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1. Introduction

In this work we consider the linear kinetic equation that governs the evolution of a particle distribu-
tion f

∂tf(x, ω, t) + ∇ · (ωf(x, ω, t)) + (σa + σs)f(x, ω, t) = 1
4πσs

∫
S2
f(x, ω, t)dω.

Under appropriate scaling this equation can be viewed as a simplified model of radiative transfer (see
for instance [19] or [23]). Because the function f lives on a high dimensional space (one dimension of
time, three of space and two for the velocity), solving this linear kinetic equation by a discretization
directly in the phase space is in general too expensive with regard to the computational time. Moreover,
the evolution of f is non-local due to the collision operator, so it is necessary to use an approximate
model. There are many such models (we can mention for instance PN [8, 14, 28], SN [4] andMN [17]). In
this document, we are interested in the PN model. It consists in using a spectral Galerkin discretization
of the velocity space using the spherical harmonics as basis. The dimension of the phase space is thus
reduced by two at the cost of replacing an equation by a system of equations, which can be written,
as initially proposed by Vladimirov [28] and Kuznetsov [15], in the form{

∂tg +A∂xh +B∂yh + C∂zh = − ((σa + σs)I − σse1 ⊗ e1) g,
∂th +AT∂xg +BT∂yg + CT∂zg = −(σa + σs)h,

where e1 = (1, 0, . . . , 0)T and where g and h denote respectively the compound vectors of even
and odd moments of f . This even-odd splittings for PN expansions have been used previously by
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Hermeline [14] or by Egger and Schlottbom [8] to define numerical methods for the PN model. In has
also be used to approximate stationary solutions of PN by Van Criekingen et al. [26, 27] or by Egger
and Schlottbom [7].

On rectangular grids, finite volume and staggered discretizations have been proposed in [21] and [24].
In [14], a DDFV1 scheme [13] was proposed to approximate the PN model on general grids. Mixed-
hybrid finite element methods have been proposed and analyzed in [7, 8, 26, 27] to solve PN in both
stationary and instationary cases. A Trefftz Discontinous Galerkin method was studied in [20].

In view of multiphysics simulations, the use of centered finite volume methods provides natural
coupling (with compressible hydrodynamics for instance) that ensures total energy conservation, which
is important when dealing with shocks. Thus, this work differs from mixed finite element methods such
as [8], since it is based on approximate Riemann solvers that are efficient for approximating non-regular
solutions. Similarly, the DDFV method, proposed in [14], is a staggered scheme, using primal and dual
meshes cell values. It makes it difficult to couple with finite volume schemes for gas dynamics, especially
in the case of Lagrangian solvers.

The strategy chosen here, is to discretize this new model using a nodal finite volume scheme: the
fluxes are not computed at the edges, but at the vertices of the mesh. Such schemes have been first
developed for Lagrangian hydrodynamics [6, 16, 18]. The construction and analysis of such a scheme
has already been done for the P1 model in 2D on polygonal meshes, in order to write a scheme called
asymptotic preserving [1]. Indeed, using a face-based finite volume scheme leads in the diffusive regime
to a two-point scheme which is not consistent with the limit diffusion operator on arbitrary meshes.
The aim of this work, in order to generalize these results to the PN model for N > 1, is, in a first step,
to construct a nodal solver for this model. As it is typically done is the literature, we assume that N
is an odd integer.

In the work of Buet, Després, Franck [1], the authors have considered the P1 model{
∂tg + ∇ · h = 0,
∂th + ∇g = −σsh,

and they studied a nodal finite volume scheme. Here, we consider only the free streaming case (σa =
σs = 0), since it is the first step in order to write an asymptotic preserving nodal scheme2 for PN .
Following the work of Després, Mazeran [18] for Lagrangian hydrodynamics, the scheme proposed
in [1] (the Glace scheme) reads, when σa = σs = 0: for all cell j of the mesh,

d

dt
gj + 1

Vj

∑
r∈Rj

ljr(hr,njr) = 0,

d

dt
hj + 1

Vj

∑
r∈Rj

ljrgjrnjr = 0,

where Vj is the volume of the cell j, ljr := ∥∇xrVj∥ and njr = 1
ljr

∇xrVj . Actually, ∇xrVj denotes the
gradient of volume variation due to the displacement of the node r of coordinate xr.3

The fluxes are then given by
gjr = gj + (hj − hr,njr),∑

j∈Jr

ljrnjr ⊗ njr

hr =
∑

j∈Jr

ljr(gjnjr + njr ⊗ njrhj),

1Discrete Duality Finite Volume
2As it is shown in [1], it is important to consider nodal solvers to build a consistent scheme in the diffusion limit.
3In order to fix ideas, let us remark that in the case of triangles, ∇xr Vj is nothing else but the gradient of the finite

element P1 shape function λjr in cell j that satisfies ∀s, wjr(xs) = δrs.
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where we denoted by Rj the set of nodes of the cell j and by Jr the set of cells connected to the
node r. They show in particular, in a very simple way, that the matrix∑

j∈Jr

ljrnjr ⊗ njr

is invertible as soon as the mesh is non-degenerate. In this paper, we write the analog of the Glace
scheme for the PN model 

d

dt
gj + 1

Vj

∑
r∈Rj

ljrUg
θjr
AUh

−θjr
hr = 0,

d

dt
hj + 1

Vj

∑
r∈Rj

ljrUh
θjr
AT Ug

−θjr
gjr = 0,

with 
gjr = gj + Ug

θjr
PgP

T
h Uh

−θjr
(hj − hr),∑

j∈Jr

Mjr

hr =
∑

j∈Jr

Mjrhj +
∑

j∈Jr

ljrUh
θjr
AT Ug

−θjr
gj .

Here, Ug
θjr

and Uh
θjr

are the rotation matrices that express the rotational invariance of the spherical
harmonics (known as Wigner D-matrices). The matrices Pg and Ph, whose columns are orthonormal
vectors, are defined in Proposition 2.7. Finally, the matrices Mjr are defined by (3.21) or (3.29),
according to the scheme.

The problem of the invertibility of the matrix
∑

j∈Jr
Mjr is much more difficult than in the case

P1. This is due in particular to the fact that the space generated by the odd spherical harmonics is of
higher dimension than the physical space, contrary to the case N = 1 where the dimensions are equal.
Our first main result establishes that under the same mesh conditions as for the finite nodal volume
scheme for the P1 model, this matrix is invertible. We also propose another nodal solver, based on
the Eucclhyd Scheme [16] for hydrodynamics. The difference between the two schemes is that, if the
Glace scheme solve an approximate Riemann problem in the direction of a ”normal” at the nodes.
The Eucclhyd decomposes this nodal Riemann problem using the two normal directions to the edges
adjacent to the node. Our second main result is the proof of convergence of theses two nodal schemes
for the PN model.

In the first part, we recall how to obtain the PN model from the linear kinetic equation considered
and we recall several properties of the PN model in 3D and 2D. In the second part, we recall some
results related to the PN model. In the third part, whose results are new, we propose two nodal
finite volume schemes and demonstrate their properties: these schemes are well defined, conservative,
L2-stable and finally they converge. Finally in the fourth part, we show several numerical results.

2. The PN model

In this Section, we recall how to derive the PN model from the linear kinetic equation. We then
recall some important properties of the PN model which will allow us to write the nodal finite volume
scheme. We use the presentation of the PN model made in [14].

2.1. From linear kinetic equation to the PN model

Let f : R3 × S2 × [0,+∞[ −→ R solution of the following linear kinetic equation

∂tf + ∇ · (ωf) + (σa + σs)f = 1
4πσs

∫
S2
fdω, (2.1)
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where σa and σs are the absorption and scattering coefficients respectively. We use a parametrization
of the sphere

ω = (ω1, ω2, ω3) = (cosψ sin β, sinψ sin β, cosβ),
with 0 ≤ ψ < 2π and 0 ≤ β ≤ π. In the following, we assume σa = σs = 0.

Let k and m be two integers with 0 ≤ |m| ≤ k. Suppose that for all (x, t) ∈ R3×[0,+∞[, the function
(ψ, β) 7→ f(x, ψ, β, t) is in L2(S2). Consider the expansion of f in the real spherical harmonics basis Xm

k
(see [14] for the definition of the Xm

k )

∀(x, ψ, β, t) ∈ R3 × S2 × [0,+∞[ , f(x, ψ, β, t) =
+∞∑
k=0

k∑
m=−k

fm
k (x, t)Xm

k (ψ, β),

where fm
k are called the moments of f ,

fm
k (x, t) = 1

4π

∫
S2
f(x, ψ, β, t)Xm

k (ψ, β)dψdβ.

We note X = (Xm
k )k∈N,|m|≤k and u = (fm

k )k∈N,|m|≤k. Let us inject the development of f in (2.1).
Noting that f = X · u, we can write

X · ∂tu +
3∑

i=1
ωiX · ∂iu = 0.

Multiplying by X, one gets

X(X · ∂tu) +
3∑

i=1
ωiX(X · ∂iu) = 0,

which is also written

(X ⊗ X)∂tu +
3∑

i=1
ωi(X ⊗ X)∂iu = 0.

Finally, by integrating over S2 and dividing by 4π, we find

1
4π

∫
S2

X ⊗ Xdω∂tu + 1
4π

3∑
i=1

∫
S2
ωiX ⊗ Xdω∂iu = 0.

Moreover, since the spherical harmonics form an Hilbertian basis of L2(S2), one gets
1

4π

∫
S2

X ⊗ Xdω = I.

We pose
Ai = 1

4π

∫
S2
ωiX ⊗ Xdω, 1 ≤ i ≤ 3. (2.2)

Note that the matrices Ai are symmetric. We then obtain the PN model
∂tu + A1∂xu + A2∂yu + A3∂zu = 0. (2.3)

Moreover, for 1 ≤ i ≤ 3 ∫
S2
ωiX ⊗ Xdω∂iu = ∂i

∫
S2
ωi X ⊗ Xu︸ ︷︷ ︸

=(X·u)X

dω,

= ∂i

∫
S2
ωifXdω,

= ∂i

(∫
S2
ωifX

m
k dω

)
k∈N

|m|≤k

.
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After a calculation [14], we obtain4

1
4π

∫
S2
ωfXm

k dω =

 εm(Am
k f

m+1
k+1 −Bm

k f
m+1
k−1 ) − ζm(Cm

k f
m−1
k+1 −Dm

k f
m−1
k−1 )

ηm(Am
k f

−m−1
k+1 −Bm

k f
−m−1
k−1 ) + θm(Cm

k f
−m+1
k+1 −Dm

k f
−m+1
k−1 )

Em
k f

m
k+1 + Fm

k fm
k−1

 , (2.4)

with the notations

Am
k =

√
(k +m+ 1)(k +m+ 2)

(2K + 1)(2k + 3) , Bm
k =

√
(k −m− 1)(k −m)

(2k − 1)(2k + 1) ,

Cm
k =

√
(k −m+ 1)(k −m+ 2)

(2k + 1)(2k + 3) , Dm
k =

√
(k +m− 1)(k +m)

(2k − 1)(2k + 1) ,

Em
k =

√
(k −m+ 1)(k +m+ 1)

(2k + 1)(2k + 3) , Fm
k =

√
(k −m)(k +m)
(2k − 1)(2k + 1) ,

and

εm =



−1
2 if m < −1,

0 if m = −1,√
2

2 if m = 0,
1
2 if m = 1,
1
2 if m > 1,

ζm =



−1
2 if m < −1,

−1
2 if m = −1,

0 if m = 0,√
2

2 if m = 1,
1
2 if m > 1,

ηm =



−1
2 if m < −1,

−
√

2
2 if m = −1,√

2
2 if m = 0,

1
2 if m = 1,
1
2 if m > 1,

θm =



−1
2 if m < −1,

−1
2 if m = −1,

0 if m = 0,
0 if m = 1,
1
2 if m > 1.

