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Abstract. We consider the problem of approximating a function from L2 by an element of a given m-dimensional
space Vm, associated with some feature map φ, using evaluations of the function at random points x1, . . . , xn. After
recalling some results on optimal weighted least-squares using independent and identically distributed points, we
consider weighted least-squares using projection determinantal point processes (DPP) or volume sampling. These
distributions introduce dependence between the points that promotes diversity in the selected features φ(xi). We
first provide a generalized version of volume-rescaled sampling yielding quasi-optimality results in expectation with
a number of samples n = O(m log(m)), that means that the expected L2 error is bounded by a constant times
the best approximation error in L2. Also, further assuming that the function is in some normed vector space H
continuously embedded in L2, we further prove that the approximation error in L2 is almost surely bounded by the
best approximation error measured in the H-norm. This includes the cases of functions from L∞ or reproducing
kernel Hilbert spaces. Finally, we present an alternative strategy consisting in using independent repetitions of
projection DPP (or volume sampling), yielding similar error bounds as with i.i.d. or volume sampling, but in
practice with a much lower number of samples. Numerical experiments illustrate the performance of the different
strategies.

Keywords. Weighted least-squares, Optimal sampling, Determinantal point process, Volume sampling.

1. Introduction

We consider the problem of approximating a function f by an element of a given m-dimensional space
Vm using point evaluations of the function. The function is defined on a set X equipped with a positive
measure µ and the error is assessed in the natural norm in L2

µ(X ) defined by

∥f∥2 =
∫

X
|f(x)|2dµ(x).

X can, for example, be a subset of Rd but more general Polish spaces can be considered as well. The
best approximation error that can be achieved by elements of Vm is

inf
v∈Vm

∥f − g∥ = ∥f − PVmf∥
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where PVmf is the orthogonal projection of f onto Vm. An approximation f̂m can be obtained by a
weighted least-squares projection of f defined as the minimizer of

min
g∈Vm

1
n

n∑
i=1

w(xi)|f(xi) − g(xi)|2 (1.1)

where w : X → R is a positive weight function and the x1, . . . , xn are points in X . The approximation
f̂m is said quasi-optimal if

∥f − f̂m∥ ≤ C inf
g∈Vm

∥f − g∥,

with a constant C independent of m. When using random points, it is said quasi-optimal in expectation
whenever

E(∥f − f̂m∥2)1/2 ≤ C inf
g∈Vm

∥f − g∥,

which guarantees that the averaged error E(∥f − f̂m∥2)1/2 converges as least as fast as the best
approximation error em(f)L2 := infg∈Vm ∥f − g∥. A fundamental problem is to select points and
weights that achieve quasi-optimality with a number of points as close as possible to the dimension m
of Vm. The weighted least-squares approximation f̂m defined by (1.1) is such that

∥f − f̂m∥n = min
g∈Vm

∥f − g∥n (1.2)

where ∥ · ∥n is the empirical (discrete) semi-norm defined by

∥f∥2
n = 1

n

n∑
i=1

w(xi)f(xi)2. (1.3)

The function f̂m is the orthogonal projection P̂Vmf of f onto Vm with respect to the empirical semi-
norm, and the quality of the approximation is related to how close ∥ · ∥n is from the norm ∥ · ∥.

We assume that we are given an orthonormal basis φ1, . . . , φm of Vm, and we let φ : X → Rm

be the associated feature map defined by φ(x) = (φ1(x), . . . , φm(x))T . Then for any g in Vm, where
g(x) = φ(x)T a for some a ∈ Rm, it holds ∥g∥2 = ∥a∥2

2 and ∥g∥2
n = aT Gwa, where Gw is the empirical

Gram matrix
Gw = Gw(x1, . . . , xm) := 1

n

n∑
i=1

w(xi)φ(xi)φ(xi)T , (1.4)

so that
λmin(Gw)∥g∥2 ≤ ∥g∥2

n ≤ λmax(Gw)∥g∥2, ∀g ∈ Vm, (1.5)
which is known as a Marcinkiewicz–Zygmund inequality in sampling discretization [19]. The quality
of the projection is therefore related to how much the spectrum of Gw deviates from one. In particular,
it holds

∥f − f̂m∥2 ≤ ∥f − PVmf∥2 + λmin(Gw)−1∥f − PVmf∥2
n.

A control of the minimal eigenvalue of Gw is therefore necessary to achieve quasi-optimality. A control
of the highest eigenvalue of Gw is also needed for numerical stability reasons, so that quasi-optimality
can be achieved in finite precision arithmetic. The choice of optimal points (and weights) is a classical
problem of design of experiments [27]. A classical approach, called E-optimal design, consists in select-
ing points (and weights) that maximize λmin(Gw). Variants of this problem consist in maximizing the
trace of the inverse of Gw, which is called A-optimal design, or maximizing the determinant det(Gw),
which is called D-optimal design. The latter is related to Fekete points for polynomial interpolation
or more general kernel based interpolation [8, 18]. It is also related to maximum volume concept in
linear algebra [15, 16]. However, these optimization problems are in general intractable.

The above mentioned approaches are deterministic. Here, we follow a probabilistic avenue, where
the points x1, . . . , xn are drawn from a suitable distribution allowing a control of the spectrum of
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the empirical Gram matrix. When the points xi are drawn from a distribution ν with density w−1

with respect to µ, the empirical Gram matrix is an unbiased estimate of the identity. Provided the
points are independent and identically distributed (i.i.d.), the empirical Gram matrix almost surely
converges to the identity and matrix concentration inequalities allow to analyze how fast is this
convergence. An optimization of the convergence rate over all possible distributions yields an optimal
density wm(x)−1 = 1

m∥φ(x)∥2
2, that is known as the inverse Christoffel function for polynomial spaces

Vm [9]. The measure νm = w−1
m µ is also known as leverage score distribution in statistics and machine

learning. Sampling from this distribution guarantees that the event Sδ = {λmin(Gwm) ≥ 1 − δ} is
satisfied with a controlled probability 1 − η provided the number of samples n = O(δ−2m log(mη−1)),
where the dependence in m is known to be optimal for i.i.d. sampling [28]. A similar control in
probability is obtained for the maximum eigenvalue, and λmax(Gwm) ≤ m even holds almost surely
with the particular choice of weight function wm. By drawing i.i.d. samples from νm and conditioning
to the event Sδ (that can be achieved by a rejection sampling with controlled rejection probability),
it holds E(∥ · ∥2

n) ≤ β∥ · ∥2 for some constant β, and the resulting least-squares projection f̂m is
quasi-optimal in expectation. If we further assume that the target function f is in a subspace H
continuously embedded in L2

µ(X ) and L∞
µ,h−1/2(X ) (the space of functions f defined on X such that

h−1/2f is uniformly bounded), with h a probability density with respect to µ, and if we choose for
ν = w−1µ a mixture of the optimal sampling distribution νm = w−1

m µ and hµ, we prove that quasi-
optimality still holds in expectation and we also prove that ∥ · ∥n is almost surely bounded by ∥ · ∥H

(up to a constant), which ensures that it holds almost surely

∥f − f̂m∥ ≤ C inf
g∈Vm

∥f − g∥H , (1.6)

which we will call H → L2
µ quasi-optimality. Examples of such spaces H are L∞

µ (X ) (with µ a
finite measure and h = µ(X )−1), or reproducing kernel Hilbert spaces. Note that the idea of using a
mixture between νm and µ to control the discrete norm by the L∞

µ -norm is not new, see, e.g., [2, 26].
The inequality (1.6) ensures that the approximation error in L2-norm is upper bounded by the best
approximation error in H-norm em(f)H := infg∈Vm ∥f−g∥H . Of course, further assumptions on f and
a suitable choice of Vm are required to guarantee some decay of em(f)H (which converges slower than
em(f)L2 in general). In this paper, we are not concerned with the choice of Vm (which is assumed to
be given) and the analysis of the convergence of best approximation errors in Vm (in L2 or H norms),
but only with the construction of algorithms yielding quasi-optimal approximations (in expectation,
with high probability or almost surely).

In practice, the number of i.i.d. samples n needed for a stable projection may be large and far from
the dimension m. In order to further reduce the sampling complexity, various subsampling approaches
have been recently proposed. They start with a set of points that guarantee that the spectrum of Gw is
contained in some interval [a, b], and then extract a subset of points that guarantee that the spectrum of
the empirical Gram matrix (up to a possible reweighting) is still contained in some prescribed interval
[a′, b′]. The approach proposed in [13, 14] yields quasi-optimality in expectation with a number of
samples n = O(m). The algorithm is a randomized version of algorithms provided in [23, 24] for the
solution of the Kadinson–Singer problem. This algorithm is unfortunately intractable. However, it is
interesting from a theoretical perspective since it allows to prove that quasi-optimality in expectation
can be achieved with a number of samples linear in m, therefore showing that sampling numbers in
a randomized setting and Kolmogorov widths are comparable for compact sets in L2

µ(X ). A greedy
subsampling algorithm with polynomial complexity has been proposed in [17], that reaches in practice
a number of samples n close (and sometimes equal) to m. However, it provides a suboptimal guaranty
in expectation, that is E(∥f − f̂m∥2)1/2 ≤ C log(m)1/2∥f − PVmf∥, and no theoretical guaranty to
extract a set of samples of size n = O(m). Another tractable approach has been proposed in [2],
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which allows to reach a number of samples n = O(m). Yet, this algorithm does not provide quasi-
optimality in expectation. These conditioning and subsampling approaches all yield a set of points
with a dependence structure that is not given explicitly. They require to start with a rather large
set of samples and suffer from the complexity of subsampling algorithms, which is polynomial in the
initial number of samples.

Another route is to leave the i.i.d. setting from the start and sample from a distribution that intro-
duces a dependence between the samples. An algorithm which achieves quasi-optimality in expectation
with n = O(m) samples has been proposed in [12]. It is a randomized variant of the subsampling al-
gorithm from [2]. Another prominent approach is to rely on volume sampling, first introduced in a
discrete setting in [1, 11], and then extended to more general settings in [25]. Volume sampling has
found many applications in machine learning. For classical (non weighted) least-squares, it consists
in drawing samples x = (x1, . . . , xn) from a distribution γn over X n having a density proportional
to det(Φ(x)T Φ(x)), with Φ(x) = (φ(x1), . . . ,φ(xn))T . The distribution γm, for n = m, corresponds
to a projection determinantal point processes (DPP) [21]. The density drops down to zero whenever
two vectors φ(xi) get collinear, hence this distribution introduces a repulsion between the points and
promotes diversity in the selected features φ(xi). For n > m, up to a random permutation of points,
this distribution corresponds to m points from a projection DPP and an independent set of n−m i.i.d.
samples from µ (provided µ is a probability measure). The associated empirical Gram matrix (with
weight w = 1) has bad concentration properties. Here we consider a generalized volume sampling dis-
tribution γν

n for weighted least-squares, which has a density proportional to det(Gw(x)) with respect
to a product measure ν⊗n (the measure µ is no more required to be a probability measure). This
introduces a compromise between promoting a high likelihood with respect to the reference measure ν
and promoting a high determinant of the empirical Gram matrix. For ν = νm, γνm

n corresponds to the
volume-rescaled sampling distribution introduced in [10]. This distribution yields quasi-optimality in
expectation, without the need of conditioning. Moreover, this distribution has the very nice property
of providing an unbiased approximation, i.e. E(f̂m) = PVmf , which allows to perform an averaging of
estimators for improving quasi-optimality constant.

Our first main contribution is to consider a general version of volume-rescaled sampling distribution,
with a measure ν = w−1µ allowing to obtain not only quasi-optimality in expectation but also an
almost sure H → L2

µ quasi-optimality for functions from subspaces H described above. Despite the
many advantages of volume sampling compared to i.i.d. optimal sampling, the number of samples to
ensure stability of the empirical Gram matrix with high probability is essentially of the same order as
for i.i.d. sampling, i.e. n = O(mδ−2 log(mη−1)).

Our second contribution is to propose an alternative that consists in using r independent samples
from the projection DPP distribution γm, or from the volume sampling distribution γν

n with a suitable
mixture distribution ν. Using conditioning, the former allows to obtain quasi-optimality in expectation,
while the latter allows to achieve H → L2

µ quasi-optimality almost surely for a subspace of functions H.
These results are similar to optimal i.i.d. sampling (with suitable mixture measures) or to our general
version of volume sampling. We can prove that stability Sδ is achieved with probability 1 − η under a
suboptimal condition n = O(m2δ−2 log(mη−1)), or a better condition n = O(mδ−2 log(mη−1)) (similar
to i.i.d. and volume sampling) under a conjecture (only checked numerically) on the properties of the
empirical Gram matrix associated with projection DPP or volume sampling. Although this theoretical
guaranty does not show any advantage of this new sampling strategy, we observe in practice a much
better concentration of the empirical Gram matrix, hence a much lower number of samples needed for
obtaining the stability condition Sδ with high probability.

Although they are not directly in line with our setting (the approximation of a function in an
arbitrary subspace Vm), we would like to mention related works [4, 5] using determinantal point
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processes for the approximation of functions from reproducing kernel Hilbert spaces H. In these
works, the sampling distribution is related to the kernel of H.

