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Abstract. We present commuting projection operators on de Rham sequences of two-dimensional multipatch spaces
with local tensor-product parametrization and non-matching interfaces. Our construction yields projection operators
which are local and stable in any Lp norm with p ∈ [1, ∞]: it applies to shape-regular spline patches with different
mappings and resolutions, under the assumption that interior vertices are shared by exactly four patches, and that
neighboring patches have nested resolutions in a way that excludes local chessboard patterns. Our construction also
applies to de Rham sequences with homogeneous boundary conditions. Following a broken-FEEC approach, we first
consider tensor-product commuting projections on the single-patch de Rham sequences, and modify the resulting
patch-wise operators so as to enforce their conformity and commutation with the global derivatives, while preserving
their projection and stability properties with constants independent of both the diameter and inner resolution of
the patches.
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Keywords. Commuting projection, finite element exterior calculus, de Rham sequence, multipatch spaces,
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1. Introduction

Mixed finite element spaces which preserve the de Rham structure offer a flexible and powerful frame-
work for the approximation of partial differential equations. This discretization paradigm has been
extensively studied in the scope of electromagnetic modelling [9, 10, 28] and has given rise to an
elegant body of theoretical work which guarantees that compatible spaces of nodal, edge, face and
volume type lead to stable and accurate approximations to various differential operators in domains
with non-smooth or non-connected boundaries [1, 6, 7, 27].

A notable step has been the unifying analysis of Finite Element Exterior Calculus (FEEC) [2, 3]
developed in the general framework of Hilbert complexes. There, the existence of bounded cochain
projections, i.e. sequences of commuting projection operators with uniform stability properties, is
identified as a key ingredient for the stability, spectral accuracy and structure preservation of the
discrete problems. In parallel, L2 stable commuting projection operators based on composition of finite
element interpolation and smoothing operators have been proposed by Schöberl [35, 36] for sequences
of compatible Lagrange, Nédélec, Raviart-Thomas and discontinuous finite element spaces, and by
Christiansen, Arnold, Falk and Winther in [2, 19, 20] for simplicial finite element spaces of differential
forms in arbitrary dimensions. These constructions have later been refined by Ern and Guermond [23]
who introduced shrinking-based mollifiers to avoid technical difficulties with the domain boundaries,
and derived commuting projections stable in any Lp norm, p ∈ [1,∞]. Local commuting projection
operators have also been proposed: first by Falk and Winther [25] with uniform stability properties
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in the domain spaces (H1, H(curl), . . . ) and by Arnold and Guzmán [4] with uniform stability in L2.
Let us also mention [22] where the authors derive local stable commuting projections in H(div).

Important extensions of these works have been carried out in the scope of isogeometric analysis
methods [30], with structure-preserving spline finite element spaces on multipatch domains proposed
by Buffa, Sangalli, Rivas and Vásquez in [13, 14]. These discretizations involve compatible sequences
of tensor-product spline spaces defined on a Cartesian parametric domain and transported on mapped
subdomains (the patches) using pullback operators such as contravariant and covariant Piola trans-
formations. The parametric tensor-product structure is attractive as it enables fast algorithms at the
numerical level, and with the elegant construction of [13] it admits a variety of commuting projec-
tion operators starting from general projections for the first space of the sequence. In particular, this
process leads to commuting projections with uniform stability properties on single-patch spline spaces.

A difficulty, however, regards the construction of stable commuting projection operators on mul-
tipatch spline spaces. Because the tensor-product structure breaks down at the patch interfaces the
construction of [13] does not apply, and it is unclear whether the smoothing projection approach
of [2, 20, 35] can yield projections which are uniformly stable with respect to the inner grid resolution
of the patches, due to the non-locality of spline interpolation operators. Although optimal convergence
results for multipatch spline approximations have been established in [11, 16], up to our knowledge no
L2 stable commuting projections have been proposed for these spaces.

Another difficulty regards the extension of these constructions to locally refined spaces. A typical
configuration is when adjacent patches are discretized with spline spaces using different knot sequences
or polynomial degrees. Then the patches are non-matching in the sense of [16] and the existence of
commuting projection operators, let alone stable ones, seems to be an open question. More generally
the preservation of the de Rham structure at the discrete level is an active research topic when locally
refined splines are involved: let us cite [15, 31] on the construction of discrete de Rham sequences of
T-spline and locally refined B-splines, [24] where sufficient and necessary conditions are proposed for
the exactness of discrete de Rham sequences on hierarchical spline discretizations, and [33, 38] for de
Rham sequences of splines with multiple degrees and mapped domains with polar singularities. We
note, however, that none of these works propose commuting projection operators for spline spaces
with local refinement.

In this article, we provide a first answer to these questions in the 2D setting, by constructing Lp

stable commuting projection operators on multipatch spaces with non-matching interfaces, for any
1 ≤ p ≤ ∞. Under the assumption that the multipatch decomposition is geometrically conforming,
that local resolutions across patch interfaces must be nested and that interior vertices are shared by
exactly four patches, our construction applies to general discretizations involving parametric tensor-
product spaces with locally stable bases. Our commuting projection operators are also local, and their
stability holds with constants independent of both the size of the patches and the resolution of the
individual patch discretizations.

Our construction follows a broken-FEEC approach reminiscent of [18, 26], where the multipatch
finite element spaces are seen as the maximal conforming subspaces of broken spaces defined as the
juxtaposition of the single-patch ones. The commuting projections are then obtained by a two-step
process: Applying the tensor-product construction of [13] on the individual single-patch spaces (which
consists of composing antiderivative operators, stable projections and local derivatives) we first obtain
stable projection operators on the broken space which commute with the patch-wise differential oper-
ators. The second step is to modify these patch-wise projections close to the patch interfaces so as to
enforce the conformity conditions and their commuting properties, while preserving their projection
and stability properties. On the first space of the sequence where the conformity amounts to continu-
ity conditions across patch interfaces, this is done by composing the patch-wise commuting projection
with a local discrete conforming projection which essentially consists of averaging interface degrees
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of freedom. On the next spaces the patch-wise commuting projection are modified with additive cor-
rection terms which rely on carefully crafted antiderivative, local projection and derivative operators
associated with the edge and vertex interfaces. Our main finding is that this constructive process
indeed produces local commuting projection operators on the conforming spaces, with uniform Lp

stability properties. Moreover, our construction also applies to de Rham sequences with homogeneous
boundary conditions. A by-product of this analysis is the optimal convergence and spectral correctness
of Hodge–Laplace operators on multipatch spaces with patch-wise refinements.

The outline is as follows: in Section 2 we present the form of our commuting projection operators
and state their main properties. The structure of the broken and conforming multipatch spaces are
respectively described in Section 3 and 4, together with our assumptions on the multipatch geometry
and the local stability of the bases. In Section 5 we define and study stable antiderivative operators
associated with patches, edge and vertex interfaces, and our construction is finalized in Section 6 with a
statement of our main results. Section 7 is then devoted to proving these results, using the preliminary
properties established for the various intermediate operators. We conclude with some perspectives. The
appendix presents ours results for the curl-div sequence and describes how the construction is modified
in the case of homogeneous boundary conditions.

2. Broken-FEEC approach and main result

In this article, we mainly consider the 2D grad-curl de Rham sequence

R
id−→ V 0 = H1(Ω) ∇−→ V 1 = H(curl; Ω) curl−→ V 2 = L2(Ω) 0−→ {0}. (2.1)

The curl-div sequence and their counterparts with homogeneous boundary conditions are discussed in
the appendices A and B, as they can be treated in almost the same way. We refer to [2, 3] for their
description as L2(Ω) Hilbert complexes.

Accordingly, we consider a sequence of finite element spaces in 2D

V 0
h

∇−→ V 1
h

curl−→ V 2
h

included in the spaces (2.1), and a multipatch domain of the form

Ω = int
( ⋃

k∈K
Ωk

)
with Ωk = Fk(Ω̂) (2.2)

with disjoint, geometrically conforming subdomains Ωk associated with smooth mappings Fk defined
on a reference domain Ω̂ = ]0, 1[2. We further assume that each patch Ωk is equipped with a sequence
of local finite element spaces

V 0
k

∇−→ V 1
k

curl−→ V 2
k (2.3)

where V ℓ
k = F ℓ

k(V̂ ℓ
k ) is defined as the ℓ-degree pushforward of a logical space V̂ ℓ

k with a locally stable
tensor-product basis that will be described in the next section.

We further allow different patches to have different logical spaces, which corresponds to local (patch-
wise) refinements, under nestedness assumptions which will be specified later on. The global finite
element spaces are then defined as

V ℓ
h = {v ∈ V ℓ(Ω) : v|Ωk

∈ V ℓ
k for k ∈ K} (2.4)

where again, the spaces V ℓ(Ω) are given by (2.1).
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Our objective is then to design Lp stable projection operators on these discrete spaces that yield a
commuting diagram:

R H1(Ω) H(curl; Ω) L2(Ω) {0}

R V 0
h V 1

h V 2
h {0}

id ∇

Π0

curl

Π1

0

Π2

id ∇ curl 0

(2.5)

On a single patch Ωk, the approach of [13] starts from a general tensor-product projection Π̂0
k :

Lp(Ω̂)→ V̂ 0
k on the first logical space, and defines projections on the next spaces of the form

Π̂1
kû :=

∑
d∈{1,2}

∇̂dΠ̂0
kΦ̂d(û) and Π̂2

kf̂ := ∂̂1∂̂2Π̂0
kΨ̂(f̂) (2.6)

with directional gradient operators ∇̂d and antiderivative operators
Φ̂1(û)(x̂) :=

ˆ x̂1

0
û1(z, x̂2) dz

Φ̂2(û)(x̂) :=
ˆ x̂2

0
û2(x̂1, z) dz

and Ψ̂(f̂)(x̂) :=
ˆ x̂1

0

ˆ x̂2

0
f̂(z1, z2) dz2 dz1.

The projections (2.6) commute with the logical differential operators thanks to the tensor-product
structure of Π̂0

k, and they preserve its stability due to the intrinsic integrability of the antideriva-
tive operators and a localization argument that relies on the tensor-product product structure, as
will be explained below. On the mapped spaces the projections are defined through pullbacks and
pushforwards,

Πℓ
k = F ℓ

kΠ̂ℓ
k(F ℓ

k)−1 : Lp(Ωk) −→ V ℓ
k . (2.7)

Their stability and commuting properties respectively follow from the smoothness of the mapping Fk

and from the fact that the pullbacks commute with the differential operators, see e.g. [13, 28]. (Note
that for ℓ = 1, the Lp space in (2.7) is implicitly understood as vector-valued: this convention will be
adopted throughout the article.)

At patch interfaces where the parametric tensor-product structure breaks down, this construction
must be adapted. Our approach is to first consider the patch-wise projections

Πℓ
pw =

∑
k∈K

Πℓ
k : Lp(Ω) −→ V ℓ

pw (2.8)

on the broken patch-wise spaces

V ℓ
pw := {v ∈ L2(Ω) : v|Ωk

∈ V ℓ
k for k ∈ K} (2.9)

which are fully discontinuous at the patch interfaces. These patch-wise operators map to functions
which may take different values on the interfaces, corresponding to the different patches. Therefore, we
modify them to enforce the conformity conditions at the patch interfaces. On the first space of (2.1)
where the H1 conformity amounts to continuity conditions, in the sense that V 0

h = V 0
pw∩C0(Ω), this is

done by applying a conforming projection P : V 0
pw → V 0

h which averages interface degrees of freedom:
we thus set

Π0 := PΠ0
pw.
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On the next spaces our modification takes the form of additive correction terms associated with the
patch interfaces. The global projection on V 1

h has the form

Π1 := Π1
pw +

∑
e∈E

Π̃1
e +

∑
v∈V

Π̃1
v +

∑
v∈V,e∈E(v)

Π̃1
e,v (2.10)

with correction terms that are localized on patch edges and vertices. Like the single-patch projec-
tions (2.6), they involve antiderivative operators, local (patch-wise) projections Π0

pw and partial deriv-
ative operators. In addition, they also involve local projection operators which vanish on conforming
functions. Specifically, our correction terms take the following form:

Π̃1
eu :=

∑
d∈{∥,⊥}

∇e
d(P e − Ie)Π0

pwΦe
d(u)

Π̃1
vu := ∇pw(P v − Īv)Π0

pwΦv(u)

Π̃1
e,vu :=

∑
d∈{∥,⊥}

∇e
d(Īe

v − P e
v )Π0

pwΦv,e
d (u).

Here, ∇pw is the patch-wise gradient operator and ∇e
d, d ∈ {∥,⊥}, are patch-wise gradients along the

logical parallel and perpendicular directions relative to a given edge e: they will be defined in Section 3.
The various operators P g, Ig, Īg, . . . are discrete projections on local conforming and broken subspaces
associated to patch edges (for g = e), vertices (for g = v) and edge-vertex pairs (for g = (v, e)). These
local projection operators will be designed so as to guarantee the grad-commuting properties of Π1

and Π0, and to vanish on continuous functions: they will be described in Section 4. Finally, the Φg are
antiderivative operators associated with edges and vertices: they will be studied in Section 5.

Similarly, the projection on V 2
h reads

Π2 := Π2
pw +

∑
e∈E

Π̃2
e +

∑
v∈V,e∈E(v)

Π̃2
e,v

with interface correction terms of the form{
Π̃2

ef := D2,e(P e − Ie)Π0
pwΨe(f)

Π̃2
e,vf := D2,e(Īe

v − P e
v )Π0

pwΨv,e(f).
(2.11)

Here, D2,e is a second order patch-wise derivative and Ψe, Ψv,e are bivariate antiderivatives: they will
be described in Section 3 and 5.

Our findings can be summarized as follows.

Theorem 2.1. The operators Πℓ
h are local projections on the spaces V ℓ

h , ℓ = 0, 1, 2. They yield a
commuting diagram (2.5) and they are uniformly Lp stable with respect to the size and inner resolution
of the patches.

This result will be formally stated and proven in Section 6. A precise meaning of the uniform
stability will be given by listing discretization parameters κ1, κ2, . . . on which our estimates depend.
Throughout the article, we will then write

f ≲ g

to mean that f ≤ Cg holds for a constant that only depends on these constants κm while f ∼ g
indicates that both f ≲ g and g ≲ f hold.

3. Broken multipatch spaces

In this section, we describe in more detail the multipatch domains and the finite element spaces to
which our construction applies.
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3.1. Multipatch geometry

As described above, we consider a domain Ω of the form (2.2), made of disjoint open patches Ωk =
Fk(Ω̂) with smooth mappings Fk, k ∈ K. We denote by Hk the diameter of patch Ωk, and assume that
the mappings are C1 diffeomorphisms with Jacobian matrices satisfying

∥DFk(x̂)∥ ≤ κ1Hk and ∥(DFk(x̂))−1∥ ≤ κ2(Hk)−1

for all x̂ ∈ Ω̂ and k ∈ K. In particular, it holds
∥DFk(x̂)∥ ∼ Hk, ∥(DFk(x̂))−1∥ ∼ (Hk)−1, det(DFk(x̂)) ∼ H2

k . (3.1)
We make the following assumptions:

(i) the patch decomposition is geometrically conforming,

(ii) across any interior edge, the patch discretization spaces are nested,

(iii) vertices are shared by at most four patches (exactly four in the case of interior vertices) with
specific nestedness properties.

Here, Assumption (i) amounts to saying that the intersection of two closed patches is either empty, or
a common vertex, or a common edge. In addition, we assume that the mappings are continuous on the
patch edges, in the sense that both sides provide the same parametrization up to a possible change
in orientation. Assumption (ii) is standard for locally refined spaces and Assumption (iii) essentially
amounts to excluding chessboard refinement patterns around interior vertices; around boundary ver-
tices it prevents boundary patches from being coarser than interior ones. This will be specified in
Section 3.5, see Assumption 1 and 2.

3.2. Tensor-product logical spaces

Following [13, 28, 34], we consider discrete spaces on each patch which are obtained by pushing forward
tensor-product de Rham sequences on the logical Cartesian domain Ω̂ = ]0, 1[2. Thus, for a patch Ωk,
k ∈ K, we consider a logical discrete de Rham sequence on Ω̂,

V̂ 0
k

∇−→ V̂ 1
k

curl−→ V̂ 2
k

with tensor-product spaces of the form

V̂ 0
k := V

0
k ⊗V0

k, V̂ 1
k :=

(
V1

k ⊗V0
k

V0
k ⊗V1

k

)
, V̂ 2

k := V
1
k ⊗V1

k. (3.2)

The univariate spaces must form de Rham sequences on the reference interval, i.e.

V
0
k ⊂W 1,1(]0, 1[) ∂x̂−→ V

1
k ⊂ L1(]0, 1[)

and antiderivative operators must map back to the first space,

V
0
k

´ x̂

←−− V
1
k

for arbitrary integration constants, which also implies that constants belong to V0
k. An important

particular case is provided by spline spaces

V
0
k = S

p
α, V

1
k = S

p−1
α−1

where p and α are the degree and regularity vector of the first space, as described in [13]. This
also includes the case of polynomial spaces V0

k = Pp and V1
k = Pp−1. To simplify the matching
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of functions across patch interfaces we further assume that the univariate spaces are invariant by a
change of orientation, namely

φ ∈ V0
k =⇒ φ ◦ η ∈ V0

k where η(z) = 1− z.

Our next assumption is that the first space is equipped with basis functions

V
0
k = Span({λk

i : i = 0, . . . , nk})

with the following properties:

• interpolation at the endpoints,

λk
i (0) = δi,0 and λk

i (1) = δi,nk
. (3.3)

• bounded overlapping and quasi-uniformity: the functions λk
i are supported inside a closed

interval ŝk
i with

κ−1
3 ĥk ≤ diam(ŝk

i ) ≤ κ3ĥk with ĥk := (nk + 1)−1, (3.4)

and these intervals overlap in a bounded way, i.e.

#
(
{j : ŝk

j ∩ ŝk
i ̸= ∅}

)
≤ κ4 for i = 0, . . . , nk. (3.5)

• inverse estimate: for all φ ∈ V0
k and all ŝk

i , 0 ≤ i ≤ nk, it holds

∥∂x̂φ∥L∞(ŝk
i ) ≤ κ5(ĥk)−1∥φ∥L∞(ŝk

i ). (3.6)

• local stability: there exist dual basis functions θk
i vanishing outside the intervals ŝk

i , such thatˆ 1

0
θk

i λ
k
j dx̂ = δi,j

holds for all i, j ∈ {0, . . . , nk}, as well as the dual normalization

∥λk
i ∥L∞(Ŝk

i ) ≤ 1, ∥θk
i ∥L∞(Ŝk

i ) ≤ κ6(ĥk)−1. (3.7)

The basis functions for V̂ 0
k , as well as the dual functions, are then defined asΛ̂k

i (x̂) := λk
i1(x̂1)λk

i2(x̂2)

Θ̂k
i (x̂) := θk

i2(x̂1)θk
i2(x̂2)

for x̂ ∈ Ω̂, i ∈ Ik := {0, . . . , nk}2

and both functions are supported in the Cartesian domains

Ŝk
i = ŝk

i1 × ŝ
k
i2 (3.8)

which, according to (3.5), also overlap in a bounded way. From (3.4) and the normalization (3.7) we
infer

∥Λ̂k
i ∥Lp(Ŝk

i
) ≲ ĥ

2/p
k , ∥Θ̂k

i ∥Lq(Ŝk
i

) ≲ ĥ
2/q−2
k (3.9)

where we have denoted 1
q = 1− 1

p for p ∈ [1,∞]. Note that in the case of splines, the inverse estimates
hold [5] and such dual functionals are standard: they can be obtained from the perfect B-spline of
de Boor [21] or as piecewise polynomials [12, 17]. Using these dual functions, we define a projection
operator

Π̂0
k : Lp(Ω̂) −→ V̂ 0

k , ϕ̂ 7−→
∑

i∈Ik

⟨Θ̂k
i , ϕ̂⟩Λ̂k

i (3.10)
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where ⟨·, ·⟩ is the usual Lq-Lp duality product in Ω̂. Our assumptions classically imply that the pro-
jection Π̂0

k is locally stable. Specifically, denoting ϕk
i = ⟨Θ̂k

i , ϕ̂⟩ for k ∈ K and i ∈ Ik, one easily infers
from (3.9) that

ĥ
2/p
k |ϕ

k
i | ≲ ∥ϕ̂∥Lp(Ŝk

i
). (3.11)

A key property of the tensor-product structure is the preservation of directional invariance. The
proof is straightforward, using that constants belong to the univariate spaces V̂0

k.

