
the nonwetting saturation and pressure.

To complete our convergence analysis, we assessed the convergence rates for the 3 quantities of
interest as Table 7.2 highlights.

Table 7.2. Orders of convergence for the L2 relative errors.

So Po T
Order of convergence 0.76356 1.0018 1.2933

We can see that the temperature has the greatest order of convergence which is in agreement with
the diffusive effect of the temperature. Indeed, the temperature gradient appears in the elliptic term
associated to the thermal diffusion of the energy equation. Furthermore, we see that the order of
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convergence for the pressure is slightly greater than 1 which is in accordance with the convective effect
of the pressure gradient and thus the regularity of the pressure. Lastly, the saturation has the smallest
order of convergence, much bellow 1. This can be explained by the discontinuity of the saturation
which manifests as sharp fronts.

7.2. Case 2: Heterogeneous porous medium

The purpose of this test case is to show the performance of the finite volume scheme on 2D heteroge-
neous porous media with curved geometry. We present the numerical results for a test case adapted
from [28] modeling CO2 injection into a layered aquifer. We consider the same data as in the first
test case, in a heterogeneous porous medium. The incompressible nonwetting phase is injected, over a
period of 6.34 years, into a 2D rectangular aquifer. We are looking at a simplified geological configu-
ration that represents a 2D vertical section of a reservoir. The domain is a rectangle of length 200m
and height 100m with a depth of the bottom boundary of 1200m. It is composed of four sub-domains
of different permeabilities and porosities as shown on the left in Figure 7.3. Apart from that, all re-
maining data is that of the first test case. The considered mesh is comprised of 12987 triangles and
6598 vertices (see Figure 7.3 on the right). The triangles aspect ratios vary from 1.001 to 2.031, and
their areas vary from 0.161m2 to 24.44m2.

Figure 7.3. Permeability and porosity fields (left). Unstructured grids used for the
simulation (right).

With regards to simulation parameters, the tolerances for the Newton and the BICGSTAB methods
are respectively 10−8 and 10−13. The simulation starts with an initial time step δt0 = 103 s and a
maximal time step δtmax = 105 s is imposed. A minimal time step of δtmin = 103 s was registered.
In this case, Newton’s method converges rapidly in less than 5 iterations. Let us underline that the
theoretical convergence of the Newton solver is difficult to address in two-phase flows in porous media.
In the case of Richards equation, the authors of the work [27] were able to prove the Newton solver
convergence.

The numerical results are shown in Figures 7.4–7.5 below. The represented quantities are: the
pressure (Po), the saturation (So), the overpressure, and the temperature T . The quantity injected rises
rapidly to the top due to the large difference in densities and there is influenced by the permeability
variations in the field. The front is very sharp due to the strong and sharp localized variation of the
permeability which is remarkably captured. The nonwetting phase remains trapped at the top of the
third layer due to the very low permeability of the fourth layer. It is worth remarking that saturation
scale ranges from 0 to 1 and no over/undershooting occurs.

The overpressure is defined as the difference between the current and initial nonwetting pressure.
Positive values show that we are always in overpressure during the whole simulation. The wetting
pressure curves show that the pressure increases rapidly with an overpressure reaching 3.5 105Pa at
t = 1.59 years and returning at the end of the simulation to an overpressure around 1.9 105Pa. The
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Figure 7.4. Profiles of the nonwetting pressure (left) and saturation (right) at 2 dif-
ferent times. From top to bottom: t1 = 1.59 years and the final time tf = 6.34 years.

Figure 7.5. Profiles of the overpressure (left) and the temperature (right) at 2 differ-
ent times. From top to bottom: t1 = 1.59 years and the final time tf = 6.34 years.

injection zone can cool and maintain a constant pressure in this zone because the temperature of
the injection zone is lower than the reservoir temperature. Heat transfer seems to be driven more by
conduction than convection, and it is only in the near injection region that the temperature is modified
and respects the discrete maximum principle. We achieved a good agreement between our results and
those of [28].