In this paper, we only provide upper bounds of the error in L2-norm in terms of errors of best
approximation in L2 or H norms. Obtaining a control of the error in other norms, e.g. L∞ or a some
RKHS norm, would certainly be of interest but this in general requires to modify the projection or
the sampling methods, see the recent works [20, 31] in this direction.

The outline of the paper is as follows. In Section 2, we provide some preliminary results on weighted
least-squares projections. In Section 3, we recall some classical results on optimal weighted least-
squares with i.i.d. sampling, with quasi-optimality results in expectation and also H → L2

µ quasi-
optimality results for a large class of function spaces, that extend previous results [17] to a more
general setting. In Section 4, we introduce DPP and more general volume sampling distributions, and
analyze the properties of corresponding weighted least-squares projections. In particular we obtain
quasi-optimality in expectation and almost sure H → L2

µ quasi-optimality when using our general
volume sampling distribution with a suitable weight function. In Section 5, we present the alternative
strategy consisting in using independent repetitions of DPP (or volume sampling), and obtain similar
quasi-optimality results. In Section 6, we provide numerical evidence of the efficiency of the strategy
based on independent repetitions of DPP, compared to optimal i.i.d. or volume-rescaled sampling.

2. Preliminary results on weighted least-squares approximation

Here, we provide some preliminary results on weighted least-squares approximation. We start with a
control of the bias of the empirical semi-norm, provided a condition on the weight function w that
needs to be related to the sampling distribution.

Lemma 2.1. Assuming that the points are drawn from a distribution over X n with marginals all equal
to ν̃ = w̃µ, and assuming that the weight function w is such that w ≤ βw̃, it holds for all f ∈ L2

µ

E(∥f∥2
n) ≤ β∥f∥2

with equality when w̃ = w.

Proof. It holds E(∥f∥2
n) = 1

n

∑n
i=1 Exi∼ν̃(w(xi)f(xi)2) ≤ β

∫
f(x)2dµ(x) = β∥f∥2.

Assuming Gw invertible, the projection error satisfies

∥f − f̂m∥2 = ∥f − PVmf∥2 + ∥P̂Vm(f − PVmf)∥2 (2.1)

from which we deduce

∥f − f̂m∥2 ≤ ∥f − PVmf∥2 + λmin(Gw)−1∥f − PVmf∥2
n,

and the following result.

Lemma 2.2. Assume that the points (x1, . . . , xn) are drawn from a distribution over X n with marginals
all equal to ν̃ = w̃−1µ and we use weighted least-squares with a weight function w such that w ≤ βw̃.
Letting Sδ = {λmin(Gw) ≥ 1 − δ}, it holds for any f ∈ L2

µ

E(∥P̂Vmf∥2|Sδ) ≤ P(Sδ)−1(1 − δ)−1β∥f∥2,

and
E(∥f − P̂Vmf∥2|Sδ) ≤ (1 + P(Sδ)−1(1 − δ)−1β) inf

g∈Vm

∥f − g∥2.
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Proof. From (1.5), we obtain
E(∥P̂Vmf∥2|Sδ) ≤ (1 − δ)−1E(∥P̂Vmf∥2

n|Sδ) ≤ (1 − δ)−1P(Sδ)−1E(∥P̂Vmf∥2
n),

and since P̂Vm is an orthogonal projection with respect to the inner product ∥·∥n, it holds E(∥P̂Vmf∥2
n) ≤

E(∥f∥2
n) ≤ β∥f∥2, where the last inequality results from Lemma 2.1. The second inequality then fol-

lows from (2.1).

In order to obtain error bounds with high probability or even almost surely, we introduce additional
assumptions on the target function, and choose a weight function accordingly. For some strictly positive
function h, we let L∞

µ,h−1/2(X ) be the space of functions defined on X such that fh−1/2 is in L∞
µ (X ).

Let H be a normed vector space of functions defined on X , continuously embedded in both L2
µ and

L∞
µ,h−1/2 . That means respectively that for any f ∈ H,

∥f∥ ≤ CH∥f∥H , (2.2)

and
∥f∥L∞

µ,h−1/2
= ess sup

x∈X
h(x)−1/2|f(x)| ≤ ∥f∥H . (2.3)

Example 2.3. When µ is a probability measure, the properties (2.2) and (2.3) hold for H = L∞
µ ,

with h = 1, and embedding constant CH = 1.

Example 2.4. The properties (2.2) and (2.3) hold for H a reproducing kernel Hilbert space of func-
tions with kernel K : X × X → R having finite trace

∫
K(x, x)dµ(x) < ∞. H is compactly embed-

ded in L2
µ with embedding constant C2

H =
∫
K(x, x)dµ(x), and continuously embedded in L∞

µ,h−1/2

with h(x) = K(x, x). The kernel admits a Mercer decomposition K(x, x) =
∑M

i=1 λiψi(x)ψj(y) with
M ∈ N ∪ {+∞}, where the ψi form an orthonormal system in L2

µ and the λi > 0 are such that∑M
i=1 λi = C2

H . The kernel can be rescaled such that CH = 1, in which case h is a probability density
with respect to µ. In the case when µ is itself a probability measure and X has a group structure
with K(x, y) = k(x− y), then h(x) = k(0) is a constant function, and with the previously mentioned
rescaling, CH = 1 and h = 1, and H is continuously embedded in L∞

µ . More generally, when h is
uniformly bounded, H is continuously embedded in L∞

µ . However, there are some interesting cases
of RKHS for which h is not uniformly bounded, e.g. the Sobolev space H1

ν (R) with ν = N (0, 1) the
standard Gaussian measure, whose kernel has diagonal h(x) =

√
π/2 exp(x2)(1 − erf(x/

√
2)2), and

which is continuously embedded in L2
µ for µ ∼ N (0, a), for a < 1. We refer to [6] for an introduction

to RKHS.

Noting that for any g ∈ Vm, it holds

∥f − f̂m∥ ≤ ∥f − g∥ + λmin(Gw)−1/2∥f − g∥n,

we can deduce another useful lemma, provided some condition on the sampling measure.

Lemma 2.5. Assume f ∈ H with H satisfying (2.2) and (2.3). If the weight function w is such that
w ≥ ζ−1h, it holds ∥g∥2

n ≤ ζ∥g∥2
H almost surely, for any g ∈ H. If we further assume that Gw is

almost surely invertible, it holds almost surely

∥f − f̂m∥ ≤
(
CH + λmin(Gw)−1/2ζ1/2

)
inf

g∈Vm

∥f − g∥H .
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3. Least-squares with independent and identically distributed samples

We here consider the classical setting where the x1, . . . , xn are i.i.d. samples from a distribution
ν = w−1µ with density w−1 with respect to µ. The empirical Gram matrix can be written

Gw = 1
n

n∑
i=1

Ai, Ai = w(xi)φ(xi)φ(xi)T .

The Ai are i.i.d. rank-one matrices, with expectation E(Ai) = I and spectral norm satisfying almost
surely

∥Ai∥ = w(xi)∥φ(xi)∥2
2.

From matrix Chernoff inequality (recalled in Theorem A.1), we then deduce the following result
from [9].

Lemma 3.1. Assume the points (x1, . . . , xn) are i.i.d. samples from ν = w−1µ, with w such that

Kw,m = sup
x∈X

w(x)∥φ(x)∥2
2 < ∞.

Then for any 0 < δ < 1, it holds

P(λmin(Gw) < 1 − δ) ≤ m exp(−ncδ/Kw,m)

with cδ = δ + (1 − δ) log(1 − δ) such that δ2/2 ≤ cδ ≤ δ2. Then it holds

P(λmin(Gw) < 1 − δ) ≤ η if n ≥ c−1
δ Kw,m log(mη−1).

Since
Kw,m ≥ Ex∼ν(w(x)∥φ(x)∥2

2) =
∫

∥φ(x)∥2
2dµ(x) = m,

we deduce that Kw,m ≥ m. The optimal sampling measure that minimizes the upper bound of the
matrix Chernoff inequality is therefore given by

νm = w−1
m µ,

where the density w−1
m with respect to µ is given by

w−1
m (x) := 1

m

m∑
i=1

φi(x)2 = 1
m

∥φ(x)∥2
2,

that provides an optimal constant Kwm,m = m. This optimal distribution for i.i.d. sampling is also
known as leverage score distribution. Choosing a function w such that w−1 ≥ αw−1

m for some α > 0
yields a constant

Kw,m ≤ α−1Kwm,m = α−1m, (3.1)
and we have P(λmin(Gw) < 1 − δ) ≤ η provided n ≥ c−1

δ α−1m log(mη−1).

We next provide a useful lemma on the stability of the empirical least-squares projection.

Lemma 3.2. Assume that (x1, . . . , xn) is drawn from ν⊗n with ν = w−1µ. Let Sδ = {λmin(Gw) ≥
1 − δ} with 0 < δ < 1. Then for any f ∈ L2

µ, it holds

E(∥P̂Vmf∥2|Sδ) ≤ P(Sδ)−1(1 − δ)−1∥f∥2,

and
E(∥P̂Vmf∥2|Sδ) ≤ P(Sδ)−1(1 − δ)−2

(
∥PVmf∥2 + Kw,m

n
∥f∥2

)
.
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Proof. The first inequality directly comes from Lemma 2.2 with β = 1. For the proof of the
second inequality, let G := Gw, and first note that P̂Vmf(x) = φ(x)T c, with c = G−1b and
b = 1

n

∑n
i=1w(xi)φ(xi)f(xi). Therefore

∥P̂Vmf∥2 = ∥c∥2
2 = ∥G−1b∥2

2 ≤ λmin(G)−2∥b∥2
2,

and
E(∥P̂Vmf∥2|Sδ) ≤ (1 − δ)−2P(Sδ)−1E(∥b∥2

2).
Then we have

E(∥b∥2
2) = 1

n2

n∑
i,j=1

E(w(xi)φ(xi)T f(xi)w(xj)φ(xj)T f(xj))

= 1
n
Ex∼ν(f(x)2w(x)2∥φ(x)∥2

2) + n− 1
n

∥
∫
f(x)φ(x)dµ(x)∥2

2

≤ Kw,m

n
∥f∥2 + n− 1

n
∥PVmf∥2,

which ends the proof.

Theorem 3.3. Assume that (x1, . . . , xn) is drawn from ν⊗n with ν = w−1µ such that w−1 ≥ αw−1
m

for some α > 0. Further assume that
n ≥ c−1

δ α−1m log(mη−1),
with 0 < δ < 1. Then the event Sδ = {λmin(Gw) ≥ 1 − δ} is such that P(Sδ) ≥ 1 − η and it holds

E(∥f − f̂m∥2|Sδ) ≤ (1 + (1 − η)−1(1 − δ)−1) inf
g∈Vm

∥f − g∥2,

and
E(∥f − f̂m∥2|Sδ) ≤ (1 + α−1m

n
(1 − η)−1(1 − δ)−2) inf

g∈Vm

∥f − g∥2,

Proof. The first inequality comes from Lemma 2.2 and Lemma 3.1, while the second inequality
follows from (2.1), Lemma 3.1 and Lemma 3.2, noting that PVm(f − PVmf) = 0.

The next theorem provides a control of error in probability, provided that the target function f is
in a space H satisfying (2.2) and (2.3), with h a probability density w.r.t. µ, and we use a sampling
distribution ν = w−1µ with

w−1 = αw−1
m + (1 − α)h. (3.2)

The measure ν is a mixture between νm = w−1
m µ and the measure hµ, with respective weights α and

1 − α.

Theorem 3.4. Assume f ∈ H, with H satisfying (2.2) and (2.3), with h a probability density with
respect to µ. Assume (x1, . . . , xn) is drawn from ν⊗n with ν = w−1µ and w−1 = αw−1

m + (1 − α)h.
Then provided

n ≥ c−1
δ α−1m log(mη−1),

with 0 < δ < 1, the event Sδ = {λmin(Gw) ≥ 1 − δ} is such that P(Sδ) ≥ 1 − η and it holds

∥f − f̂m∥ ≤
(
CH + (1 − δ)−1/2(1 − α)−1/2

)
inf

g∈Vm

∥f − g∥H

with probability greater than 1 − η.

Proof. It is directly deduced from Lemma 2.5 and Lemma 3.1.
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Remark 3.5 (Sampling from the mixture ν). Sampling from the mixture ν = ανm +(1−α)hµ can be
performed by sampling from νm with probability α and from hµ with probability 1−α. When H = L∞

µ

and µ is a probability measure (see Example 2.3), h = 1 and it requires sampling from the reference
measure µ. When H is a RKHS (see Example 2.4) with kernel K such that

∫
K(x, x)dµ(x) = 1,

it requires sampling from hµ with h(x) = K(x, x). If K is known from its Mercer decomposition
K(x, y) =

∑M
i=1 λiψi(x)ψ(y), with M ∈ N∪{+∞}, then h(x) =

∑M
i=1 λiψi(x)2 and hµ can be sampled

as a mixture of distributions ψ2
i µ with weights λi. An alternative is to sample independent Bernoulli

variables Bi ∼ B(λi), and then sample from the distribution hIµ with hI(x) = 1
#I

∑
i∈I ψi(x)2 with

I = {i : Bi = 1}.