Lemma 3.1. If ϕ̂ ∈ Lp(Ω̂) satisfies ∂̂dϕ̂ = 0 for some d ∈ {1, 2}, then ∂̂dΠ̂0
kϕ̂ = 0.

3.3. Pushforward spaces on the mapped patches

On each patch Ωk = Fk(Ω̂), the local spaces are defined as the image of the logical ones by the
pushforward operators associated with Fk, i.e. V ℓ

k := F ℓ
k(V̂ ℓ

k ). In 2D these operators read
F0

k : ϕ̂ 7−→ ϕ := ϕ̂ ◦ F−1
k

F1
k : û 7−→ u :=

(
DF−T

k û
)
◦ F−1

k

F2
k : f̂ 7−→ f :=

(
J−1

Fk
f̂
)
◦ F−1

k

(3.12)

where DFk =
(
∂b(Fk)a(x̂)

)
1≤a,b≤2 is the Jacobian matrix of Fk, and JFk

its (positive) metric deter-
minant, see e.g. [11, 28, 29, 32]. These operators define isomorphisms between Lp(ω̂) and Lp(ω) for
any open domain ω̂ ⊂ Ω̂ with image ω = Fk(ω̂). Specifically, for all ϕ̂, û, f̂ ∈ Lp(Ω̂) the pushforwards
ϕ := F0

k ϕ̂, u := F1
k û and f := F2

k f̂ satisfy
∥ϕ∥Lp(ω) ∼ H

2/p
k ∥ϕ̂∥Lp(ω̂),

∥u∥Lp(ω) ∼ H
2/p−1
k ∥û∥Lp(ω̂),

∥f∥Lp(ω) ∼ H
2/p−2
k ∥f̂∥Lp(ω̂).

(3.13)

A key property is the commutation with the differential operators, namely

∇F0
k ϕ̂ = F1

k ∇̂ϕ̂, curlF1
k û = F2

k ĉurlû

which holds for all ϕ̂ ∈ H1(Ω̂) and û ∈ H(ĉurl; Ω̂). In particular, the mapped spaces also form de
Rham sequences (2.3).

3.4. Broken basis functions and patch-wise projection on V 0
pw

Basis functions for the single-patch spaces V ℓ
k = F ℓ

kV̂
ℓ

k are obtained by pushing forward the reference
basis functions. Outside Ωk, we implicitly extend F ℓ

k by zero, so that these functions also provide a
basis for the broken spaces (2.9). Of particular importance to us is the corresponding basis for V 0

pw,

Λk
i (x) := F0

k (Λ̂k
i ) =

{
Λ̂k

i (x̂k) for x ∈ Ωk

0 elsewhere
for k ∈ K, i ∈ Ik = {0, . . . , nk}2 (3.14)

where x̂k := (Fk)−1(x). These functions have local supports mapped from (3.8),

supp(Λk
i ) ⊂ Sk

i := Fk(Ŝk
i ) (3.15)

and we define the single-patch extension of a support domain Sk
i ⊂ Ω as

Ek(Sk
i ) :=

⋃
j∈Ik(Sk

i
)

Sk
j where Ik(Sk

i ) := {j ∈ Ik : Sk
j ∩ Sk

i ̸= ∅} (3.16)
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see Figure 3.1. The patch-wise projection onto the broken space V 0
pw is then defined as

Π0
pw :=

∑
k∈K

Π0
k : Lp(Ω) −→ V 0

pw (3.17)

with single-patch projections obtained by pushing forward the logical ones (3.10),

Π0
k : ϕ 7−→ F0

k Π̂0
k(F0

k )−1(ϕ|Ωk
). (3.18)

Lemma 3.2. Given ϕ ∈ Lp(Ω), write Π0
kϕ =

∑
i∈Ik ϕk

i Λk
i for k ∈ K. We have

|ϕk
i |∥Λk

i ∥Lp(Ω) ≲ ∥ϕ∥Lp(Sk
i

) (3.19)

for all i ∈ Ik, and the single-patch projection satisfies
∥Π0

kϕ∥Lp(Sk
i

) ≲ ∥ϕ∥Lp(Ek(Sk
i

)) (3.20)

with Ek the single-patch extension defined in (3.16).

Proof. Observe that ϕk
i = ⟨Θ̂k

i , ϕ̂
k⟩ holds with ϕ̂k = (F0

k )−1(ϕ|Ωk
). From (3.11) and the scaling

relations (3.13) we infer that
h

2/p
k |ϕ

k
i | ≲ ∥ϕ∥Lp(Sk

i
) (3.21)

holds with a local mesh size
hk := Hkĥk = diam(Ωk)

nk + 1 .

Using next (3.9) and again (3.13) we find ∥Λk
i ∥Lp(Ω) ≲ h

2/p
k , which yields (3.19). The bound (3.20)

follows by combining these estimates and the bounded overlapping of the domains Sk
i .

Remark 3.3. Using (3.20) and the fact that any constant function belongs to V̂ 0
k , and hence to V 0

k ,
one easily shows that

ϕ = c on Ek(Sk
i ) =⇒ Π0

kϕ = c on Sk
i (3.22)

holds for any c ∈ R.

3.5. Edges and vertices

In this section, we introduce some notation relative to edges and vertices, and specify the nestedness
assumptions (ii) and (iii) mentioned in Section 3.1.

We first denote by E the set of patch edges, and for a given e ∈ E we gather the indices of contiguous
patches in

K(e) = {k ∈ K : e ⊂ ∂Ωk}.
and define the corresponding domain as

Ω(e) := int
( ⋃

k∈K(e)
Ωk

)
. (3.23)

Due to the geometric conformity of the patch decomposition, K(e) contains two patches if e is an
interior edge, and only one patch if it is a boundary edge (e ⊂ ∂Ω). Our edge-nestedness assumption (ii)
from Section 3.1 then reads:

Assumption 1. For any interior edge, K(e) consists of two adjacent patches k−(e), k+(e) of nested
resolutions, in the sense that

V
0
k−(e) ⊂ V

0
k+(e). (3.24)
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Fk

ΩkΩ̂
Figure 3.1. A support domain Ŝk

i in the logical domain Ω̂ (left) and its mapped
image Sk

i = Fk(Ŝk
i ) on a patch Ωk (right), as defined by equations (3.8) and (3.15),

both enclosed by blue boundaries. Here a bilinear spline basis is used for illustration
purposes, with support domains consisting of 2×2 cells. The domain extension Ek(Sk

i )
defined in Equation (3.16), as well as its logical counterpart, are delimited by the orange
boundaries. We use different shadings to show different numbers of overlapping basis
function supports contributing to the domain extensions.

For boundary edges it will be convenient to denote the unique patch of K(e) by k−(e). Given two
adjacent patches, the above assumption implies that any coarse basis function can be decomposed in
the fine basis, namely an equality of the form

λ−
i =

∑
j∈I+

e (i)

ce
i,jλ

+
j (3.25)

holds for all i = 0, . . . , nk−(e), and we further assume that the refinements are graded, in the sense
that the decomposition (3.25) involves a bounded number of fine functions:

#(I+
e (i)) ≤ κ7 for e ∈ E , i = 0, . . . , nk−(e). (3.26)

For simplicity, we also assume that the coarse support interval matches the fine ones, in the sense that
ŝ−

i =
⋃

j∈I+
e (i) ŝ

+
j , and that the fine and coarse supports are nested, in the sense that

∀j ∈ {0, . . . , nk+(e)}, ∃i ∈ {0, . . . , nk−(e)} such that ŝ+
j ⊂ ŝ

−
i . (3.27)

Observe that the above assumptions imply that the resolutions and diameters of two adjacent patches
are similar, namely

1 ≤
nk+(e)
nk−(e)

≤ κ8 and κ−1
9 ≤

Hk+(e)
Hk−(e)

≤ κ9. (3.28)

Given an edge e and some x ∈ Ωk, k ∈ K(e), we denote by (x̂k
∥, x̂

k
⊥) the components of the

logical point x̂k = (x̂k
1, x̂

k
2) := F−1

k (x) in the directions parallel and perpendicular to the logical edge
êk := (Fk)−1(e). In other terms, we set

(x̂k
∥, x̂

k
⊥) = (x̂k

∥(e), x̂
k
⊥(e)) :=

{
(x̂k

1, x̂
k
2) if êk is parallel to the x̂1 axis

(x̂k
2, x̂

k
1) if êk is parallel to the x̂2 axis

(3.29)

and it will be convenient to denote the corresponding reordering function by
X̂k

e : (x̂k
∥, x̂

k
⊥) 7−→ x̂k and Xk

e := Fk(X̂k
e ) : (x̂k

∥, x̂
k
⊥) 7−→ x. (3.30)
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Using this notation, a logical edge is always of the form
êk = {x̂ ∈ Ω̂ : x̂⊥ = êk

⊥} (3.31)
where êk

⊥ ∈ {0, 1} is the logical coordinate of êk along its perpendicular axis.
Next, denoting V the set of all patch vertices, we gather for any v ∈ V the indices of the contiguous

patches in the set
K(v) = {k ∈ K : v ∈ ∂Ωk}.

We define the corresponding domain as the union of the contiguous patches,

Ω(v) := int
( ⋃

k∈K(v)
Ωk

)
, (3.32)

and also denote by E(v) the set of contiguous edges. Conversely, we denote by V(e) = {v ∈ V : e ∈
E(v)} the set of vertices contiguous to a given edge e ∈ E .

vkl
1(v)

kr
1(v)

kr
2(v)

e∗(v)

kl
2(v)

Figure 3.2. Adjacent nested patches around a vertex v corresponding to the decom-
position (3.33), with n(v, l) = n(v, r) = 2 since v is an interior vertex, and dashed
curves connecting arbitrary points x ∈ Ω(v) to a coarse edge e∗(v), according to As-
sumption 2. Observe that here the edge shared by patches kl

1 and kl
2 could also be

used as a coarse edge. The plotted cells correspond to the minimal intersections of the
overlapping supports Sk

i defined in (3.15).

To specify the vertex-nestedness assumption (iii) from Section 3.1, we say that a point x can
be connected to an edge e with a monotonic curve of length L if there exists a continuous curve
γ : [0, 1] → Ω such that γ(0) ∈ e, γ(1) = x, γ intersects L patches without touching any vertex and
for any t1 < t2, the patches Ωki

∋ γ(ti) satisfy V0
k1
⊂ V0

k2
. Our nestedness assumption on vertices

then reads as follows.

Assumption 2. For any interior vertex v, K(v) contains exactly four patches and there exists an
edge e∗(v) ∈ E(v) such that any x ∈ Ω(v) can be connected to e∗(v) with a monotonic curve of length
L ≤ 2: we call such an edge a coarse edge of v. For any boundary vertex, K(v) contains no more than
four patches, and there also exists a coarse edge e∗(v) in the sense just defined.

An illustration is provided in Figure 3.2 for interior vertices, and Figure 3.3 for boundary vertices.
This assumption allows to decompose any K(v) in two sequences of adjacent patches with nested

resolutions (one of which may be empty), namely
K(v) = {kl

i(v) : 1 ≤ i ≤ n(v, l)} ∪ {kr
i (v) : 1 ≤ i ≤ n(v, r)} (3.33)
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v

∂Ω

kl
1(v)

kr
1(v)

kr
2(v)

e∗(v)

Figure 3.3. Adjacent patches around a boundary vertex v and dashed curves con-
necting arbitrary points x ∈ Ω(v) to one coarse edge e∗(v), according to Assumption 2.
We show a decomposition of the form (3.33) for the adjacent nested patches.

(rotating left and right, for instance) with integers 0 ≤ n(v, l), n(v, r) ≤ 2, such that if n(v, s) = 2 for
s = l or r, the patches Ωks

1(v) and Ωks
2(v) are adjacent and their FEM spaces satisfy

V
0
ks

1(v) ⊂ V
0
ks

2(v).

If v is an interior vertex, we must have n(v, l) = n(v, r) = 2 and the coarse, resp. fine patches of both
sequences (i.e. the patches kl

i(v) and kr
i (v) for i = 1, resp. i = 2) must be adjacent. Note that since

both sequences are independent of each other, the fine patch in one sequence may be coarser than the
coarse patch in the other one (that is, in Figure 3.2 one could also use the edge between patches kl

1
and kl

2 as coarse edge e∗). In practice, our assumptions exclude chessboard patterns where two patches
facing each other across a vertex are finer than the other two: For instance, in Figure 3.2 one may
switch the resolutions of the patches kl

2 and kr
2, but not those of kl

2 and kl
1.

If v is a boundary vertex then different configurations may occur: if v is shared by one or two
patches only, then we can decompose K(v) in a single sequence of nested, adjacent patches. If v is
shared by three or four patches then both sequences are non-empty, and the coarser patches (kl

1(v)
and kr

1(v)) must be adjacent but the finer ones (kl
n(v,l)(v) and kr

n(v,r)(v)) do not need to be.
For later purpose we denote by k∗(v) the index of one (coarse but not necessarily the coarsest)

patch adjacent to the coarse edge e∗(v).

3.6. Patch-wise differential operators

Using the pushforward and pullback we also define patch-wise gradient operators. Given k ∈ K and
d ∈ {1, 2}, we define the single-patch directional gradients as

∇k
d : H1(Ωk) −→ L2(Ωk), ϕ 7−→ F1

k

(
τ̂ d∂̂d(F0

k )−1(ϕ)
)

(3.34)

where τ̂ d is the unit vector of R2 along x̂d, and we observe that on Ωk the usual gradient writes
∇k = ∇k

1 + ∇k
2. Like F1

k , these single-patch gradients are implicitly extended by zero outside their
patch. The patch-wise (broken) gradient is then

∇pw :
(⊕

k∈K
H1(Ωk)

)
−→ L2(Ω), ϕ 7−→

∑
k∈K
∇k(ϕ|Ωk

). (3.35)

96



Bounded commuting projections for non-matching interfaces

We observe that ∇pw maps V 0
pw to V 1

pw, and on H1(Ω) it coincides with the usual gradient ∇. For an
edge e ∈ E , we define broken gradients along the parallel and perpendicular directions: for d ∈ {∥,⊥},

∇e
d :
( ⊕

k∈K(e)
H1(Ωk)

)
−→ L2(Ω(e)), ϕ 7−→

∑
k∈K(e)

F1
k

(
τ̂ k

d∂̂d(F0
k )−1(ϕ|Ωk

)
)

(3.36)

where now τ̂ k
d is the unit vector of R2 along x̂k

d, the parallel or perpendicular logical directions
respective to e according to (3.29). Observe that these operators satisfy

∇e
∥ +∇e

⊥ =
∑

k∈K(e)
∇k = ∇pw on Ω(e), (3.37)

see (3.23). To design our commuting projection on V 2
h , we will need broken second order (mixed)

derivative operators: a single-patch operator

D2,k := F2
k ∂̂1∂̂2(F0

k )−1 : V 0
k −→ V 2

k , k ∈ K (3.38)

and a patch-wise operator D2,e : V 0
pw → V 2

pw associated with any edge e ∈ E . We define the latter by
its values on the local domain Ω(e), as

D2,eϕ|Ωk
:= (det X̂k

e )F2
k

(
∂̂k

∥ ∂̂
k
⊥ϕ̂

k), k ∈ K(e) (3.39)

where we have denoted ϕ̂k := (F0
k )−1ϕ ∈ V̂ 0

k , recalling the reordering function (3.30). Outside Ω(e),
we set D2,eϕ = 0. Note that det X̂k

e = ±1, so that D2,eϕ|Ωk
indeed belongs to V 2

k . Finally, consider
the patch-wise curl operator defined by

curlpw :
(⊕

k∈K
H(curl; Ωk)

)
−→ L2(Ω), u 7−→

∑
k∈K

curlk(u|Ωk
)

where again the local curlk operator is extended by 0 outside Ωk. We observe that curlpw maps V 1
pw

into V 2
pw, and on H(curl; Ω) it coincides with the usual curl operator. Moreover, the following relation

holds.

Lemma 3.4. Let ψ∥, ψ⊥ be functions in V 0
pw which vanish outside Ω(e). We have

curlpw

( ∑
d∈{∥,⊥}

∇e
dψd

)
= D2,e(ψ⊥ − ψ∥).

Proof. Let w :=
∑

d∈{∥,⊥}∇e
dψd. On each patch Ωk, k ∈ K(e), its pullback reads

ŵk := (F1
k )−1w =

∑
d∈{∥,⊥}

τ̂ k
d∂̂

k
d ψ̂

k
d =

{
(∂̂k

∥ ψ̂
k
∥ , ∂̂

k
⊥ψ̂

k
⊥) if det X̂k

e = 1
(∂̂k

⊥ψ̂
k
⊥, ∂̂

k
∥ ψ̂

k
∥ ) if det X̂k

e = −1

where we have denoted ψ̂k
d := (F0

k )−1ψd. In particular, we have
curlpw w|Ωk

= F2
k

(
ĉurl ŵk) = (det X̂k

e )F2
k

(
∂̂k

∥ ∂̂
k
⊥(ψ̂k

⊥ − ψ̂k
∥ )
)

= D2,e(ψ⊥ − ψ∥)|Ωk
. ■

4. Conforming multipatch spaces

In this section, we specify a basis for the first conforming space V 0
h , and we construct several projection

operators on local broken and conforming spaces that will play a central role in the construction of
our commuting projection operators, as presented in Section 2.

97



M. Campos Pinto & F. Schnack

We remind that the coarse and fine patches across an edge are denoted by k− and k+. To alleviate
notation when these indices appear as an exponent, we replace them by the simpler − and + signs
respectively.

4.1. Conforming constraints on patch interfaces

The finite element spaces (2.4) are the maximal conforming subspaces of the broken spaces (2.9),
namely

V 0
h = V 0

pw ∩H1(Ω), V 1
h = V 1

pw ∩H(curl; Ω), V 2
h = V 2

pw ∩ L2(Ω) = V 2
pw.

Since each local space V ℓ
k consists of continuous functions, the conforming subspaces are characterized

by continuity constraints on the patch interfaces. Specifically, a function ϕ ∈ V 0
pw belongs to H1(Ω),

and hence to V 0
h , if and only if we have

ϕ|Ωk− = ϕ|Ωk+ on every edge e = ∂Ωk− ∩ ∂Ωk+ (4.1)

and a function u ∈ V 1
pw belongs to H(curl; Ω), and hence to V 1

h , if and only if

τ · u|Ωk− = τ · u|Ωk+ on every edge e = ∂Ωk− ∩ ∂Ωk+ (4.2)

where τ denotes an arbitrary vector tangent to the edge. For the last space of the sequence there are
no constraints since V 2

h = V 2
pw.

It is possible to reformulate these interface constraints on the pullback fields. To do so, we consider
the parametrization of an edge e ∈ E according to the k− and k+ patches, namely

xk
e : [0, 1] −→ e, z 7−→ Fk(x̂k

e(z)) with x̂k
e(z) := X̂k

e (z, êk
⊥)

where êk
⊥ is as in (3.31). We remind that the continuity assumption on the mappings (see Section 3.1)

implies that these parametrizations coincide up to a possible change in orientation, namely an affine
bijection ηe : [0, 1] 7→ [0, 1] such that

x−
e (z) = x+

e (ηe(z)) where ηe(z) :=
{
z if orientations coincide
1− z if they differ.