For the moment, the matrices Ai and the vector u are infinite. The PN model consists in truncating
the development of f to the order N .

fN (x, ψ, β, t) :=
N∑

k=0

k∑
m=−k

fm
k (x, t)Xm

k (ψ, β),

which amounts to truncate the terms corresponding to k > N in u and the Ai and thus to obtain a
finite vector and matrices. For the following, based on [14], we note

g =
(
fm

2p

)
2p≤N

|m|≤2p

,

the compound vector of even moments, and

h =
(
fm

2p+1

)
2p+1≤N

|m|≤2p+1
,

the compound vector of odd moments. We will then reorder the basis of the spherical harmonics in
order to put first the even moments and then the odd moments, that is to say multiplying u and the
Ai by a permutation matrix, that we still denote u and Ai. We obtain

u =
(

g
h

)
.

4with the convention that fm
k = 0 if |m| > k.
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Moreover we notice that in this basis, from (2.4), the matrices Ai have the following block structure [14]

A1 =
( 0 A
AT 0

)
, A2 =

( 0 B
BT 0

)
, A3 =

( 0 C
CT 0

)
.

Thus (2.3) writes {
∂tg +A∂xh +B∂yh + C∂zh = 0,

∂th +AT∂xg +BT∂yg + CT∂zg = 0.
We note m3D the size of u, i.e. the number of unknowns in the system, m3D

e the number of even
moments and m3D

o the number of odd moments. Following [14, 20], one has

m3D = m3D
e +m3D

o = (N + 1)2, m3D
e = 1

2N(N + 1) and m3D
o = 1

2(N + 1)(N + 2).

2.2. 3D configuration

In this Section, we recall some important properties of the PN model in dimension 3. The first one is
the eigenvalue structure of matrices Ai. The second one is the rotational invariance of the 3D model.

2.2.1. Eigenvalue structure

We recall a result on the structure of the spectrum of matrices Ai, established by Garrett and Hauck.

Proposition 2.1 ([11]). For any v, v∗ ∈ S2, the matrices defined by

M := 1
4π

∫
S2

(v · ω) X ⊗ Xdω, and M∗ := 1
4π

∫
S2

(v∗ · ω) X ⊗ Xdω,

have the same eigenvalues, and their eigenvectors differ only by one unitary transformation. That is,
if M = λv, then M∗(Uv) = λ(Uv) with U a unitary matrix.

From this, they deduced the following Corollary which is important from both the theoretical and
the practical point of view.

Corollary 2.2 ([11]). The eigenvalues of A1, A2 and A3 are equal and their eigenvectors differ only
by one unitary transformation. Moreover, if λ is a nonzero eigenvalue of Ai, then −λ is also an
eigenvalue.

We finally recall a last important result about the eigenvalues of AAT that has been established in
Morel’s PhD Thesis.

Proposition 2.3 ([20]). The matrix AAT is invertible and all its eigenvalues are strictly positive.

2.2.2. Rotational invariance in 3D

We use the rotation matrices in the spherical harmonic basis (see [22])

U(α, β, γ) ∈ Rm3D×m3D
,

where α, β, γ are the rotation angles around the axes Ox, Oy, Oz respectively. In the configuration
stated above, U(α, β, γ) is a block matrix of the form (see [20, 22])

U(α, β, γ) = diag
(
∆0(α, β, γ),∆2(α, β, γ), . . . ,∆m3D

e
(α, β, γ), . . . ,∆m3D

o
(α, β, γ)

)
,

with
∆k(α, β, γ) = Wk(α)Dk(β)Wk(γ) ∈ R(2k+1)×(2k+1).
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The matrix Dk ∈ R(2k+1)×(2k+1) is a Wigner D-matrix [29] and the matrix Wk has nonzero elements
only on its diagonal and its anti diagonal

Wk(α) =



cos kα sin kα
. . . 0 . .

.

cos 2α sin 2α
cosα sinα

0 1 0
− sinα cosα

− sin 2α cos 2α

. .
. 0 . . .

− sin kα cos kα


.

Let us consider a rotation of angle θ in the xy plane

Uθ := U(0, 0, θ) ∈ Rm3D×m3D
.

It reads
Uθ = diag

(
W0(θ),W2(θ), . . . ,Wm3D

e
(θ),W1(θ), . . . ,Wm3D

o
(θ)
)
.

The matrix U represents the action of an orthogonal transformation on X(ω), that is, if Q ∈ R3×3 is
an orthogonal matrix, then

X(Qω) = U(α, β, γ)X(ω). (2.5)

2.3. 2D configuration

In the following, we limit ourselves to the 2D case. We assume that the solution has a symmetry with
respect to the xy plane. This is equivalent to the fact that f is an even function of cosβ.

Proposition 2.4 ([14, 20]). If f is even with respect to cosβ, moments fm
k where k + m is odd are

zero.

This choice simplifies the Ai matrices by removing rows and columns where k +m is odd. We now
describe the PN model in 2D. We have for N an odd integer

m2D = 1
2(N + 1)(N + 2), me = 1

4(N + 1)2, mo = 1
4(N + 1)(N + 3),

where m2D is the number of unknowns, me the number of even moments and mo the number of odd
moments. Note that we always have mo > me. The PN model in dimension 2 writes

∂t

(
g
h

)
+ A1∂x

(
g
h

)
+ A2∂y

(
g
h

)
= 0, (2.6)

with

A1 =
( 0 A
AT 0

)
, A2 =

( 0 B
BT 0

)
. (2.7)

After deleting the rows and columns that correspond to moments where k + m is odd, the rotation
matrix Uθ reduces to [20]

Uθ =
(Ug

θ 0
0 Uh

θ

)
, (2.8)
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with

Ug
θ =


W0

W2 0
. . .

0 WN−1

 , Uh
θ =


W1

W3 0
. . .

0 WN

 ,
and where the Wk are defined by

W2k+1(θ) =



cos(2k + 1)θ sin(2k + 1)θ
. . . 0 . .

.

cos 3θ sin 3θ
0 cos θ sin θ 0

− sin θ cos θ
− sin 3θ cos 3θ

. .
. 0 . . .

− sin(2k + 1)θ cos(2k + 1)θ


,

and

W2k(θ) =



cos 2kθ sin 2kθ
. . . 0 . .

.

cos 2θ sin 2θ
0 1 0

− sin 2θ cos 2θ

. .
. 0 . . .

− sin 2kθ cos 2kθ


. (2.9)

In order to fix ideas, we provide examples of matrices A, Ug
θ and Uh

θ in Appendix C.
Finally we have as in 3D, the relations

Proposition 2.5 (Invariance by 2D rotation [20]). The matrices A1 and A2 satisfy the relations
A1 cos θ + A2 sin θ = UθA1U−θ, −A1 sin θ + A2 cos θ = UθA2U−θ.

Remark 2.6. An interesting particular case is θ = π
2

A2 = U π
2
A1U− π

2
.

Let us give a last result that plays a significant role in the construction and in the analysis of
the numerical scheme that will be proposed in the next Section. Actually, we will use a particular
diagonalization of A1.

Proposition 2.7 ([3]). The matrix A1 admits the diagonalization A1 = PDP T with

P = 1√
2

(
Pg Pg 0
Ph −Ph

√
2P0,h

)
, D =

D+ 0 0
0 −D+ 0
0 0 0

 ,
such that

• D+ ∈ Rme×me is positive definite diagonal,

• Pg ∈ Rme×me is orthogonal,
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• the columns of Ph ∈ Rmo×me are orthonormal vectors,

• the columns of P0,h ∈ Rmo×(mo−me) form an orthonormal basis of KerA and are orthogonal to
the columns of Ph.

Moreover one has A = PgD+P
T
h .

Lemma 2.8 ([2]). If N is odd, one has dim KerA = mo −me = N+1
2 .

3. Finite volume scheme

In this Section, we define the Glace [5, 6, 18] and Eucclhyd [16] schemes for the PN model. We first
study the 1D case, using a formalism close to the 2D. Then we study the 2D case and we show that
these schemes are well defined if the mesh is not degenerated, i.e. under the same conditions as the
nodal finite volume scheme for P1. We then give several properties of the Glace and Eucclhyd schemes
for PN , in particular we show their convergences for a sufficiently regular initial data.

3.1. Definition of the scheme

In order to ease the introduction of the nodal finite volume scheme in 2D, we first consider the 1D
case.

3.1.1. Dimension 1

In dimension 1, the PN model recasts as

∂t

(
g
h

)
+ A1∂x

(
g
h

)
= 0.

We use the Proposition 2.7 to write A1 = PDP T , with
P =

(
P+ P− P0

)
,

where P+ (respectively P−) is the matrix composed of the eigenvectors corresponding to the positive
(respectively negative) eigenvalues, and P0 the matrix composed of the eigenvectors corresponding to
the null eigenvalues. We then rewrite the system as

∂tw +D∂xw = 0,

with w = P T

(
g
h

)
the Riemann invariants.

Standard finite volume scheme. The derivation of such a scheme is quite straightforward follow-
ing [12] or [25]. It is detailed here to fix ideas and to enlighten the difficulties that arise in the case of
a nodal finite volume discretization.

Let M be an admissible mesh, and j ∈ J = {1, . . . , Nc} be a cell of the mesh. Here,Nc = #J denotes
the number of cells of the mesh. We note ∆xj> 0 the length of the cell j (∆xj = xj+ 1

2
− xj− 1

2
). We

write the finite volume scheme

d

dt
wj + 1

∆xj

D+ 0 0
0 D− 0
0 0 0

 (wj+ 1
2

− wj− 1
2
) = 0. (3.1)

Recall that, due to the eigenvalue structure of A1, we have D− = −D+.
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We compute the value of the first order fluxes by using the upwind valuew+
j+ 1

2
= w+

j ,

w−
j+ 1

2
= w−

j+1.

With w±
j the vector of Riemann invariants corresponding to positive (respectively negative) eigenval-

ues. We also note w0
j the vector of Riemann invariants corresponding to zero eigenvalues.

Injecting these fluxes in (3.1), we get

d

dt

w+
j

w−
j

w0
j

+ 1
∆xj

D+ 0 0
0 −D+ 0
0 0 0


w+

j − w+
j−1

w−
j+1 − w−

j

0

 = 0.

Multiplying by P on the left, we finally find

d

dt

(
gj

hj

)
+ 1

∆xj
P

D+ 0 0
0 −D+ 0
0 0 0

P T
+
0
0

(gj − gj−1
hj − hj−1

)
+

 0
P T

−
0

(gj+1 − gj

hj+1 − hj

) = 0. (3.2)

Proposition 3.1. The scheme (3.2) is conservative.