4. Least-squares with determinantal point processes and volume sampling

4.1. Projection determinantal point process

A projection determinantal point process DPPµ(Vm) associated with the space Vm and the reference
measure µ (not necessarily a finite measure) is a distribution over X m defined by

dγm(x) = 1
m! det(Φ(x)T Φ(x))dµ⊗m(x), x ∈ X m,

where Φ(x) ∈ Rn×m is the matrix whose i-th row is φ(xi)T . It is a determinantal point process with
projection kernel K(x, y) = φ(x)T φ(y) and reference measure µ. Sampling from γm tends to select at
random a set of features (φ(x1), . . . ,φ(xm)) with high volume in Rm. The density 1

m! det(Φ(x)T Φ(x))
is equal to zero when two points xi and xj are equal, or more generally when two features φ(xi) and
φ(xj) are collinear for i ̸= j. It is a particular class of repulsive point processes. The following result
indicates that the marginals of γm are all equal to the optimal sampling measure for i.i.d. sampling
for Vm, and provides a factorization of the distribution in terms of conditional distributions.

Proposition 4.1 ([21, Theorem 2.7]). Let (x1, . . . , xm) ∼ γm. Each xk has for marginal distribution
νm = w−1

m µ, with w−1
m (x) = 1

m∥φ(x)∥2
2. For 2 ≤ k ≤ m, the conditional distribution of xk knowing

x1, . . . , xk−1 has for probability density with respect to µ the function

pk(xk) := 1
m− k + 1∥φ(xk) − PWk−1φ(xk)∥2

2

where PWk−1 is the orthogonal projection onto the space Wk−1 = span{φ(x1), . . . ,φ(xk−1)} in Rm.

Proof. See Appendix B.

From the previous result, we deduce a sequential procedure to draw a sample (x1, . . . , xm) from
the distribution γm = DPPµ(Vm). The first point x1 is obtained by drawing a sample from νm. Then
given the points (x1, . . . , xk−1), the point xk is drawn from the probability measure pk(x)dµ(x).

Example 4.2. Consider X = [0, 1] equipped with the uniform measure µ and the space Vm of piecewise
constant functions on a uniform partition of [0, 1] with m intervals. An orthogonal basis is given by
φj(x) =

√
m1x∈[(j−1)/m,j/m). Here φ(xi) =

√
mei, where ei is the i-th canonical vector in Rm. Then

the density of γm is 0 once two points or more are in the same interval, and equal to mm/m! if there
is exactly one point in each interval. The marginals are all equal to µ. The conditional density pk is
equal to 0 on the intervals containing the points (x1, . . . , xk−1), and equal to m

m−k+1 elsewhere.

9
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Remark 4.3. Letting v1, . . . ,vm be the orthonormal basis of Rm such that vi ∝ φ(xi) −PWi−1φ(xi),
we have that the functions ψi(x) = vT

i φ(x) form an L2
µ-orthonormal basis of Vm, and

pk(x)dµ(x) = 1
m− k + 1

(
m∑

i=k

ψi(x)2
)
dµ(x),

that is the optimal sampling distribution for the space span{ψk, . . . , ψm}, which is the orthogonal
complement of span{ψ1, . . . , ψk−1} in Vm.

Remark 4.4. When replacing the random draw xk+1 ∼ 1
m−k ∥φ(x) − PWk

φ(x)∥2
2dµ(x) by a deter-

ministic selection
xk+1 ∈ arg max

x∈X
∥φ(x) − PWk

φ(x)∥2
2,

the resulting algorithm corresponds to a deterministic greedy algorithm for the construction of a
hierarchical sequence of spacesW1 ⊂ . . . ⊂ Wm for the approximation of the manifold M = {φ(x) : x ∈
X } [7, 22]. It also coincides with the sequential design in Gaussian process interpolation, using a kernel
K(x, y) = φ(x)T φ(y). Indeed, in this case, Wk = span{K(x1, ·), . . . ,K(xk, ·)} and the interpolation
of a function at points (x1, . . . , xk) is the orthogonal projection onto Wk with respect to the RKHS
associated with the kernel K. The variance at point x of this interpolation given (x1, . . . , xk) is ∥φ(x)−
PWk

φ(x)∥2
2. Therefore, the selected point xk+1 is where the interpolation has maximum uncertainty.

For any probability density w−1 w.r.t. µ, we let φw : X → Rm be the weighted feature map such
that φw(x) = (φw

1 (x), . . . , φw
m(x))T = w(x)1/2φ(x) and Φw(x) be the matrix in Rn×m whose i-th row

is φw(xi)T . We have the following straightforward property.
Proposition 4.5. For any distribution ν = w−1µ, it holds

dγm(x) = 1
m! det(Φw(x)T Φw(x))dν⊗m(x), x ∈ X m.

The functions φw
1 , . . . , φ

w
m form an orthonormal basis of a subspace V w

m in L2
ν(X ), and the distribution

DPPµ(Vm) coincides with DPPν(V w
m ).

From the above, we deduce that for ν = w−1µ,

dγm(x) = mm

m! det(Gw(x))dν⊗m(x), x ∈ X m.

Therefore, sampling from γm tends to favor points x ∈ X m leading simultaneously to a high likelihood
with respect to the product measure ν⊗m and a high value of the determinant of Gw(x). This tends
to favor empirical Gram matrices with high eigenvalues.
Remark 4.6 (Complexity). Let us assume that µ is a discrete measure with N atoms. The cost of
sampling a projection DPP is O(m3 +Nm2). This can be improved to O(m3 +Nm) (up to log factors)
using rejection sampling, see [3].

4.2. Volume sampling

The volume sampling distribution VSn
µ(Vm) is the distribution over X n defined by

dγn(x) = (n−m)!
n! det(Φ(x)T Φ(x))dµ⊗n(x),

for n ≥ m. For n = m, the volume sampling distribution VSm
µ (Vm) coincides with the projection

determinantal point process DPPµ(Vm). For n > m, provided µ is a probability measure, a sample
from γn is composed by m samples from the projection determinantal process DPPµ(Vm) and n−m
i.i.d. samples from the measure µ, to which is applied a random permutation, as stated in the next
proposition.

10
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Theorem 4.7 ([10, Theorem 2.4]). Assume that µ is a probability measure. If (x1, . . . , xn) ∼ γm ⊗
µ⊗(n−m) and σ is an independent permutation drawn uniformly at random over the set of permutations
of {1, . . . , n}, then (xσ(1), . . . , xσ(n)) ∼ γn. The marginals of the distribution γn are all equal to the
mixture

m

n
νm + n−m

n
µ =

(
m

n
wm + n−m

n

)
µ.

Given a probability measure ν = w−1µ (µ is no more required to be a probability measure), for
n ≥ m we can define another volume sampling distribution VSn

ν (V w
m ) over X n defined by

dγν
n(x) = (n−m)!

n! det(Φw(x)T Φw(x))dν⊗n(x) = nm (n−m)!
n! det(Gw(x))dν⊗n(x).

Sampling from γν
n tends to favor points x ∈ X m leading simultaneously to a high likelihood with

respect to the product measure ν⊗n and a high value of the determinant of Gw(x). As a corollary of
Theorem 4.7, we have the following result.

Theorem 4.8. If (x1, . . . , xn) ∼ γm ⊗ ν⊗(n−m), with ν = w−1µ a probability measure, and σ is an
independent permutation drawn uniformly at random over the set of permutations of {1, . . . , n}, then
(xσ(1), . . . , xσ(n)) ∼ γν

n. The marginals of the distribution γν
n are all equal to the mixture

ν̃ = w̃−1µ with w̃−1 = m

n
w−1

m + n−m

n
w−1.

If wm ≥ αw, then w̃ satisfies(
1 − m

n

)
w−1 ≤ w̃−1 ≤

(
1 + (α−1 − 1)m

n

)
w−1.

Proof. Since φw form an orthonormal basis of the space V w
m in L2

ν , we deduce from Theorem 4.7 and
Proposition 4.5 that up to a random permutation, a sample from γν

n is composed by m points drawn
from DPP(V w

m , ν) = DPP(Vm, µ) (with marginals νm) and n − m i.i.d. samples from the measure ν.
The expression of the marginals is a direct consequence.

Taking ν = µ (provided µ is a probability measure), we have γµ
n = γn, that is the classical volume

sampling distribution VSn
µ(Vm). Taking ν = νm, we obtain the distribution

dγνm
n (x) = (n−m)!

n! det(Φwm(x)T Φwm(x))dν⊗n
m (x)

which corresponds to the volume-rescaled sampling distribution from [10, Section 3], whose marginals
are all equal to the optimal sampling measure νm (leverage score sampling). Up to a random permuta-
tion, this consists of m samples from γm and n−m i.i.d. samples from the optimal sampling measure
νm. Considering γν

n with ν ̸= νm will further allow us to obtain H → L2
µ quasi-optimality result in

probability.

4.3. Properties of least-squares projection

In this section, we consider weighted least-squares projection based on volume sampling with reference
probability measure ν = w−1µ. The case ν = νm corresponds to volume-rescaled sampling and enjoy
favorable properties for the error in expectation. However, as we will see, taking ν as a mixture allows
us to obtain a control of errors with high probability.

We first state some results on the minimal eigenvalue of the Gram matrix when using volume
sampling distribution γν

n. This is a straightforward extension of Theorem 2.9 from [10].

11
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Lemma 4.9. Assume x is drawn from the distribution γν
n with ν = w−1µ a probability measure. It

holds
E((Gw)−1) ⪯ n

n−m+ 1I,

where the Loewner ordering ⪯ is replaced by an equality whenever the matrix Φw(y) for y ∼ ν⊗n has
rank m almost surely, and

E(λmin(Gw)−1) ≤ nm

n−m+ 1 .

Proof. See Appendix C.

Provided a condition on a minimal number of samples, the next result improves the above upper
bound by exploiting a matrix concentration inequality.

Lemma 4.10. Assume x is drawn from the distribution γν
n with ν = w−1µ and w−1 ≥ αw−1

m . Then

P
(
λmin(Gw)−1 > (1 − δ)−1 n

n−m

)
≤ m exp

(
−cδ(n−m)α

m

)
.

Moreover, if
n ≥ m+mc−1

δ α−1 log(nm2)
it holds

E(λmin(Gw)−1) ≤ 1 + n

n−m
(1 − δ)−1.

Proof. See Appendix C.

Proposition 4.11. Let x = (x1, . . . , xn) be drawn from the distribution γν
n with ν = w−1µ and

w−1 ≥ αw−1
m . Assume we use weighted least-squares with weight function w. Then for any function f ,

letting St = {λmin(Gw(x))−1 ≤ t}, it holds

E(∥P̂Vmf∥2|St) ≤ P(St)−1t

(
1 − m

n

)−1
∥f∥2,

and

E(∥P̂Vmf∥2|St) ≤ P(St)−1t2
(
m

n
α−1(β + ξmα−1)∥f∥2 + ∥PVmf∥2

)
,

with β = 1 + (α−1 − 1)m
n , ξ = 0 if ν = νm, ξ = 1 in the case ν ̸= νm. If n ≥ m+ c−1

δ α−1m log(mη−1)
and t = (1 − δ)−1 n

n−m , then P(St) ≥ 1 − η.

Proof. For the first inequality, we note that
E(∥P̂Vmf∥2|St) ≤ tP(St)−1E(∥P̂Vmf∥2

n) ≤ tP(St)−1E(∥f∥2
n),

where we have used the fact that P̂Vm is an orthogonal projection with respect to ∥ · ∥n. Then since
the marginals of x are w̃−1µ with w̃−1 ≥ (1 − m

n )w−1 (Theorem 4.8), we deduce from Lemma 2.1
that E(∥f∥2

n) ≤ (1 − m
n )−1∥f∥2. For the second inequality, we note that ∥P̂Vmf∥ = ∥c∥2

2 with c =
Gw(x)−1b and b = 1

nΦw(x)T fw(x), where fw = fw1/2. Then noting that ∥c∥2 ≤ ∥Gw(x)−1∥2∥b∥2 =
λmin(Gw(x))−1∥2∥b∥2, we have

E(∥c∥2
2|St) ≤ t2E(∥b∥2

2|St) ≤ P(St)−1t2E(∥b∥2
2),

and the result follows from Lemma C.3 and Lemma 4.10.
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Theorem 4.12. Assume x is drawn from the distribution γν
n with ν = w−1µ and w−1 ≥ αw−1

m , and
assume we use weighted least-squares with weight function w. If

n ≥ m+ c−1
δ α−1m log(mη−1),

with 0 < δ < 1, then the event S = {λmin(Gw) ≥ (1 − δ)n−m
n )} is such that P(S) ≥ 1 − η, and it holds

E(∥f − f̂m∥2|S) ≤
(

1 + (1 − η)−1(1 − δ)−1
(

1 − m

n

)−1
β

)
inf

g∈Vm

∥f − g∥2,

and

E(∥f − f̂m∥2|S) ≤
(

1 + (1 − η)−1(1 − δ)−2
(

1 − m

n

)−2 m

n
α−1(β + ξmα−1)

)
inf

g∈Vm

∥f − g∥2,

with β = 1 + (α−1 − 1)m
n and ξ = 1 if ν ̸= νm or ξ = 0 if ν = νm.