(4.3)

For later purpose, we denote

η−
e (z) := z and η+

e (z) := ηe(z). (4.4)

The continuity condition (4.1) expressed on the pullbacks ϕ̂k := (F0
k )−1(ϕ|Ωk

) then reads

ϕ̂−(x̂−
e (z)) = ϕ̂+(x̂+

e (ηe(z))), z ∈ [0, 1].

To specify the curl-conforming condition (4.2), we consider the tangent vectors to e oriented ac-
cording to the k− and k+ patches, namely

τ k
e(x) := dxk

e(z)
dz = DFk(x̂k

e(z))τ̂ k
∥

where x = xk
e(z) = Fk(x̂k

e(z)) ∈ e and τ̂ k
∥ is the positive unit vector parallel to the reference edge

êk = F−1
k (e). According to (4.3), these vectors coincide up to their orientation, namely

τ +
e (x) = (ηe)′τ −

e (x) with (ηe)′ = ±1.

Expressed on the pullbacks ûk(x̂k) := (F1
k )−1(u|Ωk

)(x̂k) = DF T
k (x̂k)u|Ωk

(x̂), the curl-conformity
condition (4.2) then reads

τ̂ −
∥ · û

−(x̂−
e (z)) = (ηe)′τ̂ +

∥ · û
+(x̂+

e (ηe(z))), z ∈ [0, 1].
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A useful observation is that τ k
e · F1

k (τ̂ k
⊥û) = (DFkτ̂ k

∥) · DF−T
k (τ̂ k

⊥û) = 0 holds for all function û. In
particular, for both τ e = τ ±

e we find that the perpendicular derivative operator (3.36) satisfies
τ e · ∇e

⊥ = 0 on Ω(e). (4.5)

4.2. Continuous basis functions

A basis for the space V 0
h can be obtained as a collection of

• patch-interior functions Λk
i which vanish outside a single patch Ωk,

• edge-based functions Λe
i which vanish outside an edge domain Ω(e),

• vertex-based functions Λv which vanish outside a vertex domain Ω(v),

see (3.23) and (3.32).

4.2.1. Patch-interior continuous functions.

The patch-interior functions are simply the single-patch basis functions Λk
i with indices i in the set

Ik
0 := {1, . . . , nk − 1}2. (4.6)

According to the interpolation property (3.3) these are indeed the basis functions which vanish at the
patch boundaries, and they are continuously extended by 0 outside Ωk.

4.2.2. Edge-based continuous functions.

For an edge e ∈ E , we define the edge-based function of index i ∈ {0, . . . , ne}, with ne := nk−(e), as

Λe
i (x) :=


λ̂−

i (x̂−
∥ )λ̂−

i−
⊥(e)(x̂

−
⊥) for x ∈ Ωk with k = k−(e)

λ̂−
i (ηe(x̂+

∥ ))λ̂+
i+
⊥(e)(x̂

+
⊥) for x ∈ Ωk with k = k+(e)

0 elsewhere

(4.7)

where x = Fk(x̂) = Xk
e (x̂k

∥, x̂
k
⊥) for k ∈ K(e), see (3.30), and where

ik⊥(e) := nkê
k
⊥ ∈ {0, nk} (4.8)

is the index corresponding to the (constant) perpendicular coordinate of e in the patch k ∈ K(e),
see (3.31). The functions Λe

i belong to V 0
pw thanks to (3.25), moreover they are continuous across e,

i.e. their values on the adjacent patches k−(e) and k+(e) coincide on e. For 0 < i < ne they further
vanish on ∂Ω(e) \ e, so they are actually continuous on the whole domain Ω.

We denote the corresponding index sets by
Ie := {0, . . . , ne} and Ie

0 := {1, . . . , ne − 1} (4.9)
and for later purposes we let

Ik
e := {i ∈ Ik : ik⊥ = ik⊥(e)}

denote the (single-patch) multi-indices associated with the edge e, see (4.8). Notice that I−
e is isomor-

phic to Ie, while I+
e may have more elements. In particular, using the reordering coordinate function

X̂k
e defined by (3.30), we have

Ik
e = {ik

e(j) : j ∈ {0, . . . , nk}} with ik
e(j) := X̂k

e (j, ik⊥(e)). (4.10)
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4.2.3. Edge-based domains and extensions.

For i ∈ Ie, the function Λe
i is supported in a domain of the form

Se
i := Se,−

i ∪ Se,+
i ⊂ Ω(e) (4.11)

where Se,k
i := {Xk

e (x̂∥, x̂⊥) ∈ Ωk : ηk
e (x̂∥) ∈ s−

i , x̂⊥ ∈ sk
ik
⊥(e)}, see Figure 4.1. We define the (edge-based)

domain extension as
Ee(Se

i ) :=
⋃

j∈Ie(Se
i )
Se

j where Ie(Se
i ) := {j ∈ Ie : Se

j ∩ Se
i ̸= ∅} (4.12)

Note that this is similar to the definition of an extended single patch support Ek(Sk
i ), see (3.16). We

further observe that the nested assumption on the supports (3.27) yields the inclusion
Sk

i ⊂ Ee(Se
i ) for all i ∈ Ie and i ∈ Ik

e(Se
i ) (4.13)

where we have set
Ik

e(Se
i ) := {i ∈ Ik

e : Sk
i ∩ Se

i ̸= ∅}. (4.14)
An illustration is provided in Figure 4.1.

e

Figure 4.1. An edge-based support domain Se
i is shown for one edge e, as defined

in (4.11) and delimited by the blue boundary. Its domain extension Ee(Se
i ), defined

in (4.12), is enclosed by the orange boundary. As in Figure 3.1 a bilinear spline basis
is used for the illustration, with support domains consisting of 2 (coarse) cells in the
parallel direction and 1 in the perpendicular direction, since the corresponding basis
functions are boundary splines. Again, we use different shadings to show different num-
bers of overlapping basis function supports contributing to the domain extensions.

The following property is an analog of (3.22) in the case of an interface.

Lemma 4.1. Let ϕ ∈ Lp(Ω). For any constant c ∈ R, we have
ϕ = c on Ee(Se

j ) =⇒ Π0
pwϕ = c on e ∩ Se

j .

Proof. For k ∈ K(e), write ϕk
h = Π0

kϕ =
∑

i∈Ik ϕk
i Λk

i where ϕk
i = ⟨Θ̂k

i , ϕ̂
k⟩ holds with ϕ̂k =

(F0
k )−1(ϕ|Ωk

). Using the interpolation property of the basis functions at the endpoints (3.3), we first
observe that Λk

i vanishes on e for i /∈ Ik
e . For x ∈ e ∩ Se

j , we thus have
ϕk

h(x) =
∑

i∈Ik
e

ϕk
i Λk

i (x) =
∑

i∈Ik
e (Se

j )

ϕk
i Λk

i (x)
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where we have used the set (4.14). According to (3.19) the latter sum only involves the values of ϕ
on the domains Sk

i with i ∈ Ik
e(Se

j ), which are all contained in Ee(Se
j ), see (4.12). Now if ϕ = c on

this domain, we may replace it by c on the whole Ωk without changing ϕk
h(x): the projection property

yields then ϕk
h(x) = c.

4.2.4. Vertex-based continuous functions.

For a vertex v ∈ V, we define
Λv :=

∑
e∈E(v)

Λe
v −

∑
k∈K(v)

Λk
v (4.15)

where
Λk

v := Λk
ik(v) and Λe

v := Λe
ie(v).

Here, we have respectively denoted by

ik(v) := nkv̂k ∈ {0, nk}2 and ie(v) := i−∥ (v) ∈ {0, ne} (4.16)

the multi-index of v in a patch k (with v̂k := F−1
k (v) ∈ {0, 1}2), and its single index on an edge e

(with a numbering corresponding to the coarse patch k = k−(e)).
To verify that Λv is continuous on the edges e ∈ E(v), let us write an explicit expression on a patch

Ωk. To alleviate notation we assume that the logical vertex is the origin v̂k = 0. Writing e1, e2 the
edges contiguous to v in the patch k, we then denote by λed

0 the coarse univariate function associated
with v on the edge ed: this allows to rewrite the edge-based functions (4.7) in the patch Ωk as

Λe1
v (x) = λe1

0 (x̂1)λk
0(x̂2), Λe2

v (x) = λk
0(x̂1)λe2

0 (x̂2), x ∈ Ωk.

Using next (3.25) we rewrite the coarse edge univariate functions in the form

λed
0 (x̂d) =

∑
j≥0

ced,k
0,j λ

k
j (x̂d), d ∈ {1, 2},

where we have ced,k
0,0 = 1 due to the interpolation property (3.3). (Note that if k = k−(ed) then this

decomposition is trivial, i.e. ced,k
0,j = 0 for j > 0.) This allows to rewrite (4.15) as

Λv|Ωk
(x) = λe1

0 (x̂1)λk
0(x̂2) + λk

0(x̂1)λe2
0 (x̂2)− λk

0(x̂1)λk
0(x̂2)

=
∑
j≥0

ce1,k
0,j λ

k
j (x̂1)λk

0(x̂2) +
∑
j≥0

ce2,k
0,j λ

k
0(x̂1)λk

j (x̂2)− λk
0(x̂1)λk

0(x̂2)

=
∑
j>0

ce1,k
0,j λ

k
j (x̂1)λk

0(x̂2) +
∑
j>0

ce2,k
0,j λ

k
0(x̂1)λk

j (x̂2) + λk
0(x̂1)λk

0(x̂2).

Using again the interpolation property (3.3) this yields for d ∈ {1, 2}

Λv|Ωk
(x) =

∑
j>0

ced,k
0,j λ

k
j (x̂d) + λk

0(x̂d) = λed
0 (x̂d) = Λed

v (x) for x ∈ ed (4.17)

which shows the continuity of Λv across the edge ed, and hence on any e ∈ E(v). As Λv vanishes on
the other edges e /∈ E(v), it is continuous over the whole Ω.

We further observe that the function Λv vanishes outside the supports of the edge basis functions
Λe

v, namely we have supp(Λv) ⊂ Sv with

Sv :=
⋃

e∈E(v)
Se

ie(v), (4.18)
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indeed the latter domain contains the supports of the single-patch vertex functions,⋃
k∈K(v)

Sk
ik(v) ⊂ S

v, (4.19)

see Figure 4.2.
For later purposes we define

ĥe := min
k∈K(e)

diam(ŝk
ik
⊥(e)), he := min

k∈K(e)
hk (4.20)

and
ĥv := min

k∈K(v),d∈{1,2}
diam(ŝk

ik
d

(v)), hv := min
k∈K(v)

hk. (4.21)

We note that the local quasi-uniformity Assumption (3.28) and the regularity (3.1) yield ĥg ∼ ĥk,
as well as hg ∼ Hkĥg, for any geometrical element g = e or v and any contiguous patch k ∈ K(g).
Using (3.7), (3.4) and the scaling relations (3.13) we also find that both the edge- and vertex-based
functions satisfy the a priori bounds

∥Λe
i∥Lp(Ω) ≲ h2/p

e and ∥Λv∥Lp(Ω) ≲ h2/p
v . (4.22)

v

Figure 4.2. A vertex-based support domain Sv is shown for one vertex v, as defined
in (4.18), enclosed by the blue boundary. As above, bilinear splines are used as illus-
tration.

Let us verify that the resulting collection indeed forms a basis of V 0
h .

Lemma 4.2. The continuous functions defined above, namely
{Λk

i : k ∈ K, i ∈ Ik
0} ∪ {Λe

i : e ∈ E , i ∈ Ie
0} ∪ {Λv : v ∈ V}, (4.23)

form a basis for the conforming space V 0
h = V 0

pw ∩ V 0.

Proof. Let us decompose the set of single-patch indices into disjoint subsets
Ik = Ik

0 ∪ Ik
E,0 ∪ Ik

V

with Ik
V = {ik(v) : v ∈ V(k)} and Ik

E,0 =
⋃

e∈E(k) Ik
e \ Ik

V . The linear independence of the collec-
tion (4.23) follows from the observation that (i) the continuous interior functions Λk

i are single-patch
basis functions with i ∈ Ik

0, (ii) the continuous edge-based functions Λe
j decompose into basis func-

tions Λk
i with indices i ∈ Ik

E,0 (and with i∥ = j for k = k−(e)), and (iii) the continuous vertex-based
functions Λv additionally involve basis functions Λk

i with indices i ∈ Ik
V .
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To verify that it forms a basis we remind that a discrete function ϕ ∈ V 0
pw belongs to V 0

h if and only
if it is continuous (that is, single valued) on the edges e ∈ E and on the vertices v ∈ V: given the
interpolatory property (3.3), this amounts to a constraint on the single-patch boundary coefficients
ϕk

i with i ∈ Ik \ Ik
0. We then verify that any value on the vertices can be obtained by choosing the

coefficients of the vertex-based functions Λv, and any function on an edge e ∈ E (belonging to the
associated coarse space) can be obtained by selecting the coefficients of the edge-based functions Λe

j

with j ∈ Ie
0 : this shows that any ϕ ∈ V 0

h can indeed be obtained as a combination of functions from
the collection (4.23)

4.3. Projection operators on local broken and conforming subspaces

In order to define proper correction terms at the patch interfaces, we now introduce several projection
operators on various local subspaces of the broken space V 0

pw: first, we define a projection on the
homogeneous single-patch space V 0

k ∩H1
0 (Ωk),

Ik
0 : Λk

i 7−→
{

Λk
i if i ∈ Ik

0
0 otherwise

(4.24)

where we remind that the set Ik
0 corresponds to patch-interior indices, see (4.6).

We then define two projection operators associated with an edge e ∈ E : the first one is on the space
spanned by the broken functions which do not vanish identically on e,

Ie : Λk
i 7−→

{
Λk

i if k ∈ K(e) and i ∈ Ik
e

0 otherwise
(4.25)

where we remind that the set Ik
e corresponds to edge-based single-patch indices, see (4.10).

The second edge projection is on the space spanned by the edge-continuous basis functions:

P e : Λk
i 7−→

{
Λe

j if k = k−(e) and i ∈ I−
e , with j := ik∥ ∈ I

e

0 otherwise.
(4.26)

see (4.9), (4.10).
Next for each vertex v ∈ V we define projection operators on different subspaces of V 0

pw: one on the
space spanned by the broken vertex functions

Iv : Λk
i 7−→

{
Λk

i if k ∈ K(v) and i = ik(v)
0 else

(4.27)

where ik(v) is the local index corresponding to v, see (4.16).
Another projection is on the single vertex-continuous basis function

P v : Λk
i 7−→

{
Λv if k = k∗(v) and i = ik(v)
0 otherwise.

(4.28)

where k∗(v) ∈ K(v) is the patch associated to v as described in Section 3.5.
We also define a projection on the broken pieces of the vertex-continuous functions, namely

Īv : Λk
i 7−→

{
Λv1Ωk

if k ∈ K(v) and i = ik(v)
0 otherwise.

(4.29)
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Finally, we define projection operators on different spaces spanned by edge-vertex functions. Again,
we define three operators: one that projects on the simple broken functions,

Ie
v : Λk

i 7−→
{

Λk
i if k ∈ K(e) ∩ K(v) and i = ik(v)

0 otherwise
(4.30)

one on the edge-continuous functions which do not vanish on a given vertex

P e
v : Λk

i 7−→
{

Λe
v if k = k−(e) ∈ K(v) and i = ik(v)

0 otherwise
(4.31)

and one on the broken pieces of the edge-continuous functions that do not vanish on the vertex:

Īe
v : Λk

i 7−→
{

Λe
v1Ωk

if k ∈ K(e) ∩ K(v) and i = ik(v)
0 otherwise.

(4.32)

Below we will verify that these operators are indeed projection operators. For later reference we
observe that for all ϕ ∈ V 0

pw, the above edge and vertex-based projections are localized in edge and
vertex-based domains of the form (4.11) and (4.18):

(
supp(P eϕ) ∪ supp(Ieϕ)

)
⊂

ne⋃
j=0

Se
j(

supp(P e
vϕ) ∪ supp(Īe

vϕ)
)
⊂ Se

ie(v) ⊂ S
v(

supp(P vϕ) ∪ supp(Īvϕ)
)
⊂ Sv.

(4.33)

From these definitions we infer some useful relations. First, we observe that∑
e∈E

Ie
v = 2Iv (4.34)

holds for all v ∈ V. Multiplying (4.15) with 1Ωk
we further obtain an equality relating the opera-

tors (4.29) and (4.32) to the broken vertex-based projection (4.27):

Īv =
∑
e∈E

Īe
v − Iv. (4.35)

Another key relation is the decomposition of any broken function ϕ ∈ V 0
pw as

ϕ =
(∑

k∈K
Ik

0 +
∑
e∈E

Ie
0 +

∑
v∈V

Iv

)
ϕ (4.36)

where we have set
Ie

0 := Ie −
∑
v∈V

Ie
v. (4.37)

By using the fact that the functions (4.23) form a basis for the conforming space V 0
h = V 0

pw ∩ V 0, we
also define a local projection on the conforming subspace,

P : V 0
pw −→ V 0

h , ϕ 7−→
(∑

k∈K
Ik

0 +
∑
e∈E

P e
0 +

∑
v∈V

P v

)
ϕ. (4.38)

where we have set
P e

0 := P e −
∑
v∈V

P e
v . (4.39)

Lemma 4.3. The operators Q = Ik
0 , . . . , Ī

e
v defined in (4.24)–(4.32) are all projection operators in the

sense that Q = Q2, and P defined in (4.38) is a projection operator onto the continuous space V 0
h .
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Proof. For the operators Ik
0 , Ie, Iv, Ie

v which map on specific sets of single-patch basis functions,
the projection property is straightforward to verify. For an operator P g = P e, P v or P e

v which map
on (fully or partially) continuous functions, the property follows from the fact that each of these
continuous functions (say, Λg) admits a decomposition in the broken basis (3.14), of the form

Λg = Λk(g)
i(g) +

∑
k′,i′

cg
k′,i′Λk′

i′

with P g(Λk(g)
i(g) ) = Λg and P g(Λk′

i′ ) = 0, hence P g(Λg) = Λg holds indeed. For the operators Īg = Īv

and Īe
v which map on broken pieces of continuous functions, of the form Λg|Ωk

, the projection property
follows from a similar observation. Finally, the projection property of P is verified by considering that
each term in the sum (4.38) projects onto the continuous basis functions of interior, edge and vertex
type in the collection (4.23).

