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Abstract. Air and water pollution present significant threats to public health, highlighting the need for precise
environmental monitoring methods. Current solutions rely on multisensory systems with limited specificity. Their
calibrations often struggle in real-world conditions, resulting in imprecise air and water quality measurements.
This paper aim to address the challenge of calibrating non-specific multisensory systems deployed in open periodic
environments. A data-driven calibration method is proposed within a Bayesian framework, which considers several
sources of uncertainties that are often overlooked in sensor calibration.

The method combines a non-parametric approach, capturing correlations between pollutants and environmental
variables, with a parametric method, that maximizes sensor-provided information. Unlike conventional sensor cali-
bration, our method prioritizes the inclusion of input uncertainties and model errors during calibration, providing
a comprehensive framework for robust sensor performance.

The theoretical foundations of the non-parametric approach are presented, and the coupling between non-
parametric and parametric methods is detailed. The evaluation using synthetic data demonstrates the method’s
efficiency and limitations. Then the approach is validated in an experimental use case where a sensor array based
on carbon nanotube is calibrated for monitoring ozone and carbon monoxide in an outdoor deployment.

2020 Mathematics Subject Classification. 65N35, 15A15.

Keywords. Bayesian Framework, Multisensory Systems, Air and Water Pollution, Data-driven Calibration,
Uncertainty quantification.

1. Introduction

Air and water pollution are major public health challenges [3, 9, 13]. The development of effective
environmental monitoring methods is essential to minimize people exposure and associated health
risks. The use of innovative materials holds great promise for the development of affordable and
highly sensitive sensors capable of detecting pollutants in both air [5] and water [2]. However, the
use of low-cost or innovative instruments in real-world environments challenges current calibration
methods, due to the variety of interfering factors, leading to inaccurate measurements of air and water
quality. Therefore, it is essential to propose efficient calibration methods to improve the robustness of
sensors against fluctuating environmental factors.
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Calibrating a sensor involves establishing a relationship between environmental variables and the
outputs it provides. In general, there is no physical model for the sensor output, which means that
the relationship between sensor inputs and outputs is completely unknown. While the literature tends
to propose linear relationships to model this link between sensor inputs and outputs, these linear
models are often not sufficiently relevant, which will be the case treated in this paper. In such cases,
alternative models, such as machine learning methods [26, 27], in particular neural networks [21],
are increasingly used. As well as dealing with non-linearity issues, they also aim to compensate for
sensor cross-sensitivity, for example their sensitivity to undesirable factors. However, the data volume
requirements of neural networks are generally an insurmountable hurdle for environmental sensors,
as reliable calibration experiments are extremely time-consuming and there are many influencing
variables. Other methods that require less data, such as multiple regression, decision trees [27], support
vector regression [26], or Gaussian process regression [7], appear to be more viable options.

Several factors make the calibration of these non-linear models inaccurate. Firstly, both calibration
and deployment datasets include noisy measurements, with a noise level that is unknown and often
varies according to time and location. Secondly, the laboratory calibrations are poorly transferable
to open environments due to the multiplicity of variable environmental factors. But when calibrating
directly in an open environment (and not in laboratory), the high correlations between environmental
data and pollutant concentrations limit the possibilities for individual characterisation of the interac-
tion between pollutants and sensors. Moreover, the risk of overlearning is also significant when relying
on data collected in an open environment, since the only conditions available are those measured
during the sensor deployment phase, which cannot be forced to be exhaustive in terms of representing
the full range of conditions under which the sensor will ultimately be deployed after calibration.

In this context, the objective of this paper is to propose a general data-driven method for calibrating
non-specific (i.e. sensitive to several environmental variables in addition to their target measurand)
multisensory systems (and sensor arrays) based on a limited set of noisy measurements collected in
an open periodic environment. This calibration method is placed in a Bayesian framework in order
to better take into account the different sources of uncertainty. Among the several studies reported
in the literature on the topic of Bayesian calibration (see for instance [1, 12, 22]), [17] specifically
focused on managing input uncertainties and model errors, which are generally neglected in calibration
procedures. While this work has led in significant improvements in the predictive capability of sensor
arrays in both synthetic and experimental datasets, the study was aimed at calibration in a controlled
environment with a relatively limited number of measurands and possible interferents.

The present paper extends this work by considering an uncontrolled, open environment with periodic
variations. This is representative of the conditions actually observed experimentally in environmental
sensor deployments. The open environment results in a large increase in interfering parameters and
source of uncertainties, while generally leading to highly correlated variables (due to the chemical
process). This favours the development of a different methodology compared to the previously cited
works, in particular through the coupling of non-parametric and parametric calibration.

In more detail, Section 2 presents the probabilistic formulation proposed for monitoring pollutant
concentrations using innovative and non-specific multisensory systems. This method couples a non-
parametric method to integrate the potential correlations between the pollutants to be predicted and
environmental variables, and a parametric method to make maximum use of the information provided
by the sensors. The theoretical foundations of the non-parametric approach are presented in Section 3,
while the coupling between the non-parametric and parametric approaches is presented in detail in
Section 4. The efficiency and the limitations of the proposed method are evaluated in Section 5 using
synthetic data, before being applied to the calibration of a carbon nanotube-based sensor array from
data collected during an actual measurement campaign.
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2. Probabilistic formulation of the estimation problem

2.1. General framework

In this work, we are interested in the deployment of a non-specific multisensory system consisting of
dy sensors. It is assumed that they all have similar properties, i.e. they are all sensitive to the same
measurands and interferents, although their sensitivity may vary from sensor to sensor. This is often
the case experimentally, where the same manufacturing process is used to produce the different sensors
in the sensor array, resulting in sensor responses that are highly correlated.

Let y ∈ Rdy be the vector gathering the sensor outputs. Since these sensors are assumed non-
specific, they are likely to be sensitive not only to a single target measurand, but to several features
of their environment, which are grouped into three distinct categories. First, we denote by x ∈ Rdx

the vector gathering the dx target pollutant concentrations, e.g. those that the multisensory system
aims to measure. We therefore implicitly assume that changes in x lead to changes in y. Since the
multisensory system is placed in an open environment, it is expected that other quantities will affect it.
Among these quantities, we denote by z ∈ Rdz the vector gathering the environmental variables that
are measured using additional, well-calibrated instruments and by u ∈ Rdu the vector gathering the
environmental variables that remain unmeasured (due to lack of instrument or to lack of knowledge
about the effect of this variable). Even if u is by definition unknown and unmeasured, it’s important
to include it in the general formalism to avoid being faced with an ill-posed problem.