Proof. Without any loss of generality the proof is performed in the case of periodic boundary
conditions. The system (3.1) being entirely decoupled and composed of m2D scalar equations, we can
write directly that ∑

j∈J
∆xj

d

dt
wj = −

∑
j∈J

D+ 0 0
0 −D+ 0
0 0 0

 (wj+ 1
2

− wj− 1
2
),

= −

D+ 0 0
0 −D+ 0
0 0 0

∑
j∈J

(wj+ 1
2

− wj− 1
2
) = 0,

where we used the fact that the sum of the second line is telescopic. Finally, since w = P T

(
g
h

)
,

we have ∑
j∈J

∆xj
d

dt

(
gj

hj

)
= 0. ■

Nodal finite volume scheme. Following the work of [1, 5], we now write the solver at nodes

d

dt

(
gj

hj

)
+ 1

∆xj
A1

(
gj,j+ 1

2
− gj,j− 1

2
hj+ 1

2
− hj− 1

2

)
= 0. (3.3)

One should note that in view of writing a nodal solver in 2D, the fluxes gj,j+ 1
2

may differ from gj+1,j+ 1
2
.

The continuity of the fluxes and thus the local conservativity are no more encoded directly in the
scheme structure.

Also, in view of 2D case, we will write the scheme using new notations and substitute A1 according
to (2.7). It gives 

d

dt
gj + 1

∆xj

∑
r∈Rj

ACjrhr = 0

d

dt
hj + 1

∆xj

∑
r∈Rj

ATCjrgjr = 0,
(3.4)
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with Rj = {j − 1
2 , j + 1

2}, and

Cjr =
{

+1 if r = j + 1
2 ,

−1 if r = j − 1
2 .

At this stage, there are more unknowns than equations. However, following [18], we first restore the
conservation of the scheme by adding the condition∑

j∈Jr

ATCjrgjr = 0, (3.5)

where Jr is the set of cells connected to the vertex r (for example if r = j + 1
2 , Jr = {j, j + 1}).

Proposition 3.2. The scheme (3.4)–(3.5) is conservative.

Proof. Without any loss of generality, the proof is written in the case of periodic boundary conditions.
Let us treat each equation of (3.4) separately. On the one hand, for the first equation∑

j∈J
∆xj

d

dt
gj = −

∑
j∈J

∑
r∈Rj

ACjrhr, (3.6)

= −
∑
r∈R

∑
j∈Jr

Cjr


︸ ︷︷ ︸

=0

Ahr = 0. (3.7)

On the other hand, for the second equation∑
j∈J

∆xj
d

dt
hj = −

∑
j∈J

∑
r∈Rj

ATCjrgjr, (3.8)

= −
∑
r∈R

∑
j∈Jr

ATCjrgjr


︸ ︷︷ ︸

=0 by (3.5)

= 0. (3.9)

The scheme (3.4)–(3.5) is therefore conservative.

As for standard finite volume schemes, the fluxes are computed thanks to the Riemann invariants
P T

+

(
gj,j+ 1

2
hj+ 1

2

)
= P T

+

(
gj

hj

)
, and (3.10)

P T
−

(
gj+1,j+ 1

2
hj+ 1

2

)
= P T

−

(
gj+1
hj+1

)
, (3.11)

with the notations of (3.3). We can write this system of equations in a unified way with the use of the
rotation matrices Uθ (2.8)

P T
+ U−θjr

(
gjr

hr

)
= P T

+ U−θjr

(
gj

hj

)
. (3.12)

As we are in 1D, the only possible values of θjr are

θjr =
{

0 if r = j + 1
2 ,

π if r = j − 1
2 ,

moreover we have
P T

+ Uπ = P T
− .
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To calculate the gjr fluxes, we write the decomposition of the Proposition 2.7

P T
± =

(
P T

g ±P T
h

)
, Uθjr

=
(

Ug
θjr

0
0 Uh

θjr

)
. (3.13)

We then develop the matrix products of (3.12)
P T

g Ug
−θjr

gjr + P T
h Uh

−θjr
hr = P T

g Ug
θjr

gj + P T
h Uh

θjr
hj ,

so we can compute
gjr = gj + Ug

θjr
PgP

T
h Uh

−θjr
(hj − hr). (3.14)

We then inject (3.14) into (3.5) which gives∑
j∈Jr

AT Ug
θjr
PgP

T
h Uh

−θjr
Cjrhr =

∑
j∈Jr

ATCjrgj +
∑

j∈Jr

AT Ug
θjr
PgP

T
h Uh

−θjr
Cjrhj .

By writing the sum explicitly (with Jr = {j, j + 1}), we finally find that

AT Ug
0 PgP

T
h Uh

0 hr +AT Ug
πPgP

T
h Uh

−π(−hr)
= AT (gj − gj+1) +AT Ug

0 PgP
T
h Uh

0 hj +AT Ug
πPgP

T
h Uh

−π(−hj+1).
Denoting by I the identity matrix, one observes that

Ug
0 = −Ug

π = −I,

and Uh
0 = −Uh

π = −I.
Therefore we get

2ATPgP
T
h hr = AT (gj − gj+1) +ATPgP

T
h (hj − hj+1). (3.15)

Actually, the matrix ATPgP
T
h is not invertible. Indeed, we have AT ∈ Rmo×me and PgP

T
h ∈ Rme×mo .

By the Rank Theorem we have
dim KerPgP

T
h + rankPgP

T
h = mo.

As rankPgP
T
h ≤ me, then dim KerPgP

T
h ≥ mo −me > 0, thus KerPgP

T
h ̸= {0}. Take v ∈ KerPgP

T
h

not null, then
ATPgP

T
h v = AT 0 = 0 and KerATPgP

T
h ̸= {0},

therefore the matrix is not invertible.
This is due to the fact that we started from the 2D equation to get to the 1D, assuming that ∂y = 0.

This has the expected effect that the matrix A1 always has zero eigenvalues.
We shall show in the following, that in 2D, the nodal finite volume scheme is well defined, the nodal

matrix will be invertible under classical assumptions on the mesh.

3.1.2. Dimension 2

We will now write the nodal scheme in dimension 2, still inspired by the work of [1, 5].

Definition 3.3 (Admissible mesh). Let M denote a conformal mesh of a polygonal connected open
set Ω ⊂ R2. Let J denote the set of all cells of the mesh M. Let also denote by R the set of all vertices
of the mesh.

The mesh is admissible if one has

(1) ∀j ∈ J , j is a simple polygon: it does not intersect itself and has no holes. This implies that
the area of j is positive.

(2) ∀r ∈ R, their exists j ∈ J such that r is a vertex of the polygon j.
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(3) ∀j ∈ J , if s is a vertex of j, then s ∈ R.

(4) ∀j ̸= k ∈ J , one has

j ∩ k =


the unique common edge of j and k, or,
the unique common vertex of j and k, or,
∅.

(5) ∀r ̸= s ∈ R, xr ̸= xs.

Let us first precise the difficulty of the construction of a nodal scheme for PN . In [1, 5] and in this
work, the scheme is well-defined as soon as the odd fluxes hr, which are solutions of linear systems
of the form Mrhr = br, can be computed. In the case of the proposed PN nodal solvers, hr is given
below by (3.20), with (3.21) for the Glace scheme and with (3.29) for the Eucclhyd scheme.

In [1, 5], hr ∈ Rd and the Mr matrices are invertible (omitting boundary conditions) as soon as
∀r, span({Cjr}j∈Jr ) = Rd. (Cjr vectors are represented on Figure 3.1). This geometrical constraint
is naturally satisfied considering admissible meshes.

For the PN nodal schemes that are studied in this paper, hr ∈ Rmo and the invertibility of matri-
ces Mr is more difficult to prove. We establish below that the scheme is well-defined under the exact
same mesh condition.

Glace scheme. Recall that the PN model in 2D reads

∂t

(
g
h

)
+ A1∂x

(
g
h

)
+ A2∂y

(
g
h

)
= 0.

Let M be an admissible mesh, and j ∈ J , J denoting the set of cells of M. We write the finite volume
scheme in semi-discrete form

d

dt
gj + 1

Vj

∑
r∈Rj

ljr(nx
jrA+ ny

jrB)hr = 0

d

dt
hj + 1

Vj

∑
r∈Rj

ljr(nx
jrA

T + ny
jrB

T )gjr = 0,
(3.16)

where njr = (nx
jr, n

y
jr) is the outgoing normal to the vertex r of the cell j. More precisely, following [5]

for instance, one sets

Cjr := ∇xrVj , ljr := ∥Cjr∥ and njr := 1
ljr

Cjr.

In the particular case of polygonal cells, one has

Cjr = −1
2(xr+1 − xr−1)⊥.

Here, we also denoted by Rj the set of vertices of the cell j and Jr is the set of cells that have r as a
vertex, Vj denotes the area of the cell j. See Figure 3.1 for an illustration.
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•

•

j
Cjr = ljrnjr

r

r + 1

r − 1

xr+xr+1
2

xr−1+xr

2

θjr

x

y

Figure 3.1. Illustration of the notations for the Glace scheme

In the following, we note njr = (cos θjr, sin θjr), and Uθjr
the rotation matrix described above (2.8).

Using that

Uθjr
=
(

Ug
θjr

0
0 Uh

θjr

)
,

we write

Uθjr
A1U−θjr

=
(

Ug
θjr

0
0 Uh

θjr

)( 0 A
AT 0

)(Ug
−θjr

0
0 Uh

−θjr

)
,

=
(

0 Ug
θjr
AUh

−θjr

Uh
θjr
AT Ug

−θjr
0

)
.

Thus (3.16) rewrites, using the Proposition 2.5

d

dt
gj + 1

Vj

∑
r∈Rj

ljrUg
θjr
AUh

−θjr
hr = 0,

d

dt
hj + 1

Vj

∑
r∈Rj

ljrUh
θjr
AT Ug

−θjr
gjr = 0.

(3.17)

By noting Pθjr
the eigenvector matrix of Uθjr

A1U−θjr
, we have

P T
θjr

= P T U−θjr
.

We then impose the Riemann invariants in the direction of the positive eigenvalues

P T
+ U−θjr

(
gjr

hr

)
= P T

+ U−θjr

(
gj

hj

)
,

by doing the same decomposition as for the 1D case, we obtain the system

P T
g Ug

−θjr
gjr + P T

h Uh
−θjr

hr = P T
g Ug

−θjr
gj + P T

h Uh
−θjr

hj .

Then recalling that according to Proposition 2.7, Pg is an orthogonal matrix, one gets

gjr = gj + Ug
θjr
PgP

T
h Uh

−θjr
(hj − hr). (3.18)

At this stage, there are more unknowns than equations, so we add the following conservation constraint∑
j∈Jr

ljrUh
θjr
AT Ug

−θjr
gjr = 0. (3.19)
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Injecting (3.18) into (3.19), we obtain the following linear system∑
j∈Jr

Mjr

hr =
∑

j∈Jr

Mjrhj +
∑

j∈Jr

ljrUh
θjr
AT Ug

−θjr
gj , (3.20)

with
Mjr = ljrUh

θjr
ATPgP

T
h Uh

−θjr
. (3.21)

Remark 3.4. The semi-discrete Glace scheme is thus defined by (3.17) with the fluxes given by (3.18)
and (3.19).

For the scheme to be well defined it remains to show that hr is uniquely defined. In other words,
one has to show that

Mr :=
∑

j∈Jr

Mjr

is invertible. This is the purpose of the remaining of this Section.

To do so, we shall first rewrite Mjr in a more convenient way. According to Proposition 2.7, A =
PgD+P

T
h , so

Mjr = ljrUh
θjr
ATPgP

T
h Uh

−θjr
= ljrUh

θjr
PhD+ P

T
g Pg︸ ︷︷ ︸
=I

P T
h Uh

−θjr
,

that is
Mjr = ljrUh

θjr
PhD+P

T
h Uh

−θjr
. (3.22)

Note that we have
ATA = PhD+P

T
g PgD+P

T
h = PhD

2
+P

T
h ,

so we can write
PhD+P

T
h =

(
ATA

)1/2
.