Several useful properties can be derived from explicit expressions of the above projections.
Lemma 4.4. Given ϕ ∈ V 0

pw and x ∈ Ωk, k ∈ K(e), the edge based projections read (Ieϕ)|Ωk
(x) = ϕ|Ωk

(pe(x))λk
ik
⊥(e)(x̂

k
⊥),

(P eϕ)|Ωk
(x) = ϕ|Ωk− (pe(x))λk

ik
⊥(e)(x̂

k
⊥)

(4.40)

where Xk
e (x̂k

∥, x̂
k
⊥) = x as in (3.30), k− = k−(e) and

pe(x) := Xk
e (x̂k

∥, ê
k
⊥) (4.41)

is the point on the edge e that has the same parallel coordinate as x ∈ Ωk. Similarly, the vertex based
projections read

Īvϕ =
∑

k∈K(v)
ϕ|Ωk

(v)Λv
1Ωk

and P vϕ = ϕ|Ω∗(v)Λv (4.42)

where Ω∗ = Ωk∗(v) and the edge-vertex based projections read

Īe
vϕ =

∑
k∈K(e)

ϕ|Ωk
(v)Λe

v1Ωk
and P e

vϕ = ϕ|Ωk− (v)Λe
v. (4.43)

Proof. Write ϕ =
∑

k∈K,i∈Ik ϕk
i Λk

i . By definition, the projection Ieϕ involves broken functions Λk
i

with i = ik
e(j) = Xk

e (j, ik⊥(e)) as in (4.10), i.e.
Λk

ik
e (j)(x) = λk

j (x̂k
∥)λk

ik
⊥(e)(x̂

k
⊥) for x ∈ Ωk, j ∈ {0, . . . , nk}

while P eϕ involves conforming functions of the form (4.7). In particular, we have
(Ieϕ)|Ωk

(x) =
∑

i∈Ik
e

ϕk
i Λk

i (x) =
(

nk∑
j=0

ϕk
ik
e (j)λ

k
j (x̂k

∥)
)
λk

ik
⊥(e)(x̂

k
⊥)

(P eϕ)|Ωk
(x) =

ne∑
j=0

ϕ−
i−
e (j)Λ

e
j(x) =

( nk−∑
j=0

ϕ−
i−
e (j)λ

−
j (ηk

e (x̂k
∥))
)
λk

ik
⊥(e)(x̂

k
⊥)

(4.44)

and the expressions (4.40) follow from the interpolatory property (3.3) of the basis functions in the ⊥
direction. For the vertex based projections we write

P vϕ = ϕ
k∗(v)
ik∗(v)(v)Λ

v, Īvϕ =
∑

k∈K(v)
ϕk

ik(v)Λ
v
1Ωk

(4.45)

and
P e

vϕ = ϕ−
i−(v)Λ

e
v, Īe

vϕ =
∑

k∈K(e)
ϕk

ik(v)Λ
e
v1Ωk

.
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The expressions (4.42) and (4.43) follow from the relations ϕk
ik(v) = ϕ|Ωk

(v), which again follows from
the interpolation property (3.3) at the patch boundaries.

The following properties, which will be needed to analyze the operators Πℓ, are immediate corollaries
of Lemma 4.4

Lemma 4.5. Let ϕ ∈ V 0
pw, and e ∈ E. The equality

P eϕ(x) = Ieϕ(x)

holds for all x ∈ Ωk−, and all x ∈ Ωk+ such that ϕ|Ωk− (pe(x)) = ϕ|Ωk+ (pe(x)) where pe(x) is the
projected point on e, see (4.41).

Lemma 4.6. Let ϕ ∈ V 0
pw and v ∈ V. It holds:

if ϕ|Ωk
(v) = ϕ|Ωk′ (v) for all k, k′ ∈ K(v), then (P v − Īv)ϕ = 0.

Moreover, for all e ∈ E(v) it holds:
Īvϕ = Īe

vϕ on e (4.46)

and
if ϕ|Ωk

(v) = ϕ|Ωk′ (v) for all k, k′ ∈ K(e), then (P e
v − Īe

v)ϕ = 0.

Proof. All these relations follow from the expressions (4.42)–(4.43). For the equality (4.46) we also
use the relation (4.17).

Another important property is that both the broken and conforming edge projections preserve the
invariance along the parallel direction. This partially extends the preservation of directional invariance
of the local projections stated in Lemma 3.1.

Lemma 4.7. Let ϕ ∈ Lp(Ω(e)) be such that the pullbacks ϕ̂k := (F0
k )−1(ϕ|Ωk

) satisfy ∂̂∥ϕ̂
k = 0 for

k ∈ K(e). Then,
∇e

∥P
eΠ0

pwϕ = ∇e
∥I

eΠ0
pwϕ = ∇e

∥Π0
pwϕ = 0. (4.47)

Proof. The last equality from (4.47)follows from Lemma 3.1. Apply then (4.40) to ϕh = Π0
pwϕ and

observe that ϕh|Ωk(pe(x)) is constant: the result follows.

We further verify that these projection operators are locally stable.

Lemma 4.8. Let ϕ ∈ Lp(Ω), and let Qe = Ie, P e or P e
0 be one of the broken or conforming projection

operators associated with an edge e ∈ E. Then QeΠ0
pwϕ vanishes outside the domains Se

j , j ∈ Ie,
see (4.11). Moreover, it holds

∥QeΠ0
pwϕ∥Lp(Se

j ) ≲ ∥ϕ∥Lp(Ee(Se
j )) with Qe = Ie, P e or P e

0 (4.48)

where we remind Ee is the edge-based extension (4.12). Similarly, let Qv = Īv, Īe
v, P v or P e

v be one
of the broken or conforming projection operators associated with a vertex v. Then QvΠ0

pwϕ vanishes
outside the domain Sv, and it holds

∥QvΠ0
pwϕ∥Lp(Sv) ≲ ∥ϕ∥Lp(Sv) with Qv = Īv, Īe

v, P
v or P e

v . (4.49)
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Proof. Write ϕh := Π0
pwϕ =

∑
k∈K,i∈Ik ϕk

i Λk
i . The fact that Qeϕh, resp. Qvϕh, vanishes outside the

domains Se
j , resp. Sv, is easily verified using (4.33) and (4.39). Using the form (4.44) of Ieϕh with the

bound (3.19), we next compute
∥Ieϕh∥Lp(Se

j ) ≤
∑

k∈K(e),i∈Ik
e

|ϕk
i |∥Λk

i ∥Lp(Se
j ) ≲

∑
k∈K(e),i∈Ik

e (Se
j )

∥ϕ∥Lp(Sk
i

) (4.50)

so that (4.48) (for Qe = Ie) follows from the bounded overlapping of the domains Sk
i and the inclu-

sion (4.13). For Qe = P e we use the form of P eϕh in (4.44) (the same computations also apply to
P e

0ϕh which involves fewer terms). With the bounds (3.21) and (4.22) with he ∼ hk for k ∈ K(e), this
yields

∥P eϕh∥Lp(Se
j ) ≤

∑
i∈Ie

|ϕ−
ie(i)|∥Λ

e
i∥Lp(Se

j ) ≲
∑

i∈Ie(Se
j )
∥ϕ∥Lp(S−

ie(i))

where the index set Ie(Se
j ) is defined in (4.12). The bound (4.48) for Qe = P e then follows from the

inclusion S−
ie(i) ⊂ Se

i ⊂ Ee(ω) for i ∈ Ie(ω), and again the bounded overlapping of the domains Sk
i .

The bound (4.49) is proven with similar arguments: for instance, writing Īvϕh =
∑

k∈K(v) ϕ
k
ik(v)Λ

v1Ωk

as in (4.45) and using again (4.22), we have
∥Īvϕh∥Lp(Sv) ≤

∑
k∈K(v)

|ϕk
ik(v)|∥Λ

v∥Lp(Sv) ≲
∑

k∈K(v)
∥ϕ∥

Lp
(

Sk
ik(v)

)
so that (4.49) with Qv = Īv follows from the inclusion Sk

ik(v) ⊂ S
v, see (4.19). The cases Qv = P v, Īe

v

and P e
v are handled in the same way.

5. Lp stable antiderivative operators

Our construction (2.10) for Π1 relies on several local antiderivative operators, which are built using
specific integration curves:

• a single-patch antiderivative Φk
d for k ∈ K and a direction d ∈ {1, 2}, associated with integration

curves γk
d

• edge antiderivatives Φe
d for e ∈ E and a relative direction d ∈ {∥,⊥}, associated with integration

curves γe
d

• a vertex antiderivative Φv for v ∈ V, associated with integration curves γv.

Given a vector valued function u, these operators take the general form

Φ(u)(x) = 1
ĥ

ˆ ĥ

0

ˆ
γ(x,a)

u · dl da

where ĥ is an averaging resolution in the spirit of [8] and for every value of the averaging parameter a,
γ(x, a) is a generic curve connecting x and some starting point γ0(x, a) which may or may not depend
on x. In particular, applied to gradients these will satisfy a relation of the form

Φ(∇ϕ)(x) = 1
ĥ

ˆ ĥ

0

ˆ
γ(x,a)

∇ϕ · dl da = ϕ(x)− 1
ĥ

ˆ ĥ

0
ϕ(γ0(x, a)) da.
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In a similar fashion, we will define bivariate antiderivative operators of the form

Ψ(f)(x) = 1
ĥ

ˆ ĥ

0

¨
σ(x,a)

f dz da

which will be involved in the commuting projection Π2.

5.1. Single-patch antiderivative operators

In the case of single-patch antiderivative operators Φk
d, the integration curve does not depend on a

and for x ∈ Ωk it is fully contained in Ωk. Writing x̂ = F−1
k (x) we parametrize it as

γk
d (x) = Fk(γ̂d(x̂, [0, x̂d])) with γ̂d(x̂, ·) : [0, x̂d] ∋ z 7−→

{
(z, x̂2) if d = 1
(x̂1, z) if d = 2.

Using the invariance of path integrals through 1-form pullback (F1
k )−1 : u 7→ ûk, this results in

defining the directional antiderivative operators as

Φk
1(u)(x) :=

ˆ x̂1

0
ûk

1(z1, x̂2) dz1 and Φk
2(u)(x) :=

ˆ x̂2

0
ûk

2(x̂1, z2) dz2. (5.1)

As already mentioned, these operators play a central role in the tensor-product construction of [13].
We review their main properties in our framework.

Lemma 5.1. Let u = ∇ϕ with ϕ ∈ C1(Ω). It holds

Φk
d(u)(x) = ϕ(x)− ϕ(Fk(x̄)) for x ∈ Ωk,

where x̄d = 0 and x̄d′ = x̂d′ for the other component.

Proof. The proof is straightforward.

Lemma 5.2. The single-patch antiderivative operators are stable in Lp, namely

∥Φk
d(u)∥Lp(Ωk) ≲ ∥u∥Lp(Ωk) (5.2)

holds for u ∈ Lp(Ω). Moreover, the local bound

∥∇k
dΠ0

kΦk
d(u)∥Lp(Sk

i
) ≲ ∥u∥Lp(Ek(Sk

i
)) (5.3)

holds on any domain Sk
i of the form (3.15), i ∈ Ik, where Ek is the single-patch domain exten-

sion (3.16).

Proof. Using the scaling of (3.13), we work with the pullback Φ̂k
d(ûk) on the reference domain Ω̂.

Without loss of generality, we consider d = 1, and with a Hölder inequality we bound

∥Φ̂k
1(ûk)∥p

Lp(Ω̂) =
¨

Ω̂

∣∣∣∣∣
ˆ x̂1

0
ûk

1(z, x̂2) dz
∣∣∣∣∣
p

dx̂

≤
¨

Ω̂
|x̂1|p−1

ˆ x̂1

0
|ûk(z, x̂2)|p dz dx̂ ≤ ∥ûk∥2

Lp(Ω̂)

(5.4)

and (5.2) follows from the scaling relations (3.13) and the bound Hk ≲ 1. Turning to the local estimate
we observe that for any fixed x̃1 ∈ [0, 1], the antiderivative

Φ̃k
1(ûk)(x̂) :=

ˆ x̂1

x̃1

ûk
1(z1, x̂2) dz1
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k−(e)

x

k+(e)
e

(a) parallel case
γe
⊥,0(a)

k−(e)

x
pe(x)

k+(e)e

(b) perpendicular case

Figure 5.1. Integration paths γe
d(x, a) defining the edge-based antiderivative opera-

tors Φe
d. In the case d =∥ (a) the curves connect various points x (curves for three

different points are shown in this case) to different starting points γe
∥,0(x), represented

by white squares, which depend only on the perpendicular component x̂k
⊥ of the logical

coordinate of x ∈ Ωk, see (3.29). In the case d =⊥ (b) the curves depend on the aver-
aging parameter a. For a given value of a ∈ (0, ĥe) they connect every x ∈ Ω(e) (curves
for five different points are shown in this case) to the same starting point γe

⊥,0(a) rep-
resented by a white square, see (5.7), possibly crossing the edge at pe(x) represented
by a black square, see (4.41).

satisfies ∇̂1Φ̂k
1(ûk) = ∇̂1Φ̃k

1(ûk), hence ∇̂1Π̂0
kΦ̂k

1(ûk) = ∇̂1Π̂0
kΦ̃k

1(ûk) by Lemma 3.1. Using the inverse
estimate (3.6) and the local stability (3.20) we next bound

∥∇̂1Π̂0
kΦ̃k

1(ûk)∥Lp(Ŝk
i

) ≲ ĥ−1
k ∥Π̂

0
kΦ̃k

1(ûk)∥Lp(Ŝk
i

) ≲ ĥ−1
k ∥Φ̃

k
1(ûk)∥Lp(Êh(Ŝk

i
)).

We then observe that Êh(Ŝk
i ) is of diameter ≲ ĥk, and we fix x̃1 ∈ Ŝk

i1 which according to the locality
properties (3.4)–(3.5), satisfies |x̂1 − x̃1| ≲ ĥk for all x̂ ∈ Êh(Ŝk

i ). We then compute as in (5.4): this
gives

∥Φ̃k
1(ûk)∥p

Lp(Êh(Ŝk
i

)) ≤
¨

Êh(Ŝk
i

)
|x̂1 − x̃1|p−1

ˆ x̂1

x̃1

|ûk(z, x̂2)|p dz dx̂ ≤ ĥp
k∥û

k∥p
Lp(Êh(Ŝk

i
))

so that we have shown
∥∇̂1Π̂0

kΦ̂k
1(ûk)∥Lp(Ŝk

i
) = ∥∇̂1Π̂0

kΦ̃k
1(ûk)∥Lp(Ŝk

i
) ≲ ∥û

k∥Lp(Êh(Ŝk
i

)).

Estimate (5.3) follows from the scaling (3.13) of 1-form pullbacks.

5.2. Edge-based antiderivative operators

In a similar way, we define edge-based antiderivative operators Φe
d along d ∈ {∥,⊥}, the parallel

and perpendicular directions relative to e. Both are supported in the patches adjacent to e and the
construction is summarized in Figure 5.1.

For the parallel edge-based antiderivative operator Φe
∥ the integration curve is similar to the single-

patch one. For x ∈ Ωk, k ∈ K(e), it is fully supported in Ωk. Writing now x̂k = F−1
k (x), we define

it as
γe

∥(x) = Fk(γ̂e,k
∥ (x̂, [ηk

e (0), x̂k
∥])) with γ̂e,k

∥ (x̂, ·) : [ηk
e (0), x̂k

∥] ∋ z 7−→ X̂k
e (z, x̂k

⊥)
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where we remind that x̂k
∥ and x̂k

⊥ are the parallel and perpendicular coordinates relative to e, X̂k
e is the

reordering function (3.30) and ηk
e is the edge orientation function given by (4.4). Thus, the resulting

parallel antiderivative is

Φe
∥(u)(x) :=

ˆ
γe

∥(x)
u · dl =

ˆ x̂k
∥

ηk
e (0)

ûk
∥(Xk

e (z, x̂k
⊥)) dz (5.5)

for x ∈ Ωk, k ∈ K(e) (without averaging as the curves do not depend on a). For the perpendicular
edge-based antiderivative, we use an averaging step

Φe
⊥(u)(x) = 1

ĥe

ˆ ĥe

0
Φe

⊥,a(u)(x) da with Φe
⊥,a(u)(x) =

ˆ
γe

⊥(x,a)
u · dl (5.6)

where ĥe is defined in (4.20), and the integration curves are defined as follows:
For x on the coarse patch, the curve γe

⊥(x, a) is included in Ωk−(e). It is the mapping of the logical
curve γ̂e,−

⊥ (x̂, a) defined for z ∈ [−x̂∥, |x̂⊥ − ã|] by

γ̂e,−
⊥ (x̂, a, ·) : z 7−→

{
X−

e (x̂∥ + z, ã) for − x̂∥ ≤ z ≤ 0
X−

e (x̂∥, ã+ z sign(x̂⊥ − ã)) for 0 ≤ z ≤ |x̂⊥ − ã|.
In particular the curve γe

⊥(x, a) connects x to the starting point
γe

⊥,0(a) = Fk−(e)
(
X−

e (0, ã)
)
. (5.7)

Here ã is the perpendicular coordinate at distance a from the edge, namely

ã :=
{
a if ê−

⊥ = 0
1− a if ê−

⊥ = 1
, (5.8)

where ê−
⊥ is defined in (3.31). The antiderivative then reads

Φe
⊥,a(u)(x) :=

ˆ x̂∥

0
û−

∥ (X̂−
e (z∥, ã)) dz∥ +

ˆ x̂⊥

ã
û−

⊥(X̂−
e (x̂∥, z⊥)) dz⊥, for x ∈ Ωk− . (5.9)

For x in the fine patch, the curve is defined in two pieces: the first one is included in Ωk−(e) and
corresponds to the logical curve γ̂e,−

⊥ defined above: it connects the starting point (5.7) to the projection
pe(x) on the edge, see (4.41). The second piece is included in Ωk+(e), it connects pe(x) to x and
corresponds to a logical curve γ̂e,+

⊥ (x̂, ·) defined below. This amounts to summing
Φe

⊥,a(u)(x) := Φe
⊥,a(u)(pe(x))|Ωk− + δΦe

⊥(u)(x) for x ∈ Ωk+ , (5.10)

where the first term is the path integral (5.9) on the patch k−(e), extended to the projected point (4.41)
on the edge, here

pe(x) = X+
e (x̂∥, ê

+
⊥) = X−

e (ηe(x̂∥), ê−
⊥), (5.11)

and the second term is a path integral in the fine patch k+(e), defined as

δΦe
⊥(u)(x) :=

ˆ x̂⊥

ê+
⊥

û+
⊥(X+

e (x̂∥, z⊥)) dz⊥ (5.12)

which corresponds to the local curve
γ̂e,+

⊥ (x̂, ·) : [0, |x̂⊥ − ê+
⊥|] ∋ z 7−→ X+

e (x̂∥, ê
+
⊥ + z sign(x̂⊥ − ê+

⊥)).
This two-term definition thus corresponds to an integration path that, for each value of the param-

eter a, connects every point x ∈ Ωk, k ∈ K(e), to the common starting point γe
⊥(0, a).

Notice that this property is also valid for boundary edges, since their unique patch is considered of
coarse type by convention (K(e) = {k−(e)}).
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Lemma 5.3. For all e ∈ E, ϕ ∈ C1(Ω), there exists a function ϕ̃e ∈ ⊕k∈K(e)H
1(Ωk) for which the

parallel edge antiderivative satisfies

Φe
∥(∇ϕ)(x) = ϕ(x)− ϕ̃e(x) and ∇e

∥ϕ̃e = 0 (5.13)

on Ω(e) :=
⋃

k∈K(e) Ωk. Moreover, the perpendicular edge antiderivative satisfies

Φe
⊥(∇ϕ)(x) = ϕ(x)− ϕ̄e (5.14)

for a constant value ϕ̄e, also on Ω(e).

Proof. For u = ∇ϕ the parallel antiderivative is the path integral of a gradient. Specifically, (5.5)
yields (5.13) with ϕ̃e(x) = ϕ(Xk

e (ηk
e (0), x̂k

⊥)) for x ∈ Ωk, k ∈ K(e). For all a ∈ [0, ĥe] the perpendicular
antiderivative is also the path integral of a gradient, hence for interior and boundary edges, we have
Φe

⊥,a(u)(x) = ϕ(x)−ϕ(γe
⊥,0(a)) where γe

⊥,0(a) is the starting point defined in (5.7). The result follows

from the averaging formula (5.6), with ϕ̄e = 1
ĥe

´ ĥe

0 ϕ(γe
⊥,0(a)) da.

In the following lemma we study the stability of these edge antiderivative operators in Lp, and
establish a local estimate for the resulting edge-correction terms involved in (2.10).

Lemma 5.4. Let u ∈ Lp(Ω), and e ∈ E. For d ∈ {∥,⊥}, the bound

∥Φe
d(u)∥Lp(ωe) ≲ ∥u∥Lp(ωe) (5.15)

holds on any set of the form

ωe =
⋃

k∈K(e)
Fk(ω̂k

e ) with ω̂k
e = Ω̂ ∩ X̂k

e

(
[0, 1]× [êk

⊥ − ρĥe, ê
k
⊥ + ρĥe]

)
and 1 ≤ ρ ≲ 1. In particular, (5.15) holds on Se =

⋃
j∈Ie Se

j the union of the edge-based domains (4.11).
Moreover, the edge correction term Π̃1

eu =
∑

d∈{∥,⊥}∇e
d(P e−Ie)Π0

pwΦe
d(u) vanishes outside Se, and

it satisfies the local bound
∥Π̃1

eu∥Lp(Se
j ) ≲ ∥u∥Lp(Ee(Se

j )) (5.16)

on any domain Se
j , j ∈ Ie, with Ee the edge-based domain extension (4.12).