8. Concluding remarks

We have presented a vertex-centered finite volume scheme for solving a system of coupled degenerate
PDEs modeling nonisothermal incompressible immiscible two-phase in heterogeneous porous media.
The concept of the global pressure, developed specifically for nonisothermal flows, is used to demon-
strate the convergence of the numerical approximation to a weak solution based on a priori estimates
and compactness arguments. The method was validated through numerical results on a scenario of
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geological storage of CO2. This work is an extension of the results established in [21] in the isothermal
case to the problem of nonisothermal incompressible two-phase flow in heterogeneous porous media.
To our best knowledge, this is the first convergence result for a CVFE scheme in the case of non-
isothermal two-phase flow in heterogeneous porous media. It’s worth noting that a convergence study
was performed recently in [5] on the discretization of a system that models nonisothermal compressible
two-phase flow in porous media using a cell-centered TPFA finite volume method. However, the study
still needs to be improved in several areas, including discontinuous and degenerate capillary pressures,
media that is highly heterogeneous, fractured, or anisotropic and by developing a general approach to
incorporating compressibility of both phases. Finally, in this paper, the validation was carried out on
2D cases; it would be interesting to have a more detailed validation for 3D cases. These more complex
cases are being displayed in the applications. These crucial issues require more in-depth work.

Acknowledgments

The authors gratefully thank the three anonymous referees for their insightful comments and sugges-
tions, as these comments led us to improve the work.

References

[1] L. Agélas and R. Masson. Convergence of the finite volume MPFA O scheme for heterogeneous anisotropic
diffusion problems on general meshes. C. R. Math. Acad. Sci. Paris, 346(17-18):1007–1012, 2008.

[2] L. Agélas, M. Schneider, G. Enchéry, and B. Flemisch. Convergence of nonlinear finite volume schemes for
two-phase porous media flow on general meshes. IMA J. Numer. Anal., 42(1):515–568, 2022.

[3] E. Ahusborde, B. Amaziane, F. Croccolo, and N. Pillardou. Numerical simulation of a thermal-hydraulic-
chemical multiphase flow model for CO2 sequestration in saline aquifers. Math. Geosci., 56:541–572, 2024.

[4] H. W. Alt and S. Luckhaus. Quasilinear elliptic-parabolic differential equations. Math. Z., 183:311–341,
1983.

[5] B. Amaziane, M. El Ossmani, and Y. Zahraoui. Convergence of a TPFA finite volume scheme for non-
isothermal immiscible compressible two-phase flow in porous medias. Comput. Math. Appl., 165:118–149,
2024.

[6] B. Amaziane, M. Jurak, L. Pankratov, and A. Piatnitski. An existence result for nonisothermal immiscible
incompressible 2-phase flow in heterogeneous porous media. Math. Methods Appl. Sci., 40(18):7510–7539,
2017.

[7] B. Amaziane, M. Jurak, and I. Radišić. Convergence of a finite volume scheme for immiscible compressible
two-phase flow in porous media by the concept of the global pressure. J. Comput. Appl. Math., 399: article
no. 113728 (26 pages), 2022.

[8] B. Andreianov, M. Bendahmane, and R. Ruiz-Baier. Analysis of a finite volume method for a cross-diffusion
model in population dynamics. Math. Models Methods Appl. Sci., 21(2):307–344, 2011.

[9] G. R. Barrenechea, V. John, and P. Knobloch. Finite element methods respecting the discrete maximum
principle for convection-diffusion equations. SIAM Rev., 66(1):3–88, 2024.

[10] L. Beaude, R. Masson, S. Lopez, and P. Samier. Combined face based and nodal based discretizations on
hybrid meshes for non-isothermal two-phase Darcy flow problems. ESAIM, Math. Model. Numer. Anal.,
53(4):1125–1156, 2019.

[11] M. Beneš. Analysis of non-isothermal multiphase flows in porous media. Math. Methods Appl. Sci.,
45(16):9653–9677, 2022.

[12] M. Beneš. Weak solutions of coupled variable-density flows and heat transfer in porous media. Nonlinear
Anal., Theory Methods Appl., 221: article no. 112973 (27 pages), 2022.

303



B. Amaziane, M. El Ossmani, et al.

[13] O. B. Bocharov and V. N. Monakhov. Boundary value problems of nonisothermal two-phase filtration in
porous media. In Free boundary problems in fluid flow with applications (Montreal, PQ, 1990), volume 282
of Pitman Research Notes in Mathematics Series, pages 166–178. Longman Scientific & Technical, 1993.

[14] K. Brenner, R. Masson, E. H. Quenjel, and J. Droniou. Total velocity-based finite volume discretization of
two-phase Darcy flow in highly heterogeneous media with discontinuous capillary pressure. IMA J. Numer.
Anal., 42(2):1231–1272, 2022.

[15] C. Cancès, J. Droniou, C. Guichard, G. Manzini, M. B. Olivares, and I. S. Pop. Error estimates for the
gradient discretisation method on degenerate parabolic equations of porous medium type. In Di Pietro,
D. A., Formaggia, L., Masson, R. (eds) Polyhedral Methods in Geosciences, volume 27 of SEMA SIMAI
Springer Series, pages 37–72. Springer, 2021.