Proof. Lemma 4.10 implies P(S) ≥ 1 − η. The marginal distributions are all equal to w̃−1µ with
w̃−1 ≤ βw−1. Then the first inequality follows from Lemma 2.2, and the second inequality follows
from Proposition 4.11.

We next provide a result in probability and another result in expectation (without conditioning)
under the assumption that the target function f is in some subspace H of L2

µ.

Theorem 4.13. Assume that f ∈ H, with H satisfying (2.2) and (2.3), with h a probability density
with respect to µ. Assume that (x1, . . . , xn) is drawn from γν

n with ν = w−1µ and w−1 = αw−1
m +

(1 − α)h, and we use weighted least-squares with weight function w. Then it holds

∥f − f̂m∥ ≤
(
CH + (1 − δ)−1/2(1 − α)−1/2

(
1 − m

n

)−1/2
)

inf
g∈Vm

∥f − g∥H

with probability greater than 1 −m exp(− cδ(n−m)α
m ), and if

n ≥ m+ c−1
δ α−1m log(nm2)

it holds

E(∥f − f̂m∥2) ≤
(

2C2
H + 2(1 − α)−1

(
1 + (1 − δ)−1

(
1 − m

n

)−1
))

inf
g∈Vm

∥f − g∥2
H

Proof. It is directly deduced from Lemma 4.10 with ζ = (1 − α)−1 and Lemma 2.5.

Note that the result in expectation from Theorem 4.13 does not require to use conditioning for
ensuring the stability of the Gram matrix.

Remark 4.14. Quasi-optimality guarentees from Theorems 4.12 and 4.13 are obtained under the
condition n ≳ m log(m) on the sampling complexity, which is similar to the results from Theorems 3.3
and 3.4, respectively for i.i.d. sampling. The numerical experiments will confirm that the requirement
on the number of samples required to obtain stability is similar for volume-rescaled and i.i.d. sampling.
However, in terms of approximation errors, we observe in practice that volume-rescaled sampling
outperforms i.i.d. sampling.
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Unbiased projection and aggregation of projections. We next state a remarkable result,
proven in [10, Theorem 3.1] for classical and volume-rescaled sampling, showing that with such sam-
pling, the projection f̂m = P̂Vmf is an unbiased estimation of the element of best approximation
fm = PVmf . The result is here stated for the distribution γν

n with a general probability measure ν.

Theorem 4.15. Assume (x1, . . . , xn) is drawn from the distribution γν
n with probability measure ν =

w−1µ and we use weighted least-squares with weight function w. Then for any f ∈ L2
µ, it holds

E(P̂Vmf) = PVmf.

Proof. We have P̂Vmf(·) = φ(·)T Φw(x)†fw(x) with fw = fw1/2. Then using Lemma C.2, we obtain
E(P̂Vmf(·)) = φ(·)TE(Φw(x)†fw(x)) = φ(·)T

∫
φ(y)f(y)dµ(y) = PVmf .

The next result shows a stability of empirical projection in expectation, and hence a quasi-optimality
in expectation, which does not require a conditioning to ensure stability of the Gram matrix. It
extends [10, Theorem 3.1] to volume sampling with general reference measure ν.

Theorem 4.16. Assume (x1, . . . , xn) is drawn from the distribution γν
n with ν = w−1µ such that

w−1 ≥ αw−1
m and we use weighted least-squares with weight function w. Provided n ≥ 2m + 2 and

n ≥ 2mα−1c−1
δ log(ζ−1m2n), it holds

E(∥P̂Vmg∥2) ≤
(

4m
n

(1 − δ)−2(β + ξmα−1) + α−1ζ

)
∥g∥2 + 4(1 − δ)−2∥PVmg∥2

for any g ∈ L2
µ, where ξ = 0 for ν = νm or ξ = 1 for ν ̸= νm, and β = 1 + (α−1 − 1)m

n . Then provided

n ≥ C(m log(ϵ−1m) +mϵ−1)

for a sufficiently large C, it holds

E(∥f − P̂Vmf∥2) ≤ (1 + ϵ(1 + ξm))∥f − PVmf∥2 (4.1)

with ξ = 0 for ν = νm or ξ = 1 for ν ̸= νm.

Proof. We have
E(∥f − P̂Vmf∥2) = ∥f − PVm∥2 + E(∥P̂Vm(f − PVmf)∥2).

Let g = f − PVmf . Note that E(∥P̂Vmg∥2) = E(∥Φw(x)†gw(x)∥2
2). Then using Lemma C.4, we show

that provided n ≥ 2m+ 2 and n ≥ 2mα−1c−1
δ log(ζ−1m2n), it holds

E(∥P̂Vmg∥2) ≤
(

4m
n

(1 − δ)−2(β + ξmα−1) + α−1ζ

)
∥g∥2

with β = 1 + (α−1 − 1)m
n , and ξ = 0 if ν = νm or ξ = 1 if ν ̸= νm. The condition n ≥

2mα−1δ−2 log(ζ−1m2n) can be converted into n ≥ C ′m log(ζ−1m) for some C ′. Therefore, provided
n ≥ C(m log(ϵ−1m) +mϵ−1) with a sufficiently large C, it holds

E(∥f − P̂Vmf∥2) ≤ (1 + ϵ(1 + ξm))∥f − PVmf∥2

with ξ = 0 for ν = νm or ξ = 1 for ν ̸= νm.

The above results allow to analyze the property of an aggregation of r independent least-squares
projections based on volume sampling, that yields a quasi-optimality result in expectation (without
conditioning), and a convergence to best approximation when r → ∞.

Corollary 4.17. Let r ∈ N. Let f̂ (1), . . . , f̂ (r) be r independent least-squares projections constructed
from independent samples x(1), . . . ,x(r) drawn from γν

n, with ν = w−1µ such that w−1 ≥ αw−1
m , and
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using weighted least-squares with weight w. Then provided n ≥ C(m log(ϵ−1m) +m(1 + ξm)ϵ−1) with
sufficiently large C, the averaged estimator f̄ r = 1

r

∑r
k=1 f̂

(k) satisfies

E(∥f − f̄ r∥2) ≤
(

1 + 1
r

(1 + ξm)ϵ
)

∥f − PVmf∥2,

with ξ = 0 for ν = νm or ξ = 1 for ν ̸= νm.

Proof. The estimators f̂ (k) are independent and follow the distribution of an estimator P̂Vmf con-
structed with samples drawn from γν

n. From Theorem 4.15, we have that E(f̂ (k)) = PVmf for all k.
Then using the independence of the f̂ (k) and Theorem 4.16, we obtain

E(∥f − f̄ r∥2) = ∥f − PVmf∥2 + E(∥PVmf − f̄ r∥2)

≤ ∥f − PVmf∥2 + 1
r
E(∥PVmf − P̂Vmf∥2)

≤
(

1 + 1
r

(1 + ξm)ϵ
)

∥f − PVmf∥2.

provided n ≥ C(m log(ϵ−1m) +mϵ−1) with sufficiently large C.

The quasi-optimality constant (1 + 1
r (1 + ξm)ϵ) is optimal when ξ = 0, i.e. ν = νm. When ν ̸= νm,

having quasi-optimality requires either ϵ ∼ m−1 for fixed r, or r ∼ m for fixed ϵ, both cases yielding
a condition on the total number of samples in nr ∼ m2, which is suboptimal compared to the case
ν = νm and even compared with i.i.d. sampling. However, no conditioning is required. Also, there is an
interest in using the volume sampling distribution γν

n with ν ̸= νm in order to obtain simultaneously
a guaranty in expectation (yet suboptimal) and a guaranty in probability for functions from a specific
function space H. Indeed, as a corollary of Theorem 4.13, and under the assumptions of these theorems,
we obtain using a simple union bound that

∥f − f̄ r∥ ≤
(
CH + (1 − δ)−1/2(1 − α)−1/2

(
1 − m

n

)−1
)

inf
g∈Vm

∥f − g∥H

with probability greater than 1 − rm exp
(
− cδ(n−m)α

m

)
.

5. Least-squares with independent repetitions of volume sampling

We now consider approximation methods relying on independent repetitions from the volume sampling
distribution. We will first consider repetitions of projection DPP distribution γm and prove some results
in expectation. Next we will consider repetitions of general volume sampling distribution γν

n, which
allows to obtain results both in expectation and in probability for some specific function spaces, with
a suitable choice of the measure ν.

5.1. Independent repetitions of DPP distribution γm

We consider x = (x1, . . . ,xr) where the xk = (x1,k, . . . , xm,k) are i.i.d. samples from γm, and the
corresponding weighted least-squares projection using n = mr points. We consider least-squares with
the optimal weight function wm. The empirical Gram matrix can be written

Gwm(x) = 1
r

r∑
k=1

Gwm(xk),
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with
Gwm(xk) = 1

m

m∑
i=1

φwm(xi,k)φwm(xi,k)T =
m∑

i=1

φ(xi,k)φ(xi,k)T

∥φ(xi,k)∥2
2

where the Gwm(xk) are i.i.d. matrices with expectation I and spectral norm bounded by m. Using
conditioning, we have the following result.

Theorem 5.1. Assume x is drawn from the distribution γ⊗r
m , and assume we use weighted least-squares

with weight function wm. Letting Sδ = {λmin(Gwm(x)) ≥ 1 − δ}, it holds
E(∥f − f̂m∥2|Sδ) ≤ (1 + P(Sδ)−1(1 − δ)−1) inf

g∈Vm

∥f − g∥2,

and
E(∥f − f̂m∥2|Sδ) ≤ (1 + P(Sδ)−1(1 − δ)−2r−1) inf

g∈Vm

∥f − g∥2.

Proof. This is a particular case of Theorem 5.8 with n̄ = m and ν = νm, where γν
m = γm, α = 1 and

ξ = 0.

It remains to control the probability of the event Sδ = {λmin(Gwm(x)) ≥ 1 − δ}. From Matrix
Chernoff inequality (Lemma 3.1), we deduce that

P(λmin(Gwm(x)) < 1 − δ) ≤ m exp
(

−rcδ

m

)
.

and we conclude that
P(λmin(Gwm(x)) < 1 − δ) ≤ η

provided n = rm ≥ c−1
δ m2 log(mη−1). This result is suboptimal compared to i.i.d. sampling from νm,

but it does not exploit the properties of DPP, which may yield to matrices Gwm(xk) with spectral
norm (much) lower than m with high probability. We have to better analyse the distribution of the
random matrix

A(x) := Gwm(x) =
m∑

i=1

φ(xi)φ(xi)T

∥φ(xi)∥2
2

, x = (x1, . . . , xm) ∼ γm.

In particular, if the distribution γm is such that the φ(x1), . . . ,φ(xm) are close to orthogonal with
high probability, then with high probability, A(x) is close to identity and the least-squares problem
is well conditioned.

Example 5.2. An ideal situation occurs when Vm is the space of piecewise constant functions on
a uniform partition of [0, 1] with m intervals, where φj(x) =

√
m1x∈[(j−1)/m,j/m), wm = 1, and

φ(xi) =
√
mei, where ei is the i-th canonical vector in Rm. Here the vectors φ(x1), . . . ,φ(xm) are

orthogonal almost surely, and A(x) = I almost surely.

Recall that we have

γm(x) = 1
m! det(Φ(x)T Φ(x))µ⊗m = mm

m! det(A(x))ν⊗m
m (x)

so that with x ∼ γm and y ∼ ν⊗m
m , it is more likely to have matrices A(x) with higher determinant

than A(y), and hence higher eigenvalues. This leads us to make the following conjecture.

Conjecture 1. The distribution γm satisfies
Pz∼γm(F (A(z)) > t) ≤ Py∼ν⊗m

m
(F (A(y)) > t) (5.1)

for t > 0 and F a real-valued positive, convex and decreasing function in the Loewner order.

If the distribution γm satisfies the property of Conjecture 1, we obtain the following result.
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Proposition 5.3. Let x = (x1, . . . ,xr) ∼ γ⊗r
m with γm a distribution over X m satisfying (5.1). Then

P(λmin(Gwm(x)) < 1 − δ) ≤ m exp
(

−cδn

m

)
.

Proof. We have P(λmin(Gwm(x)) < 1 − δ) = P(λmin(Gwm(x))−1 > t) with t := (1 − δ)−1. The
function F := B 7→ λmin(B)−1 is a positive convex and monotonically decreasing function in the
Loewner order. For any fixed symmetric positive semi-definite matrix H, A 7→ λmin(H + A/r)−1 is
also a positive convex and monotonically decreasing function in the Loewner order. Letting Gwm(x) =
1
r

∑m
i=1 A(xi) := H(x1, . . . , xr−1) + A(xr)/r, we then have

P(F (Gwm(x)) > t) = E(1F ( 1
r

∑r

i=1 A(xi))>t)

= E(E(1F (H(x1,...,xr−1)+A(xr)/r)>t|x1, . . . ,xr−1))
≤ E(E(1F (H(x1,...,xr−1)+A(yr)/r)>t|x1, . . . ,xr−1))
= E(1F (H(x1,...,xr−1)+A(yr)/r)>t),

where yr ∼ ν⊗m
m . Letting y1, . . . ,yr be i.i.d. samples from ν⊗m

m , and successively conditioning on
(x1, . . . ,xr−2,yr), (x1, . . . ,xr−3,yr−1,yr),. . . , (y2 . . . ,yr), we obtain

P(F (Gwm(x)) > t) ≤ E(1F ( 1
r

∑r

i=1 A(yi))>t) = P(F (Gwm(y)) > t),

where y = (y1, . . . ,yr) ∼ ν⊗n
m , n = rm. Then it holds P(λmin(Gwm(x)) < 1−δ) ≤ P(λmin(Gwm(y)) <

1 − δ), and we conclude using Lemma 3.1.