Proof. The bound (5.15) for the parallel direction (d =∥) is proven just like (5.2) since the parallel
antiderivative operator coincides with the single-patch (5.1) along the parallel direction, up to a
possible change in the curve starting point and orientation. For the perpendicular direction (d =⊥),
we first consider the k− patch and again work with the pullback Φ̂e

⊥(û−)(x̂) := Φe
⊥(u)(x) where

û− := (F1
k−)−1u. For simplicity, we assume an orientation corresponding to X̂−

e = I, i.e., x̂ = (x̂∥, x̂⊥),
and ê−

⊥ = 0, i.e. ã = a. Note that this also yields ω̂−
e = [0, 1] × [0, ρĥe]. Using Hölder inequalities we

compute

∥Φ̂e
⊥(û−)∥p

Lp(ω̂−
e ) =

¨
ω̂−

e

1
ĥp

e

∣∣∣∣∣
ˆ ĥe

0

(ˆ x̂∥

0
û−

∥ (z∥, a) dz∥ +
ˆ x̂⊥

a
û−

⊥(x̂∥, z⊥) dz⊥

)
da
∣∣∣∣∣
p

dx̂

≲
¨

ω̂−
e

|x̂∥|p−1

ĥe

ˆ ĥe

0

ˆ x̂∥

0
|û−

∥ (z∥, a)|p dz∥ da dx̂

+
¨

ω̂−
e

ˆ ĥe

0

|x̂⊥ − a|p−1

ĥe

ˆ x̂⊥

a
|û−

⊥(x̂∥, z⊥)|p dz⊥ da dx̂

≲ ρ∥û−
∥ ∥

p

Lp(ω̂−
e ) + (ρĥe)p∥û−

⊥∥
p

Lp(ω̂−
e ) ≲ ∥û

−∥p
Lp(ω̂−

e ).

(5.17)
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The last inequality follows by dropping the constants and using the fact that ĥe ≤ 1 (this estimate
seems a bit rough, but it is enough to show (5.15) and we shall further localize it to establish (5.16)).
The scaling relations (3.13) for 0-form and 1-form pullbacks yield then

∥Φe
⊥(u)∥Lp(ω−

e ) ∼ H
2/p
k− ∥Φ̂e

⊥(û−)∥Lp(ω̂−
e ) ≲ H

2/p
k− ∥û−∥Lp(ω̂−

e ) ≲ ∥u∥Lp(ωe). (5.18)

On the k+ patch we also assume an orientation corresponding to X̂+
e = I, i.e. x̂ = (x̂∥, x̂⊥), and

ê+
⊥ = 0. We first consider the 0-form pullback of the integral term δΦe

⊥ (5.10), and compute

∥δ̂Φ
e

⊥(û+)∥p
Lp(ω̂+

e ) =
¨

ω̂+
e

∣∣∣∣∣
ˆ x̂⊥

0
û+

⊥(x̂∥, z⊥) dz⊥

∣∣∣∣∣
p

dx̂

≤ |ρĥe|p−1
¨

ω̂+
e

ˆ x̂⊥

0
|û+

⊥(x̂∥, z⊥)|p dz⊥ dx̂

≤ |ρĥe|p∥û+
⊥∥

p

Lp(ω̂+
e ) ≲ ∥û

+∥p
Lp(ω̂+

e ).

(5.19)

We next write Φ̂e,∗(û−)(x̂) := Φe
⊥(u)(pe(x)), with x = Fk+(x̂), the pullback of the coarse match-

ing term in (5.10). With our simple orientation the matching point (5.11) is pe(x) := Fk+(x̂∥, 0) =
Fk−(ηe(x̂∥), 0). Without loss of generality we further assume the same orientation: ηe(z) = z so that
ω̂−

e = ω̂+
e . Since Φ̂e,∗(û−)(x̂) corresponds to the first term in (5.10), it is a path integral on the coarse

patch, given by (5.9). We thus have

∥Φ̂e,∗(û−)∥p
Lp(ω̂+

e ) =
¨

ω̂+
e

|Φ̂e
⊥(û−)(x̂∥, 0)|p dx̂

=
¨

ω̂−
e

1
ĥp

e

∣∣∣∣∣
ˆ ĥe

0

(ˆ x̂∥

0
û−

∥ (z∥, a) dz∥ +
ˆ 0

a
û−

⊥(x̂∥, z⊥) dz⊥

)
da
∣∣∣∣∣
p

dx̂

≲
¨

ω̂−
e

|x̂∥|p−1

ĥe

ˆ ĥe

0

ˆ x̂∥

0
|û−

∥ (z∥, a)|p dz∥ da dx̂

+
¨

ω̂−
e

ˆ ĥe

0

ˆ 0

a
|û−

⊥(x̂∥, z⊥)|p dz⊥ da dx̂

≲ ρ∥û−
∥ ∥

p

Lp(ω̂−
e ) + (ρĥe)p∥û−

⊥∥
p

Lp(ω̂−
e ) ≲ ∥û

−∥p
Lp(ω̂−

e ).

(5.20)

With (5.19) and the scaling relations (3.13), this bound yields
∥Φe

⊥(u)∥Lp(ω+
e ) ≤ ∥δΦ

e
⊥(u)∥Lp(ω+

e ) + ∥Φe
⊥(u)(pe(·))∥Lp(ω+

e )

≲ H
2/p
k+
(
∥δ̂Φ

e,+
⊥ (û+)∥Lp(ω̂+

e ) + ∥Φ̂e,∗(û−)∥Lp(ω̂+
e )
)

≲ H
2/p
k+ (∥û+∥Lp(ω̂+

e ) + ∥û−∥Lp(ω̂−
e )) ≲ ∥u∥Lp(ωe).

Together with (5.18), this proves the stability (5.15) in the perpendicular case.
Turning to the local bound (5.16), we observe that the inverse estimate (3.6) yields

∥∇e
d(P e − Ie)Π0

pwΦe
d(u)∥Lp(Se

j ) ≲ h−1
e ∥(P e − Ie)Π0

pwΦe
d(u)∥Lp(Se

j ). (5.21)
The local stability of P e, Ie and Π0

pw, see (4.48), allows us to write
∥(P e − Ie)Π0

pwΦe
d(u)∥Lp(Se

j ) ≲ ∥Φe
d(u)∥Lp(Ee(Se

j )

so that (5.16) would follow from a bound like ∥Φe
d(u)∥Lp(Ee(Se

j )) ≲ he∥u∥Lp(Ee(Se
j )). A difficulty is that

the latter cannot hold a priori, indeed both antiderivative operators rely on integration curves that
are not localized in a domain of the form Ee(Se

j ). Therefore, a localizing argument is needed. For the
parallel term (d =∥) we can use a similar argument as the one that we used to prove (5.3) for the
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single-patch antiderivative: indeed one may again change the integration constant in Φe
∥(u), without

changing the function ∇e
∥(P e − Ie)Π0

pwΦe
∥(u): here this is made possible because the invariance with

respect to the parallel variable is preserved not only by Π0
pw but also by P e and Ie, see Lemma 4.7.

As a result one can define a localized antiderivative

Φ̃e
∥(u)(x) =

ˆ x̂k
∥

ηk
e (x̃k

j )
ûk

∥(Xk
e (z, x̂k

⊥)) dz

with x̃k
j ∈ Ŝ−

j a curvilinear coordinate corresponding to the edge piece e ∩ Se
j : by Lemma 4.7 we

have ∇e
∥(P e − Ie)Π0

pwΦe
∥(u) = ∇e

∥(P e − Ie)Π0
pwΦ̃e

∥(u) and a local estimate for this antiderivative
(derived exactly in the same way as for the single-patch antiderivative) gives ∥Φ̃e

d(u)∥Lp(Ee(Se
j )) ≤

he∥u∥Lp(Ee(Se
j )). This shows that the local bound (5.16) holds indeed for the parallel term.

For the perpendicular term we cannot use a similar localizing argument, as none of the projection
operators P e or Ie preserve an invariance along the perpendicular direction. Fortunately our design
for the integration curves involved in Φe

⊥ yields the following localizing property:
u = 0 on Ee(Se

j ) =⇒ (P e − Ie)Π0
pwΦe

⊥(u) = 0 on Se
j . (5.22)

To establish this property we assume for simplicity that the edge e has the same orientation in both
patches, i.e. η+

e (x∥) = x∥, and recall that Ee(Se
j ) is Cartesian on both patches, with parallel coordinate

in the same interval as a result of being continuous across e. Let us denote by α∥ the minimal parallel
coordinate in both patches, so that any x ∈ Ee(Se

j ) satisfies x̂∥ ≥ α∥. For all a ∈ [0, ĥe], we then
observe that the curve γ = γe

⊥(x, a) is made of two connected parts: a first part Γe
1(x, a) with parallel

coordinate γ̂∥ ≤ α∥ (and included in the coarse patch Ωk−), and a second part Γe
2(x, a) with parallel

coordinate γ̂∥ > α∥. Because |ã − êk
⊥| = a ≤ ĥe, see (5.8), (4.20), this latter part is included in

Ee(Se
j ) while the first part Γe

1(x, a) is fully outside. Moreover, this first part is independent of x:
Γe

1(x, a) = Γe
1(a). As a consequence we find that if u = 0 on Ee(Se

j ), then the antiderivative writes

Φe
⊥,a(u)(x) =

ˆ
Γe

1(a)∪Γe
2(x,a)

u · dl =
ˆ

Γe
1(a)

u · dl, x ∈ Ee(Se
j ),

which, by integration over a ∈ [0, ĥe] yields a constant value, say Φe
⊥(u) = C(u) on Ee(Se

j ). According
to Lemma 4.1, this shows that on the edge piece e ∩ Se

j , Π0
pwΦe

⊥(u) takes the same constant value
C(u): in particular it is continuous across e. Consider now x ∈ Se

j : Using Lemma 4.5 and the fact
that the projected point pe(x) on the edge is also in Se

j , we find that (P e − Ie)Π0
pwΦe

⊥(u) = 0 on Se
j .

The property (5.22) hence follows: we have indeed shown that
u = 0 on Ee(Se

j ) =⇒ Φe
⊥(u) = cst on Ee(Se

j )
=⇒ Π0

pwΦe
⊥(u) = cst on e ∩ Se

j

=⇒ (P e − Ie)Π0
pwΦe

⊥(u) = 0 on Se
j .

For a general u ∈ Lp(Ω) decomposed as u = u1Ee(Se
j ) + u(1− 1Ee(Se

j )), this yields

(P e − Ie)Π0
pwΦe

⊥(u)(x) = (P e − Ie)Π0
pwΦe

⊥(u1Ee(Se
j ))(x) for x ∈ Se

j

and allows us to bound
∥(P e − Ie)Π0

pwΦe
⊥(u)∥Lp(Se

j ) = ∥(P e − Ie)Π0
pwΦe

⊥(u1Ee(Se
j ))∥Lp(Se

j )

≲ ∥Φe
⊥(u1Ee(Se

j ))∥Lp(Ee(Se
j ))

(5.23)

by using (4.48). To complete the proof we finally observe that in the last antiderivative the integration
curve γe

⊥(x, a) can be restricted to Ee(Se
j ) which is of diameter ≲ he. By repeating the steps in (5.17)
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and (5.20) with such a localized integration over z, we find
∥Φe

⊥(u1Ee(Se
j ))∥Lp(Ee(Se

j )) ≲ he∥u1Ee(Se
j )∥Lp(Ee(Se

j )) = he∥u∥Lp(Ee(Se
j )).

Together with (5.21) and (5.23) this proves the local bound (5.16) for the perpendicular term, and
completes the proof.

5.3. Vertex-based antiderivative operators

The vertex-based antiderivative Φv(u) is defined on the patches contiguous to v in a similar way as the
perpendicular edge-based antiderivative Φe

⊥ from Section 5.2. Like the latter it involves an averaging
step

Φv(u) = 1
ĥv

ˆ ĥv

0
Φv

a(u) da, Φv
a(u)(x) =

ˆ
γv(x,a)

u · dl (5.24)

with ĥv defined in (4.21), and parameter-dependent integration curves γv(x, a) of the same form as
the curves γe

⊥(x, a) described in Section 5.2. Observe that in this construction, each curve was fully
characterized by the central edge e, the choice of a coarse (k−(e)) and a fine (k+(e)) patch around
e, and finally the choice of a starting edge on the coarse patch k−(e), where the starting points are
located. To define the curves γv(x, a) we can then specify these elements for each vertex, and for this
we will use the decomposition (3.33) of the contiguous patches k ∈ K(v) in one or two sequences of
adjacent nested patches k = ks

i (v) with s ∈ {l, r} and 1 ≤ i ≤ n(v, s). An illustration is provided in
Figure 5.2 for interior vertices, and Figure 5.3 for boundary vertices.

On the two patches of a complete sequence, namely for x ∈ Ωk with k = ks
i (v) such that n(v, s) = 2,

we define the curve γv(x, a) by taking (i) the edge e = es(v) shared by the two patches ks
1(v) and

ks
2(v) as the central edge, (ii) these respective patches as the coarse and fine patches associated with

edge e, and finally (iii) the second edge contiguous to v in ks
1(v) as the starting edge for the curves.

Note that if both patches adjacent to e have the same resolution, then it is possible that ks
1(v) = k+(e)

and ks
2(v) = k−(e): in other words the orientation used to define the antiderivatives Φe

⊥ and Φv do
not need to match. This covers the case of interior vertices, since their contiguous patches can always
be decomposed in two complete sequences.

For the case of boundary vertices associated with single-patch sequences, namely for x ∈ Ωk with
k = ks

1(v) such that n(v, s) = 1, we observe that Ωk has at least one edge contiguous to v which is a
boundary edge ∂Ω, say es

b(v): we take this edge as the central edge e. Furthermore, we take the patch
ks

1(v) as the coarse patch (no fine patch is involved here) and the second edge contiguous to v as the
starting edge for the curves γe

⊥(x, a): we may denote this edge as e∗(v), indeed if a second sequence
of patches exists for v then this starting edge must be shared by kl

1(v) and kr
1(v).

The construction is then similar to what we had for the antiderivative Φe
⊥: for interior vertices and

boundary vertices, all the curves γv(x, a), x ∈ Ω(v), have a unique starting point γv
0 (a) lying on the

coarse edge e∗(v) and at a logical distance a from the vertex v.
This antiderivative operator satisfies several properties which can be directly inferred from those

of the perpendicular edge antiderivative. The first one is similar to (5.14) and will be useful to prove
commuting properties.

Lemma 5.5. Let v ∈ V be a vertex and u = ∇ϕ with ϕ ∈ C1(Ω). The equality
Φv(u)(x) = ϕ(x)− ϕv

0 (5.25)

holds for all x ∈ Ω(v), with a constant ϕv
0 := 1

ĥv

´ ĥv

0 ϕ
(
γv

0 (a)
)

da.

The second property is a local Lp stability estimate.
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kl
1(v)

kr
1(v)

kr
2(v)

kl
2(v)

v x1

x2

γv
0 (a)

γv(x1, a)
γv(x2, a)

Figure 5.2. Integration paths γv(x, a) for different points x1 and x2 involved in the
vertex-based antiderivative operator Φv

a, for a given averaging parameter a ∈ (0, ĥv).
The common starting point γv

0 (a) is represented by a white square.

kl
1(v)

kr
1(v)

kr
2(v)

∂Ω

v

γv
0 (a)

γv(x3, a)

γv(x2, a)
e∗(v) x2

γv(x1, a)

x1

x3

Figure 5.3. Integration paths γv(x, a) defining the vertex-based antiderivative op-
erators Φv(u) for boundary vertices. Integration curves connect every x ∈ Ω(v) to a
common starting point γv

0 (a).

Lemma 5.6. For u ∈ Lp(Ω), the bound

∥Φv(u)∥Lp(Sv) ≲ hv∥u∥Lp(Sv)

holds on the vertex domain defined in (4.18).

Proof. This estimate relies on two arguments. The first one is that for all x ∈ Sv and all a ∈ [0, ĥv],
the integration curve γv(x, a) is contained in Sv: this follows from the structure of Sv and the fact that
ĥv defined in (4.21) is the minimal diameter of the edge-based supports that compose Sv, see (4.18).
The second argument is a bound similar to the one derived in (5.15) for the perpendicular case, as
the integration curves γv(x, a) are of the same form. Here no further localization argument is needed
thanks to the inclusion γv(x, a) ⊂ Sv, so that the desired bound simply follows from the fact that Sv

is of diameter ∼ hv.
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Lemma 5.7. Let u ∈ Lp(Ω). The vertex term Π̃1
vu = ∇pw(P v − Īv)Π0

pwΦv(u) vanishes outside Sv,
and it satisfies the local bound

∥Π̃1
vu∥Lp(Sv) ≲ ∥u∥Lp(Sv).

Proof. The first statement simply follows from the form of P v and Īv, see (4.28)–(4.29), and the
fact that Λv vanishes outside Sv. To prove the local bound we use the inverse estimate (3.6) together
with the stability bound (4.49) from Lemma 4.8, with Qv = P v or Īv: for all ϕ ∈ Lp(Ω), this gives

∥∇pwQ
vΠ0

pwϕ∥Lp(Sv) ≲ h−1
v ∥QvΠ0

pwϕ∥Lp(Sv) ≲ h−1
v ∥ϕ∥Lp(Sv). (5.26)

Setting ϕ = Φv(u), we find
∥∇pw(P v − Īv)Π0

pwΦv(u)∥Lp(Sv) ≲ h−1
v ∥Φv(u)∥Lp(Sv) ≲ ∥u∥Lp(Sv)

where the last step follows from Lemma 5.6.

The next result will be useful to show projection properties.

Lemma 5.8. If u ∈ V 1
h , then

• Φk
d(u) belongs to the broken space V 0

pw,

• for all e ∈ E, Φe
∥(u) and Φe

⊥(u) belong to V 0
pw,

• if e is an interior edge, Φe
∥(u) and Φe

⊥(u) are continuous across e,

• for all v ∈ V, Φv(u) belongs to V 0
pw and is continuous across every e ∈ E(v).

Proof. Let us first verify that when u ∈ V 1
pw, all its antiderivatives belong to V 0

pw. In the single-
patch and edge-parallel cases this is easily verified by observing that in (5.1) and (5.5) the (logical)
integration is performed along the same dimension x̂d as the integrated component ûk

d. Since ûk is in
the logical space V̂ 1

k given by (3.2) we find that the logical antiderivative belongs to V̂ 0
k indeed. In

the edge-perpendicular case one must consider two cases, depending on whether x is in a patch Ωk of
coarse (k = k−(e)) or fine type (k = k+(e)). In the former case the logical antiderivative is given by the
sum (5.9) where we see that each integral belongs to V̂ 0

k−(e) for the same reason as above (this holds
for each value of a, and hence also after integration over a). In the latter case the logical antiderivative
is a sum (5.10) where the second term is a logical integral (5.12) that clearly belongs to V̂ 0

k (again
for the same reason as above), and the first term is the restriction of a coarse antiderivative on the
edge e. Therefore, as a function of the parallel variable x̂k

∥ it belongs to V0
k−(e), hence also to V0

k due
to the nestedness Assumption (3.24), and finally to V̂ 0

k as a function of x̂. In the vertex case we can
use the same argument, since vertex antiderivatives take locally the same form as edge-perpendicular
antiderivatives. To see that these antiderivatives are continuous across the respective edges for u ∈ V 1

h ,
we fix again a and observe that in each case, the corresponding integration curves depend continuously
on x (in the Hausdorff distance between curves). For perpendicular curves crossing an interface this
is enough to show the continuity of the antiderivative, and for parallel curves close to an interface the
continuity follows from the continuity of the tangential component of the curl-conforming, piecewise
continuous field u.
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5.4. Edge-vertex antiderivative operators

Given v ∈ V and e ∈ E(v), the edge-vertex correction term from (2.10) involves two additional
antiderivative operators defined on the domain Ω(e): a parallel one defined as

Φe,v
∥ (u) := Φv(u) (5.27)

see (5.24), and a perpendicular one defined as

Φe,v
⊥ (u) := Φe

⊥(u) (5.28)

see (5.9)–(5.11).