To infer the link between x, z, y, we assume that these three vectors were measured at n distinct
times. A distinction is made between the “true” and “measured” values of x, z, y. For each 1 ≤ i ≤ n,
the vectors xi, zi, yi refer to the true values (the actual values that are never available) of x, z, y,
while xmes

i , zmes
i , ymes

i are the corresponding measured values. These measured values are gathered in
Dn := (xmes

i , zmes
i , ymes

i )n
i=1. The measurement noises, which characterise the differences between these

two versions of x, z, y, are then noted:

εx
i := xi − xmes

i , εz
i := zi − zmes

i , εy
i := yi − ymes

i . (2.1)

The aim of this paper is to propose a method that fully exploits the information contained in Dn in
order to 1) estimate pollutant concentrations at times other than the training times, and 2) associate
credibility intervals to these estimates. To facilitate the reading and make a clear distinction with the
training points, the test points are written with the subscript ⋆, and the same distinction is made
between the “true” and “measured” values. In other words, x⋆, z⋆, y⋆ denote the true values of x, z, y
when only the values of z and y are measured (they are denoted by zmes

⋆ , ymes
⋆ respectively), and when

we are interested in estimating the non-observed value of x⋆.

2.2. Specificity and difficulties of the considered problem

Estimating the value of x using information on y and z requires an understanding of the relationship
between these three quantities. For this work, it is important to note that this relationship is not known
a priori, so it is necessary to propose a model for it, and then to adjust the model parameters for
optimal fit to the available data. As with any learning problem, a major challenge in this construction
is to find the best compromise between modelling bias (the more degrees of freedom a model has, the
more likely it is to capture the potential non-linearities relating x, z and y) and estimation variance
(the more complex the model, the more difficult it will be to estimate its parameters correctly). The
expected influence of several unmeasured quantities u makes this search for a compromise even more
difficult. Let us note here that, conversely, since the environmental factors x, z or even u are in
practice highly correlated (daily cycles), it is challenging to determine which of the components of x
and z do actually have a causal influence on y.
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The fact that all the data in the problem are noisy, with non-negligible noise of poorly known
properties, is another major difficulty of the problem. On the one hand, this noise makes it difficult
to identify cause-effect relationships between the different components of x, z and y. On the other
hand, as we shall see in next sections, it enhances the difficulty in estimating the true (rather than
the noisy) value of x.

2.3. Bayes formulation

Since the problem to be solved has many uncertainties, a resolution in a Bayesian framework is
considered. It amounts to assuming that the value to be estimated, x⋆, and the measurement errors
can be modelled by random quantities. Under this formalism, estimating x⋆ is equivalent to drawing
from the probability distribution of x⋆ conditioned by ymes

⋆ , zmes
⋆ , Dn,

π[x⋆|ymes
⋆ , zmes

⋆ , Dn], (2.2)
where to simplify the notations, we abusively write π(a) the probability density function (PDF) of
any random vector a taking the value a.

Two methods for estimating this PDF are presented below. The first method, described in Section 3,
is based on non-parametric inference using kernel density techniques [24]. The main advantages of this
method are its ease and speed of use, and the fact that it does not require a priori information about
the statistical properties of the measurement errors. However, since the non-noisy values of x are never
observed, only the noisy value of x⋆ can be estimated with this method.

To refine this estimation, a parametric method is then proposed in Section 4. By introducing
several simplifying assumptions, it is used to estimate the non-noisy value of x⋆, but at a much higher
computational cost.

3. Non-parametric approximation of the conditional PDF

Since the true values of the pollutant concentrations x⋆ are never observed, we first propose to neglect
the differences between their true and noisy values:

π[x⋆|ymes
⋆ , zmes

⋆ , Dn] ≈ π[xmes
⋆ |ymes

⋆ , zmes
⋆ , Dn], (3.1)

where xmes
⋆ is the noisy value of x⋆ that would have been obtained if it had been possible to measure

it at the same time as ymes
⋆ and zmes

⋆ . The idea is then to proceed in three steps. The elements of
Dn = (xmes

i , zmes
i , ymes

i )n
i=1 are assumed to be n realizations of a triplet (X, Z, Y ), where X, Z and

Y are three random vectors taking values in Rdx ,Rdz and Rdy respectively. We then estimate the
joint PDF of (X, Z, Y ) by its kernel density approximation, denoted f̂X,Z,Y (see [24] for further
justification of this representation) and expressed by:

f̂X,Z,Y (x, z, y) :=
∑n

i=1 kdx(H−1
x (x − xmes

i ))kdz (H−1
z (z − zmes

i ))kdy (H−1
y (y − ymes

i ))
n × det(Hx) det(Hz) det(Hy) , (3.2)

with Hx, Hz, Hy three invertible matrices, and kx, kz, ky three positive functions whose integral over
their domain of definition is 1. The choice of Hx, Hz, Hy is particularly important for this type of
approximation. Indeed, too large values tend to smooth out and eliminate any singularity in the PDF
of (X, Z, Y ), while too small values can artificially increase the number of modes in it. Much work
has focused on choosing the best estimates for Hx, Hz, Hy based on the available realizations of
(X, Z, Y ) (see for instance [6, 8, 28]). Here, we restrict ourselves to the case where: Hx 0 0

0 Hz 0
0 0 Hy

 = h

 R1/2
x 0 0
0 R1/2

z 0
0 0 R1/2

y

 , (3.3)
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where R1/2
x (R1/2

x )T , R1/2
z (R1/2

z )T , R1/2
y (R1/2

y )T are the empirical estimators of the covariance matrices
of X, Z, Y taking the elements of Dn as statistically independent, and where h is estimated using
an adapted likelihood maximization procedure (see [16] for a precise description of this estimation
method).

The other parameters to adjust for this approximation are the kernel functions. Again, many choices
are possible [24], and in this paper we restrict ourselves to Gaussian kernels, so that:

kd(u) := 1
(2π)d/2 exp

(
−∥u∥2

2

)
, d ∈ {dx, dz, dy} , u ∈ Rd. (3.4)

Once the parameter h has been estimated, and assuming that the dependence structure learnt from
Dn is still valid for (xmes

⋆ , zmes
⋆ , ymes

⋆ ), the PDF π[xmes
⋆ |ymes

⋆ , zmes
⋆ , Dn] can finally be approximated by:

x 7→ f̂X,Z,Y (x, zmes
⋆ , ymes

⋆ )∫
Rdx f̂X,Z,Y (u, zmes

⋆ , ymes
⋆ )du

= 1
det(Hx)

n∑
i=1

wikdx(H−1
x (x − xmes

i )), (3.5)

where the weights w1, . . . , wn can be derived explicitly:

wi :=
kdz (H−1

z (zmes
⋆ − zmes

i ))kdy (H−1
y (ymes

⋆ − ymes
i ))∑n

j=1 kdz (H−1
z (zmes

⋆ − zmes
j ))kdy (H−1

y (ymes
⋆ − ymes

j ))
, 1 ≤ i ≤ n. (3.6)

It is interesting to note that the non-parametric approach presented above does not require any
a priori information about the links between x, z, and y, and can be seen as a smoothed version of
a nearest neighbour method [23]. The dependence structure between x, z, y is modelled in a purely
empirical way, from the data only, and is based only on the estimation of a single scalar parameter h,
which makes the method particularly easy to use.