The above result ensures that stability is controlled in probability with a number of samples
which is at most the number of samples required by i.i.d. sampling from the optimal distribution νm.
In numerical experiments, we observe that this number of samples is in fact much lower than with
i.i.d. sampling. To be understood, this would require other tools for analyzing the concentration of
Gwm .

Remark 5.4. The proof of Proposition 5.3 exploits the assumption (5.1) to prove that

Pz∼γm(λmin(H + A(z)/r)−1 > t) ≤ Py∼ν⊗m
m

(λmin(H + A(y)/r)−1 > t) (5.2)

for any fixed p.s.d. matrix H. The assumption (5.2) on γm would be sufficient to obtain the result of
Proposition 5.3.

Remark 5.5. In order to obtain the result of Proposition 5.3, an alternative assumption on γm would
be that

Ez∼γm(G(esA(z))) ≤ Ey∼ν⊗m
m

(G(esA(y))) (5.3)

for any s < 0 and G a real-valued positive, concave and monotonically increasing function in the
Loewner order. Under this assumption, we have to follow the proof of matrix Chernoff. The first steps
of the proof of matrix Chernoff inequality (Theorem A.1) yield

P
(
λmin

(
1
r

r∑
i=1

A(xi)
)
< t

)
≤ inf

θ<0
e−θtE

(
tr exp

(
r∑

i=1
θA(xi)/r

))
.

Letting 1
r

∑r
i=1 A(xi) := H + θA(xr)/r, we have

tr exp
(

r∑
i=1

θA(xi)/r
)

= G(eA(xr)θ/r)
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with G := X 7→ tr exp(H + log(X)) a concave and increasing function in the Loewner order. The
assumption then implies that

E
(

tr exp
(

r∑
i=1

θA(xi)/r
))

≤ E(tr exp(H + θA(yr)/r))

with yr ∼ ν⊗m
m . Then by successive conditioning (as in the proof of Proposition 5.3), we obtain

P
(
λmin

(
1
r

r∑
i=1

A(xi)
)
< t

)
≤ inf

θ<0
e−θtE

(
tr exp

(
r∑

i=1
θA(yi)/r

))
,

where the yi are i.i.d. samples from ν⊗m
m , and we proceed with the classical proof of matrix Chernoff

inequality for sums of i.i.d. matrices (Theorem A.1).

Remark 5.6 (Complexity). Let us assume that µ is a discrete measure with N atoms. From Re-
mark 4.6, we know that getting r independent samples from the DPP distribution costs O(r(m3+Nm))
(up to log factors). With r ∼ log(m), this results in a cost in O(m3 +Nm) (up to log factors). On the
other hand, getting n i.i.d. samples from νm costs O(Nn). Then the subsampling algorithm from [2]
to obtain a subsample of size O(m) costs O(nm3). With n ∼ m log(m), this yields a total cost in
O(m4 +Nm) (up to log factors). This shows the advantage of using repeated DPP to directly obtain
a sample of size O(m), compared to using i.i.d. sampling and subsampling.

5.2. Independent repetitions of volume sampling γν
n̄

We here consider weighted least-squares projection using a set of samples gathering independent
samples from the volume sampling distribution γν

n̄ with n̄ ≥ m and ν = w−1ν with w−1 = αw−1
m +

(1 − α)h, where the probability density h is chosen according to some prior assumption on the target
function class.

We consider r i.i.d. samples xk = (x1,k, . . . , xn̄,k) ∈ X n̄ from γν
n̄ and the corresponding weighted

least-squares minimization with n = n̄r points. The empirical Gram matrix can be written

Gw = 1
r

r∑
k=1

Gw(xk)

where the Gw(xk) are i.i.d. matrices with expectation I and spectral norm bounded by α−1m. We
start by providing results in expectation.

Proposition 5.7. Let x = (x1, . . . , xn) be drawn from the distribution (γν
n̄)⊗r with ν = w−1µ and

w−1 ≥ αw−1
m . Assume we use weighted least squares with weight function w. Let Sδ = {λmin(Gw) ≥

1 − δ} with 0 < δ < 1. Then for any f ∈ L2
µ, it holds

E(∥P̂Vmf∥2|Sδ) ≤ P(Sδ)−1(1 − δ)−1β∥f∥2,

and

E(∥P̂Vmf∥2|Sδ) ≤ P(Sδ)−1(1 − δ)−2
(
m

n
α−1(β + ξmα−1 + βξn)∥f∥2 + (1 − ξ + ξ/r)∥PVmf∥2

)
,

with β = 1 + (α−1 − 1)m
n̄ , ξ = 0 if ν = νm, or ξ = 1 in the case ν ̸= νm.

Proof. The marginal distributions of x are all equal to ν̃ = w̃−1µ with w̃−1 ≤ βw−1. Then the first
inequality directly follows from Lemma 3.2. Then following the proof of Proposition 4.11, we obtain

E(∥P̂Vmf∥2
2|Sδ) ≤ P(Sδ)−1(1 − δ)−2E(∥b∥2

2),
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with b = 1
nΦw(x)T fw(x) = 1

r

∑r
k=1 b(xk), where b(xk) = 1

n̄Φw(xk)T fw(xk) and xk ∼ γν
n̄. The b(xk)

being i.i.d., it holds

E(∥b∥2
2) = 1

r
E(∥b(z)∥2

2) + r − 1
r

∥E(b(z))∥2
2

with z ∼ γν
n̄. Using Lemma C.3, we have

E(∥b(z)∥2
2) ≤ m

n̄
α−1(β + ξmα−1)∥f∥2 + ∥PVmf∥2,

with β = 1 + (α−1 − 1)m
n̄ , ξ = 0 if ν = νm and ξ = 1 in the case ν ̸= νm. When ν = νm, it holds

∥E(b(z))∥2
2 = ∥Ex∼νm(φ(x)f(x)wm(x))∥2

2 = ∥PVmf∥2. When ν ̸= νm, we have
∥E(b(z))∥2

2 = ∥Ex∼ν̃(φ(x)f(x)w(x))∥2
2

≤ Ex∼ν̃(∥φ(x)∥2
2f(x)2w(x)2)

≤ mα−1β

∫
f(x)2dµ(x) = mα−1β∥f∥2.

Gathering the above results, we obtain
∥E(b(z))∥2

2 ≤ m

n
α−1(β + ξmα−1)∥f∥2 + (1 − ξ + ξ/r)∥PVmf∥2 +mα−1βξ∥f∥2,

which ends the proof.

Theorem 5.8. Let r ∈ N, n̄ ≥ m and n = n̄r. Assume x is drawn from the distribution (γν
n̄)⊗r with

ν = w−1µ such that w−1 ≥ αw−1
m , and assume we use weighted least-squares with weight function w.

Letting Sδ = {λmin(Gwm(x)) ≥ 1 − δ}, it holds

E(∥f − f̂m∥2|Sδ) ≤ (1 + P(Sδ)−1(1 − δ)−1β) inf
g∈Vm

∥f − g∥2,

and

E(∥f − f̂m∥2|Sδ) ≤
(

1 + P(Sδ)−1(1 − δ)−2
(
m

n
α−1(β + ξmα−1 + βξn)

))
inf

g∈Vm

∥f − g∥2.

with β = 1 + (α−1 − 1)m
n̄ , ξ = 0 if ν = νm, or ξ = 1 in the case ν ̸= νm.

Proof. This simply results from Lemma 2.2 and Proposition 5.7.

We next provide a result in probability and another result in expectation (without conditioning)
under the assumption that the target function f in some subspace H.

Theorem 5.9. Assume that f ∈ H, with H satisfying (2.2) and (2.3), with h a probability density
with respect to µ. Assume that x = (x1, . . . , xn) is drawn from (γν

n̄)⊗r with ν = w−1µ and w−1 =
αw−1

m + (1 − α)h, and we use weighted least-squares with weight function w. Then it holds

∥f − f̂m∥ ≤
(
CH + (1 − δ)−1/2(1 − α)−1/2

)
inf

g∈Vm

∥f − g∥H

with probability at least P(Sδ), where Sδ = {λmin(Gw(x)) ≥ 1 − δ}. If

n̄ ≥ m+ c−1
δ α−1m log(nm2)

it holds

E(∥f − f̂m∥2) ≤
(

2C2
H + 2(1 − α)−1r

(
1 +

(
1 − m

n̄

)−1
(1 − δ)−1

))
inf

g∈Vm

∥f − g∥2
H .
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Proof. The first inequality is deduced from Lemma 2.5 with ζ = (1−α)−1. For the second inequality,
we use Lemma 2.5 with ζ = (1 − α)−1 and the fact that for any 1 ≤ k ≤ r, it holds

E(λmin(Gw(x))−1) ≤ rE(λmin(Gw(xk))−1) ≤ r

(
1 +

(
1 − m

n̄

)−1
(1 − δ)−1

)
,

where the last inequality comes from Lemma 4.10.

The first statement of Theorem 5.9 is a H → L2
µ quasi-optimality result in probability. The second

statement is a H → L2
µ quasi-optimality property in expectation, without conditioning the sample to

satisfy the event Sδ.
Again it remains to control the probability of the event Sδ. In fact, the distribution of Gw is the one

of the average of r independent Gram matrices associated with γm, and r(n̄ − m) rank-one matrices
associated with i.i.d. samples from ν. All these r(n̄−m+ 1) matrices have spectral norm bounded by
α−1m. Therefore, from matrix Chernoff inequality (Theorem A.1), we deduce that

P(λmin(Gw) > 1 − δ) ≤ m exp
(

−
r(n̄−m+ 1)c−1

δ α

m

)
,

and we can conclude that
P(λmin(Gw) > 1 − δ) ≤ η

whenever r(n̄−m+1) ≥ c−1
δ mα−1 log(mη−1), or the condition n ≥ n̄

n̄−m+1c
−1
δ mα−1 log(mη−1) on the

total number of samples. For, e.g., n̄ = 2m, we obtain a condition n ≥ 2c−1
δ mα−1 log(mη−1), that is

suboptimal (by a factor 2) compared to i.i.d. sampling. Here, we obtain a complexity in O(m log(m))
similar to i.i.d. but this is essentially due to the presence in x of mr i.i.d. samples from ν. Again, this
analysis does not really exploit the properties of volume sampling.

A better understanding of the distribution of matrices Gw(xk) allows to improve the above results.
As for the case of determinantal point processes, we conjecture that

P(F (Gw(xk)) > t) ≤ Py∼ν⊗n̄(F (Gw(y)) > t) (5.4)
for t > 0 and F a real-valued positive, convex and monotonically decreasing function in the Loewner
order. Under this conjecture, following the proof of Proposition 5.3, we would obtain the following
concentration result, similar to the case of n = mn̄ i.i.d. sampling from ν = wµ.

Proposition 5.10. Let r ∈ N, n̄ ≥ m and n = n̄r. Assume x = (x1, . . . ,xr) ∼ (γν
n̄)⊗r with γν

n̄ a
distribution over X n̄ satisfying (5.4). Then it holds

P(λmin(Gw(x) < 1 − δ) ≤ m exp
(

−cδn

m

)
.

Remark 5.11. The assumption (5.4) in Proposition 5.10 could be replaced by a weaker condition of
the form (5.2), or an alternative condition of the form (5.3).

We can avoid any conjecture on volume sampling and still obtain a result similar to Proposition 5.10
by assuming that the DPP distribution γm satisfies the conjecture (5.1) (or one of the two conjec-
tures (5.2) or (5.3)), and further assuming that wm ≤ ξmw for some constant ξm (possibly depending
on m).

Proposition 5.12. Let n̄ ≥ m, r ∈ N and n = n̄m. Let y ∼ ν⊗(n−mr) with ν = w−1µ such that
wm ≤ ξmw. Let z = (z1, . . . , zr) ∼ γ⊗r

m where γm is a distribution over X m satisfying either (5.1),
(5.2) or (5.3). Letting x = (y, z), it holds

P(λmin(Gw(x)) < (1 − δ)ξ−1
m

(
m

n̄

)
≤ m exp(−cδr).
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Proof. We have
Gw(x) = mr

n
Gw(z) + n−mr

n
Gw(y) ⪰ mr

n
Gw(z) ⪰ mr

n
ξ−1

m Gwm(z).