Lemma 5.9. Let u ∈ Lp(Ω). For any v ∈ V and e ∈ E(v), the edge-vertex correction Π̃1
e,vu =∑

d∈{∥,⊥}∇e
d(Īe

v − P e
v )Π0

pwΦv,e
d (u) vanishes outside Sv ∩ Ω(e), and it satisfies the local bound

∥Π̃1
e,vu∥Lp(Sv) ≲ ∥u∥Lp(Sv). (5.29)

Remark 5.10. If e is a boundary edge, we know from Lemma 4.6 that Īe
v = P e

v , hence Π̃1
e,v = 0.

Thus, we may consider only interior edges in the proof of Lemma 5.9.

Proof. The first statement is proven as in Lemma 5.7, using the fact that Īe
v and P e

v involve functions
Λe

v which vanish outside Sv∩Ω(e), see (4.31)–(4.32) and (4.18). We next argue as for the bound (5.26)
in the proof of Lemma 5.7, using here Lemma 4.8 with Qv = P e

v and Īe
v: this allows us to write

∥∇e
d(Īe

v − P e
v )Π0

pwΦe,v
d (u)∥Lp(Sv) ≲ h−1

v ∥Φ
e,v
d (u)∥Lp(Sv)

for both the parallel and the perpendicular cases. In the parallel case where Φe,v
∥ (u) = Φv(u), the proof

is completed with the local bound of Lemma 5.6. In the perpendicular case where Φe,v
⊥ (u) := Φe

⊥(u),
we need a localizing argument similar to the one used to prove (5.16). Here the localizing property
reads

u = 0 on Sv =⇒ (Īe
v − P e

v )Π0
pwΦe,v

⊥ (u) = 0

and the argument goes as follows: we first observe that for x ∈ Sv ∩ Ω(e) and a ∈ [0, ĥe], the curve
γe

⊥(x, a) may have a piece outside Sv (in particular if the starting point γe
⊥,0(x, a) is not on an edge

contiguous to v) but this piece is the same (a logical line parallel to e) for all x ∈ Sv ∩Ω(e). From this
we infer that if u = 0 on Sv, then the averaged integral Φe,v

⊥ (u) = Φe
⊥(u) takes a constant value on

Sv∩Ω(e). In particular, it takes the same constant value on both domains Sk
ik(v), k = k±(e), see (4.19),

and as a consequence the corresponding coefficients ϕk
ik(v) of the broken projection ϕ = Π0

pwΦe,v
⊥ (u)

are the same for both k = k±(e). According to Lemma 4.6, this implies that (Īe
v − P e

v )ϕ = 0. Thus,
we have shown that

u = 0 on Sv =⇒ Φe,v
⊥ (u) = cst on Sv ∩ Ω(e)

=⇒ Π0
pwΦe,v

⊥ (u)|Ω−(v) = Π0
pwΦe,v

⊥ (u)|Ωk+ (v)
=⇒ (Īe

v − P e
v )Π0

pwΦe,v
⊥ (u) = 0.

This localization property is then used as in the proof of (5.16). Here, the steps are
∥(Īe

v − P e
v )Π0

pwΦe,v
⊥ (u)∥Lp(Sv) = ∥(Īe

v − P e
v )Π0

pwΦe,v
⊥ (u1Sv )∥Lp(Sv)

≲ ∥Φe,v
⊥ (u1Sv )∥Lp(Sv)

≲ hv∥u∥Lp(Sv)
which, using an inverse estimate for ∇e

⊥ as above, allows us to complete the proof.

117



M. Campos Pinto & F. Schnack

5.5. Bivariate antiderivative operators

Our projection operator on V 2
h involves bivariate antiderivative operators defined on functions f ∈

Lp(Ω). The first one is a single-patch antiderivative defined as

Ψk(f)(x) :=
ˆ x̂1

0

ˆ x̂2

0
f̂k(z1, z2) dz2 dz1, x ∈ Ωk, k ∈ K, (5.30)

where f̂k := (F2
k )−1(f |Ωk

) is the 2-form pullback of f on the patch k. Outside Ωk, we extend Ψk(f)
by zero.

The second one is an edge-based bivariate antiderivative defined as

Ψe(f)(x) := 1
ĥe

ˆ ĥe

0

¨
σe(x,a)

f(z) dz da, x ∈ Ω(e), e ∈ E (5.31)

(and Ψe(f)(x) := 0 for x /∈ Ω(e)) where σe(x, a) ⊂ Ω(e) is the oriented surface whose boundary is the
algebraic sum of three oriented curves,

∂σe(x, a) = γe
⊥(x, a)− γe

∥(x) + γ̃e(x, a).

Here γe
⊥(x, a) and γe

∥(x) are the curves associated with the perpendicular and parallel edge-based
antiderivatives in Section 5.2, while γ̃e(x, a) is a closing curve following the edges of Ω(e).

An illustration is given in Figure 5.4-(a) for an interior edge e: For x ∈ Ωk and k ∈ K(e), we remind
that γe

⊥(x, a) connects the point γe
⊥,0(a), see (5.7), to x, while −γe

∥(x) connects the point x to γe
∥,0(x).

Since the starting point γe
⊥,0(a) is on the edge e−

0 := X−
e (0, [0, 1]) and γe

∥,0(x) = Xk
e (ηk

e (0), x̂k
⊥) is on

the edge ek
0 := Xk

e (ηk
e (0), [0, 1]), we see that it is indeed possible to connect γe

∥,0(x) to γe
⊥,0(a) with a

curve γ̃e(x, a) that is included in the edges ek
0, k ∈ K(e).

The third bivariate antiderivative is of edge-vertex type:

Ψe,v(f)(x) :=
ˆ 1

0

¨
σe,v(x,ā)

f(z) dz dā, x ∈ Ω(e), v ∈ V, e ∈ E(v) (5.32)

(and Ψe,v(f)(x) := 0 for x /∈ Ω(e)) where σe,v(x, ā) is the domain whose boundary is again the
algebraic sum of three oriented curves, namely

∂σe,v(x, ā) = γe
⊥(x, ĥeā)− γv(x, ĥvā) + γ̃e,v(ā).

Here γe
⊥(x, ĥeā) is the curve associated with the perpendicular edge-based antiderivative, it connects

as above the point γe
⊥,0(ĥeā) (defined by (5.7)) to x, −γv(x, ĥvā) is the curve associated with the

vertex-based antiderivative and x to the point γv
0 (ĥvā), and finally γ̃e,v(ā) is the curve that connects

γv
0 (ĥvā) to γe

⊥,0(ĥeā) and is included in the edges of the patches contiguous to v. Observe that the
latter curve does not depend on x. An illustration is given in Figure 5.4-(b), again for an interior
edge e.

Notice that contrary to the configurations depicted in Figure 5.4, the domain σe,v(x, ā) may be
disjoint from x, and even from the patch Ωk containing x: this may happen for instance in the case
where k = k+(e), with starting points γe

⊥,0(ĥeā) and γv
0 (ĥvā) located on the same edge e′ ̸= e of

Ωk−(e): in this case some parts of the curves γe
⊥(x, ĥeā) and γv(x, ĥvā) cancel each other, and the

domain σe,v(x, ā) is in the patch Ωk−(e). Precisely it is the (mapped) Cartesian domain bounded by
the two starting points in the direction perpendicular to e, and by e′ and (the parallel coordinate of)
x in the direction parallel to e.

The following properties will be useful.
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e

k−(e)

k+(e)
x

γe
⊥,0(a)

γ̃e(x, a)

γe
⊥(x, a)

−γe
∥(x)

(a) edge case

v

e

x

γv
0 (ĥvā)

γe
⊥,0(ĥeā)γ̃e,v(ā)

γe
⊥(x, ĥeā)

−γv(x, ĥvā)

kr
2(v) = k−(e)

kl
2(v) = k+(e)

kr
1(v)

kl
1(v)

(b) edge-vertex case

Figure 5.4. Oriented curves delimiting the integration domains σe(x, a) (top) and
σe,v(x, ā) (bottom) involved in the bivariate antiderivative operators Ψe and Ψe,v. On
the top panel the curves for the edge-based antiderivative Ψe are shown for a given
averaging parameter a ∈ (0, ĥe) with starting point γe

⊥,0(a) represented by a white
square as in Figure 5.1. On the bottom panel the curves of the edge-vertex antiderivative
Ψe,v are shown, for a given averaging parameter ā ∈ (0, 1). Again, we denote the starting
points γe

⊥,0(ĥeā) and γv
0 (ĥvā) of the respective perpendicular edge-based and vertex

based antiderivative integration curves by white squares, as in Figure 5.1 and 5.2.

Lemma 5.11. For u ∈ C1(Ω), e ∈ E, v ∈ V(e), we have

Ψe(curl u) = Φe
⊥(u)− Φe

∥(u) + Φ̃e(u) with Φ̃e(u)(x) := 1
ĥe

ˆ ĥe

0

ˆ
γ̃e(x,a)

u · dl da

and

Ψe,v(curl u) = Φe,v
⊥ (u)− Φe,v

∥ (u) + Φ̃e,v(u) with Φ̃e,v(u)(x) :=
ˆ 1

0

ˆ
γ̃e,v(ā)

u · dl dā.

Moreover, the following relations holds:

∇e
∥Φ̃e(u) = 0 and ∇pwΦ̃e,v(u) = 0. (5.33)
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Proof. By Stokes theorem, we have¨
σe(x,a)

curl u(z) dz =
ˆ

γe
⊥(x,a)

u · dl −
ˆ

γe
∥(x)

u · dl +
ˆ

γ̃e(x,a)
u · dl

which, after averaging over a, shows the first equation, and¨
σe,v(x,ā)

curl u(z) dz =
ˆ

γe
⊥(x,ĥeā)

u · dl −
ˆ

γv(x,ĥv ā)
u · dl +

ˆ
γ̃e,v(ā)

u · dl

which, again, after taking the average, shows the second one while using (5.27) and (5.28). To complete
the proof we observe that both curves γ̃e,v(ā) and γ̃e(x, a) are independent of x̂k

∥: for the latter
curve this follows from the fact that it connects two starting points (namely, γe

⊥,0(a) and γe
∥,0(x), see

Figure 5.1) which are independent of x̂k
∥ (for boundary edges this uses the convention that the adjacent

patch is defined as the coarse one, k = k−(e)). As a consequence the same invariance holds for the
circulations Φ̃e,v(u)(x) and Φ̃e(u)(x), which proves (5.33).

Lemma 5.12. Let e ∈ E and v ∈ V(e). If f ∈ V 2
h , then both Ψe(f) and Ψe,v(f) belong to V 0

pw and
they are continuous across e.

Proof. We prove the result for Ψe,v(f), as the same arguments apply to Ψe(f) with minor changes.
Given x ∈ Ω(e) we let k ∈ K(e) be such that x ∈ Ωk, and denote x̂k := F−1

k (x). For k′ ∈ K(v), we let
σ̂k′(x̂k, ā) := F−1

k′
(
σe,v(x, ā) ∩ Ωk′

)
. (5.34)

Notice that if Ωk′ intersects the domain σe,v(x, ā), then either k′ = k or k′ shares an edge e′ with
patch k and there is an integration curve γ that connects some starting point in Ωk′ to the point x:
by construction of the integration curves, this implies that the patch k′ cannot have a finer resolution
than k. By inspecting the possible configurations for the integration curves γe

⊥(x, ĥeā) and γv(x, ĥvā),
we find that (5.34) can be expressed as an algebraic sum of Cartesian domains ω̂k′,m(x̂k) ∈ Ω̂ as
described below, with orientation ϵk′,m = ±1 for m = 1, . . . (for simplicity we drop the dependency
on ā): on Ωk, the antiderivative thus reads

Ψe,v(f)(x) =
∑

k′∈K(v)

∑
m

ϵk′,m

ˆ
ω̂k′,m(x̂k)

f̂k′(z) dz (5.35)

where f̂k′ := (F2
k′)−1(f) as above. For k′ = k it is possible to do this decomposition with domains

ω̂k′,m(x̂k) of the form [α1, x̂
k
1]×[α2, x̂

k
2] and on an adjacent patch k′ ̸= k, of the form X̂k′

e′ ([α1, η
k′
e′ (x̂k

∥)]×
[α2, β2]) where x̂k

∥ is the component of x̂k that is parallel to e′. Using the properties of V̂ 2
k′ we then

verify that the different integrals in (5.35), seen as functions of x̂k, belong to V̂ 0
k : when k′ = k this

follows from the tensor-product structure of V̂ 2
k = V1

k ⊗V1
k and the fact that the indefinite integral

maps V1
k to V0

k. For the terms corresponding to the adjacent patches k′ ̸= k this follows from the fact
that the indefinite integrals only depend on the component of x̂k that is parallel to the shared edge,
and from the above observation that the patch k′ cannot have a finer resolution than k, hence our
nestedness Assumption (3.24) reads V0

k′ ⊂ V0
k. As a result, we find that Ψe,v(f) belongs indeed to V 0

pw.
Finally, the continuity across e follows from the fact that the domains σe,v(x, ā) depend continuously
on x (in the sense of the Hausdorff distance).

We conclude this section by studying the local stability of the correction terms (2.11) which involve
these bivariate antiderivatives.

120



Bounded commuting projections for non-matching interfaces

Lemma 5.13. The edge correction term Π̃2
ef = D2,e(P e − Ie)Π0

pwΨe(f) vanishes outside Se =⋃
j∈Ie Se

j , and it satisfies a local bound

∥Π̃2
ef∥Lp(Se

j ) ≲ ∥f∥Lp(Ee(Se
j )) (5.36)

for all f ∈ Lp(Ω) and on any domain Se
j , j ∈ Ie, where Ee is the edge-based domain extension (4.12).

The edge-vertex correction term Π̃2
e,vf = D2,e(Īe

v − P e
v )Π0

pwΨv,e(f) vanishes outside Sv, and it
satisfies the local bound

∥Π̃2
e,vf∥Lp(Sv) ≲ ∥f∥Lp(Sv). (5.37)

Proof. The fact that these correction terms vanish outside the specified domains follows from the
same reasons as their counterparts in Lemma 5.4, 5.7 and 5.9. We next study the local stability of our
bivariate antiderivative operators, considering a function f ∈ Lp(Ω) supported in some domain ω. On
some (possibly different) domain ω̃ ⊂ Ω(e), we have, using Hölder’s inequality,

∥Ψe(f)∥pLp(ω̃) =
¨

ω̃

1
ĥp

e

∣∣∣∣∣
ˆ ĥe

0

¨
σe(x,a)∩ω

f(z) dz da
∣∣∣∣∣
p

dx

≤
¨

ω̃

|ω|p−1

ĥe

ˆ ĥe

0

¨
σe(x,a)∩ω

|f(z)|p dz dadx ≤ |ω̃||ω|p−1∥f∥pLp(ω).

(5.38)

To show the local bounds (5.36) and (5.37) we then argue as we did in the proof of Lemma 5.4 and 5.9.
Here the inverse estimate (3.6) applied to the broken mixed derivative D2,e yields quadratic blow-up
factors of order h−2

e , which can be absorbed by a properly localized version of (5.38): the localizing
arguments are then the same as those used for the path integrals in (5.16) and (5.29).

6. Commuting projection operators

In this section, we finalize the construction of our commuting projection operators sketched in Sec-
tion 2, and we state our main results.

6.1. Projection operator on V 0
h

The projection on the first conforming space combines the projection Π0
pw : Lp(Ω) → V 0

pw on the
broken multi-patch space with the fully discrete conforming projection P : V 0

pw → V 0
h , defined in (3.17)

and (4.38) respectively. Thus, we set
Π0 := PΠ0

pw : Lp(Ω) −→ V 0
h , (6.1)

whose projection properties are readily derived from those of Π0
pw and P (see in particular Lemma 4.3).

Lemma 6.1. The operator (6.1) is a projection onto the conforming space V 0
h .

As described in Section 2, the projection Π1 then involves single-patch projections which commute
with the broken derivatives.

6.2. Single-patch commuting projection operators

On each patch a projection operator on V 1
k is defined following the tensor-product approach of [13],

as
Π1

ku :=
∑

d∈{1,2}
∇k

dΠ0
kΦk

d(u) (6.2)
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where ∇k
d is the patch-wise directional gradient (3.34) and Φk

d is the single-patch directional antideriv-
ative (5.1). This definition corresponds to setting

Π1
k = F1

k Π̂1
k(F1

k )−1 with Π̂1
kû :=

(
∂1Π̂0

k

( ´ x̂1
0 û1(z1, x̂2) dz1

)
∂2Π̂0

k

( ´ x̂2
0 û2(x̂1, z2) dz2

)) ∈ V̂ 1
k .

Similarly, a projection operator on V 2
k is defined as

Π2
kf := D2,kΠ0

kΨk(f) (6.3)

where D2,k and Ψk are the single-patch mixed derivative and bivariate antiderivative operators,
see (3.38) and (5.30). This amounts to writing

Π2
k = F2

k Π̂2
k(F2

k )−1 with Π̂2
kf̂ := ∂1∂2Π̂0

k

(ˆ x̂1

0

ˆ x̂2

0
f̂(z1, z2) dz2 dz1

)
∈ V̂ 2

k .

These single-patch operators satisfy some key properties which essentially follow from the arguments
in [13].

Lemma 6.2. The operators (6.2) and (6.3) are projections onto the respective spaces V 1
k and V 2

k . For
all u ∈ Lp(Ω) and f ∈ Lp(Ω), the local bounds

∥Π1
ku∥Lp(Sk

i
) ≲ ∥u∥Lp(Ek(Sk

i
)), ∥Π2

kf∥Lp(Sk
i

) ≲ ∥f∥Lp(Ek(Sk
i

))

hold on any domain Sk
i of the form (3.15), i ∈ Ik, with Ek the single-patch domain extension (3.16).

Moreover, the commuting relations hold

∇kΠ0
kϕ = Π1

k∇kϕ for all ϕ ∈ H1(Ωk) (6.4)

and
curlk Π1

ku = Π2
k curlk u for all u ∈ H(curl; Ωk). (6.5)

Proof. The projection properties are straightforward to derive from the properties of the univariate
sequence, and the local Lp bound on Π1

k has been established in Lemma 5.2 (sum the estimates (5.3)
for d = {1, 2}). The bound on Π2

k is proven with the same arguments. To show the commuting
property (6.4) we consider ϕ ∈ C1(Ωk) and observe that the path integral (5.1) of u = ∇ϕ along a
logical dimension d reads Φk

d(u) = ϕ − ϕ∗ where ϕ∗(x) := ϕ(Fk(x̂∗)) with x̂∗
d := 0 and x̂∗

d′ := x̂d′ for
the other component. In particular ∇k

dϕ
∗ = 0 and the preservation of directional invariance by Π0

k (see
Lemma 3.1) yields ∇k

dΠ0
kΦk

d(u) = ∇k
dΠ0

kϕ. This shows (6.4) for ϕ ∈ C1(Ωk) and the result follows by
density. The commuting relation (6.5) is shown with similar arguments, see [13] for more details.