Finally
Mjr = ljrUh

θjr

(
ATA

)1/2
Uh

−θjr
. (3.23)

Proposition 3.5. The matrix Mjr is a symmetric, positive semidefinite matrix.

The proof is obvious by (3.22) since Uh
−θjr

= Uh
θjr

T

In the following, we denote M = PhD+P
T
h =

(
ATA

)1/2
. We now show that Mr =

∑
j∈Jr

Mjr is
invertible and under which conditions.

One has the equality
KerM = KerA, (3.24)

thus we are brought back to study KerA.

Lemma 3.6. Let h = (hm
k )k,m odd ∈ KerA, then hm

k = 0 for all k,m > 0.

Proof. Let us make a remark about the notations. Let us note (ki,mi) the index of a row, and (kj ,mj)
the index of a column, and a(ki,mi),(kj ,mj) the coefficients of the matrix A. Note that we necessarily
have that ki and mi are even, while kj and mj are odd. Indeed, since we are in dimension 2, according
to Proposition 2.4, hm

k = 0 if m + k is odd. Thus since h corresponds to the odd moments of f , k is
odd then so m must be odd too for hm

k to be non zero. This sets that we are only interested in the
case where kj and mj are odd. Now since we are looking for

∀i,
∑

j

a(ki,mi),(kj ,mj) h(kj ,mj) = 0,
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one can check that the structure of A, first line of (2.4), that the only coefficients that are involved in
the product are such that ki and mi are even.
We prove by induction.

Initialization. Let us study the result for N = 3. The matrix A is written as

A =


0 1√

3 0 0 0 0
1√
5 0

√
3
14 − 1√

70 0 0

0 − 1√
15 0 0

√
6
35 0

0 − 1√
5 0 0 − 1√

70

√
3
14

 .
If h ∈ KerA, the linear system Ah = 0 writes

1√
3h

1
1 = 0,

1√
5h

−1
1 +

√
3
14h

−3
3 − 1√

70h
−1
3 = 0,

− 1√
15h

1
1 +

√
6
35h

1
3 = 0,

− 1√
5h

1
1 − 1√

70h
1
3 +

√
3
14h

3
3 = 0.

So we get h1
1 = h1

3 = h3
3 = 0. The result is true for N = 3.

Heredity. Let h = (hmj

kj
)kj ,mj odd ∈ KerA. Recall that for (k,m) even then, according to (2.4)

(Ah)m
k = εm(Am

k h
m+1
k+1 −Bm

k h
m+1
k−1 ) − ζm(Cm

k h
m−1
k+1 −Dm

k h
m−1
k−1 ),

with the convention hm
k = 0 if k > N or |m| > k.

Suppose that for all kj < N − 1, 0 < mj ≤ kj , odd, hmj

kj
=0. We distinguish three cases:

• Line of index ki = N − 1 and mi < 0.
There is nothing to say because then mj = mi − 1 and mj = mi + 1 are always negative.

• Line of index ki = N − 1 and mi = 0.
We have four a priori nonzero coefficients, which correspond to the index columns (kj =
N − 2,mj = −1), (kj = N − 2,mj = 1), (kj = N,mj = −1), (kj = N,mj = 1). The
coefficient a(N−1,0),(N−2,−1) = ζ0D0

N−1 of A is null because ζ0 = 0. The coefficient h1
N−2 is zero

by hypothesis. The coefficient a(N−1,0),(N,−1) = −ζ0C0
N−1 of A is null because ζ0 = 0. There

remains then a coefficient, h1
N which is thus null.

• Line of index ki = N − 1 and mi > 0 even.
We have four a priori nonzero coefficients, hm−1

N−2, hm+1
N−2, hm−1

N and hm+1
N . The coefficients

hm−1
N−2, hm+1

N−2 are zero by induction assumption. The fact that the last coefficients are zero
follows from the structure of the matrix A. This can be seen by induction. The coefficient h1

N
is zero according to the previous case, and so, on the next row, we will have the coefficients
h1

N and h3
N , so h3

N is also zero. Suppose that on the line (N − 1,mi − 2) with mi > 2, the
coefficients hmi−3

N and hmi−1
N are zero. If we now look at the line (N − 1,mi), the two a priori

nonzero coefficients are hmi−1
N and hmi+1

N , but hmi−1
N = 0 according to the work done in the

previous line and so hmi+1
N is also zero. It follows that we have hm

N = 0 if m > 0.

In conclusion, for any odd k, if m > 0, odd, then hm
k = 0.
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Theorem 3.7. Take θ ∈ ]0, π[ , thus the matrix

Mθ = M + Uh
θ MUh

−θ

is invertible.

Proof. As M is symmetric positive semidefinite,
KerMθ = KerM ∩ Ker Uh

θ MUh
−θ.

By using (3.24)
KerMθ = KerA ∩ KerAUh

−θ.

We want to show that this intersection is null, as soon as θ ̸= 0 mod π. Let h = (hm
k ) ∈ KerA, we

want to show that if Uh
−θh ∈ KerA, then h = 0. By the Lemma 3.6, h is of the form

h =



h−1
1
0
h−3

3
h−1

3
0
0
...


and therefore

Uh
−θh =



h−1
1 cos θ
h−1

1 sin θ
h−3

3 cos 3θ
h−1

3 cos θ
h−1

3 sin θ
h−3

3 sin 3θ
...


.

If Uh
−θh ∈ KerA then, hm

k sin(−mθ) = 0 for all k and m < 0. Three cases are possible:

• First case: If θ = 0 mod π, this is forbidden by our assumptions.

• Second case: If hm
k = 0 if m < 0, in this case we have h = 0.

• Third case: If hm
k = 0 for all m < 0 odd except for the m which are written m = lp with

l ∈ N∗ and p a prime different from 2, in this case if we take θ = π
p , we would have h ̸= 0

and Uh
−θh ∈ KerA. However, this is impossible, because if we suppose that we are in this

configuration and that h ̸= 0, we would then have at least h−1
k = 0 for any k ≤ N odd,

there are exactly N+1
2 coefficients of h of this form. However, the dimension of KerA is N+1

2 ,
so this necessarily imposes that all the other coefficients of h are zero, which gives rise to a
contradiction.

In conclusion, we have shown that
KerMθ = {0}. ■

Corollary 3.8. If at least two njr with j ∈ Jr are non-collinear, then Mr is invertible.
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Proof. One writes
Mr = Mj1r +Mj2r +

∑
j∈Jr\{j1,j2}

Mjr,

and we suppose that nj1r is not collinear to nj2r, we write
Mj1r +Mj2r = Uh

θj1r
MUh

−θj1r
+ Uh

θj2r
MUh

−θj2r
,

so
Uh

−θj1r
(Mj1r +Mj2r)Uh

−θj1r
= M + Uh

−θj2r+θj1r
MUh

−(θj2r−θj1r).

We are thus brought back to the case of the Theorem 3.7 by posing θ = θj2r − θj1r ̸= 0 mod π. Let
x ∈ KerMr, then

(x,Mrx) =
∑

j∈Jr

(x,Mjrx),

=
∑

j∈Jr\{j1,j2}
(x,Mjrx) + (x, (Mj1r +Mj2r)x).

As Mj1r+Mj2r is invertible and since it is positive semidefinite then it is positive definite. If (x,Mrx) =
0, then (x, (Mj1r +Mj2r)x) = 0 and so x = 0, and Mr is invertible.

Finally we rewrite the obtained Glace scheme on a more convenient form

d

dt
gj + 1

Vj

∑
r∈Rj

ljrUg
θjr
AUh

−θjr
hr = 0,

d

dt
hj + 1

Vj

∑
r∈Rj

Fjr = 0,
(3.25)

with 
Fjr = ljrUh

θjr
AT Ug

−θjr
gj +Mjr(hj − hr),∑

j∈Jr

Fjr = 0, (3.26)

where Mjr = ljrUh
θjr
MUh

−θjr
.

+

−
j

N+
jr = l+jrn+

jr

N−
jr = l−jrn−

jr

r

r + 1

r − 1

θ+
jr

θ−
jrx

y

Figure 3.2. Illustration of the notations for the Eucclhyd scheme
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Eucclhyd scheme. The Eucclhyd version of the nodal scheme consists in considering not one, but
two Riemann invariants per cell and per vertex

P T
g Ug

−θ+
jr

g+
jr + P T

h Uh
−θ+

jr
hr = P T

g Ug
−θ+

jr

gj + P T
h Uh

−θ+
jr

hj ,

P T
g Ug

−θ−
jr

g−
jr + P T

h Uh
−θ−

jr
hr = P T

g Ug
−θ−

jr

gj + P T
h Uh

−θ−
jr

hj ,
(3.27)

and the conservation is given by∑
j∈Jr

l+jrUh
θ+

jr
AT Ug

−θ+
jr

g+
jr + l−jrUh

θ−
jr
AT Ug

−θ−
jr

g−
jr = 0. (3.28)

As depicted on Figure 3.2, the outgoing normals considered at the node r of cell j are now chosen as
N+

jr := −1
2(xr+1 − xr)⊥, l+jr := ∥N+

jr∥, n+
jr := − 1

l+jr

N+
jr,

N−
jr := −1

2(xr − xr−1)⊥, l−jr := ∥N−
jr∥, n−

jr := − 1
l−jr

N−
jr.

One has Cjr = N+
jr + N−

jr. One then defines the angles θ±
jr such that n±

jr = (cos θ±
jr, sin θ

±
jr).

Note that since ljrnjr = l+jrn+
jr + l−jrn−

jr, a direct consequence of Property 2.5 is

l+jrUθ+
jr

A1U−θ+
jr

+ l−jrUθ−
jr

A1U−θ−
jr

= ljrUθjr
A1U−θjr

.

By injecting (3.27) into (3.28), we find∑
j∈Jr

Mjr

hr =
∑

j∈Jr

Mjrhj +
∑

j∈Jr

ljrUh
θjr
AT Ug

−θjr
gj ,

with
Mjr = l+jrUh

θ+
jr
MUh

−θ+
jr

+ l−jrUh
θ−

jr
MUh

−θ−
jr
. (3.29)

This matrix is invertible according to the Theorem 3.7. We notice that, as for the Glace scheme, the
Eucclhyd scheme is put in the form (3.25)–(3.26) with the particular choice of Mjr given by (3.29).

3.1.3. Boundary conditions

General boundary conditions for the PN model can be quite complex. In the case of nodal solvers,
one can directly impose the fluxes hr or gjr in the same fashion that it is done for Lagrangian
hydrodynamics (see for instance [5]). For the sake of simplicity, we limit ourselves here to the case of
symmetry boundary conditions (periodic boundary conditions treatment being straightforward).

Let us first recall the special case of particular interest where the boundary’s normal vector is
n = (1, 0).

Proposition 3.9 ([14]). Let n = (1, 0). If x ∈ ∂Ω, then the symmetry boundary condition

∀(ω, t) ∈ S2 × [0,+∞[ , f(x, ω, t) = f(x, ω − 2(ω · n)n, t), if ω · n ≤ 0, (3.30)

implies the condition on the moments of f

∀(x, t) ∈ ∂Ω × [0,+∞[ , fm
k = 0 if m > 0 odd.