Therefore, using Proposition 5.3 with assumption (5.1) or the alternative assumptions (5.2) or (5.3)
(see Remarks 5.4 and 5.5), it holds

P(λmin(Gw(x)) < (1 − δ)ξ−1
m

(
mr

n

)
≤ P(λmin(Gwm(z)) < 1 − δ) ≤ m exp(−cδr). ■

Provided n = n̄r ≥ n̄c−1
δ log(mη−1), it then holds P(λmin(Gw(x))−1 < (1 − δ′)−1) ≥ 1 − η with

(1 − δ′)−1 = (1 − δ)−1ξm
n̄
m . Theorem 5.8 then gives

E(∥f − f̂m∥2|Sδ′) ≤
(

1 + (1 − η)−1βξm
n̄

m

)
inf

v∈Vm

∥f − v∥2,

which is a quasi-optimality result only if ξm is uniformly bounded with m.

Remark 5.13. Note that if Vm contains the constant function and w−1 = αw−1
m + (1 − α)h with

h = 1, then w−1
m ≥ 1

m and therefore, wm ≤ ξmw with ξm = α+ (1 − α)m ≤ m.

Note that the above theoretical results only show that repeated volume sampling is not worse than
i.i.d. sampling, but numerical experiments reveal that repeated volume sampling clearly outperforms
i.i.d. sampling. To be understood, this would again require other tools for analyzing the concentration
of Gw.

6. Numerical experiments

We consider two simple cases of polynomial approximation where Vm is the space of polynomials of
degree m − 1, with either X = [−1, 1] equipped with the uniform measure µ ∼ U(−1, 1), or X = R
equipped with the standard gaussian measure µ ∼ N (0, 1). We compare (weighted) least-squares
methods using (i) n i.i.d. samples from µ, (ii) n i.i.d. samples from νm = w−1

m µ, (iii) n samples
drawn from volume-rescaled sampling distribution γνm

n (that is equivalent to m samples from γm and
n − m i.i.d. samples from νm), and (iv) n samples from independent repetitions of projection DPP
distribution γm. In the latter case, we perform r = ⌈n/m⌉ i.i.d. samples from γm and keep the first n
points.

Concerning sampling, we systematically approximated measures µ by discrete measures with N =
2000 atoms, and then relied on exact samplers for discrete distributions. This approximation has no
impact on the qualitative results below.

For the case of the uniform distribution over [−1, 1], Figure 6.1 shows estimations of the probability
to satisfy Sδ = {λmin(Gw) ≥ 1 − δ} for the different sampling methods, as a function of m and n.
We observe a clear superiority of optimal i.i.d. sampling compared to classical i.i.d. sampling. We also
observe that volume-rescaled sampling brings only a small improvement over optimal i.i.d. sampling.
Finally, we observe that using independent repetitions of γm clearly outperforms volume-rescaled
sampling. For i.i.d. optimal sampling and volume-rescaled sampling, we can observe from the figure
the condition n ∼ m log(m) to ensure that Sδ is satisfied with probability 1/2. For repeated DPP,
we observe a condition better than n ∼ m log(m), or at least with a much better constant than with
other approaches, that is unfortunately not explained by our theoretical findings.

Figure 6.2 illustrates the same quantities for the case of the standard gaussian measure µ over
X = R. We draw essentially the same conclusions. We notice in this case the very poor performance
of classical sampling from µ.

From now on, we consider the approximation of the function f(x) = (1+2x2)−1 on R equipped with
the standard Gaussian measure µ, and Vm the space of polynomials of degree m − 1. On Figure 6.3,
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(a) i.i.d. µ (b) i.i.d. νm

(c) γνm
n (d) γ⊗⌈n/m⌉

m

Figure 6.1. For Vm the space of polynomials of degree m − 1 and µ the uniform
measure on [−1, 1], we plot P(λmin(Gw) ≥ 1/4) as a function of dimension m and
number of samples n. Probability estimates go from 0 (black) to 1 (white).

we plot the histograms of the logarithm of the L2
µ relative error, log(∥f − f̂m∥/∥f∥), for the different

sampling strategies and using n = rm for different r. For small oversampling (r = 2), we observe
the benefit of volume-rescaled sampling over i.i.d. sampling, which shifts the distribution towards
small values. We also observe a clear superiority of repeated DPP γ⊗r

m , which is further improved by
conditioning to satisfy the event Sδ with δ = 3/4. For large oversampling (r = 10), the histograms are
roughly similar. We only observe a slight benefit of conditioned repeated DPP over the other methods,
even over i.i.d. optimal sampling.

Table 6.1 shows the expected relative error E(∥f − f̂m∥2)1/2/∥f∥ and the quantile of ∥f − f̂m∥/∥f∥
of level 95%. We first observe the catastrophic results for classical i.i.d. sampling from µ. For small
oversampling (n = 2m), we observe on both criteria a clear benefit of volume-rescaled and repeated
DPP over i.i.d. optimal sampling. In terms of expected error, we observe a slight improvement of
repeated DPP compared to volume-rescaled sampling. However, concerning the quantile, we observe
a clear superiority of repeated DPP over volume-rescaled sampling. For the same number of samples,
this quantile is divided by up to a factor 2. For larger oversampling (n = 5m), i.i.d. performs much
better and gets closer to the performance of volume-rescaled sampling and repeated DPP.

The above numerical experiments illustrate the superiority of repeated DPP distribution γ⊗r
m over

i.i.d. optimal sampling, but also over volume-rescaled sampling, in the small oversampling regime.
For large oversampling, the different sampling strategies yield similar results. The interest of repeated
DPP distribution is that for very small oversampling, stability Sδ can be achieved with a reasonable
probability. This allows for sampling conditioned to Sδ, which further improves the quality of the
least-squares projection.

We observe in Table 6.1 that i.i.d. sampling with conditioning yields almost the same performance
as repeated DPP with conditioning. This proves the interest of conditioning. However, we were not
able to generate an i.i.d. sample of size n = 2m in reasonable time for m ≥ 30 (crosses in Table 1).
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m best i.i.d. µ i.i.d. νm i.i.d. νm (cond.) γνm
n γ

⊗n/m
m γ

⊗n/m
m (cond.)

10 1.3e− 01 8.4e+ 02 4.7e− 01 1.7e− 01 2.0e− 01 1.7e− 01 1.6e− 01
20 5.1e− 02 3.7e+ 07 1.5e− 01 6.4e− 02 8.2e− 02 6.7e− 02 6.3e− 02
30 2.6e− 02 3.3e+ 10 2.5e− 01 × 4.1e− 02 3.5e− 02 3.2e− 02
40 1.4e− 02 1.2e+ 10 7.2e− 02 × 2.3e− 02 1.8e− 02 1.7e− 02
50 7.9e− 03 4.9e+ 09 3.4e− 02 × 1.3e− 02 1.1e− 02 9.6e− 03

(a) n = 2m. Expected relative error E(∥f − f̂m∥2)1/2/∥f∥.

m best i.i.d. µ i.i.d. νm i.i.d. νm (cond.) γνm
n γ

⊗n/m
m γ

⊗n/m
m (cond.)

10 1.3e− 01 2.8e+ 03 1.2e+ 00 2.3e− 01 3.4e− 01 2.5e− 01 2.2e− 01
20 5.1e− 02 1.7e+ 08 4.2e− 01 8.0e− 02 1.4e− 01 9.6e− 02 8.2e− 02
30 2.6e− 02 9.3e+ 10 3.2e− 01 0.0e+ 00 6.6e− 02 5.5e− 02 4.0e− 02
40 1.4e− 02 4.2e+ 10 1.6e− 01 0.0e+ 00 4.3e− 02 2.4e− 02 2.2e− 02
50 7.9e− 03 1.5e+ 10 1.1e− 01 0.0e+ 00 2.3e− 02 1.5e− 02 1.2e− 02

(b) n = 2m. Quantile of ∥f − f̂m∥/∥f∥ of level 95%.

m best i.i.d. µ i.i.d. νm i.i.d. νm (cond.) γνm
n γ

⊗n/m
m γ

⊗n/m
m (cond.)

10 1.3e− 01 9.0e+ 01 1.5e− 01 1.5e− 01 1.5e− 01 1.4e− 01 1.4e− 01
20 5.1e− 02 8.7e+ 05 5.8e− 02 5.6e− 02 5.7e− 02 5.4e− 02 5.4e− 02
30 2.4e− 02 1.3e+ 08 2.9e− 02 2.8e− 02 2.8e− 02 2.6e− 02 2.6e− 02
40 1.3e− 02 4.6e+ 07 1.6e− 02 1.5e− 02 1.5e− 02 1.4e− 02 1.4e− 02
50 7.8e− 03 2.1e+ 08 9.2e− 03 8.8e− 03 9.0e− 03 8.4e− 03 8.4e− 03

(c) n = 5m. Expected relative error E(∥f − f̂m∥2)1/2/∥f∥.

m best i.i.d. µ i.i.d. νm i.i.d. νm (cond.) γνm
n γ

⊗n/m
m γ

⊗n/m
m (cond.)

10 1.32e− 01 3.4e+ 02 1.9e− 01 1.7e− 01 1.8e− 01 1.6e− 01 1.6e− 01
20 5.1e− 02 3.8e+ 06 7.1e− 02 6.5e− 02 6.9e− 02 6.1e− 02 6.0e− 02
30 2.4e− 02 4.6e+ 08 3.9e− 02 3.3e− 02 3.2e− 02 3.0e− 02 2.9e− 02
40 1.3e− 02 1.9e+ 08 1.9e− 02 1.8e− 02 1.8e− 02 1.6e− 02 1.5e− 02
50 7.8e− 03 9.7e+ 08 1.1e− 02 1.0e− 02 1.1e− 02 9.2e− 03 9.2e− 03

(d) n = 5m. Quantile of ∥f − f̂m∥/∥f∥ of level 95%.

Table 6.1. For Vm the space of polynomials of degree m−1 and µ the standard gauss-
ian measure on R, we indicate the expected relative error or the quantile of the relative
error of level 95%, using n = rm samples from ν⊗n

m , the volume-rescaled distribution
γνm

n , repeated DPP γ⊗r
m , or repeated DPP conditioned to Sδ with δ = 3/4. The column

“best” indicates the best approximation error in Vm.
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(a) i.i.d. µ (b) i.i.d. νm

(c) γm + n−m i.i.d. νm (d) repeated γm

Figure 6.2. For Vm the space of polynomials of degree m − 1 and µ the standard
gaussian measure on R, we plot P(λmin(Gw) ≥ 1/4) as a function of dimension m and
number of samples n. Probability estimates go from 0 (black) to 1 (white).

This is explained by the fact that using i.i.d. sampling requires a high number of samples to satisfy
Sδ with a reasonable probability. This proves the advantage of using repeated DPP, which allows to
use a conditioning technique with a very small sample size (even 2m).
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(a) n = 2m

(b) n = 5m (c) n = 10m

Figure 6.3. For Vm the space of polynomials of degree m−1 and µ the standard gauss-
ian measure on R, we plot the histogram of log(∥f − f̂m∥/∥f∥) using n = rm samples
from ν⊗n

m (blue), the volume-rescaled sampling distribution γνm
n (green), repeated DPP

γ⊗r
m (red), or repeated DPP conditioned to satisfy Sδ with δ = 3/4 (magenta).
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Appendix A. Some known results on random matrices

Theorem A.1 (Matrix Chernoff inequality [29]). Let A1, . . .An be independent random symmetric
matrices of size m-by-m such that for all i, 0 ≤ λmin(Ai) and λmax(Ai) ≤ L. Then

P
(
λmax

(
n∑

i=1
Ai

)
≥ (1 + δ)µmax

)
≤ m exp(−dδµmax/L) for ϵ ≥ 0, and (A.1)

P
(
λmin

(
n∑

i=1
Ai

)
≤ (1 − δ)µmin

)
≤ m exp(−cδµmin/L) for ϵ ∈ [0, 1), (A.2)

where µmin = λmin(E(
∑n

i=1 Ai)), µmax = λmax(E(
∑n

i=1 Ai)), cδ = δ + (1 − δ) log(1 − δ) and dδ =
−δ + (1 + δ) log(1 + δ). It holds 5

13δ
2 ≤ dδ ≤ δ2/2 ≤ cδ ≤ δ2.

Proof. We provide a sketch of the proof of Tropp [30] for the bound on the minimal eigenvalue. Let
B =

∑n
i=1 Ai. For any θ < 0, it holds

P(λmin(B) ≤ t) = P(eθλmin(B) ≥ eθt) = P(eλmin(θB) ≥ eθt) ≤ e−θtE(eλmin(θB)),
where the last inequality is given by Markov inequality. Then using eλmin(θB) = λmin(eθB) ≤ tr(eθB),
we obtain

P(λmin(B) ≤ t) ≤ inf
θ<0

e−θtE(treθB).

For positive-definite matrix H, the map A 7→ treH+log(A) is concave on the positive cone of positive
definite matrices. Letting Xi := eθAi , a sequential application of Jensen’s inequality gives

E(treθB) = E
(

tr exp
(

n∑
i=1

log(Xi)
))

≤ tr exp
(

n∑
i=1

log(E(Xi))
)

= tr exp
(

n∑
i=1

log(E(eθAi))
)
.