Summing over the patches, we obtain projection operators Π1
pw and Π2

pw on the patch-wise spaces,
see (2.8). These operators are obviously stable in Lp and they commute with the patch-wise, broken
gradient and curl:

Π1
pw∇ϕ = ∇pwΠ0

pwϕ, ϕ ∈ H1(Ω) (6.6)

and
Π2

pw curl u = curlpw Π1
pwu, u ∈ H(curl; Ω).

Our next task is to modify Π1
pw so that it becomes a projection on the conforming space V 1

h with
commuting properties involving the projection Π0 defined by (6.1).
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6.3. The commuting projection operator on V 1
h .

A suitable projection operator on V 1
h is obtained by adding correction terms to the single-patch

projections (6.2). Thus, we set

Π1 :=
∑
k∈K

Π1
k +

∑
e∈E

Π̃1
e +

∑
v∈V

Π̃1
v +

∑
v∈V,e∈E(v)

Π̃1
e,v (6.7)

with edge correction terms

Π̃1
e :


Lp(Ω) −→ V 1

pw,

u 7−→
∑

d∈{∥,⊥}
∇e

d(P e − Ie)Π0
pwΦe

d(u) (6.8)

that involve the edge antiderivative operators (5.5) and (5.6)–(5.11), the patch-wise projection (3.18)
on V 0

pw, the local (edge-based) conforming and broken projection operators (4.25), (4.26) and the
edge-directional broken gradient operator (3.36), vertex correction terms

Π̃1
v :
{
Lp(Ω) −→ V 1

pw,

u 7−→ ∇pw(P v − Īv)Π0
pwΦv(u)

(6.9)

that involve the vertex antiderivative operator (5.24), the vertex-based conforming and broken projec-
tion operators (4.27), (4.28) and the patch-wise gradient operator (3.35). Finally, the last terms are
edge-vertex corrections

Π̃1
e,v :


Lp(Ω) −→ V 1

pw,

u 7−→
∑

d∈{∥,⊥}
∇e

d(Īe
v − P e

v )Π0
pwΦv,e

d (u) (6.10)

that involve the edge-vertex antiderivative operators (5.27) and (5.28), the edge-vertex broken and
conforming projection operators (4.30) and (4.31), and again the edge-directional broken gradient
operator (3.36).

6.4. The commuting projection operator on V 2
h .

A commuting projection V 2
h is also obtained by adding correction terms to the single-patch projec-

tions (6.3). Specifically, it is defined as

Π2 :=
∑
k∈K

Π2
k +

∑
e∈E

Π̃2
e +

∑
v∈V,e∈E(v)

Π̃2
e,v (6.11)

with edge correction terms

Π̃2
e :
{
Lp(Ω) −→ V 2

pw,

f 7−→ D2,e(P e − Ie)Π0
pwΨe(f)

and edge-vertex corrections

Π̃2
e,v :

{
Lp(Ω) −→ V 2

pw,

f 7−→ D2,e(Īe
v − P e

v )Π0
pwΨv,e(f).

These terms involve the bivariate edge and edge-vertex antiderivatives (5.31) and (5.32), the patch-
wise projection (3.18) on V 0

pw, the local broken and conforming projection operators (4.25), (4.26),
(4.30) and (4.31) and the broken mixed derivative operator (3.39).
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6.5. The main result

We are now in a position to state our main result for the grad-curl sequence (2.1): the operators Πℓ

constructed above are commuting projections onto the spaces V ℓ
h , and they are locally stable in Lp.

This result also holds for the curl-div sequence, and for the sequences with homogeneous boundary
conditions: we refer to Sections A.1, B.1 and B.2 in the appendix for more details.

Our local estimates involve the single-patch extension Ek of the local domains Sk
i defined in (3.15),

(3.16), as well as overlapping domains of edge and vertex types, namely

EE(Sk
i ) :=

⋃
e∈E,j∈Ie(Sk

i
)

Ee(Se
j ) where Ie(Sk

i ) := {j ∈ Ie : Se
j ∩ Sk

i ̸= ∅}, (6.12)

see (4.11) and (4.12), and

EV(Sk
i ) :=

⋃
v∈V(Sk

i
)

Sv where V(Sk
i ) := {v ∈ V : Sv ∩ Sk

i ̸= ∅},

see (4.18). We gather these domains in a multi-patch domain extension

Eh(Sk
i ) := Ek(Sk

i ) ∪ EE(Sk
i ) ∪ EV(Sk

i ). (6.13)
Observe that thanks to the grading Assumption (3.26), these extended domains overlap in a bounded
way:

#
(
{(k′, j) : Eh(Sk′

j ) ∩ Eh(Sk
i ) ̸= ∅}

)
≤ C for k ∈ K, i ∈ Ik (6.14)

with a constant that only depends on the parameters κm from Section 3.

Theorem 6.3. The operators Πℓ defined in (6.1), (6.7) and (6.11) are projection operators onto the
respective spaces V ℓ

h , ℓ = 0, 1, 2. On any domain Sk
i with k ∈ K and i ∈ Ik, they satisfy

∥Πℓv∥Lp(Sk
i

) ≲ ∥v∥Lp(Eh(Sk
i

)) (6.15)

for v ∈ Lp(Ω), 1 ≤ p ≤ ∞, with the domain extension defined in (6.13) and constants that only depend
on the parameters κ1, . . . , κ9 described in Section 3. Moreover, the commuting relations

∇Π0ϕ = Π1∇ϕ and curl Π1u = Π2 curl u (6.16)
hold for all ϕ ∈ H1(Ω) and all u ∈ H(curl; Ω).

Remark 6.4. By using a density argument (see e.g. [37, Theorem 1.1]), one can show that the
commuting relations (6.16) actually hold on larger spaces, that is for all ϕ ∈ W 1,1(Ω) and all u ∈
W 1(curl; Ω), where for all 1 ≤ p ≤ ∞ we define W p(curl; Ω) := {u ∈ Lp(Ω) : curl u ∈ Lp(Ω)} equipped
with the norm

∥u∥W p(curl;Ω) := (∥u∥pLp(Ω) + ∥curl u∥pLp(Ω))
1
p .

We conclude this section by listing a few corollaries of Theorems 6.3. The first one is a global
stability bound. It is easily derived using the bounded overlapping (6.14).

Corollary 6.5. For ℓ = 0, 1, 2, the bound
∥Πℓv∥Lp(Ω) ≲ ∥v∥Lp(Ω)

holds for all v ∈ Lp(Ω), 1 ≤ p ≤ ∞, with constants that only depend on the parameters κ1, . . . , κ9
described in Section 3.

The second one is a direct consequence of the Lp stability and commuting sequence properties.
(Notice that a local version also holds on domains Sk

i .) For conciseness, we now write d0 = ∇ and
d1 = curl, and accordingly denote W p(d0; Ω) = W 1,p(Ω) and W p(d1; Ω) = W p(curl; Ω).
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Corollary 6.6. Let ℓ = 0, 1. The operators defined in (6.1) and (6.7) satisfy

∥Πℓv∥W p(dℓ;Ω) ≲ ∥v∥W p(dℓ;Ω), v ∈W p(dℓ; Ω),
with constants that only depend on the parameters κ1, . . . , κ9 described in Section 3.

A third stability result follows by reasoning as in [3, Theorem 3.6]:

Corollary 6.7. If a Poincaré–Friedrichs inequality holds,
∥v∥L2(Ω) ≤ cP∥dℓv∥L2(Ω), v ∈ V ℓ ∩ (ker dℓ)⊥, (6.17)

then the discrete spaces V ℓ
h satisfy a Poincaré–Friedrichs inequality of the form

∥v∥L2(Ω) ≤ cPcΠ∥dℓv∥L2(Ω), v ∈ V ℓ
h ∩ (ker dℓ|V ℓ

h
)⊥, (6.18)

where cΠ only depends on the parameters κ1, . . . , κ9 from Section 3.

Important corollaries of Theorem 6.3 are well-posedness and a priori error estimates for FEEC
approximations of Hodge Laplacian source problems of the form

Lu = f where L = −∇ div + curl curl
in mixed formulation, see Theorem 3.8, 3.9 and 3.11 of [3]. One further application regards the asso-
ciated eigenvalue problem.

Corollary 6.8. If the continuous sequence V satisfies the compactness property, then the FEEC
approximation to the eigenvalue problem Lu = λu converges towards the exact one in the sense of
Theorems 3.19 and 3.21 in [3].

7. Proof of the main result

This section is devoted to the proof of Theorem 6.3, which we decompose in several lemmas.

7.1. Local Lp stability

Lemma 7.1. Let v ∈ Lp(Ω) with 1 ≤ p ≤ ∞, and ℓ ∈ {0, 1, 2}. On any domain Sk
i with k ∈ K and

i ∈ Ik, the operators (6.1), (6.7) and (6.11) satisfy

∥Πℓv∥Lp(Sk
i

) ≲ ∥v∥Lp(Eh(Sk
i

))

with the domain extension defined in (6.13).

Proof. We first consider the case ℓ = 0 where Π0 = PΠ0
pw is defined by (3.17), (4.38), and we write

ϕ = v. As in the proof of Lemma 4.8, we write ϕh = Π0
pwϕ =

∑
k∈K,j∈Ik ϕk

j Λk
j . Then Π0ϕ = Pϕh and

the different terms corresponding to the decomposition (4.38), namely Ik
0ϕh, P e

0ϕh and P vϕh, can be
bounded as follows. For the first term associated with interior coefficients, we argue as in (4.50) and
write

∥Ik
0ϕh∥Lp(Sk

i
) ≤

∑
j∈Ik(Sk

i
)

|ϕk
j |∥Λk

j∥Lp(Ω) ≲
∑

j∈Ik(Sk
i

)

∥ϕ∥Lp(Sk
j

) ≲ ∥ϕ∥Lp(Ek(Sk
i

)). (7.1)

For the second (edge-based) term we write
∥P e

0ϕh∥Lp(Sk
i

) ≤
∑

j∈Ie(Sk
i

)

∥P e
0ϕh∥Lp(Se

j ) ≲
∑

j∈Ie(Sk
i

)

∥ϕ∥Lp(Ee(Se
j )) ≲ ∥ϕ∥Lp(EE (Sk

i
)) (7.2)

where the first inequality uses (6.12) and the fact that P e
0ϕh vanishes outside the edge domains, the

second one is (4.48) with ϕ = ϕh = Π0
pwϕ, and the last one follows from the bounded overlapping of
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the local domains. For the third (vertex-based) term we use similar arguments from Lemma 4.8, such
as estimate (4.49), and write

∥P vϕh∥Lp(Sk
i

) ≤
∑

v∈V(Sk
i

)

∥P e
0ϕh∥Lp(Sv) ≲

∑
v∈V(Sk

i
)

∥ϕ∥Lp(Sv) ≲ ∥ϕ∥Lp(EV (Sk
i

)). (7.3)

Summing (7.1), (7.2) and (7.3) yields the bound (6.15) for ℓ = 0. For ℓ = 1, writing u = v we use
the same reasoning and assemble the local bounds on Π1

ku, Π̃1
eu, Π̃1

vu and Π̃1
e,vu that have been

established in Lemma 6.2, 5.4, 5.7 and 5.9 respectively. For ℓ = 2 we use the local bounds on Π2
kf ,

Π̃2
ef , and Π̃2

e,vf that have been established in Lemma 6.2 and 5.13.

7.2. Range property

Lemma 7.2. For all ϕ,u, f ∈ Lp(Ω), Π0ϕ, Π1u and Π2f belong to the respective spaces V 0
h , V 1

h

and V 2
h .

Proof. The property for Π0 has been established in Lemma 6.1. By construction, it is clear that Π1

and Π2 map into the respective broken spaces V 1
pw and V 2

pw. For Π2 this is enough since V 2
h = V 2

pw,
while for Π1 we need to show that it also maps in H(curl; Ω). This amounts to verifying that the
tangential component of Π1u is continuous across any edge e ∈ E . For this we consider some unit
tangent vector τ e and k ∈ K(e). Denoting by ·|ke the restriction on e of the Ωk piece of some broken
field, we write

τ e · (Π1u)|ke = Ak
e +Bk

e + Ck
e +Dk

e with



Ak
e = τ e · (Π1

ku)|ke
Bk

e = τ e ·
∑

e′∈E(k)
(Π̃1

e′u)|ke

Ck
e = τ e ·

∑
v∈V(e)

(Π̃1
vu)|ke

Dk
e = τ e ·

∑
v∈V(e)
e′∈E(v)

(Π̃1
e′,vu)|ke .

Here, we have restricted the vertex sums over V(e) (the vertex contiguous to e), since all the vertex
and edge-vertex projection operators map into functions which vanish on e for v /∈ V(e) (this follows
from the interpolation property of the basis functions at the patch boundaries). Using (3.37), i.e.,
∇pw = ∇e

∥ +∇e
⊥ on Ω(e), and (4.5), that is τ e · ∇e

⊥ = 0, we compute

Ak
e = τ e ·Π1

ku|ke = τ e · (∇e
∥Π0

kΦk
∥(u))|ke = τ e · (∇e

∥I
eΠ0

kΦk
∥(u))|ke

where the third equality follows from the fact that basis functions vanishing on e have also a vanishing
parallel gradient on e. Here the single-patch antiderivative (5.1) is taken in the direction parallel to e,
that is

Φk
∥(u)(x) =

ˆ x̂k
∥

0
ûk

∥(X̂k
e (z∥, x̂

k
⊥)) dz∥ with x̂ = X̂k

e (x̂k
∥, x̂

k
⊥) = (Fk)−1(x).

Then,
Bk

e =
∑

e′∈E(k)
τ e · (Π̃1

e′u)|ke

= τ e ·
∑

e′∈E(k)

∑
d∈{∥,⊥}

∇e′
d (P e′ − Ie′)Π0

pwΦe′
d (u)|ke

= B̄k
e − Ãk

e + B̃k
e
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holds with 

B̄k
e = τ e · ∇e

∥P
eΠ0

pwΦe
∥(u)

Ãk
e = τ e · ∇e

∥I
eΠ0

pwΦe
∥(u)

B̃k
e = τ e ·

∑
v∈V(e)

∇e′(v)
⊥ (P e′(v) − Ie′(v))Π0

pwΦe′(v)
⊥ (u)|ke .

where e′(v) is the edge e′ ̸= e contiguous to v in Ωk. Here we have used that τ e · ∇e′(v)
∥ = 0, which

follows from (4.5) and the fact that ∇e′(v)
∥ is colinear with ∇e

⊥ on Ωk, indeed these edges correspond
to different (orthogonal) logical axes, see (3.36). For an interior edge we see that B̄k

e is continuous
across e (in the sense that B̄−

e = B̄+
e ) as the tangential derivative of a function continuous across e.

By observing that Φe
∥(u)(x) − Φk

∥(u)(x) =
´ 0

ηk
e (0) û

k
∥(Xk

e (z∥, x̂
k
⊥)) dz∥ is a function of x̂k

⊥ only, we can
use Lemma 4.7 with ϕ = Φe

∥(u)− Φk
∥(u) and infer that

Ãk
e −Ak

e = τ e · ∇e
∥I

eΠ0
k(Φe

∥(u)− Φk
∥(u)) = 0.

For the third term we compute, using again τ e · ∇pw = τ e · ∇e
∥,

Ck
e = τ e ·

∑
v∈V(e)

(Π̃1
vu)|ke

= τ e ·
∑

v∈V(e)
∇e

∥P
vΠ0

pwΦv(u)|ke − τ e ·
∑

v∈V(e)
∇e

∥Ī
vΠ0

pwΦv(u)|ke

=: C̄k
e − C̃k

e

and for the last one we write, using (5.27) and (5.28),
Dk

e = τ e ·
∑

v∈V(e),e′∈E(v)
(Π̃1

e′,vu)|ke

= τ e ·
∑

v∈V(e)
∇e

∥Ī
e
vΠ0

pwΦv(u)|ke − τ e ·
∑

v∈V(e)
∇e

∥P
e
v Π0

pwΦv(u)|ke

+ τ e ·
∑

v∈V(e)
∇e′(v)

⊥ (Īe′(v)
v − P e′(v)

v )Π0
pwΦe′(v)

⊥ (u)|ke

=: D̃k
e − D̄k

e + Ďk
e .

According to (4.46) the equality Īvϕ = Īe
vϕ holds on e: this yields C̃k

e = D̃k
e , moreover for e′ = e′(v)

we have P e′
ϕ = P e′

v ϕ and Ie′
ϕ = Īe′

v ϕ on e. This yields B̃k
e = −Ďk

e . Thus, we obtain that
τ e · (Π1u)|ke = B̄k

e + C̄k
e − D̄k

e (7.4)
where these three terms are tangential derivatives of fields which are continuous across e (and hence
are also continuous across e) if the latter is an interior edge. This shows that Π1u ∈ H(curl; Ω) and
completes the proof.

7.3. Projection property

Lemma 7.3. For all u ∈ V 1
h and f ∈ V 2

h , we have Π1u = u and Π2f = f .
Proof. We first consider Π1 and observe that for all k, the restriction u|Ωk

belongs to the local space
V 1

k . Hence, the projection property of the local projection operator gives (Π1
ku)|Ωk

= u|Ωk
: it follows

that ∑
k∈K

Π1
ku = u.
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We thus need to show that the correction terms Π̃1
eu, Π̃1

vu and Π̃1
e,vu all vanish for u ∈ V 1

h . As for
the first term we know from Lemma 5.8 that the parallel and perpendicular antiderivatives Φe

∥(u)
and Φe

⊥(u) belong to V 0
pw, hence they are left unchanged by the patch-wise projection Π0

pw. Moreover,
again from Lemma 5.8, they are continuous across any interior edge e so that Lemma 4.5 allows us to
write

(P e − Ie)Π0
pwΦe

d(u) = 0, d ∈ {∥,⊥}.
We further observe that this equality also holds on boundary edges, this follows from the fact that
P e = Ie. As a result the edge correction terms vanish: Π̃1

eu = 0 for u ∈ V 1
h . The same reasoning

applies to the vertex correction term: according again to Lemma 5.8, the antiderivative Φv(u) belongs
to V 0

pw and it is continuous across any interior edge e ∈ E(v). Then Lemma 4.6 applies, which yields
(P v − Īv)Π0

pwΦv(u) = 0
and hence Π̃1

vu = 0. Turning to the edge-vertex correction terms we infer from (5.27) and (5.28) that
both Φe,v

∥ (u) and Φe,v
⊥ (u) are in V 0

pw and continuous across interior edges e. Applying again Lemma 4.6
yields then

(P e
v − Īe

v)Π0
pwΦe,v

d (u) = 0, d ∈ {∥,⊥},

which shows that Π̃1
e,vu = 0 and finishes the proof. To show that Π2 is a projection, we use a similar

argument based on Lemma 5.12.

7.4. Commuting property

Lemma 7.4. The equality
Π1∇ϕ = ∇Π0ϕ (7.5)

holds for all ϕ ∈ H1(Ω).

Remark 7.5. The commuting relation (7.5) also holds in the respective (larger) space W 1,1(Ω), as
mentioned in Remark 6.4.

Proof. We consider u = ∇ϕ, with ϕ ∈ C1(Ω): the result will then follow by a density argument, using
the L1 stability of the projection operators. Throughout this proof we write ϕh = Π0

pwϕ ∈ V 0
pw. For

the volume terms, we have seen in (6.6) that the commutation of the patch-wise projection operators
yield ∑

k∈K
Π1

ku = ∇pwϕh.

For the parallel edge correction terms we remind that (5.13) reads
Φe

∥(u)(x) = ϕ(x)− ϕ̃e(x)
on Ω(e), e ∈ E , for some function ϕ̃e independent of x̂k

∥. Hence, Lemma 4.7 yields
∇e

∥(P e − Ie)Π0
pwΦe

∥(u) = ∇e
∥(P e − Ie)ϕh.