If we now set n = (cos θ, sin θ), i.e. the boundary of Ω is arbitrary, then considering the rotation
matrices Uθ, we come back to the case of the Proposition 3.9.
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Proposition 3.10. Take n = (cos θ, sin θ) with θ ∈ [0, 2π[. If x ∈ ∂Ω, then the condition at the
symmetry boundary condition

∀(ω, t) ∈ S2 × [0,+∞[ , f(x, ω, t) = f(x, ω − 2(ω · n)n, t) if ω · n ≤ 0, (3.31)

implies the condition on u

∀(x, t) ∈ ∂Ω × [0,+∞[ , (U−θu)m
k (x, t) = 0 if m > 0 odd.

To apply the boundary conditions to the scheme (i.e. to compute the fluxes), we notice that we only
need to make modifications on the computation of hr. Thus, if r is a node of the boundary of Ω, we
take the linear system

Mrhr = Br,

with Mr =
∑

j∈J Mjr and Br =
∑

j∈Jr
Mjrhj +

∑
j∈Jr

ljrUh
θjr
AT Ug

−θjr
gj . We must then change the

basis with the rotation matrices to return to the case of Proposition 3.9, and delete the rows and
columns that correspond to m > 0.

3.2. Properties of the nodal finite volume Schemes

We now discuss some properties of the schemes that we have just defined. For the sake of simplicity
we limit ourselves to the case of periodic boundary conditions. Other boundary conditions could be
considered at the price of technical adjustments.

3.2.1. Conservativity

In this Section, we show that the Glace and Eucclhyd schemes are conservative.

Lemma 3.11. We have the following equalities
∑

r∈Rj

ljrUg
θjr
AUh

−θjr
= 0,

∑
j∈Jr

ljrUg
θjr
AUh

−θjr
= 0,

∑
r∈Rj

ljrUh
θjr
AT Ug

−θjr
= 0,

∑
j∈Jr

ljrUh
θjr
AT Ug

−θjr
= 0.

Proof. This follows directly from the following equalities∑
j∈Jr

Cjr = 0,
∑

r∈Rj

Cjr = 0, (3.32)

with Cjr = ljrnjr. Let us write the proof only for the first equality, the others being treated in the
same way.
One has ∑

r∈Rj

ljrUg
θjr
AUh

−θjr
=
∑

r∈Rj

ljr(cos θjrA+ sin θjrB),

=

∑
r∈Rj

ljrn
x
jr


︸ ︷︷ ︸

=0

A+

∑
r∈Rj

ljrn
y
jr


︸ ︷︷ ︸

=0

B = 0,

where we used (3.32) to ensure that the sums are zero.

Proposition 3.12. The scheme (3.25)-(3.26) is conservative.
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Proof. Let us treat each (3.25) equation separately. On the one hand, for the first equation∑
j∈J

Vj
d

dt
gj = −

∑
j∈J

∑
r∈Rj

ljrUg
θjr
AUh

−θjr
hr,

= −
∑
r∈R

∑
j∈Jr

ljrUg
θjr
AUh

−θjr


︸ ︷︷ ︸

=0 using Lemma 3.11

hr = 0.

On the other hand, for the second equation∑
j∈J

Vj
d

dt
hj = −

∑
j∈J

∑
r∈Rj

Fjr,

= −
∑
r∈R

∑
j∈Jr

Fjr


︸ ︷︷ ︸
=0 with (3.26)

= 0. ■

Remark 3.13. This same result can be obtained in the same way for the discrete time scheme.

3.2.2. L2 stability

We place ourselves on Ω = R2/Z2, the 2D torus. We denote without distinction ∥ · ∥L2(Ω) and ∥ · ∥Hs(Ω)
the norm L2 and Hs of a vector or scalar quantity for s ∈ N. Let us write the PN model in dimension 2{

∂tu + A1∂xu + A2∂yu = 0,
u( · , t = 0) = u0 ∈ [Hs(Ω)]m

2D

,
(3.33)

with
u =

(
g
h

)
.

Proposition 3.14. Let u be a solution of (3.33), then ∀s ∈ N,
∀t ≥ 0, ∥u(t)∥Hs(Ω) = ∥u0∥Hs(Ω).

Proof. First we start by showing the result for the L2 norm. Taking the scalar product with u and
integrating over Ω we obtain

1
2∂t∥u∥2

L2(Ω) +
∫

Ω
(A1∂xu,u)dx +

∫
Ω

(A2∂yu,u)dx = 0.

Using the fact that we are on a torus (which is a manifold without boundary), we obtain after an
integration by part ∫

Ω
(A1∂xu,u)dx = −

∫
Ω

(A1u, ∂xu)dx,

finally, since A1 is symmetric, the right hand side rewrites

−
∫

Ω
(A1u, ∂xu)dx = −

∫
Ω

(u,A1∂xu)dx,

from which ∫
Ω

(A1∂xu,u)dx = −
∫

Ω
(A1∂xu,u)dx,

therefore ∫
Ω

(A1∂xu,u)dx = 0.
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The same arguments give
∫

Ω(A2∂yu,u)dx = 0. We obtain finally
∂t∥u∥2

L2(Ω) = 0,
hence the result. Moreover the function ∂αu with α a multi-index, is also a solution of the equation,
so the same result is true in Hs norm, with s ∈ N.

L2-stability for the continous in time scheme. Let us now study the L2-stability of the semi-
discrete scheme (3.25)-(3.26), that we recall here

d

dt
gj + 1

Vj

∑
r∈Rj

ljrUg
θjr
AUh

−θjr
hr = 0,

d

dt
hj + 1

Vj

∑
r∈Rj

Fjr = 0,

with 
Fjr = ljrUh

θjr
AT Ug

−θjr
gj +Mjr(hj − hr),∑

j∈Jr

Fjr = 0,

where Mjr is defined by (3.21) for the Glace scheme, and by (3.29) in the case of Eucclhyd scheme.
In the following, we denote uh(x, t) =

∑
j∈J 1j(x)uj(t) and we identify the function uh and the

vector (uj)j∈J . Also, we set

E(t) = 1
2

∫
Ω

∥uh(x, t)∥2dx ≥ 0. (3.34)

Proposition 3.15. The scheme (3.25)-(3.26) is L2 stable, in the sense that

∀t ≥ 0, E(t) ≤ E(0).

More precisely, we have

E′(t) = −
∑
j∈J

∑
r∈Rj

(Mjr(hj − hr),hj − hr) ≤ 0.

Proof. The proof is inspired by the one done in [1] for the case N = 1. We have

E′(t) = 1
2
d

dt

∫
Ω

∥uh(x, t)∥2dx,

= 1
2
d

dt

∑
j∈J

Vj∥uj(t)∥2,

= 1
2
d

dt

∑
j∈J

Vj ((gj(t),gj(t)) + (hj(t),hj(t))) ,

=
∑
j∈J

Vj

(
(gj(t),g′

j(t)) + (h′
j(t),hj(t))

)
.

Using the definition of the scheme, one gets
E′ = −

∑
j∈J

∑
r∈Rj

(gj , ljrUg
θjr
AUh

−θjr
hr)

︸ ︷︷ ︸
A1

−
∑
j∈J

∑
r∈Rj

(Fjr,hj)

︸ ︷︷ ︸
A2

.
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We develop the second term of the previous equation
A2 =

∑
j∈J

∑
r∈Rj

(Fjr,hj),

=
∑
j∈J

∑
r∈Rj

(ljrUh
θjr
AT Ug

−θjr
gj ,hj) +

∑
j∈J

∑
r∈Rj

(Mjr(hj − hr),hj). (3.35)

Since ∑
r∈Rj

ljrUh
θjr
AT Ug

−θjr
= 0,

by the Lemma 3.11, the first term of (3.35) is zero.
By taking the scalar product with hr and then summing over r in the second equation of (3.26) and
permuting the sums, we find∑

j∈J

∑
r∈Rj

(Mjrhr,hr) =
∑
j∈J

∑
r∈Rj

(Mjrhj ,hr) +
∑
j∈J

∑
r∈Rj

ljr(Uh
θjr
AT Ug

−θjr
gj ,hr).

Thus
A1 =

∑
j∈J

∑
r∈Rj

(gj , ljrUg
θjr
AUh

−θjr
hr),

=
∑
j∈J

∑
r∈Rj

(Mjrhr,hr) −
∑
j∈J

∑
r∈Rj

(Mjrhj ,hr),

= −
∑
j∈J

∑
r∈Rj

(Mjr(hj − hr),hr).

Finally, we find that
E′ =

∑
j∈J

∑
r∈Rj

(Mjr(hj − hr),hr) −
∑
j∈J

∑
r∈Rj

(Mjr(hj − hr),hj),

= −
∑
j∈J

∑
r∈Rj

(Mjr(hj − hr),hj − hr),

so, using Proposition 3.5, we get the desired result.

Remark 3.16. The proof is independent of whether the Glace or Eucclhyd scheme is used.

L2-stability for the explicit in time scheme. We now study the stability of the explicit in time
scheme 

gn+1
j = gn

j − ∆t
Vj

∑
r∈Rj

ljrUg
θjr
AUh

−θjr
hn

r ,

hn+1
j = hn

j − ∆t
Vj

∑
r∈Rj

Fn
jr,

(3.36)

with 
Fn

jr = ljrUh
θjr
AT Ug

−θjr
gn

j +Mjr(hn
j − hn

r ),∑
j∈Jr

Fn
jr = 0. (3.37)

Let
En = 1

2
∑
j∈J

Vj∥un
j ∥2 = 1

2
∑
j∈J

Vj

[
(gn

j ,gn
j ) + (hn

j ,hn
j )
]
,

we note Gn
jr = ljrUg

θjr
AUh

−θjr
hn

r .
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Proposition 3.17. One has the following alternative

(1) if un
h is constant i.e. ∃v ∈ Rm2D s.t. ∀j ∈ J ,un

j = v, then set ∆tmax = +∞,

(2) else, set

∆tmax =

∑
j∈J

∑
r∈Rj

(Mjr(hn
j − hn

r ),hn
j − hn

r )

∑
j∈J

1
Vj

∑
r∈Rj

Gn
jr,

∑
r∈Rj

Gn
jr

+

∑
r∈Rj

Fn
jr,

∑
r∈Rj

Fn
jr

 . (3.38)

Then the explicit scheme (3.36)-(3.37) is L2-stable if 0 < ∆t ≤ ∆tmax.