Also it holds logE(eθAi) ⪯ g(θ)E(Ai) where g(θ) = L−1(eθL − 1), so that

tr exp
(

n∑
i=1

log(E(eθAi))
)

≤ tr exp
(
g(θ)E

(
n∑

i=1
Ai

))
≤ neg(θ)µmin .

Therefore,
P(λmin(B) ≤ t) ≤ inf

θ<0
ne−θteg(θ)µmin .

Taking t = (1 − δ)µmin, the infimum is attained at θ = L−1 log(1 − δ), which gives the desired result.

Lemma A.2 (Lemma 2.3 in [10]). Let A,B ∈ Rn×m be two random matrices whose row vectors are
drawn as an i.i.d. sequence of n pairs of random vectors (ai,bi). Then

nmE(det(AT B)) = n!
(n−m)! det(E(AT B)) for any n ≥ m, and

nm−1E(adj(AT B)) = n!
(n−m+ 1)!adj(E(AT B)) for any n ≥ m− 1.

Lemma A.3 (Lemma 2.11 in [10]). For any matrix A ∈ Rn×m with n > m, it holds

det(AT A)A† = n

n−m

n∑
i=1

det(AT (I − eieT
i )A)((I − eieT

i )A)†.
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Appendix B. Properties of projection determinental point processes

Proof of Proposition 4.1. This is a standard result on projection determinantal processes, see
e.g. [21]. We here provide a short proof with our notations. The fact that all marginals are the same
comes from the invariance to permutations of the distribution γm. From the classical “base times
height formula” for a determinant, we have

det(Φ(x)) = det((φ(x1), . . .φ(xm))) = ∥φ(x1)∥2∥PW ⊥
1

φ(x2)∥2 . . . ∥PW ⊥
m−1

φ(xm)∥2

where PW ⊥
k

= Im − PWk
is the orthogonal projection onto the orthogonal complement of Wk =

span{φ(x1), . . . ,φ(xk)} in Rm. Therefore, the density of γm with respect to µ⊗m has the following
expression

1
m! det(Φ(x)T Φ(x)) =

m∏
k=1

pk(xk), pk(xk) := 1
m− k + 1∥PW ⊥

k−1
φ(xk)∥2

2,

with the convention W0 = {0}. The function pk depends on (x1, . . . , xk−1) and is a probability density
since ∫

pk(x)dµ(x) = 1
m− k + 1

∫
φ(x)TPW ⊥

k−1
φ(x)dµ(x)

= 1
m− k + 1tr(PW ⊥

k−1

∫
φ(x)φ(x)Tdµ(x))

= 1
m− k + 1tr(PW ⊥

k−1
) = 1,

where we have used the fact that tr(PW ⊥
k−1

) = dim(W⊥
k−1) = m − k + 1. That provides a factoriza-

tion of γm in terms of the marginal p1(x1)dµ(x1) = 1
m∥φ(x1)∥2

2dµ and the conditional distributions
pk(xk)dµ(xk) of xk knowing (x1, . . . , xk−1), which ends the proof.

The next result provides the distribution of all marginal distributions of γm. This is a standard result
on DPPs (see, e.g., [10, Lemma 3.3]). For completeness, we here provide a proof with our notations.

Proposition B.1. Let x = (x1, . . . , xm) ∼ γm. For a nonempty tuple T ⊂ [m], xT = (xi)i∈T has for
distribution

(m− |T |)!
m! det(Φ(y)Φ(y)T )dµ⊗|T |(y), y ∈ X |T |.

Proof. Because of the symmetry of the distribution γm, it is sufficient to consider sets T = [k] and
xT = x[k] = (x1, . . . , xk). Let denote p[k]µ

⊗k the distribution of x[k]. The result is true for k = 1. Then
we proceed by induction. From Proposition 4.1, we know that the conditional distribution of xk+1
knowing x[k] is

1
m− k

(∥φ(xk+1)∥2
2 − ∥Φ(x[k])(Φ(x[k])Φ(x[k])T )−1Φ(x[k])T φ(xk+1)∥2

2)dµ.

Assuming the distribution of x[k] is
(m− k)!
m! det(Φ(x[k])Φ(x[k])T )dµ⊗k(x[k]),
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we deduce that the distribution of x[k+1] = (x[k], xk+1) admits as density with respect to µ⊗(k+1)

(m− k − 1)!
m! det(Φ(x[k])Φ(x[k])T )(∥φ(xk+1)∥2

2

− ∥Φ(x[k])(Φ(x[k])Φ(x[k])T )−1Φ(x[k])T φ(xk+1)∥2
2)

= (m− k − 1)!
m! det(Φ(x[k])Φ(x[k])T )(φ(xk+1)T φ(xk+1)

− φ(xk+1)T Φ(x[k])(Φ(x[k])Φ(x[k])T )−1Φ(x[k])T φ(xk+1))

= (m− k − 1)!
m! det(Φ(x[k+1])Φ(xT

[k+1])),
which ends the proof.

Appendix C. Properties of volume sampling

We first provide a straightforward result.

Lemma C.1. Assume x = (x1, . . . , xn) is drawn from the distribution γν
n with ν = w−1µ a probability

measure. For any measurable function g : X n → R,

Ex∼γν
n
(g(x)) = Ey∼ν⊗n

((n−m)!
n! det(Φw(y)T Φw(y))g(y)

)
.

We next provide a generalization of [10, Theorem 2.10] which is fundamental to prove the unbiased-
ness of weighted least-squares projections based on volume sampling with general reference measures.

Lemma C.2. Assume x = (x1, . . . , xn) is drawn from the distribution γν
n with ν = w−1µ a probability

measure. Then for any function f , it holds

E(Φw(x)†fw(x)) =
∫

φ(y)f(y)dµ(y),

where fw = fw1/2.

Proof. First consider the case n = m, where x = (x1, . . . , xm) is drawn from γm = DPPµ(Vm). In
this case, Φ(x) is a square matrix, almost surely invertible, and Φw(x)†fw(x) = Φ(x)†f(x). We obtain
using Cramer’s rule1

E(Φ(x)†f(x))i = 1
m!

∫ (
det(Φ(y)T Φ(y))Φ(y)†f(y)

)
i
dµ(y)

= 1
m!

∫
det(Φ(y)T ) det(Φ(y) + (f(y) − Φ(y)ei)eT

i )dµ(y)

= 1
m!

∫
det(Φ(y)T (Φ(y) + (f(y) − Φ(y)ei)eT

i ))dµ(y)

(∗)= det
( 1
m

∫
Φ(y)T (Φ(y) + (f(y) − Φ(y)ei)eT

i )dµ(y)
)

= det
(

I +
(∫

φ(y)f(y)dµ(y) − ei

)
eT

i

)
=
(∫

φ(y)f(y)dµ(y)
)

i
,

1For any matrix A ∈ Rn×n and vector b ∈ Rn, det(A)(A†b)i = det(A + (b − Aei)eT
i )
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where (∗) is deduced from Lemma A.2. For the case n > m, we proceed by induction. Letting y ∼ ν⊗n

and using Lemma A.3, we have

E(Φw(x)†fw(x)) = (n−m)!
n! E(det(Φw(y)T Φw(y))Φw(y)†fw(y))

= (n−m)!
n!

n

n−m

n∑
i=1

E(det(Φw(y)T (I − eieT
i )Φw(y))((I − eieT

i )Φw(y))†fw(y))

= (n−m− 1)!
(n− 1)!

n∑
i=1

E(det(Φw(y−i)T Φw(y−i))(Φw(y−i))†fw(y−i))

= E(Φw(x̃)−1fw(x̃)),
with x̃ ∼ γν

n−1, and y−i is the vector y without the i-th component. We then deduce E(Φw(x)†fw(x)) =∫
φ(y)f(y)dµ(y).

Lemma C.3. Assume (x1, . . . , xn) is drawn from the distribution γν
n with ν = w−1µ and w−1 ≥ αw−1

m .
Then for any function f and fw = fw1/2, it holds

E
(∥∥∥∥ 1

n
Φw(x)T fw(x)

∥∥∥∥2
)

≤ m

n
α−1(β + ξmα−1)∥f∥2 + ∥PVmf∥2

with β = 1 + (α−1 − 1)m
n and ξ = 0 if ν = νm or ξ = 1 if ν ̸= νm. In the case where φ(xi)f(xi) ≥ 0

almost surely, it holds

E
(∥∥∥∥ 1

n
Φw(x)T fw(x)

∥∥∥∥2
)

≤ m

n
α−1β∥f∥2 +

(
1 + 2α−2m

n

)
∥PVmf∥2.

Proof. Let b = 1
nΦw(x)T fw(x) = 1

n

∑n
k=1 φ(xk)T f(xk)w(xk). Letting a(x) := φ(x)f(x)w(x), we

have

E(∥b∥2
2) = 1

n2

n∑
k,l=1

E((a(xk),a(xl))) = 1
n2

n∑
k=1

E(∥a(xk)∥2) + 1
n2

n∑
k,l=1
k ̸=l

E((a(xk),a(xl))).

The marginal distribution of γν
n is ν̃ = w̃−1µ with w̃−1 = n−m

n w−1 + m
n w

−1
m such that w̃−1 ≤ βw−1

with β = 1 + (α−1 − 1)m
n . Then,

1
n2

n∑
k=1

E(∥a(xk)∥2) = 1
n
Ex∼ν̃(∥φ(x)∥2

2f(x)2w(x)2)

≤ m

n
α−1β Ex∼ν̃(f(x)2w̃(x))

= m

n
α−1β∥f∥2.

Up to a permutation, we can now consider that (x1, . . . , xm) ∼ γm and (xm+1, . . . , xn) ∼ ν⊗(n−m) are
independent. Letting z ∼ ν, we have

E

 n∑
k,l=1
k ̸=l

(a(xk),a(xl))

 = m(m− 1)E((a(x1),a(x2)))

+ 2m(n−m)(E(a(x1)),E(a(z))) + (n−m)(n−m− 1)∥E(a(z))∥2
2.

We have
∥E(a(z))∥2 = ∥E(φ(z)f(z)w(z))∥2 = ∥

∫
φ(y)f(y)dµ(y)∥2

2 = ∥PVmf∥2.
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Letting (y1, y2) ∼ µ⊗2, and using Proposition B.1, we obtain
m(m− 1)E((a(x1),a(x2)))

=
∫

(a(y1),a(y2)) det(Φ(y1, y2)Φ(y1, y2)T )dµ(y1)dµ(y2)

=
∫

(a(y1),a(y2))(∥φ(y1)∥2∥φ(y2)∥2 − (φ(y1),φ(y2))2)dµ(y1)dµ(y2)

≤
∥∥∥∥∫ a(y1)∥φ(y1)∥2dµ(y1)

∥∥∥∥2

2
−
∫

(φ(y1),φ(y2))3f(y1)f(y2)w(y1)w(y2)dµ(y1)dµ(y2).

The second term in the above upper bound can be written∫ ∑
l

gl(y1)gl(y2)dµ(y1)dµ(y2) =
∑

l

∫
gl(y))2dµ(y)

for some functions gl, so that
m(m− 1)(E(a(x1)),E(a(x2))) ≤ m2∥E(a(x))∥2

2,

with x ∼ νm. Gathering the above results, we get

E(∥b∥2
2) ≤ m

n
α−1β∥f∥2 + m2

n2 ∥E(a(x))∥2
2

+ 2m(n−m)
n2 ∥E(a(x))∥2∥PVmf∥ + (n−m)(n−m− 1)

n2 ∥PVmf∥2.

If w = wm, then α = β = 1 and ∥E(a(x))∥2 = ∥PVmf∥, and therefore

E(∥b∥2
2) ≤ m

n
∥f∥2 + m2 + 2m(n−m) + (n−m)(n−m− 1)

n2 ∥PVmf∥2

≤ m

n
∥f∥2 + n2 − n+m

n2 ∥PVmf∥2 ≤ m

n
∥f∥2 +

(
1 − n−m

n2

)
∥PVmf∥2.

If w−1 ≥ αw−1
m , we have

∥E(a(x))∥2 ≤ E(∥a(x)∥2
2)1/2 = m1/2

(∫
f(y)2w(y)2wm(y)−2dµ(y)

)1/2
≤ m1/2α−1∥f∥,

and therefore, letting ξm = m1/2,

E(∥b∥2
2) ≤ m

n
α−1β∥f∥2 + m2

n2 ξ
2
mα

−2∥f∥2

+ 2m(n−m)
n2 ξmα

−1∥f∥∥PVmf∥ + (n−m)(n−m− 1)
n2 ∥PVmf∥2

≤
(
m

n
α−1β + m

n
ξ2

mα
−2
)

∥f∥2 + (n−m)(n−m− 1) +m(n−m)
n2 ∥PVmf∥2

≤ m

n
α−1(β + ξ2

mα
−1)∥f∥2 + ∥PVmf∥2.