Remark. In this non-parametric framework, the measurement noises on the vectors xi and zi intro-
duced in Eq. (2.1) are incorporated into the estimate of the pollutant concentrations transparently,
as we are only manipulating noisy quantities. However, it should be emphasised that in this case,
the estimate focuses on the noisy value of the pollutant concentrations, xmes

⋆ , and not on its noiseless
value, x⋆, which will be the focus of the next section.

4. Coupling of parametric and non-parametric approaches for the reduction of es-
timation uncertainties

In general, the approach presented in Section 3 is likely to be effective for configurations where the
number of observation points n is very large compared to the total dimension of the problem, which
is here equal to dx + dz + dy. As a consequence, it is not guaranteed to improve the estimation results
by increasing the number of sensors as the total dimension of the inference problem also increases.
Moreover, when the noise on the measurements of x is relatively high (which is often the case in
environmental monitoring applications), it can prove to be limiting to only estimate the noisy value of
x, and not its denoised value. To overcome these two difficulties, a complementary estimation method
is introduced in this section. The target PDF in Bayes’ theorem is now rewritten as:

π[x⋆|ymes
⋆ , zmes

⋆ , Dn] = c × π[ymes
⋆ |x⋆, zmes

⋆ , Dn] × π[x⋆|zmes
⋆ , Dn], (4.1)

where c is a normalization constant. The PDF π[x⋆|zmes
⋆ , Dn] is approximated by its noisy version

π[xmes
⋆ |zmes

⋆ , Dn], which is then estimated, again, by a non-parametric approach as in Section 3, but
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now this problem has dimension dx + dz and not dx + dz + dy:

π[xmes
⋆ |zmes

⋆ , Dn] ≈ 1
det(Hx)

n∑
i=1

ŵikdx(H−1
x (xmes

⋆ − xmes
i )), (4.2)

ŵi := kdz (H−1
z (zmes

⋆ − zmes
i ))∑n

j=1 kdz (H−1
z (zmes

⋆ − zmes
j ))

, 1 ≤ i ≤ n. (4.3)

On the other hand, to approximate π[ymes
⋆ |x⋆, zmes

⋆ , Dn], a parametric representation is introduced
to model the relationship between x, z, y while integrating as precisely as possible all the sources of
uncertainty. It is proposed to write the measured value of the jth sensor output, with j ∈ {1, . . . , dy},
under the following general relationship:

(ymes)j = hj(x; z)T βj + (εy)j + εmod
j (x; z) + δu

j , (4.4)
where:

• hj is a vector-valued function (typically a vector of polynomial or wavelet functions),

• {βj , 1 ≤ j ≤ dy} is a collection of vectors of parameters,

• εy characterizes the experimental uncertainties affecting the measurements of y,

• εmod
j is a first model error allowing to take into account the approximate character of the

proposed function hj ,

• δu
j corresponds to a second model error supposed to quantify the impact of not including the

unobserved quantities into account in the models (hence the superscript letter u to indicate
this correspondence). This error is modelled as a constant that does not depend on time.

This relation is assumed to be valid not only for the training points, where the full triplet (x, z, y) is
measured, but also for test points where only z and y are measured and x is to be estimated. Replacing
the true values of x and z by their noisy observations in Eq. (4.4), yields a (n + 1) error-in-variables
(ERI) model [4, 11, 15, 17]:

(ymes
i )j = hj(xmes

i + εx
i ; zmes

i + εz
i )T βj + (εy

i )j + εmod
j (xmes

i + εx
i ; zmes

i + εz
i ) + δu

j . 1 ≤ i ≤ n, (4.5)
However, the target is the noiseless value of x⋆, hence for the prediction time, Eq.(4.5) is transformed

into Eq. (4.6), where there is no error on x:
(ymes

⋆ )j = hj(x⋆; zmes
i + εz

⋆)T βj + (εy
⋆)j + εmod

j (x⋆; zmes
⋆ + εz

⋆) + δu
j . (4.6)

To estimate the noiseless value of x⋆ using Eq. (4.6), a Bayesian formalism is again adopted. It
amounts to modelling the unknown quantities as random quantities, and then searching for their
probability distributions conditioned on the available observations. The model parameters, the mea-
surement errors and the model errors are thus modelled by random vectors. For the sake of tractability,
only centred Gaussian probability distributions are considered with the exception of βj , which is cen-
tred on βj , and the covariance functions are chosen to be independent of time. In practice, this
assumption is not so strong since independence in time is almost always observed, while transforma-
tions of the inputs can be applied to make the errors Gaussian-like if it was not the case [18]. Let
Cx, Cz, Cy be the covariance matrices of εx

i , εz
i , εy

i respectively, Γj be the covariance matrix of βj , T

be the covariance matrix of δu, and R be the covariance function of εmod.
The matrices Cx, Cz, Cy, Γj and vector βj are assumed to be known (Cx, Cz, Cy are determined

for each measurement device from dedicated measurements in controlled environments, Γj and βj are
chosen by expert opinion. Making Γj tend to infinity, whatever the value of βj , is a possibility to
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model cases with almost no information about βj). In contrast, the quantities T and R are a priori
unknown and have to be estimated from the data. In this work, we restrict ourselves to cases where
these matrices are diagonal, i.e. we neglect any possible statistical dependence between the model
errors, and write, for all x, x′ ∈ Rdx and all z, z′ ∈ Rdz :

T =


θ2

1 0 · · · 0

0 θ2
2

. . . ...
... . . . . . . 0
0 · · · 0 θ2

dy

 , (4.7)

R((x; z), (x′; z′)) = Cov
(
εmod(x; z), εmod(x′; z′)

)

=


σ2

1k
(1)
x (x, x′; ℓx

1)k(1)
z (z, z′; ℓz

1) 0 · · · 0

0 . . . . . . ...
... . . . . . . 0
0 · · · 0 σ2

dy
k

(dy)
x (x, x′; ℓx

dy
)k(dy)

z (z, z′; ℓz
dy

)

 , (4.8)

where for each 1 ≤ j ≤ dy, the functions k
(j)
x and k

(j)
z are Matern-5/2 covariance functions characterized

by the correlation lengths ℓx
j and ℓz

j respectively (alternative choices for these covariance functions
can be found in [20]), and the coefficients σ2

j correspond to variance coefficients. In this formalism,
the statistical properties of the model errors are thus fully characterised by the two vectors θ :=
(θ1, . . . , θdy ) and γ := (σ2