Proof. The first case is obvious. If un
h is constant then, for all j ∈ J and r ∈ R, hn

r = hn
j and

gn
jr = gn

j , so according to Lemma 3.11, ∀∆t > 0, En+1 = En.
Let us now focus on the second case. One has

En+1 = 1
2
∑
j∈J

Vj

[
(gn+1

j ,gn+1
j ) + (hn+1

j ,hn+1
j )

]
,

thus, substituting the scheme reads

En+1 = 1
2
∑
j∈J

Vj

gn
j − ∆t

Vj

∑
r∈Rj

Gn
jr, gn

j − ∆t
Vj

∑
r∈Rj

Gn
jr


+

hn
j − ∆t

Vj

∑
r∈Rj

Fn
jr, hn

j − ∆t
Vj

∑
r∈Rj

Fn
jr

 ,
which develops as

En+1 = 1
2
∑
j∈J

Vj

(gn
j ,gn

j ) + (hn
j ,hn

j ) − 2∆t
Vj

∑
r∈Rj

(
gn

j ,Gn
jr

)
− 2∆t

Vj

∑
r∈Rj

(Fn
jr,hn

j )

+∆t2

V 2
j

∑
r∈Rj

Gn
jr,

∑
r∈Rj

Gn
jr

+ ∆t2

V 2
j

∑
r∈Rj

Fn
jr,

∑
r∈Rj

Fn
jr

 .
Using the calculation made in Proposition 3.15, we find

En+1 = En − ∆t
∑
j∈J

∑
r∈Rj

(Mjr(hn
j − hn

r ),hn
j − hn

r )

+
∑
j∈J

∆t2

2Vj

∑
r∈Rj

Gn
jr,

∑
r∈Rj

Gn
jr

+

∑
r∈Rj

Fn
jr,

∑
r∈Rj

Fn
jr

 .
It is a polynomial of the second degree in ∆t, whose ∆t2’s coefficient is nonzero since un

h is not constant
in space. We choose to impose a time step that corresponds to the minimum of this polynomial (which
is negative)

∆tmax =

∑
j∈J

∑
r∈Rj

(Mjr(hn
j − hn

r ),hn
j − hn

r )

∑
j∈J

1
Vj

∑
r∈Rj

Gn
jr,

∑
r∈Rj

Gn
jr

+

∑
r∈Rj

Fn
jr,

∑
r∈Rj

Fn
jr

 .

Finally we obtain En+1 ≤ En.
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In view of showing that the scheme is convergent, we need to provide a positive lower bound to
∆tmax in (3.38) that constrains the time step ∆t to ensure L2-stability.

Proposition 3.18. Let ∆tmax be defined by (3.38), and τh defined by

τh :=
min
j∈J

Vj

2 max
j∈J

(1 + 2#Rj) max
j∈J
r∈Rj

ljr
. (3.39)

Then in the case of the Glace scheme, one has

∆tmax ≥ τh > 0. (3.40)

Proof. The proof is quite technical and thus is provided in Appendix A.

Remark 3.19. Similar result could be obtained for the Eucclhyd scheme at the cost of technical
adjustments.

Example 3.20. In the case of a uniform cartesian mesh made of squares, formula (3.40) recasts to

∆tmax ≥
√

2
18 h > 0,

where h is the squares edge length. Indeed, in that case #Rj = 4, Vj = h2 and ljr =
√

2
2h .

3.3. Convergence

We shall now prove that the proposed nodal finite volume schemes converge under some regularity
assumptions. We establish the convergence of the semi-discrete schemes.

Once again we assume that Ω = R2/Z2. We will also assume that the admissible mesh M of Ω is
of size h and has a bounded aspect ratio. That is, there exists a constant C > 0 such that

max
r,r′∈Rj

|xr − xr′ | ≤ h, h2 ≤ CVj , ∀j ∈ J . (3.41)

Let us recall that we denote uh(x, t) = uj(t) if x ∈ j, and that we identify the function uh and the
vector (uj)j∈J . The discrete initial condition u0

h is chosen such that

u0
h(x) = 1

Vj

∫
j

u0(y)dy, if x ∈ j.

Theorem 3.21. On unstructured meshes of size h (3.41), the semi-discrete Glace scheme for the PN

model converges to order h1/2 for an initial data u0 ∈ H3(Ω). More precisely, there exists a constant
C > 0 such that

∥uh(t) − u(t)∥L2(Ω) ≤ C
√

(1 + t)∥∇u0∥2
L2(Ω) + t∥u0|2H3(Ω)h

1/2.

Proof. The proof is quite long, thus it is given in Appendix B.

Remark 3.22. Again, similar result could be obtained for the Eucclhyd scheme for PN using slightly
more complex algebra.
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4. Numerical results

In this Section, we present numerical results for the Glace and Eucclhyd schemes. Our first test case is
a Riemann problem, which has the advantage of admitting an exact solution. It is also easy to check
that the scheme reproduces the expected wave velocities. Our second test case is an initial condition
equal to a Dirac distribution, this test case is interesting because it is a classical test case of the
wave equation. This test case presenting important numerical artifacts, we propose a third test case
which consists in taking an initial condition equal to a “regularized” Dirac distribution, i.e. an initial
condition of the form of an element of a regularizing sequence φn, with n sufficiently large. Finally, we
propose a last test case, for which we can compare the numerical solution to a smooth exact solution
and thus draw convergence curves. For all these tests, the time step is computed using formula (3.38).

4.1. Riemann problem

For this test case, we consider a Riemann problem. We set Ω = ]−1, 1[ × ]−0.1, 0.1[. The initial
condition is

f0
0 (x, y) =

{
1, if x < 0,
0, if x > 0,

and fm
k = 0 for all k > 0, |m| ≤ k.

To better understand the numerical results, let us look at the exact solution of this problem at least
in the case N = 3. Since there is no variation according to y, this is a 1D problem:

∂tu + A1∂xu = 0.

It is then classical that

u(x, t) =
m2D∑
i=1

wi(x, t)ri =
m2D∑
i=1

w0
i (x− λit)ri =

m2D∑
i=1

(
u0(x− λit), li

)
ri,

with li, ri, the i-th eigenvectors on the left and right of A1 and w = (wi)1≤i≤m2D the Riemann
invariants. Since A1 is symmetric, rT

i = li for all i. Now the eigenvector matrix P (with the eigenvalues
ordered by decreasing modulus) of A1 is

P =
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.

We then notice that the only eigenvectors that correspond to positive eigenvalues that have their first
component not zero are those associated to the eigenvalues λtheo

1 =
√

1
35

(
2
√

30 + 15
)

and λtheo
4 =√

1
35

(
15 − 2

√
30
)
. Thus, for P3, we expect to see only two waves going to the right and two going to

the left. By the same reasoning, we expect to see three waves going to the right for the P5 model, and
three going to the left.
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Cartesian grid. First, we place ourselves on a cartesian meshes. In Figure 4.1, we measure wave
velocities of λ1 = 0.339 and λ4 = 0.858 against λtheo

1 ≈ 0.339981 and λtheo
4 ≈ 0.861136 for the

theoretical values. We observe the correct structure of the eigenvalues of A1, if λ is an eigenvalue: then
−λ is also an eigenvalue. We also observe an additional couple of waves for P5 which was expected.
We observe a very similar results in the case of the Eucclhyd scheme in Figure 4.3.
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Figure 4.1. Riemann problem with the Glace scheme on a cartesian mesh 3840 × 4
at time t = 0.8.
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Figure 4.2. Convergence for Riemann problems for Glace scheme on cartesian grids

We perform a convergence study, see Figure 4.2 and 4.4. One obtains the expected5 rates of con-
vergence: O(h1/2) in the L1-norm and O(h1/4) in the L2-norm for the whole vector of unknowns
(gj ,hj)j∈J . This is conform to the general finite volume theory, see [10].

Random meshes. We now consider the case of random meshes. The construction of such meshes
is done in the following way: we start from a cartesian mesh 320 × 4, we move each node according to

5Even for scalar problem using first-order 1D finite volume methods one cannot expect better for this kind of initial
data.
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Figure 4.3. Riemann problem with the Eucclhyd scheme on a cartesian mesh 3840×4
at time t = 0.8.
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Figure 4.4. Convergence for Riemann problems for Eucclhyd scheme on cartesian
grids

Figure 4.5. Random 320 × 4 mesh used for the Riemann problem

a uniform law in a way that cells remain untangled and preserving the initial interface, see Figure 4.5.
The results are illustrated in Figure 4.6 for the Glace scheme and in Figure 4.8 for Eucclhyd.

Again the convergence study displayed in Figure 4.7 and 4.9 gives an O(h1/2) rate in the L1-norm
and O(h1/4) in the L2-norm.

These two set of tests illustrate that the scheme converges well, while the initial condition is not in
H3 (it is not even in H1). This suggests that the regularity condition of the Theorem 3.21 is suboptimal
with regard to the minimal regularity of the initial condition.
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Figure 4.6. Riemann problem with the Glace scheme on a random mesh 320 × 4 at
time t = 0.8.
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Figure 4.7. Convergence for Riemann problems for Glace scheme on random grids

4.2. Dirac

These tests are run on both cartesian and randomized cartesian grids. As previously, the random
grids are build as displacing randomly the vertex of the corresponding uniform mesh (preserving the
geometry and insuring that resulting cells are not tangled). An example of such a mesh is given in
Figure 4.10.

For this test case, we set Ω = ]−1.5, 1.5[2, and consider the initial condition

f0
0 (x, y) = δ(0,0).

Numerically, this initial condition is approximated by

f0
0 (x, y) = 1

Vj0
1j0(x, y)

where j0 is the cell located at the center of the mesh. We observe in Figures 4.11a and 4.11b that this
test case is problematic for these schemes. For the Glace scheme, we observe that the solution looks
like a 2D Dirac comb, and we observe many spurious modes along the diagonal. For the Eucclhyd
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Figure 4.8. Riemann problem with the Eucclhyd scheme, random meshes 320 × 4,
t = 0.8.
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Figure 4.9. Convergence for Riemann problems for Eucclhyd scheme on random grids

scheme, the Dirac comb and the spurious modes along the diagonal disappear, however we observe
that a large part of the particles remain in the center of the domain. These parasitic modes seem
to disappear when the mesh is no longer cartesian for the Glace scheme (see Figure 4.11c). For the
Eucclhyd scheme, this is not the case and a large part of the particles still remain in the center of the
domain (see Figure 4.11d).

4.3. Regularized Dirac

For this test case, we set Ω = ]−1.5, 1.5[2 and we consider the initial condition

f0
0 (x, y) = 30e−302(x2+y2).

We first use a random mesh (see an illustration in Figure). We observe that the Eucclhyd scheme
produces more numerical diffusion than the Glace scheme (see Figure 4.12).

Finally, we present the solution on an unstructured Delaunay mesh. We observe spurious modes
in the center of the domain. The fact that the Eucclhyd scheme produces more numerical dissipation
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Figure 4.10. Example of a random mesh used for the Dirac-like tests. Here, starting
a 41 × 41 uniform cartesian grid is randomized ensuring that cell do not tangle.

is still present (see Figure 4.13). We have no theoretical explanation with regard to these spurious
modes. However, according to Theorem 3.21, these should not prevent L2-convergence.

4.4. Analytical solution

We now set Ω = ]−1, 1[2. The PN model is written

∂tu + A1∂xu + A2∂yu = 0.

Let (x, t) ∈ Ω × [0,+∞[, we are looking for a solution of the form u(x, t) = e−αtv(x), with v : R →
Rm2D a function of class C1 and α > 0. By injecting into the equation, we find

A1∂xv = αv,

that is, by diagonalizing the system
D∂xw = αw

with w = P T v and D = diag(λi)1≤i≤m2D the eigenvalue matrix of A1. Let 1 ≤ i ≤ m2D, if λi = 0,
then wi = 0, otherwise we find, by imposing for example wi(0) = 1

∀x ∈ ]−1, 1[ , wi(x) = e
α
λi

x
.

Finally, one has

∀(x, t) ∈ Ω × [0,+∞[ , u(x, t) = e−αtP


e

α
λ1

x

...

e
α

λ
m2D

x

 .
We study the case N = 3. The exact solution u is written, for all (x, t),

u(x, t) = e−αt(ui(x, t))1≤i≤10,
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(a) Cartesian meshes 321 × 321, Glace
scheme
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Figure 4.11. Solution for a Dirac-like initial condition for P3 at time t = 1.
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(a) P3 on a random mesh 321 × 321 with
the Glace scheme
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(b) P3 on a random mesh 321 × 321 with
the Eucclhyd scheme

(c) P5 on a random mesh 321 × 321 with
the Glace scheme
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Figure 4.12. Solution on random meshes for a regularized Dirac type initial condition
for P3 andP5 at time t = 1.
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and
u10(x, t) = e
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λ1 + e
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λ2 + e

αx
λ5 + e

αx
λ6 + e

αx
λ7 + e

αx
λ8 .