[16] C. Cancès, I. S. Pop, and M. Vohralík. An a posteriori error estimate for vertex-centered finite volume
discretizations of immiscible incompressible two-phase flow. Math. Comput., 83(285):153–188, 2014.

[17] X. Cao, S. F. Nemadjieu, and I. S. Pop. Convergence of an MPFA finite volume scheme for a two-phase
porous media flow model with dynamic capillarity. IMA J. Numer. Anal., 39(1):512–544, 2019.

[18] J. Droniou. Finite volume schemes for diffusion equations: Introduction to and review of modern methods.
Math. Models Methods Appl. Sci., 24(8):1575–1619, 2014.

[19] L. C. Evans. Partial Differential Equations, Second edition, volume 19 of Graduate Studies in Mathematics.
American Mathematical Society, 2010.

[20] B. Faigle, M. A. Elfeel, R. Helmig, B. Becker, B. Flemisch, and S. Geiger. Multi-physics modeling of
non-isothermal compositional flow on adaptive grids. Comput. Methods Appl. Mech. Eng., 292:16–34, 2015.

[21] M. Ghilani, M. Saad, and E. H. Quenjel. Positive control volume finite element scheme for degenerate
compressible two-phase flow in anisotropic porous media. Comput. Geosci., 23(1):55–79, 2019.

[22] M. Ghilani, M. Saad, and E. H. Quenjel. Positivity-preserving finite volume scheme for compressible two-
phase flows in anisotropic porous media: the densities are depending on the physical pressures. J. Comput.
Phys., 407: article no. 109233 (29 pages), 2020.

[23] D. Gläser, B. Flemisch, R. Helmig, and H. Class. A hybrid-dimensional discrete fracture model for non-
isothermal two-phase flow in fractured porous media. GEM Int. J. Geomath., 10(1): article no. 5 (25 pages),
2019.

[24] R. Helmig. Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of
Hydrosystems. Springer, 1997.

[25] T. Koch, D. Gläser, K. Weishaupt, S. Ackermann, M. Beck, B. Becker, S. Burbulla, H. Class, E. Coltman,
and S. Emmert. DuMux 3 – an open-source simulator for solving flow and transport problems in porous
media with a focus on model coupling. Comput. Math. Appl., 81(1):423–443, 2021.

[26] S. Korotov and M. Křížek. Nonobtuse local tetrahedral refinements towards a polygonalface/interface. Appl.
Math. Lett., 24(6):817–821, 2011.

[27] F. A. Radu, I. S. Pop, and P. Knabner. Newton-type methods for the mixed finite element discretization of
some degenerate parabolic equations. In Numerical Mathematics and Advanced Applications, pages 1192–
1200. Springer, 2006.

[28] M. Schneider, B. Flemisch, and R. Helmig. Monotone nonlinear finite-volume method for nonisothermal
two-phase two-component flow in porous media. Int. J. Numer. Methods Fluids, 84(6):352–381, 2017.

[29] M. Schneider, B. Flemisch, R. Helmig, K. Terekhov, and H. Tchelepi. Monotone nonlinear finite-volume
method for challenging grids. Comput. Geosci., 22(2):565–586, 2018.

[30] C. J. Seeton. Viscosity-temperature correlation for liquids. Tribol. Lett., 22(1):67–78, 2006.
[31] W. H. Somerton, J. Keese, and S. L. Chu. Thermal behavior of unconsolidated oil sands. SPE J., 14:513–

521, 1974.

304


	1. Introduction
	2. Formulation of the problem
	3. CVFE mesh and notations
	4. Finite volume discretization
	5. Stability properties and existence of the numerical scheme
	5.1. Maximum principle for the saturation
	5.2. Maximum principle for the temperature
	5.3. A priori estimates for the gradients
	5.4. Saturation and temperature strong convergence
	5.4.1. Space compactness for the finite volume scheme
	5.4.2. Space compactness for the continuous in time approximations
	5.4.3. Time compactness for the continuous in time approximations


	6. Convergence of the numerical scheme
	6.1. Strong and weak convergence properties
	6.2. Weak solution to the continuous problem
	6.3. Theorem of convergence towards a weak solution

	7. Numerical results
	7.1. Case 1: Homogeneous porous medium
	7.2. Case 2: Heterogeneous porous medium

	8. Concluding remarks
	Acknowledgments
	References