1, ℓx
1 , ℓz

1, . . . , σ2
dy

, ℓx
dy

, ℓz
dy

). Assuming that the measurement errors on the x

and z inputs are small, and that the functions hj and R are differentiable, the probability distribution
of the sensor outputs conditioned by θ and γ is now approximated by Taylor expansion:

hj(xmes
i + εx

i ; zmes
i + εz

i ) ≈ hj(xmes
i ; zmes

i ) + ∂hj

∂x
(xmes

i ; zmes
i )εx

i + ∂hj

∂z
(xmes

i ; zmes
i )εz

i , (4.9)

hj(xmes
⋆ ; zmes

⋆ + εz
⋆) ≈ hj(xmes

⋆ ; zmes
⋆ ) + ∂hj

∂z
(xmes

⋆ ; zmes
⋆ )εz

⋆, (4.10)

εmod
j (xmes

i + εx
i ; zmes

i + εz
i ) ≈ εmod

j (xmes
i ; zmes

i ) +
∂εmod

j

∂x
(xmes

i ; zmes
i )εx

i +
∂εmod

j

∂z
(xmes

i ; zmes
i )εz

i , (4.11)

εmod
j (xmes

⋆ ; zmes
⋆ + εz

⋆) ≈ εmod
j (xmes

⋆ ; zmes
⋆ ) +

∂εmod
j

∂z
(xmes

⋆ ; zmes
⋆ )εz

⋆. (4.12)

From a theoretical point, the smaller the measurement noises are, the more chance there is for the
method to be efficient. However, as it will be discussed in further detail in the application section,
this Taylor simplification appears to be very useful in situations where the measurement noises are
significant, which is the situation of main interest in this work. Conditionally on the knowledge of
θ and γ, and replacing the former expressions in (4.9) and (4.10), we then denote by µtrain and µ⋆

the expectations of ytrain := ((ymes
1 )1, . . . , (ymes

n )1, (ymes
1 )2, . . . , (ymes

n )dy ) and ymes
⋆ , by Ctrain and C⋆⋆

their respective covariance matrices, and by C⋆ the cross-covariance matrix between ytrain and ymes
⋆

(see Appendix A for the detailed expressions of these statistical moments). Finally, we approximate
the probability distribution of (ytrain, ymes

⋆ ) by a Gaussian PDF with the same parameters:(
ytrain
ymes

⋆

)
|θ, γ, (xmes

i , zmes
i )n

i=1, x⋆, zmes
⋆ ≈ N

((
µtrain

µ⋆

)
,

[
Ctrain C⋆

CT
⋆ C⋆⋆

])
. (4.13)

The Taylor expansions presented in Eqs. (4.9–4.12) enable to handle the products of Gaussian
distributions rather than their compositions. This simplifies the formalism but does not lead to an
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explicit expression for the joint probability distribution of (ytrain, ymes
⋆ ) (the approximate distribution

would be associated with a sum of Gaussian random variables and products of Gaussian variables,
which could potentially be written as sums of random variables with a χ2 distribution). Manipulating
such a distribution in a very high dimension (the dimension of (ytrain, ymes

⋆ ) is equal to (n + 1) × dy)
would then be very complicated (if not numerically impossible), not to mention deriving conditional
laws from it. Introducing the Gaussian approximation not only makes this joint distribution explicit,
but also makes it possible to deduce explicitly the probability distribution of ymes

⋆ conditional on ytrain.
Based on this Gaussian approximation, we proceed in three steps to estimate x⋆. First, we estimate

the model parameters θ and γ by log-likelihood maximization using only the data gathered in Dn

(plug-in approach [25]):
(θ, γ) ≈ (θMLE, γMLE) ∈ arg max

(t,g)
ℓn(t, g), (4.14)

where, in our case, the log-likelihood function is simply defined by:

ℓn(t, g) := −1
2
(
log(det(Ctrain)) + (ytrain − µtrain)T C−1

train(ytrain − µtrain)
)

. (4.15)

We then estimate π[ymes
⋆ |x⋆, zmes

⋆ , Dn] by fixing the error parameters to their maximum likelihood
estimators (MLE). Since the Gaussian distribution is stable by conditioning, the expression for this
PDF is explicit,

ymes
⋆ |θMLE, γMLE, x⋆, zmes

⋆ , Dn ∼ N
(
µ⋆ + CT

⋆ C−1
train(ytrain − µtrain), C⋆⋆ − CT

⋆ C−1
trainC⋆

)
. (4.16)

Finally, since we cannot easily compute the value of c in Eq. (4.1), sampling techniques, such as
Markov Chain Monte Carlo (MCMC), can be used to generate a set of points that are approxi-
mately distributed according to c × π[ymes

⋆ |θMLE, γMLE, x⋆, zmes
⋆ , Dn] × π[x⋆|zmes

⋆ , Dn], which we as-
sume to be close to the PDF of interest π[x⋆|ymes

⋆ , zmes
⋆ , Dn]. Conventional Metropolis-Hastings al-

gorithms could be employed here to generate these Markov chains, and the mode and credibility
intervals could eventually be estimated from the generated points. Nevertheless, the fact that the
prior distribution, π[x⋆|zmes

⋆ , Dn], is modeled using a non-parametric approach increases the chances
for π[ymes

⋆ |θMLE, γMLE, x⋆, zmes
⋆ , Dn] × π[x⋆|zmes

⋆ , Dn] to be multi-modal, which may require the use
of more sophisticated MCMC procedures, and their initialization in different points of X (see [19] for
more details).

In Section 5, in order to avoid these difficulties associated with the use of MCMC algorithms, which
are not at the heart of this paper, we decided to project the estimation of the a posteriori distribution
of x⋆ onto a fine discretisation of the input space X (using approximatively 150dx points), then to
calculate all the quantities of interest which will be presented from this discrete approximation of
π[x⋆|ymes

⋆ , zmes
⋆ , Dn].

5. Application

The aim of this section is to demonstrate the relevance of the proposed approaches when applied to
the calibration of non-specific multisensory systems. While the final goal is to deal with data from
actual sensors, numerical experiments based on simulated data allow a better quantification of the
performance and analysis of the different phenomena. Therefore, the illustrations presented in this
section include both a synthetic and an experimental dataset. The synthetic dataset includes the main
features generally observed in experimental datasets from multisensory systems deployed in an open
periodic environment. The experimental dataset demonstrates the relevance of this method for an
innovative sensor array solution incorporating nanomaterials and applied to air quality monitoring.
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5.1. Presentation of the data sets

As explained above, this section focuses on two types of data, the first one derived from real data
and the second one from simulated data. They are presented in parallel in this section to highlight
their similar characteristics. Using the same notations as in the previous sections, we denote by x the
quantities of interest, and by y and z the sensor outputs and the measured environmental variables
that can be used for the monitoring. In the real case, the vector x corresponds to the concentrations
of carbon monoxide (CO) and ozone (O3), while the components of z are temperature and humidity.