On the edges ]−1, 1[×{−1} and ]−1, 1[×{1}, we impose symmetries conditions in order not to break
the 1D character of the solution. This imposes that the coordinates um

k with m > 0 must be null. We
notice that it is enough to impose w3 and w4 to be null. One can see in Figures 4.14–4.15 convergence

71



C. Buet, S. Del Pino, V. Fournet

(a) P3 with the Glace scheme
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(c) P5 with the Glace scheme
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Figure 4.13. Solution for a regularized Dirac type initial condition on a Delaunay
mesh (h = 3/320) at time t = 1.
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curves for the L2 norm on cartesian, random and Delaunay meshes. We observe numerically a first
order convergence.
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Figure 4.14. Convergence curve for P3 with the Glace scheme (Log scale). Top left:
random meshes, top right: Delaunay meshes, bottom: cartesian meshes.

5. Conclusion

In this paper, we have proposed two nodal finite volume schemes for the PN model. We have proved a
number of new properties for these schemes: their well-defined characters, their conservativities, their
stabilities and their convergences for a sufficiently regular initial condition. We note that the time-
explicit Glace and Eucclhyd schemes are much more expensive in computation time than the standard
finite volume scheme. It is however important to keep in mind that a standard finite volume scheme
cannot be asymptotic preserving [1], the study of nodal finite volume schemes for PN being done in this
perspective. Moreover, a way to remedy the problem of the high computational cost would be to use an
implicit scheme, we could hope to find a competitive method compared to the standard finite volume
scheme. It would be interesting to extend the convergence results to more general boundary conditions

73



C. Buet, S. Del Pino, V. Fournet

10−3 10−2 10−1 100

10−3

10−2

10−1

100

h

E
rr
or

(
L
2
n
or
m
)

Order 1

10−3 10−2 10−1 100

10−3

10−2

10−1

100

h

E
rr
or

(
L
2
n
or
m
)

Order 1

10−3 10−2 10−1 100

10−3

10−2

10−1

100

h

E
rr
o
r
(
L
2
n
or
m
)

Order 1

Figure 4.15. Convergence curve for P3 with the Eucclhyd scheme (Log scale). Top
left: random meshes, top right: Delaunay meshes, bottom: cartesian meshes.

than periodic boundary conditions, for example Dirichlet boundary conditions. The numerical results
suggest that the convergence result is suboptimal with respect to the regularity of the initial solution.
The natural continuation of this work would be to focus the study on the addition of the relaxation
term in the flux calculation as in [1], in order to write an asymptotic preserving scheme. Moreover, it
remains to study the spurious modes observed in the numerical results. One can also imagine extension
to 3D. In our view, the main difficulty is practical since 3D rotation matrices are more complex to
implement. From the theoretical point of view, it remains to extend Lemma 3.6 to 3D. Finally, an
extension to second order of accuracy should be straightforward using classical reconstruction strategies
used for finite volume schemes.
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Appendix A. Proof of Proposition 3.18

Here, we give the proof of the Proposition 3.18 which gives a lower bound to ∆tmax

∆tmax ≥
min
j∈J

Vj

2 max
j∈J

(1 + 2#Rj) max
j∈J
r∈Rj

ljr
> 0.
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 ,
according to Property 3.17, L2-stability is ensured if

∆t ≤ ∆tmax = N

D
.

Let us study the denominator D by first remarking that by (3.37)∑
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which simplifies to ∑
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since, by Lemma 3.11,
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Using again Lemma 3.11, one has∑
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The same calculation as previously applies, so that∥∥∥∥∥∥
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In order to finish the calculation we shall now bound from above
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jrMjr = l2jrUh

θjr
PhD+ P

T
h Uh

−θjr
Uh

θjr
Ph︸ ︷︷ ︸

=I

D+P
T
h Uh

−θjr
,

since Ph and Uh
θjr

are orthogonal matrices. Thus MT
jrMjr = l2jrUh

θjr
PhD

2
+P

T
h Uh

−θjr
, so∥∥∥Mjr(hn

j − hn
r )
∥∥∥2

=
(
l2jrUh

θjr
PhD

2
+P

T
h Uh

−θjr
(hn

j − hn
r ), (hn

j − hn
r )
)
,

and ∥∥∥Mjr(hn
j − hn

r )
∥∥∥2

≤ max
j∈Jr

ljr

(
ljrUh

θjr
PhD+P

T
h Uh

−θjr
(hn

j − hn
r ), (hn

j − hn
r )
)
,

since the eigenvalues of D+ are positive and lower than 1 (see [11]). So one has∥∥∥Mjr(hn
j − hn

r )
∥∥∥2

≤ max
j∈Jr

ljr

(
Mjr(hn

j − hn
r ), (hn

j − hn
r )
)
.

On the other hand∥∥∥ljrUg
θjr
AUh

−θjr
(hn

j − hn
r )
∥∥∥2

=
(
l2jrUh

θjr
AT Ug

−θjr
Ug

θjr
AUh

−θjr
(hn

j − hn
r ), (hn

j − hn
r )
)
,

=
(
l2jrUh

θjr
ATAUh

−θjr
(hn

j − hn
r ), (hn

j − hn
r )
)
.

Recalling that ATA = PhD
2
+P

T
h , one gets the same right hand side as previously∥∥∥ljrUg

θjr
AUh

−θjr
(hn

j − hn
r )
∥∥∥2

=
(
l2jrUh

θjr
PhD

2
+P

T
h Uh

−θjr
(hn

j − hn
r ), (hn

j − hn
r )
)
,

so ∥∥∥ljrUg
θjr
AUh

−θjr
(hn

j − hn
r )
∥∥∥2

≤ max
j∈Jr

ljr

(
Mjr(hn

j − hn
r ), (hn

j − hn
r )
)
.

Injecting these upper bounds into (A.1) and (A.2), it yields∥∥∥∥∥∥
∑

r∈Rj

Fn
jr

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑

r∈Rj

Gn
jr

∥∥∥∥∥∥
2

≤ 2(1 + 2#Rj) max
j∈Jr

ljr

(
Mjr(hn

j − hn
r ), (hn

j − hn
r )
)
.

Finally, the denominator D is upper bounded by

D ≤
∑
j∈J

2
Vj

(1 + 2#Rj) max
j∈Jr

ljr

(
Mjr(hn

j − hn
r ), (hn

j − hn
r )
)
,

≤ 2maxj∈J (1 + 2#Rj)
minj∈J Vj

max
j∈J
r∈Rj

ljr

∑
j∈J

(
Mjr(hn

j − hn
r ), (hn

j − hn
r )
)
.
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Recognizing the expression of the numerator N , one gets

D ≤ 2maxj∈J (1 + 2#Rj)
minj∈J Vj

max
j∈J
r∈Rj

ljr N.

So we established

N

D
≥

min
j∈J

Vj

2 max
j∈J

(1 + 2#Rj) max
j∈J
r∈Rj

ljr
.

Appendix B. Proof of Theorem 3.21

We give the proof of Theorem 3.21 which establishes the convergence of the semi-discrete scheme.
The scheme in the condensed form writes

d

dt
uj + 1

Vj

∑
r∈Rj

Ajrujr = 0,

with

uj =
(

gj

hj

)
, Ajr =

(
0 ljrUg

θjr
AUh

−θjr

ljrUh
θjr
AT Ug

−θjr
0

)
, ujr =

(
gjr

hr

)
.

In all this Section, C denotes a strictly positive constant, which can change from one line to another.
The proof is given in the case of the Glace scheme, but it can be easily extended to the case of the
Eucclhyd scheme. We will study the quantity

E(t) = 1
2∥uh(t) − u(t)∥2

L2(Ω)

for t ∈ ]0,+∞[. We compute

E ′(t) = 1
2

∫
Ω

(
u2

h

)′
dx︸ ︷︷ ︸

D1:=

+ 1
2

∫
Ω

(
u2
)′
dx︸ ︷︷ ︸

D2:=

+
∫

Ω
−
(
u′

h,u
)
dx︸ ︷︷ ︸

D3:=

+
∫

Ω
−
(
uh,u′) dx︸ ︷︷ ︸
D4:=

,

and we estimate each term of the sum.

B.1. Estimation of D1

Using Proposition 3.15, one has

D1 = −
∑
j∈J

∑
r∈Rj

(Mjr(hj − hr),hj − hr).

B.2. Estimation of D2

From Proposition 3.14,
D2 = 0.
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B.3. Estimation of D3

A direct calculation gives

D3 = −
∑
j∈J

(
u′

j ,

∫
j

udx
)

=
∑
j∈J

∑
r∈Rj

(
Ajrujr,

1
Vj

∫
j

udx
)
,

and since
∑

r∈Rj
Ajr = 0,

D3 =
∑
j∈J

∑
r∈Rj

(
Ajr(ujr − uj), 1

Vj

∫
j

udx
)
.

Moreover,

D3 =
∑
j∈J

∑
r∈Rj

(
Ajr(ujr − uj), 1

Vj

∫
j

udx − u(xr)
)

+
∑
j∈J

∑
r∈Rj

(Ajr(ujr − uj),u(xr)) ,

and since
∑

j∈J
∑

r∈Rj
(Ajrujr,u(xr)) = 0,

D3 =
∑
j∈J

∑
r∈Rj

(
Ajr(ujr − uj), 1

Vj

∫
j

udx − u(xr)
)

−
∑
j∈J

∑
r∈Rj

(Ajruj ,u(xr)) .

To simplify the notations, we denote(
δgjr

δhjr

)
= 1
Vj

∫
j

udx − u(xr).

With these notations, we have(
Ajr(ujr − uj), 1

Vj

∫
j

udx − u(xr)
)

= ljr

[
Ug

θjr
AUh

−θjr
(hr − hj)

]
· δgjr

+ ljr

[
Uh

θjr
AT Ug

−θjr
(gjr − gj)

]
· δhjr.

By the Young’s inequality, one gets(
Ajr(ujr − uj), 1

Vj

∫
j

udx − u(xr)
)

≤ 1
2 ∥
√
ljrUg

θjr
AUh

−θjr
(hr − hj)∥2︸ ︷︷ ︸

a:=

+ ljr

2 ∥δgjr∥2

+ 1
2 ∥
√
ljrUh

θjr
AT Ug

−θjr
(gjr − gj)∥2︸ ︷︷ ︸

b:=

+ ljr

2 ∥δhjr∥2.

Let use first estimate the term a. One has
a =

(√
ljrUg

θjr
AUh

−θjr
(hr − hj),

√
ljrUg

θjr
AUh

−θjr
(hr − hj)

)
,

=
(
ljrUh

θjr
ATAUh

−θjr
(hr − hj),hr − hj

)
.

Recalling that ATA = PhD
2
+P

T
h , one gets

a =
(
ljrUh

θjr
PhD

2
+P

T
h Uh

−θjr
(hr − hj),hr − hj

)
.