If the particular case where φ(y)f(y) ≥ 0 almost surely, then

∥E(a(x))∥2 =
∥∥∥∥∫ φ(y)f(y)w(y)wm(y)−1dµ(y)

∥∥∥∥
2

≤ α−1
∥∥∥∥∫ φ(y)f(y)dµ(y)

∥∥∥∥
2

= α−1∥PVmf∥,

and we get

E(∥b∥2
2) ≤ m

n
α−1β∥f∥2 +

(
m2

n2 α
−2 + 2m(n−m)

n2 α−1 + (n−m)(n−m− 1)
n2

)
∥PVmf∥2

≤ m

n
α−1β∥f∥2 +

(
1 + 2m

n
α−2

)
∥PVmf∥2. ■
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Proof of Lemma 4.9. The first statement results from [10, Theorem 2.9]. We here provide the proof
for completeness. First note that Gw(x) is invertible almost surely. Letting y ∼ ν⊗n, we have

E(Gw(x)−1) = E(Gw(x)†) = nm (n−m)!
n! E(Gw(y)† det(Gw(y)))

⪯ nm (n−m)!
n! E(adj(Gw(y)))

(∗)= nm (n−m)!
n!

n!
(n−m+ 1)!nm−1 adj(E(Gw(y)))

= n

n−m+ 1 adj(I) = n

n−m+ 1 I,

where (∗) is obtained from Lemma A.2, and where the Loewner ordering ⪯ can be replaced by an
equality when Φw(y) has rank m almost surely, which implies that Gw(y)† = Gw(y)−1. We deduce
from the first statement that G := Gw(x) satisfies E(λmin(G)−1) = E(λmax(G−1)) ≤ E(tr(G−1)) =
tr(E(G−1)) ≤ nm

n−m+1 .

Proof of Lemma 4.10. The distribution of Gw is the same as the Gram matrix associated with m
samples from γm and n−m i.i.d. samples from ν, independent from the first m samples. Then write
Gw = m

n Gw
[m] + n−m

n Gw
[m]c , where Gw

[m]c is the Gram matrix associated with n−m i.i.d. samples from
ν, and Gw

[m] is the Gram matrix associated with m points from the distribution γm. Matrices Gw
[m] and

Gw
[m]c are independent. First note that for A and B symmetric positive definite, λmin(A + B)−1 ≤

λmin(A)−1. We then deduce that
λmin(Gw)−1 ≤ n

m
λmin(Gw

[m])
−1 and λmin(Gw)−1 ≤ n

n−m
λmin(Gw

[m]c)−1.

Noting that Km,w ≤ α−1m, we have from Lemma 3.1 that the event S = {λmin(Gw
[m]c) < 1 − δ}

satisfies P(S) ≤ m exp(− cδ(n−m)α
m ) := η(n−m,m). We deduce that

P
(
λmin(Gw)−1 > (1 − δ)−1 n

n−m

)
≤ P

(
λmin(Gw

[m]c)−1 > (1 − δ)−1
)

≤ η(n−m,m),

that is the second statement. For the final statement, we have that
E(λmin(Gw)−1) ≤ E(λmin(Gw)−1|S)η(n−m,m) + E(λmin(Gw)−1|Sc)

≤ n

m
E(λmin(Gw

[m])
−1)η(n−m,m) + n

n−m
E(λmin(Gw

[m]c)−1|Sc)

≤ nmη(n−m,m) + n

n−m
(1 − δ)−1

where we have used the independence of Gw
[m] and S, and the second statement of Lemma 4.9 applied

to Gw
[m]. Then it holds

E(λmin(Gw)−1) ≤ nm2 exp
(

−cδ(n−m)α
m

)
+ n

n−m
(1 − δ)−1

which concludes the proof.

Lemma C.4. Let x ∼ γν
n with ν = w−1µ and w−1 ≥ αw−1

m . For an arbitrary function g, provided
n ≥ 2m+ 2 and n ≥ 2mα−1c−1

δ log(ζ−1m2n), it holds

E(∥Φw(x)†gw(x)∥2
2) ≤

(
4m
n

(1 − δ)−2(β + ξmα−1) + α−1ζ

)
∥g∥2 + 4(1 − δ)−2∥PVmg∥2

with β = 1 + (α−1 − 1)m
n , and ξ = 0 if ν = νm or ξ = 1 if ν ̸= νm.
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Proof. First note that Φw(x)†gw(x) = Gw(x)−1b(x) with b(x) = 1
nΦw(x)T gw(x). Up to a reordering,

assume that (x1, . . . , xn) ∼ γm ⊗ ν⊗n−m. Let m ≤ s ≤ n. Then write Gw(x) := s
nGw

[s] + n−s
n Gw

[s]c ,
where Gw

[s]c is the Gram matrix associated with n − s i.i.d. samples from ν, and Gw
[s] is the Gram

matrix associated with s points from the distribution γν
s . Matrices Gw

[s] and Gw
[s]c are independent. Let

A = {λmin(Gw
[s]c) ≥ (1 − δ)n−s−1

n−s }. We have

E(∥Φw(x)†gw(x)∥2
2) = E(∥Φw(x)†gw(x)∥2

2|A)P(A) + E(∥Φw(x)†gw(x)∥2
2|Ac)P(Ac)

For the first term, we have
E(∥Φw(x)†gw(x)∥2

2|A)P(A) ≤ E(∥Gw(x)−1∥2
2∥b∥2

2|A)P(A)

≤ n2

(n− s)2E(λmin(Gw
[s]c(x))−2∥b∥2

2|A)P(A)

≤ n2

(n− s− 1)2 (1 − δ)−2E(∥b∥2
2),

and using Lemma C.3, we obtain

E(∥Φw(x)†gw(x)∥2
2|A)P(A) ≤ n2

(n− s− 1)2 (1 − δ)−2
(
m

n
α−1(β + ξmα−1)∥g∥2 + ∥PVmg∥2

)
with β = 1 + (α−1 − 1)m

n , and ξ = 0 if ν = νm or ξ = 1 if ν ̸= νm.
For the second term, noting that

∥Φw(x)†∥2
2 = ∥(Φw(x)T Φw(x))−1∥2 = n−1∥Gw(x)−1∥2 ≤ s−1λmin(Gw

[s])
−1,

we have
E(∥Φw(x)†gw(x)∥2

2|Ac) ≤ s−1E(λmin(Gw
[s])

−1∥gw(x)∥2
2|Ac)

= s−1E(λmin(Gw
[s])

−1∥gw(x[s])∥2
2) + s−1E(λmin(Gw

[s])
−1)E(∥gw(x[s]c)∥2

2|Ac)

≤ E(λmin(Gw
[s])

−1gw(x1)2) + m

s−m+ 1E(∥gw(x[s]c)∥2
2|Ac),

where we have the invariance through permutations of γs and the independence of Gw
[s] and gw(x[s]c).

Letting B = {λmin(Gw
[s+1,n−1]c) ≥ (1 − δ)} ⊂ A, we have

E(∥gw(x[s]c)∥2
2|Ac) =

n∑
i=s+1

E(gw(xi)2|Ac) = (n− s)E(gw(xn)2|Ac)

≤ (n− s)E(gw(xn)2|Bc)P(Bc)
P(Ac) = (n− s)E(gw(xn)2)P(Bc)

P(Ac)
so that

E(∥gw(x[s]c)∥2
2|Ac)P(Ac) ≤ (n− s)∥g∥2m exp

(
−cδα(n− s− 1)

m

)
Finally, using Lemma C.5, we obtain

E(λmin(Gw
[s])

−1gw(x1)2) ≤ E(tr((Φw(x[s])T Φw(x[s]))−1)gw(x1)2)

≤ α−1 m

s−m+ 1Ex∼ν(gw(x)2)

= α−1 m

s−m+ 1∥g∥2.
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Gathering the above results, we have

E(∥Φw(x)†gw(x)∥2
2) ≤ n2

(n− s− 1)2 (1 − δ)−2
(
m

n
α−1(β + ξmα−1)∥g∥2 + ∥PVmg∥2

)
+ m2

s−m+ 1((n− s) + α−1)∥g∥2 exp
(

−cδα(n− s− 1)
m

)
≤ C∥g∥2 +D∥PVm∥2

with

D = n2

(n− s− 1)2 (1 − δ)−2

and

C = n2

(n− s− 1)2 (1 − δ)−2m

n
α−1(β + ξmα−1) + α−1m

2(n− s+ 1)
s−m+ 1 exp

(
−cδα(n− s− 1)

m

)
Taking m ≤ s ≤ n/2 − 1, we have

D ≤ 4(1 − δ)−2

and
C ≤ 4m

n
(1 − δ)−2(β + ξmα−1) + α−1m2n exp(−cδαn

2m ).

Therefore, provided n ≥ 2m+ 2 and
n ≥ 2mα−1c−1

δ log(ζ−1m2n),
it holds

C ≤ 4m
n

(1 − δ)−2(β + ξmα−1) + α−1ζ. ■

Lemma C.5. Let x ∼ γν
n with ν = w−1µ satisfying w−1 ≥ αw−1

m . Then for any function f , it holds

E(f(x1)tr((Φw(x)T Φw(x))−1)) ≤
(
m

n
+ α−1 m(m− 1)

n(n−m+ 1)

)
Ex∼ν(f(x)),

with an equality if Φw(y) is almost surely of rank m for y ∼ ν⊗n. In the particular case where ν = νm,
it holds

E(f(x1)tr((Φwm(x)T Φwm(x))−1)) ≤ m

n−m+ 1Ex∼ν(f(x)),

with an equality if Φwm(x) is almost surely of rank m for y ∼ ν⊗m
m .

Proof. The proof follows the one of [10, Lemma 3.4] for the particular case ν = νm. For completeness,
we here detail the proof for a general case. Letting y ∼ ν⊗n and A(x) := Φw(x), we have

E(f(x1)tr((Φw(x)T Φw(x))−1)) = E(f(x1)tr((A(x)T A(x))†))

≤ (n−m)!
n! E(f(y1)tr(adj(A(y)T A(y)))),

where the inequality becomes an equality when Φw(y) is almost surely full rank. From the Cauchy–
Binet formula, we have

E(f(y1)tr(adj(A(y)T A(y)))) = 1
n−m+ 1

n∑
i=1

E(f(y1)tr(adj(A(y−i)T A(y−i))))

= 1
n−m+ 1E(f(y1))E(tr(adj(A(z)T A(z)))) + n− 1

n−m+ 1E(f(z1)tr(adj(A(z)T A(z))))
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with z ∼ ν⊗(n−1). Using Lemma A.2, we have

E(tr(adj(A(z)T A(z)))) = (n− 1)!
(n− 1)m−1(n−m)! tr(adj(E(A(z)T A(z))))

= (n− 1)!
(n− 1)m−1(n−m)! tr(adj((n− 1)Im))

= (n− 1)!
(n− 1)m−1(n−m)! tr((n− 1)m−1Im)

= (n− 1)!
(n−m)!m.

Letting Bn := Ey∼ν⊗n(f(y1)tr(adj(A(y)T A(y)))), we have found

Bn = (n− 1)!
(n−m+ 1)!mEx∼ν(f(x)) +Bn−1 = (n− 1)!

(n−m)!mEx∼ν(f(x)) +
(
n− 1
m− 2

)
Bm−1

where the last equality is obtained by induction. It remains to evaluate Bm−1. Let now z ∼ ν⊗(m−1).
Letting A−j(z) being the matrix A(z) without the j-th column, and letting a−j(z1) being the first
row vector of A−j(z), that is the vector φw(z1) without the j-th entry, we have

tr(adj(A(z)T A(z)))) =
m∑

j=1
adj(A(z)T A(z))jj =

m∑
j=1

det(A−j(z)T A−j(z))

=
m∑

j=1
det(A−j(z−1)T A−j(z−1) + a−j(z1)a−j(z1)T )

=
m∑

j=1
a−j(z1)T adj(A−j(z−1)T A−j(z−1))a−j(z1),

where we have used det(A−j(z−1)T A−j(z−1)) = 0. Then using Lemma A.2, we obtain
Bm−1 = E(f(z1)tr(adj(A(z)T A(z)))))

=
m∑

j=1
E(f(z1)a−j(z1)TE(adj(A−j(z−1)T A−j(z−1)))a−j(z1))

= (m− 2)!
(m− 2)m−2

m∑
j=1

E(f(z1)a−j(z1)T adj(E(A−j(z−1)T A−j(z−1)))a−j(z1))

= (m− 2)!
(m− 2)m−2

m∑
j=1

E(f(z1)a−j(z1)T adj((m− 2)Im−1)a−j(z1))

= (m− 2)!
m∑

j=1
E(f(z1)∥a−j(z1)∥2

2)

= (m− 2)!
m∑

j=1
E(f(z1)(∥φw(z1)∥2

2 − φw
j (z1)2))

= (m− 1)!E(f(z1)∥φw(z1)∥2
2)

= (m− 1)!E(f(z1)w(z1)mwm(z1)−1)
≤ m!α−1E(f(z1))
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where we have used ∥φw(z)∥2
2 = w(z)∥φ(z)∥2

2 ≤ α−1wm(z)∥φ(z)∥2
2 = m. We finally obtain

E(f(x1)tr((Φw(x)T Φw(x))−1)) ≤ m

n
Ex∼ν(f(x)) + α−1 (n−m)!

n! m!
(
n− 1
m− 2

)
Ex∼ν(f(x))

=
(
m

n
+ α−1 m(m− 1)

n(n−m+ 1)

)
Ex∼ν(f(x)). ■
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