The generation of the simulated data is explained below, while the real data were obtained after
deploying of a carbon nanotube-based multisensory system (CNT) in an open environment over a pe-
riod of approximately one month. As detailed in [17], the system contains a twenty chemistors forming
a 10×2 sensor array. The chemistors are made out of carbon nanotubes, either non-functionalized (10
devices) or functionalized with an active polymer (10 devices). Out of the twenty sensor outputs, it
is only possible to extract two truly complementary outputs due to the very high degree of similarity
between the outputs of sensors from the same type (eg. functionalized or not).

For the simulated data, we chose to consider Markov Chains to generate data that would share
many of the characteristics of real data. The temporal evolution of x, z, and u are thus associated
with Gaussian random walk samples with a very strong correlation between two consecutive instants.
We then added a trend to these random walks to model the day-night cycles for a 360-day period,
and we multiplied the vector of these quantities by a matrix parameterized by ρ ∈ (−1, 1) to correlate
them. The larger ρ is, the more the quantities x, z and u are correlated (positively or negatively). Each
sensor output yi is then simulated using combinations of arc tangent, logarithmic, or linear functions:

yj = (4 + β1
j ) log(β2

j x1 + 1 − min(x1)) + β3
j arctan(β4

j z1) + β4
j arctan(β5

j x2 + β6
j z2) + αuu. (5.1)

The coefficients βm
j are fixed and chosen as ±(1 + αm

j ), where αm
j is chosen uniformly between −0.5

and 0.5. Finally, a centred Gaussian noise is applied to the data to define the measured quantities, the
noise-to-signal ratio is chosen equal to 5%. As an illustration, Figure 5.1 shows the temporal evolution
of three measured quantities for the simulated case and the real case (the real outputs are normalised
so that they can appear on the same graph), and Figure 5.2 shows the correlations between all the
variables.

These figures illustrate the main features of the data under consideration and highlight the similar-
ities between the simulated and real data. In both cases, the daily cycles of all the measured variables
can be observed. Mechanically, there is a high statistical correlation between them. Focusing on the
real data, the reference measurements of the target pollutants (especially CO) are very noisy, which is
accounted for in the simulated data. While it is possible to arbitrarily define the number of interferent
factors z in the simulated case, in real use cases (including the present one) some factors known to
be influential cannot be easily measured (here, for instance the concentration of volatile organic com-
pounds). This may explain certain fluctuations in sensor response that are not necessarily reflected in
the evolution of x or z. Finally, the very strong similarity between sensors of the same type can also
be seen in the correlation matrix of the real data, where a correlation of 1 is observed between y1 and
y2, as well as between y3 and y4.

In Figure 5.1, the real data are normalised so that they appear on the same graph. In reality, the
non-standardised values vary from 7 to 8 ppm for CO, from 0 to 83 ppb for O3, from 8 to 32 degrees
for temperature, and from 30% to 100% for relative humidity. However, we will restrict ourselves to
the points where O3 is greater than 15 ppb. This choice is explained by the fact that below 15 ppb,
the measured O3 values are no longer really significant, as they are below the detection thresholds of
the reference measuring instruments.
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Figure 5.1. Representation of the time evolution (left: simulated data; right: real
data) over one week of one sensor output y1 (in red with squares), one environmental
variable z1 (in blue with crosses) and one target pollutant (in black). For the real data
(in the right figure), x1 is the carbon monoxide concentration and z1 is the relative
humidity.
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Figure 5.2. Correlation matrices (left: simulated data; right: real data) between two
pollutants of interest, x1 and x2 (ozone and carbon monoxide for the real case), two
known environmental variables, z1 and z2 (relative humidity and temperature for the
real case), and four sensor outputs y1, y2, y3, y4 (for the real case, y1 and y2 are two
representatives of the non-functionalized sensors, y3 and y4 of the functionalized ones.
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5.2. Presentation of the performance indicators

The two datasets presented in Section 5.1 serve to illustrate the interest of the methods presented in
Sections 3 and 4. First, each dataset is divided into a training set of N points, and a test set of 250
points. The dimension of the test set is chosen to be as large as possible to give a good idea of the
predictive ability of the models, without excluding too much of the data for the training set. As the
data are highly correlated in time, the test points are chosen far enough away from the training points
to avoid any possible overlearning. Regarding the training points, it may seem interesting to take N as
high as possible. The calculation cost of the proposed methods nevertheless increases significantly with
N (in particular it is necessary to invert a matrix of size N × N many times during the construction
of the models). Hence, the value of N results from a compromise between prediction performance
and numerical cost, and is chosen equal to 300 for the real case (this value will be specified for the
simulated data, as it will vary depending on the context). To maximize the information provided by
these N points, the training points are chosen so as to best fill the input space X×Z using clustering
methods [10, 14]. To obtain more consistent results, this random selection is repeated 10 times for the
simulated case, and 5 times for the real case.

To evaluate the relevance of the methods for estimating the values of xi, several of the standard
indicators are used:

• R2
i is the coefficient of determination,

• MAEi is the mean average error,

• Lα
i is the difference between the 1 − α/2 and the α/2 quantiles, which defines a credibility

interval of level α (without necessarily being the smallest credibility interval of level α),

• Iα
i is the percentage of true value belonging to these intervals.

In general, a method is said to be relevant if it is able to estimate the target values with reasonable
confidence, i.e. with the smallest possible MAEs and credibility interval lengths, and with coefficients of
determination close to 1. In the case of simulated data, since the true (non-noisy) values are known, we
can also quantify the relevance of the credibility intervals by using the Iα

i indicators, which should be
as close to α as possible (on average a proportion α of the predictions are expected to be in Lα

i ). In the
real case, where the true (non-noisy) value of x remains unknown, this indicator is not as meaningful,
as we can expect the number of noisy values belonging to the credibility interval associated with the
unnoisy values of xi to be lower than α.

We also propose to compare the capabilities of the proposed methods with respect to more standard
models from the literature. In the following, we therefore refer to NP as the non-parametric method
presented in Section 3, and to GPR+IU (IU for input uncertainties) as the parametric method pre-
sented in Section 4. In addition to these two, we include several parametric methods with different
levels of complexity. We refer to GLR as the Generalised Linear Regression without taking into account
input uncertainties, GLR+IU as the Generalised Linear Regression when taking into account input
uncertainties, and GPR as the Gaussian Process Regression without input uncertainty consideration.
Model errors are also be added in each case, in the same way as for GPR+IU. The functions hj

are selected from classes of polynomials with degrees optimized by cross-validation. The optimization
was conducted empirically by incrementally elevating the total degree of the considered polynomials
(more advanced techniques using different kinds of penalization to avoid overlearning could also be
considered). For GLR, degree 2 polynomials are selected, while for GPR, only degree 1 polynomials
are considered.
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5.3. Analysis of the two datasets

The performance indicators achieved by the different prediction methods are listed in Table 5.1. Similar
trends are observed for simulated and real data:

• The best results for each indicator are mostly obtained with either NP or GPR+IU.

• An increase in model complexity from GLR to GPR results in a decrease in MAE and an
increase in R2 values.