Since the eigenvalues of A1 are less than 1

a ≤
(
ljrUh

θjr
PhD+P

T
h Uh

−θjr
(hr − hj),hr − hj

)
,

which rewrites
a ≤ (Mjr(hr − hj),hr − hj) .
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We now estimate b. Using the equality (3.18), one has

b = ∥
√
ljrUh

θjr
PhD+P

T
h Uh

−θjr
(hr − hj)∥2,

=
(
ljrUh

θjr
PhD

2
+P

T
h Ug

−θjr
(hr − hj),hr − hj

)
,

and using the same arguments as previously

b ≤ (Mjr(hr − hj),hr − hj) .

Finally, one gets the following estimate

D3 ≤
∑
j∈J

∑
r∈Rj

(
ljr

2 ∥δgjr∥2 + ljr

2 ∥δhjr∥2
)

+
∑
j∈J

∑
r∈Rj

(Mjr(hj − hr),hj − hr) −
∑
j∈J

∑
r∈Rj

(Ajruj ,u(xr)) .

B.4. Estimation of D4

This last term does not depend on the scheme, we have

D4 =
∫

Ω
−(uh,u′)dx = −

∑
j∈J

(uj ,

∫
j

u′dx).

By denoting Γjk the k-th edge of the cell j, and njk = (cos θjk, sin θjk) the associated normal, which
we choose so that

ljrnjr = 1
2(l+jkn+

jk + l−jkn−
jk).

We have

−
∫

j
u′dx =

∫
j

A1∂xu +
∫

j
A2∂yudx,

=
∫

∂j
nx

j A1udσ +
∫

∂j
ny

j A2udσ,

=
∑

k∈Kj

∫
Γjk

(nx
jkA1 + ny

jkA2)udσ,

thus according to Proposition 2.5,

−
∫

j
u′dx =

∑
k∈Kj

∫
Γjk

Uθjk
A1U−θjk

udσ,

therefore

D4 =
∑
j∈J

∑
k∈Kj

(
uj ,Uθjk

A1U−θjk

∫
Γjk

udσ
)
.

The idea is to rewrite this estimate at nodes in order to balance D3. We write D4 in the form

D4 =
∑
j∈J

∑
k∈Kj

(
uj , ljkUθjk

A1U−θjk

u(xr+) + u(xr)
2

)

+
∑
j∈J

∑
k∈Kj

(
Uθjk

A1U−θjk
uj ,

∫
Γjk

udσ − ljk
u(xr+) + u(xr)

2

)
,
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where xr and xr+ are the nodes on the edge Γjk, oriented in the trigonometric direction, and Kj is
the set of edges of the cell j. By grouping the sums on the edges into sums on the nodes, we obtain∑

j∈J

∑
k∈Kj

(
uj , ljkUθjk

A1U−θjk

u(xr+) + u(xr)
2

)
=
∑
j∈J

∑
r∈Rj

(Ajruj ,u(xr)) .

It remains to study the second term of the sum. We will use the following Lemma.

Lemma B.1 ([18]). If f ∈ H2(]0, h[) with h > 0, then∣∣∣∣∣
∫ h

0
f(s)ds− h

f(0) + f(h)
2

∣∣∣∣∣ ≤ h5/2

2
√

30
∥f ′′∥L2(]0,h[).

Proof. Indeed, we can characterizeH1
]0,1[ as the set of absolutely continuous functions with a derivative

almost every where in L2]0, 1[ and we can reiterate on H2
]0,2[. Using a Taylor expansion with integral

remainder we have:
f(s) = f(0) + sf ′(0) +

∫ s

0
(s− t)f ′′(t)dt,

and

f(h) = f(0) + hf ′(0) +
∫ h

0
(s− t)f ′′(t)dt,

which gives

f(s) − f(0) + f(h)
2 = (s− h

2 )f ′(0) +
∫ s

0
(s− t)f ′′(t)dt− h

2

∫ h

0
(h− t)f ′′(t)dt.

Integrating with respect to s on [0, 1] and since the integral of an affine function is null on the considered
interval, we have

f(s) − f(0) + f(h)
2 =

∫ s=h

s=0

∫ t=s

t=0
(s− t)f ′′(t)dtds− h

2

∫ t=h

t=0
(h− t)f ′(t)dt

=
∫ t=h

t=0

∫ s=h

s=t
(s− t)f ′′(t)dsdt− h

2

∫ t=h

t=0
(h− t)f ′′(t)dt

=
∫ t=h

t=0

t

2(t− h)f ′′(t)dt.

Thus using the Hölder inequality∣∣∣∣∣
∫ h

0
f(s)ds− h

f(0) + f(h)
2

∣∣∣∣∣ ≤

√∫ h

0

(
t(t− h)

2

)2
∥f ′′∥L2(]0,h[),

which, after calculation, corresponds to the desired estimate.

Applying this Lemma on each edge Γjk, we obtain the estimate

D4 ≤
∑
j∈J

∑
k∈Kj

(Ajruj ,u(xr)) + C
∑
j∈J

∑
k∈Kj

l
5/2
jk ∥uj∥∥∇2u∥L2(Γjk).

B.5. Estimation of E

Adding the four estimates, since Mjr is nonnegative, we obtain

E ′(t) ≤
∑
j∈J

∑
r∈Rj

(
ljr

2 ∥δgjr∥2 + ljr

2 ∥δhjr∥2
)

+ C
∑
j∈J

∑
k∈Kj

l
5/2
jk ∥uj∥∥∇2u∥L2(Γjk).
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Let us estimate the first term. We decompose the nodal term δgjr by introducing the edge term δgjk

as
δgjk = 1

Vj

∫
j

udx − 1
ljk

∫
Γjk

udσ,

and therefore
δgjr = δgjk + 1

ljk

∫
Γjk

gdσ − g(xr).

It is classical that
∥δgjk∥ ≤ C∥∇g∥L2(j).

On the other hand, a calculation shows that∥∥∥∥∥ 1
ljk

∫
Γjk

gdσ − g(r)
∥∥∥∥∥ =

∥∥∥∥∥ 1
ljk

∫
Γjk

gdσ − 1
ljk

∫
Γjk

g(r)dσ
∥∥∥∥∥ ,

≤
∫

Γjk

1
ljk

∥g − g(r)∥dσ,

≤
(∫

Γjk

1
l2jk

dσ

)1/2(∫
Γjk

l2jk∥∇g∥2dσ

)1/2

,

= l
1/2
jk ∥∇g∥L2(Γjk),

≤ Ch1/2∥∇g∥H1(j).

Therefore, for h bounded, one has
∥δgjr∥ ≤ C∥∇g∥H1(j).

The same calculation for δhjr gives∑
j∈J

∑
r∈Rj

(
ljr

2 ∥δgjr∥2 + ljr

2 ∥δhjr∥2
)

≤ Ch∥∇u∥2
H1(Ω).

Let us now estimate the second term. Since u ∈ H3(Ω) one has
∥∇2u∥L2(Γjk) ≤ C∥u∥H3(Ω).

We have ∑
j∈J

∑
k∈Kj

l
5/2
jk ∥uj∥∥∇2u∥L2(Γjk) ≤ 1

2
∑
j∈J

∑
k∈Kj

(
l3jk∥u∥2 + ljkC∥u∥2

H3(j)

)
,

≤ C1h
∑
j∈J

Vj∥uj∥2 + C2h∥u∥2
H3(Ω),

≤ C1h∥uh∥2
L2(Ω) + C2h∥u∥2

H3(Ω).

By Proposition 3.15, the scheme is dissipative, so
∥uh∥2

L2(Ω) ≤ ∥u0
h∥2

L2(Ω) ≤ ∥u0∥2
L2(Ω).

Moreover, according to Proposition 3.14
∥u∥H3(Ω) = ∥u0∥H3(Ω),

and therefore ∑
j∈J

∑
k∈Kj

l
5/2
jk ∥uj∥∥∇2u∥L2(Γjk) ≤ Ch∥u0∥2

H3(Ω).

Finally we obtain the estimate on E ′(t)
E ′(t) ≤ Ch∥∇u∥2

H1(Ω) + C ′h∥u0∥2
H3(Ω).
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By the Steklov–Poincaré inequality (see for instance [9, Lemma 3.24, p. 27]), we have

E(0) ≤ Ch∥∇u0∥2
L2(Ω),

and finally we obtain for h < 1, by integrating in time

∥uh(t) − u(t)∥L2(Ω) ≤ C
√

(1 + t)∥∇u0∥2
L2(Ω) + t∥u0∥2

H3(Ω)h
1/2.

Appendix C. Examples of A, Ug
θ and Uh

θ

For N = 3, we have

A =


0 1√

3 0 0 0 0
1√
5 0

√
3
14 − 1√

70 0 0

0 − 1√
15 0 0

√
6
35 0

0 − 1√
5 0 0 − 1√

70

√
3
14

 ,

Ug
θ =


1 0 0 0
0 cos 2θ 0 sin 2θ
0 0 1 0
0 − sin 2θ 0 cos 2θ

 , Uh
θ =



cos θ sin θ 0 0 0 0
− sin θ cos θ 0 0 0 0

0 0 cos 3θ 0 0 sin 3θ
0 0 0 cos θ sin θ 0
0 0 0 − sin θ cos θ 0
0 0 − sin 3θ 0 0 cos 3θ


.

For N = 5, we have

A =



0 1√
3 0 0 0 0 0 0 0 0 0 0

1√
5 0

√
3
14 − 1√

70 0 0 0 0 0 0 0 0

0 − 1√
15 0 0

√
6
35 0 0 0 0 0 0 0

0 1√
5 0 0 − 1√

70

√
3
14 0 0 0 0 0 0

0 0
√

2
3 0 0 0

√
5
22 − 1

3
√

22 0 0 0 0

0 0 − 1
3
√

14

√
5
42 0 0 0

√
14
11

3 − 1√
33 0 0 0

0 0 0 0 −
√

2
21 0 0 0 0

√
5
33 0 0

0 0 0 0
√

5
42 − 1

3
√

14 0 0 0 − 1√
33

√
14
11

3 0

0 0 0 0 0
√

2
3 0 0 0 0 − 1

3
√

22

√
5
22



,

Ug
θ =



1 0 0 0 0 0 0 0 0
0 cos(2θ) 0 sin(2θ) 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 − sin(2θ) 0 cos(2θ) 0 0 0 0 0
0 0 0 0 cos(4θ) 0 0 0 sin(4θ)
0 0 0 0 0 cos(2θ) 0 sin(2θ) 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 − sin(2θ) 0 cos(2θ) 0
0 0 0 0 − sin(4θ) 0 0 0 cos(4θ)


,

82



Nodal finite volume schemes for the PN model

Uh
θ =



cos(θ) sin(θ) 0 0 0 0 0 0 0 0 0 0
− sin(θ) cos(θ) 0 0 0 0 0 0 0 0 0 0

0 0 cos(3θ) 0 0 sin(3θ) 0 0 0 0 0 0
0 0 0 cos(θ) sin(θ) 0 0 0 0 0 0 0
0 0 0 − sin(θ) cos(θ) 0 0 0 0 0 0 0
0 0 − sin(3θ) 0 0 cos(3θ) 0 0 0 0 0 0
0 0 0 0 0 0 cos(5θ) 0 0 0 0 sin(5θ)
0 0 0 0 0 0 0 cos(3θ) 0 0 sin(3θ) 0
0 0 0 0 0 0 0 0 cos(θ) sin(θ) 0 0
0 0 0 0 0 0 0 0 − sin(θ) cos(θ) 0 0
0 0 0 0 0 0 0 − sin(3θ) 0 0 cos(3θ) 0
0 0 0 0 0 0 − sin(5θ) 0 0 0 0 cos(5θ)



.
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