• The addition of input uncertainties in both GLR and GPR cases results in a decrease in the
length of the credibility intervals, but does not automatically translate into an improvement
in the MAE.

• The NP method produces almost equivalent results to GPR in terms of MAE with reduced
computational cost, but with wider credibility intervals. This result is to be expected, given
that the NP method predicts the noisy value, whereas the GPR method seeks to predict the
denoised value.

• By focusing on the standard deviations of the obtained results rather than the means of the
different splits, we generally observe better consistency when adding the uncertainties on the
methods. This is particularly clear in the credibility intervals for both simulated and real cases.
This is even more true for the percentages presented for the simulated case.

Table 5.1. Compared performance of different methods for the monitoring of pollu-
tants in the air with application to the simulated data and the real data. The values
correspond to the empirical averages of the indicators obtained after 10 repetitions of
the complete approach for the simulated data, and 5 repetitions for the real data. It
also shows the standard deviation of the performance indicators over the repetitions.
For the real data, the index 1 is for O3 (in ppb) while the index 2 is for CO (in ppb).
The pollutants vary from 7 to 8 ppm for CO (with a mean of 7.4 and a standard devi-
ation of 0.077), from 15 to 83 ppb for O3 (with a mean of 34 and a standard deviation
of 17). The best value observed for each indicator is displayed in bold letters.

Method R2
1 R2

2 MAE1 MAE2 L95%
1 L95%

2 I95%
1 I95%

2
GLR 0.87 ± 0.019 0.83 ± 0.021 0.39 ± 0.028 0.49 ± 0.038 1.8 ± 0.086 2.7 ± 0.18 87 95

GLR+IU 0.88 ± 0.017 0.81 ± 0.022 0.36 ± 0.025 0.51 ± 0.029 1.5 ± 0.070 2.6 ± 0.14 94 94
GPR 0.98 ± 0.0052 0.88 ± 0.019 0.14 ± 0.013 0.38 ± 0.023 0.95 ± 0.043 1.9 ± 0.16 94 91

GPR+IU 0.98 ± 0.0048 0.88 ± 0.030 0.15 ± 0.013 0.38 ± 0.021 0.86 ± 0.033 1.8 ± 0.13 97 93
NP 0.92 ± 0.011 0.87 ± 0.020 0.29 ± 0.016 0.40 ± 0.027 1.6 ± 0.062 1.9 ± 0.13 96 93

(a) Simulated data

Method R2
1 R2

2 MAE1 MAE2 L90%
1 L90%

2
GLR 0.55 ± 0.072 0.74 ± 0.020 5.1 ± 0.19 0.030 ± 0.0022 18 ± 1.34 0.083 ± 0.011

GLR+IU 0.55 ± 0.057 0.74 ± 0.021 5.0 ± 0.13 0.028 ± 0.0021 18 ± 0.35 0.081 ± 0.0063
GPR 0.65 ± 0.041 0.79 ± 0.0082 4.4 ± 0.14 0.023 ± 0.0017 18 ± 0.52 0.079 ± 0.038

GPR+IU 0.73 ± 0.017 0.79 ± 0.017 4.2 ± 0.088 0.022 ± 0.014 17 ± 0.33 0.073 ± 0.0038
NP 0.68 ± 0.068 0.80 ± 0.056 4.5 ± 0.34 0.022 ± 0.0019 20 ± 0.45 0.097 ± 0.0073

(b) Real data

It is worth focusing briefly on parameter 1 of the real dataset, which strongly exemplifies the added
value of the NP, GPR and GPR+IU compared to GLR. While parameter 1 of the real data set is not
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predicted by the standard GLR method (R2 = 0.55), the application of either GPR and NP has a
significant effect on the R2 values (> +20%), then further consideration of IU in GPR increases the
R2 values by more than 30% compared to simple GLR.

Overall, while the advantage of each of the methods presented here is clear from Table 5.1, the
specific added value of each method depends on the specific use case; it differs between each parameter
of each use case. In order to understand their advantages and disadvantages in more details, and to
propose more general conclusions, a wide range of configurations is now studied using the simulated
data generator.

5.4. Parametric study using simulated data

Compared to the simulated data results presented in Table 5.1, we use the data generator to modulate
the following parameters of the use case:

• the number of sensors dy, from 2 to 10,

• the amplitude of the input noise, the standard deviation ranging from 1% to 20% of the mean
of each input xi,

• the presence or not of a non-observed interferent u,

• the size of the training set N , from 50 to 1000,

• the value of the correlation factor ρ that links statistically the different environmental variables,
from 0 to 0.9.

For the sake of brevity, we have included the detailed results of these different analyzes in Appen-
dix B, and here we only list the main conclusions of these analyses.

• The performance of NP and GPR+IU improves as the number of sensors increases and tends
towards similar predictions. However, the results suggest that the NP method may require
more sensors and training data to achieve convergence compared to GPR+IU.

• Increasing the size N of the training set also shows improvements in prediction errors and
credibility interval lengths for both methods. GPR+IU shows superior performance, but the
computation time increases substantially for large datasets.

• Concerning the response to different levels of input noise, we observe that the performance of
GPR+IU gradually decreases as the noise increases, while the results associated with the NP
method remain almost unchanged, suggesting minimal influence of measurement noise on NP.

• In addition, increasing the influence of the unobserved interferent on the sensors leads to a
significant deterioration of the prediction results for both methods.

• Finally, increasing correlation rates between environmental variables poses an important chal-
lenge to calibration, leading to increased prediction errors and credibility intervals.

Overall, this study suggests that these two methods each have their own strengths, which should
encourage us to try them both out for real-life test cases: NP is expected to be more robust in very
noisy situations when a sufficient number of sensors is available, while GPR+IU is expected to cover
less noisy situations with a lower number of sensors. This reinforces the conclusions reached in the
real dataset: GPR+IU is overall slightly better than NP, as the number of independent sensors is very
limited (only 2).
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6. Conclusions

In this study, two calibration methods are proposed within a Bayesian framework. The aim of these
methods is to incorporate various sources of uncertainty encountered by sensors in an uncontrolled
environment. The first method is a non-parametric approach based on kernel density estimation,
which offers simplicity of implementation, requires no prior assumptions about the data, and provides
fast computation. The second approach is parametric and uses Gaussian process regression. Its main
advantage lies is its ability to approximate complex and non-linear relationships between variables,
in exchange for a higher computational cost. A further improvement of this second method is then
introduced by considering uncertainties in the input data. This is particularly relevant when calibrating
sensors in an open environment, where such uncertainties can significantly degrade the quality of
sensor predictions. Two test cases are used to evaluate and compare these methods: a first one based
on real data associated with a gas sensor array based on carbon nanotubes, and a second one based
on simulated data. The main conclusion of these studies is that both proposed methods significantly
reduce uncertainties and prediction errors compared to more standard approaches in the literature.

Several perspectives could be suggested for this work. Here we assume that the sensor outputs at
time t depend only on the environmental variables at time t. In reality, however, sensors can sometimes
have long response times, so that their outputs depend on the environmental variables over a range
of times. Another major difficulty is the problem of temporal drift, which can severely degrade the
performance of sensors and calibration methods. A major improvement in these methods would be the
ability to detect inaccuracies prediction due to response time and temporal drift and to automatically
account for them in the sensor prediction.

Appendix A. Computation of the mean and covariance of (ytrain, ymes
⋆ )

Let µtrain and µ⋆ be the expectations of ytrain := ((ymes
1 )1, . . . , (ymes

n )1, (ymes
1 )2, . . . , (ymes

n )dy ) and
ymes

⋆ , let Ctrain and C⋆⋆ be their respective covariance matrices, and let C⋆ be the cross-covariance
matrix between ytrain and ymes

⋆ . Using Eqs. (4.5) and introducing the notations vi := (xmes
i , zmes

i ),
ϵv := (ϵx, ϵz) and dv := dx + dz, we deduce, for each 1 ≤ j, k ≤ dy and each 1 ≤ i, ℓ ≤ n,

(µtrain)n(j−1)+i := E [(ymes
i )j ] = hj(vi)βj (A.1)

(µ⋆)j := E [(ymes
⋆ )j ] = hj(v⋆)βj (A.2)

(Ctrain)n(j−1)+i,n(k−1)+l := Cov((ymes
i )j , (ymes

l )k) = δjkA
(j)
iℓ + δiℓBjk (A.3)

(C⋆)n(j−1)+i,k := Cov((ymes
i )j , (ymes

⋆ )k) = δjkA
(j)
i⋆ + δi⋆Bjk (A.4)

(C⋆⋆)j,k := Cov((ymes
⋆ )j , (ymes

⋆ )k) = δjkA
(j)
⋆⋆ + Bjk (A.5)

where:

A(j) := HjΓjHT
j + Kj + Cy + Σ + Sj , (A.6)

Hj :=

 hj(xmes
1 ; zmes

1 )T

...
hj(xmes

n ; zmes
n )T

 , Kj :=


k

(j)
v (v1, v1) · · · k

(j)
v (v1, vn)

... . . . ...
k

(j)
v (vn, v1) · · · k

(j)
v (vn, vn)

 , (A.7)
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Sj :=


s

(j)
1 0 · · · 0

0 . . . . . . ...
... . . . . . . 0
0 · · · 0 s

(j)
n

 , (A.8)

k(j)
v (vi, vℓ) := k(j)

x (xmes
i , xmes

ℓ )k(j)
z (zmes

i , zmes
ℓ ), (A.9)

s
(j)
i :=

dv∑
p=1

dv∑
q=1

(Cv)pq

(
Cov

(
∂εmod

j

∂(vi)p
(vi),

∂εmod
j

∂(vi)q
(vi)

)
+ ∂hj

∂(vi)p
(vi)T Γj

∂hj

∂(vi)q
(vi)

)
, (A.10)

Bjk := β
T
j

(
dv∑

p=1

dv∑
q=1

(Cv)pq
∂hj

∂(vi)p
(vi)

∂hk

∂(vi)q
(vi)T

)
βk. (A.11)

A
(j)
i⋆ and A

(j)
⋆⋆ have the same expressions as A

(j)
iℓ , with the difference that the uncertainties on x⋆ do

not appear anymore, and that in this case ϵv := (0, ϵz).

Appendix B. Parametric analyses based on simulated data

Here, several studies are carried out by modifying a parameter that was used to generate the data.
For each analysis, only one parameter is modified; the other parameters are chosen according to an
identical reference characterized by dy = 3, N = 200, noise level=5%, αu = 0, ρ = 0.5. The figures in
the different tables correspond to averages over 10 tests for greater consistency of results.

B.1. Influence of the number of sensors

Table B.1. Increasing the sensor number dy.

Method dy R2
1 R2

2 MAE1 MAE2 L95%
1 L95%

2 I95%
1 I95%

2
NP 2 0.89 0.87 0.33 0.39 2.03 2.08 97.16 95.04

3 0.92 0.88 0.28 0.38 1.68 1.98 96.92 94.36
5 0.97 0.87 0.16 0.39 0.92 1.91 96.24 93.40
7 0.97 0.87 0.17 0.41 0.89 1.84 95.40 92.32
9 0.97 0.93 0.17 0.30 0.90 1.30 95.00 91.60

10 0.97 0.94 0.17 0.28 0.90 1.20 94.88 90.64
GPR+IU 2 0.97 0.89 0.17 0.38 1.11 1.89 98.10 94.40

3 0.98 0.89 0.16 0.38 0.88 1.78 96.05 92.20
5 0.99 0.89 0.11 0.37 0.61 1.54 96.05 88.85
7 0.99 0.90 0.10 0.35 0.54 1.34 96.45 86.30
9 0.99 0.94 0.09 0.29 0.46 1.01 96.25 82.50

10 0.99 0.94 0.08 0.28 0.43 0.98 95.50 83.25

Firstly, a study was carried out to compare the calibration according to the number of sensors used
from dy = 2 to dy = 10. The results are presented in Table B.1. An analysis of the results of the
two methods shows an improvement as the number of sensors increases, both in terms of accuracy
indicators and credibility intervals. However, there is a limit to the improvement of the GPR+IU
method, which stabilises at around nine sensors, unlike the NP method. It is worth noting that the
credibility interval for x2 decreases significantly even at ten sensors. Another observation is that as
the number of sensors increases, both methods seem to converge to identical results especially for
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the second variable. Consequently, the NP method would require more sensors than GPR+IU, and
subsequently more information, to achieve convergence. In addition, the percentage of points of the
credibility intervals seems to decrease as the number of sensors increases for the GPR+IU method,
indicating an improvement for variable 1 (it becomes closer to 95%) but a deterioration for variable 2
(this time away from the expected 95%). This could be due to the chosen plug-in approach, which
fixes the model errors right after estimation, without associating uncertainties with these estimates.

Modifying the functions has the effect of completely changing the results. It should be noted that
if one of the sensors has a very linear and simple relationship with a variable, fewer sensors may be
needed to achieve convergence for that variable. Careful consideration should also be given to the
selection of the most appropriate sensors.

B.2. Influence of the number of points in the training set

Table B.2. Increasing the size N of the training set.

Method N R2
1 R2

2 MAE1 MAE2 L95%
1 L95%

2 I95%
1 I95%

2
NP 50 0.86 0.82 0.38 0.47 1.66 1.82 90.67 87.42

100 0.89 0.84 0.33 0.43 1.65 1.94 93.07 91.64
200 0.93 0.86 0.28 0.40 1.60 1.96 95.51 93.42
500 0.94 0.88 0.25 0.37 1.56 1.97 97.60 96.09
700 0.95 0.89 0.23 0.35 1.57 1.99 98.49 96.67

1000 0.96 0.90 0.22 0.34 1.56 1.99 99.07 97.78
GPR+IU 50 0.93 0.77 0.28 0.56 1.28 2.39 92.84 90.98

100 0.96 0.84 0.19 0.44 1.00 2.10 94.49 93.11
200 0.98 0.87 0.15 0.39 0.85 1.81 95.82 93.96
500 0.98 0.91 0.13 0.31 0.75 1.58 96.84 95.42
700 0.99 0.91 0.12 0.30 0.72 1.59 96.58 96.62

1000 0.99 0.92 0.11 0.29 0.69 1.53 97.29 96.09

With a sufficient amount of data, it may be interesting to see what happens when the size of the
training set is increased. The results are shown in Table B.2 for N = 50 to N = 1000. The first thing
to notice is that the calibration seems to work relatively well even with few data. NP seems to work as
well as GPR+IU and even better for the first variable. In the case of a small amount of data, it may be
wiser to work with this method, which is also faster especially considering that GPR+IU may require
more data than NP to correctly estimate the model parameters. More importantly, both methods
show an improvement in terms of prediction error and credibility interval length with more training
data. The GPR+IU method appears to have a superior performance. However, when N = 1000,
the computation time is significantly longer. Another observation is that, regardless of the approach
used, enlarging the training set boosts the percentage of belonging to the credibility intervals, despite
the fact that the intervals become smaller. Consequently, the predictions become more rational and
reliable.

B.3. Influence of the input noise

With regards to experimental data following sensory deployment, access is limited only to the measured
data. Understanding the results can be difficult in the presence of significant noise. Using simulated
data, it is possible to compare these two methods and their responses to different percentages of
noise on the variables. The results of this study are presented on Table B.3. The noise is added by a
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Table B.3. Increasing the input noise (in % of the standard deviation of the inputs).

Method Noise (%) R2
1 R2

2 MAE1 MAE2 L95%
1 L95%

2 I95%
1 I95%

2
NP 1 0.92 0.88 0.29 0.38 1.63 2.01 95.32 95.08

2 0.93 0.88 0.29 0.38 1.64 1.99 95.84 94.92
5 0.92 0.88 0.29 0.38 1.64 2.01 95.40 95.32

10 0.92 0.88 0.29 0.39 1.62 1.99 95.44 95.24
20 0.92 0.88 0.29 0.39 1.62 1.99 95.24 94.88

GPR+IU 1 0.98 0.88 0.15 0.38 0.84 1.83 95.40 94.60
2 0.98 0.88 0.15 0.37 0.84 1.83 95.72 94.16
5 0.98 0.88 0.15 0.38 0.87 1.84 96.08 94.44

10 0.97 0.88 0.18 0.39 1.05 1.99 97.16 96.24
20 0.96 0.87 0.22 0.42 1.30 2.34 98.24 96.76

percentage ranging from 1% to 20% of the standard deviation of the inputs. The same study could
have been carried out by varying the noise on environmental variables or sensor outputs. One might
assume that the more noisy the data, the more difficult the calibration. This appears to be the case
for the GPR+IU method, which shows a gradual decline in performance as the noise level increases
and the credibility interval widens. Nevertheless, the percentages are still justified. This indicates that
even though we are less certain and precise in our predictions due to measurement uncertainties, the
target value can still be found within the interval.

Examining the results for the NP technique, they appear almost identical, suggesting a negligible
influence of measurement noise. This can be rationalised by the exclusion of noise from the method,
which solely relies on data. In addition, it is noteworthy that as the noise increases, the outcomes of
the GPR+IU approach converge with those of the NP approach.

However, in this case we are only adjusting the amount of noise. In real-world scenarios, the sensors
face various challenges at the same time, which may lead to different results.

B.4. Influence of the unobserved interferent

Table B.4. Increasing the influence of the unobserved interferent (αu)

Method αu R2
1 R2

2 MAE1 MAE2 L95%
1 L95%

2 I95%
1 I95%

2
NP 0 0.90 0.85 0.32 0.43 1.71 2.13 95.32 94.32

0.01 0.90 0.85 0.31 0.43 1.70 2.13 95.44 94.52
0.1 0.89 0.85 0.32 0.43 1.74 2.10 95.72 93.88

1 0.67 0.85 0.56 0.43 2.74 2.16 94.20 94.80
GPR+IU 0 0.97 0.86 0.17 0.40 0.97 2.00 96.80 94.08

0.01 0.96 0.86 0.19 0.41 0.98 1.97 94.48 93.72
0.1 0.96 0.87 0.20 0.39 0.94 1.95 92.52 94.48

1 0.67 0.72 0.57 0.61 2.11 3.04 84.80 95.56

Here we want to quantify the effect of environmental variables that affect the sensor but are un-
known, αu being the importance of that variable u. In Table B.4, we show the results for αu from
0 to 1. For both approaches, it is difficult to draw conclusions when αu ∈ {0, 0.01, 0.1}, as there is
sometimes a small decrease in the results and sometimes a small increase. Such changes are certainly
an outcome of fluctuations in the results of the methods, but they are not significant. Nevertheless,
α = 1 shows a visible deterioration in both the prediction errors and the lengths of the credibility
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intervals. The results for the first pollutant are similar for both methods. For the second pollutant, NP
is superior to GPR+IU. Therefore, in cases of significant model error, NP may be a more attractive
option due to its faster processing time.

B.5. Influence of the correlation between inputs.

Table B.5. Increasing the ρ coefficient characterizing the correlation between inputs.

Method ρ R2
1 R2

2 MAE1 MAE2 L95%
1 L95%

2 I95%
1 I95%

2
NP 0 0.91 0.67 0.26 0.46 1.48 2.25 96.75 94.40

0.5 0.91 0.80 0.31 0.47 1.79 2.33 96.40 94.45
0.9 0.90 0.90 0.54 0.54 2.85 2.57 95.80 94.90

GPR+IU 0 0.98 0.74 0.14 0.39 0.74 1.88 96.65 93.35
0.5 0.97 0.83 0.17 0.42 0.96 1.97 96.05 93.65
0.9 0.95 0.91 0.39 0.51 2.07 2.35 95.85 93.90

In a real-world setting, environmental variables such as pollutants, temperature, and humidity
display a high degree of correlation. The present study, whose results are reported in Table B.5,
examines the effect of increasing the ρ correlation rate on calibration results. Specifically, three rates
were examined: a zero rate, representing uncorrelated variables; an average rate of 0.5, reflecting
variables with low correlation; and a high rate of 0.9 for variables with a high correlation. As the
correlation increases, the calibration becomes increasingly challenging due to the rise in prediction
error and a significant increase in the credibility intervals. It is also worth noting that despite the
increased error on the second variable, the coefficient of determination also increases. We might have
expected it to decrease.
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