Next for the perpendicular edge correction term, we use (5.14), namely
Φe

⊥(u)(x) = ϕ(x)− ϕ̄e (7.6)
(again on Ω(e)) with a constant value ϕ̄e. Since Π0

pw preserves patch-wise constant functions, Lemma 4.5
gives (P e − Ie)Π0

pwϕ̄e = (P e − Ie)ϕ̄e = 0. Hence, we have for any e ∈ E
∇e

⊥(P e − Ie)Π0
pwΦe

⊥(u) = ∇e
⊥(P e − Ie)ϕh.
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Writing again ∇e
∥ +∇e

⊥ = ∇pw on Ω(e), it follows that

Π̃1
eu =

∑
d∈{∥,⊥}

∇e
d(P e − Ie)Π0

pwΦe
d(u) = ∇pw(P e − Ie)ϕh.

For the vertex correction we use (5.25), namely
Φv(u)(x) = ϕ(x)− ϕv

0 (7.7)
which holds on Ω(v) with a constant value ϕv

0 . Thus, the statement result of Lemma 4.6 yields
Π̃1

vu = ∇pw(P v − Īv)Π0
pwΦv(u) = ∇pw(P v − Īv)ϕh.

Finally, for the edge-vertex correction, the respective antiderivative operators (5.27) and (5.28) are of
vertex and edge perpendicular type, hence they also satisfy relations of the form (7.6) and (7.7) on
Ω(e), with constant terms ϕ̄e and ϕv

0 . Thus, using the last statement of Lemma 4.6 we have
Π̃1

e,vu =
∑

d∈{∥,⊥}
∇e

d(Īe
v − P e

v )Π0
pwΦe,v

d (u) = ∇pw(Īe
v − P e

v )ϕh.

With the decomposition (4.36), i.e. ϕh =
(∑

k∈K I
k
0 +

∑
e∈E I

e
0 +

∑
v∈V I

v
)
ϕh, this allows us to write

Π1u = ∇pwψh with

ψh = ϕh +
(∑

e∈E
(P e − Ie) +

∑
v∈V

(P v − Īv) +
∑
e∈E

∑
v∈V

(Īe
v − P e

v )
)
ϕh

=
(∑

k∈K
Ik

0 +
∑
e∈E

(Ie
0 + P e − Ie) +

∑
v∈V

(Iv + P v − Īv) +
∑
e∈E

∑
v∈V

(Īe
v − P e

v )
)
ϕh.

We then observe that (4.34), (4.37) yield
∑

e(Ie
0 − Ie) = −

∑
e,v I

e
v = −

∑
v 2Iv, while (4.35) is Īv =∑

e Ī
e
v − Iv. With (4.39), i.e., P e −

∑
v P

e
v = P e

0 , and the decomposition (4.38), this gives

ψh =
(∑

k∈K
Ik

0 +
∑
e∈E

P e +
∑
v∈V

P v −
∑
e∈E

∑
v∈V

P e
v

)
ϕh = Pϕh.

This shows that ψh is continuous on Ω, hence ∇pwψh = ∇ψh, and finally we find Π1∇ϕ = ∇ψh =
∇Pϕh = ∇PΠ0

pwϕ = ∇Π0ϕ, which completes the proof.

Lemma 7.6. The equality
Π2 curl u = curl Π1u (7.8)

holds for all u ∈ H(curl; Ω).

Remark 7.7. The commuting relation (7.8) also holds in the respective (larger) space W 1(curl; Ω)
defined in Remark 6.4.

Proof. By a density argument we may consider u ∈ C1(Ω). According to Lemma 6.2 we know that
the single-patch projections commute with the patch-wise curl operator, namely

curlk Π1
ku = Π2

k curl u.

Since every vertex correction term (6.9) is a patch-wise gradient, we also have
curlpw Π̃1

vu = 0.
For the edge correction terms (6.8), we use Lemma 3.4 with ψd = (P e − Ie)Π0

pwΦe
d(u) and compute

curlpw Π̃1
eu = D2,e(P e − Ie)Π0

pw
(
Φe

⊥(u)− Φe
∥(u)

)
= D2,e(P e − Ie)Π0

pw
(
Φe

⊥(u)− Φe
∥(u) + Φ̃e(u)

)
= D2,e(P e − Ie)Π0

pwΨe(curl u)
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where the second and third equalities follow from Lemma 5.11 and the parallel invariance preserving
property of the operators Π0

pw, P e and Ie, see Lemma 4.7: note that an invariance along x̂∥ leads
indeed to the cancellation of the mixed derivative D2,e on each patch. For the edge-vertex correction
terms (6.10) we use again Lemma 3.4 and write

curlpw Π̃1
e,vu = D2,e(Īe

v − P e
v )Π0

pw
(
Φe,v

⊥ (u)− Φe,v
∥ (u)

)
= D2,e(Īe

v − P e
v )Π0

pw
(
Φe,v

⊥ (u)− Φe,v
∥ (u) + Φ̃e,v(u)

)
= D2,e(Īe

v − P e
v )Π0

pwΨe(curl u)
where the second and third equalities follow from Lemma 5.11 and the preservation of constants by
the operator Π0

pw, which are in the kernel of Īe
v − P e

v , see Lemma 4.6. Gathering the computations
above and using the form of the Π2 projection, we find

curl Π1u = curlpw Π1u

=
∑
k∈K

curlk Π1
ku +

∑
e∈E

curlpw Π̃1
eu +

∑
v∈V

curlpw Π̃1
vu +

∑
v∈V

e∈E(v)

curlpw Π̃1
e,vu

=
∑
k∈K

Π2
k curl u +

∑
e∈E

Π̃2
e curl u +

∑
v∈V

e∈E(v)

Π̃2
e,v curl u = Π2 curl u. ■

8. Conclusion

In this article we have proposed a new approach for constructing L2 stable commuting projection
operators on de Rham sequences of multipatch spaces, which allows patch-wise refinements with
tensor-product structure.

Our construction involves single-patch projections that rely on the tensor-product structure of
the single-patch spaces, and correction terms for the interfaces. Like the single-patch projections, the
correction terms are composed of partial derivatives, local projections and antiderivative operators: the
specificity of the latter is to involve projections on the local conforming and broken spaces associated
with an interface.

Being local, our construction naturally yields projection operators which are stable in any Lp norm
with p ∈ [1,∞]. It also applies to de Rham sequences with homogeneous boundary conditions.

Looking ahead, an important objective will be to extend our construction to 3D domains and lift the
four-patch restriction. Applying these theoretical findings to the design of stable numerical schemes
is also a work in progress. Preliminary experiments conducted on curl-curl eigenvalue problems have
yielded promising results, particularly when employing broken-FEEC schemes [18]: these and further
studies will be described in a forthcoming article.
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Appendix A. The curl− div sequence

The curl-div sequence reads

R
id−→ V 0,∗ = H(curl; Ω) curl−−−→ V 1,∗ = H(div; Ω) div−→ V 2,∗ = L2(Ω) 0−→ {0} (A.1)

which can be related to the ∇ − curl sequence (2.1) by a standard rotation argument: We indeed
observe that

curlϕ = R∇ϕ and div v = curlR−1v with R =
(

0 1
−1 0

)
. (A.2)

This leads to defining

Π0,∗ := Π0, Π1,∗ := RΠ1R−1, Π2,∗ := Π2, (A.3)

which allows to transfer the stability and commutation properties of the Πℓ projections to the curl-div
sequence.

Analogously, the pushforward operators for the grad-curl sequence in (3.12) are also related to the
ones of the curl-div sequence, namely

F0,∗
k : ϕ̂ 7−→ ϕ := ϕ̂ ◦ F−1

k

F1,∗
k : û 7−→ u :=

(
J−1

Fk
DFkû

)
◦ F−1

k

F2,∗
k : f̂ 7−→ f :=

(
J−1

Fk
f̂
)
◦ F−1

k .

Using the matrix relation RDF−T
k = J−1

Fk
DFkR, we find indeed

F0,∗
k = F0

k , F1,∗
k = RF1

kR
−1, F2,∗

k = F2
k .

Following Section 3.2, we define the reference patch finite element spaces as

V̂ 0,∗
k := V̂ 0

k = V
0
k ⊗V0

k, V̂ 1,∗
k := RV̂ 1

k =
(
V0

k ⊗V1
k

V1
k ⊗V0

k

)
, V̂ 2,∗

k := V̂ 2
k = V

1
k ⊗V1

k,

and upon pushing forward the patch-wise spaces with V ℓ,∗
k = F ℓ,∗

k (V̂ ℓ,∗
k ), we define the global conform-

ing spaces as

V 0,∗
h = V 0,∗

pw ∩H(curl; Ω), V 1,∗
h = V 1,∗

pw ∩H(div; Ω), V 2,∗
h = V 2,∗

pw ∩ L2(Ω) = V 2
pw.

These definitions allow us to extend the main result, namely Theorem 6.3, to this sequence:

Theorem A.1. The operators Πℓ,∗ defined in (A.3) are projection operators onto the respective spaces
V ℓ,∗

h , ℓ = 0, 1, 2. On any domain Sk
i with k ∈ K and i ∈ Ik, they satisfy

∥Πℓ,∗v∥Lp(Sk
i

) ≲ ∥v∥Lp(Eh(Sk
i

))

for all v ∈ Lp(Ω), 1 ≤ p ≤ ∞, with the domain extension defined in (6.13) and constants that only
depend on the parameters κ1, . . . , κ9 described in Section 3. Moreover, the commuting relations

curl Π0,∗ϕ = Π1,∗ curlϕ and div Π1,∗u = Π2,∗ div u

hold for all ϕ ∈ H(curl; Ω) and u ∈ H(div; Ω).

Remark A.2. Again, these commuting relations actually hold in larger spaces characterized by L1

integrability, defined similarly as in Remark 6.4.
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Proof. The stability follows from Theorem 6.3 and the fact that R and R−1 are isometries in any Lp.
The range and projection properties for ℓ = 0, 2 follow from Theorem 6.3 as the projectors and
conforming spaces are equal. For ℓ = 1, we first realize that the spaces H(curl; Ω) and H(div; Ω)
have similar, but rotated, conformity conditions, i.e. continuity along tangent and normal vectors
respectively. Since V 1,∗

k = F1,∗
k (V̂ 1,∗

k ) = RF1
k (R−1RV̂ 1

k ) = RV 1
k , we have

V 1,∗
h = RV 1

pw ∩H(div; Ω) = RV 1
h . (A.4)

Thus, the range and projection properties are direct consequences of (A.4) and definition of Π1,∗.
The commuting properties are again a consequence of Theorem 6.3 and the relations of differential
operators in (A.2), i.e.

Π1,∗ curlϕ = RΠ1R−1 curlϕ = RΠ1∇ϕ = R∇Π0ϕ = curl Π0,∗ϕ

and
Π2,∗ div v = Π2 curlR−1v = curl Π1R−1v = curlR−1Π1,∗v = div Π1,∗v. ■

Similarly, Theorem A.1 has the same corollaries as Theorem 6.3. In particular, Corollary 6.6 holds
for Πℓ,∗ with d0 = curl and d1 = div, and a second stability result follows by reasoning as in [3,
Theorem 3.6]:

Corollary A.3. If the spaces V ℓ,∗ in the curl-div sequence (A.1) satisfy Poincaré–Friedrichs inequali-
ties of the form (6.17) (with V ℓ = V ℓ,∗ and d0 = curl, d1 = div), then the discrete spaces V ℓ,∗

h satisfy
discrete Poincaré–Friedrichs inequalities of the form (6.18) with a constant cΠ that only depends on
the parameters κ1, . . . , κ9 from Section 3.

Appendix B. Homogeneous boundary conditions

We want to discuss the counterparts of sequences (2.1) and (A.1) with homogeneous boundary condi-
tions, namely

0 0−→ V 0 = H1
0 (Ω) ∇−→ V 1 = H0(curl; Ω) curl−−→ V 2 = L2(Ω)

´
−→ R (B.1)

and
0 0−→ V 0 = H0(curl; Ω) curl−−−→ V 1 = H0(div; Ω) div−→ V 2 = L2(Ω)

´
−→ R. (B.2)

The constructions are very similar to the inhomogeneous cases, we just have to adapt some conven-
tions we made earlier and add some explanations. In particular, the homogeneous boundary conditions
are handled by removing boundary basis functions from the conforming basis of V 0

h (with a consistent
adaptation of the conforming projection P and its localized counterparts P e, P v, P e

v ), and by defining
the antiderivative operators Φe

⊥ and Φv through integration curves that start from the homogeneous
boundaries. In the following we focus on the first sequence (B.1), the other one being treated in the
same way.

B.1. Notation and assumptions on the geometry

In the homogeneous case, instead of the convention that the single patch K(e) for boundary edges e is
of coarse type, k = k−(e), as stated in Assumption 1, we now declare it to be of fine type, k = k+(e).
Assumption 2 for boundary vertices v is then changed as follows: any x ∈ Ω(v) can be connected
to some boundary edge e = e(x) ∈ E(v) with a monotonic curve of length L ≤ 2 as is visualized in
Figure B.1. Note that if v is a boundary vertex shared by three or four patches then it is now the
finer patches of both sequences that must be adjacent, while the coarser ones do not need to be.
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v

∂Ω

kr
1(v)

kr
2(v)

kl
1(v)

Figure B.1. Adjacent patches around a boundary vertex v and dashed curves con-
necting arbitrary points x ∈ Ω(v) to one coarse edge e∗(v) in the homogeneous case,
according to Assumption 2. We show a decomposition of the form (3.33) for the adja-
cent nested patches.

B.2. Basis functions and conforming projectors

In the homogeneous case (B.1), the same basis from Section 4.2 can be used excluding the functions
Λe

i and Λv associated with boundary edges and vertices.
This is consistent with the definitions of the conforming projectors as

• only a fine patch k+(e) has been associated to boundary edges e in Section B.1: we thus have
P e = 0.

• for boundary vertices where k∗(v) is undefined, this leads to setting P v = 0.

• P e
v = 0 on homogeneous boundary edges where k−(e) is undefined

In total we have P e
0 = P e = 0 for boundary edges and P v = 0 for boundary vertices, so that P

defined by (4.38) is indeed a projection on the homogeneous conforming space V 0
h = V 0

pw ∩H1
0 (Ω).

In Lemma 4.4 we notice that in the homogeneous case (B.1) the patches k−(e) and k∗(v) are
undefined for boundary edges and vertices, so that the corresponding values of ϕ can be replaced by 0.

B.3. Antiderivative operators

The antiderivative operators defined in Section 5 are extended to the case of homogeneous boundary
conditions, with the following changes.

Regarding edge-type antiderivative operators, for boundary edges where boundary patches are by
convention of fine type k+(e), the curves γe

⊥(x, a) are all perpendicular to the boundary edge in the
logical variables. In particular, they have many different starting points which all lie on the edge e
(see Figure 5.1), hence on the boundary ∂Ω.

Regarding vertex-type antiderivative operators associated with boundary vertices v, we observe
that the curves γv(x, a) may start from different points γv

0 (x, a), but they all lie on the boundary ∂Ω
as shown in Figure B.2.

In particular, we change some Lemmas of this section as follows:

Lemma 5.3: For a boundary edge e and u = ∇ϕ with ϕ ∈ C1(Ω), then it holds
Φe

⊥(u)(x) = ϕ(x). (B.3)
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kr
1(v)

kr
2(v)

kl
1(v)

∂Ω

v

γv
0 (x, a)

γv(x3, a)

γv(x1, a)

x2
γv(x2, a)

x3

x1

Figure B.2. Integration paths γv(x, a) defining the vertex-based antiderivative oper-
ators Φv(u) for boundary vertices. In the homogeneous case, different points x ∈ Ω(v)
may be connected to different starting points γv

0 (x, a), all on the boundary ∂Ω.

The result follows from the fact that all curves γe
⊥(x, a) start from the boundary ∂Ω where

ϕ = 0.

Lemma 5.5: For a boundary vertex v and u = ∇ϕ with ϕ ∈ C1(Ω) ∩H1
0 (Ω), then

Φv(u)(x) = ϕ(x) on Ω(v). (B.4)

Lemma 5.8:
• if e is a boundary edge, Φe

∥(u) and Φe
⊥(u) vanish on ∂Ω

• if v is a boundary vertex, Φv(u) vanishes on ∂Ω.
This follows from the boundary vanishing properties of the antiderivatives in the case of ho-
mogeneous boundary edges and the fact that on ∂Ω all integration curves involved in these
antiderivative operators are either of zero length (being normal to the boundary and starting
from it), or tangent to the boundary: in this latter case they integrate the vanishing component
of the function u ∈ V 1

h ⊂ H0(curl; Ω).

Lemma 5.11: The relations hold for u ∈ C1(Ω)∩H0(curl; Ω). For boundary edges the circulation
Φ̃e(u)(x) may contains a contribution along e which depends on x̂k

∥ (because the adjacent patch
k is considered as the fine patch, k = k+(e)), but for u ∈ C1(Ω)∩H0(curl; Ω) this contribution
vanishes. The same argument can be used for Φ̃e,v(u)(x).

Lemma 5.12: The antiderivatives Ψe(f) and Ψe,v(f) vanish on any boundary edge. Indeed, we
observe that our definitions of integration curves associated with boundary edges and vertices
lead to domains σe(x, a) and σe,v

k (x, ā) which are of zero measure for x ∈ e when e ⊂ ∂Ω.
Hence, Ψe(f) = Ψe,v(f) = 0 on e.

B.4. The main result

Theorem 6.3 also holds for the sequences (B.1) where ϕ ∈ H1
0 (Ω) and all u ∈ H0(curl; Ω), and for

the sequence (B.2) with the corresponding homogeneous spaces. The commuting relations (6.16) also
extend to the larger spaces, i.e. they hold for all ϕ ∈W 1,1

0 (Ω) and all u ∈W 1
0 (curl; Ω) where the latter

space is the closure of C1
c (Ω) in W 1(curl; Ω).
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Regarding the proofs in Section 7, we add the following remarks:
Lemma 7.2: We need to show that the tangential component of Π1u vanishes on boundary

edges. Using the definitions of the conforming projectors in Section B.1, we realize that the
terms in the decomposition (7.4) are tangential derivatives of fields that vanish on boundary
edges. Hence, Π1u ∈ H0(curl; Ω).

Lemma 7.3: Similarly, we want to show that the correction terms vanish on boundary edges.
This can directly be inferred form the properties we added to the antiderivative operators in
Lemma 5.8, as they all already vanish on boundary edges.

Lemma 7.4: The equality holds for all ϕ ∈ H1
0 (Ω) in the homogeneous case (B.1). As remarked,

it also extends to the space W 1,1
0 (Ω). The proof extends similarly, considering ϕ ∈ C1(Ω) ∩

H1
0 (Ω), using ϕ̄e = 0 and the relations (B.3) and (B.4) on homogeneous boundary edges.

Lemma 7.6: Again, the equality also holds for all u ∈ H0(curl; Ω) with extension to the larger
space W 1

0 (curl; Ω). The proof is verbatim, but considering u ∈ C1(Ω) ∩H0(curl; Ω).
In the case of homogeneous boundary conditions, the commuting diagram (2.5) becomes:

{0} H1
0 (Ω) H0(curl; Ω) L2(Ω) R

{0} V 0
h V 1

h V 2
h R

0 ∇

Π0

curl

Π1

´

Π2

0 ∇ curl
´

Since the last commuting relation is non-trivial, let us state it formally.
Lemma B.1. The equality ˆ

Ω
Π2f =

ˆ
Ω
f

holds for all f ∈ L2(Ω).
Proof. On each patch Ωk, we decompose the pullback

f̂k := (F2
k )−1(f |Ωk

) = f̂k
mv + f̂k

0

into its mean value f̂k
mv :=

ffl
Ω̂ f̂

k and a remainder of zero integral,
´

Ω̂ f̂
k
0 = 0. This yields a decompo-

sition of f into
f = fmv + f0 :=

∑
k∈K
F2

k (f̂k
mv) +

∑
k∈K
F2

k (f̂k
0 ),

where the integral preservation of the 2-form pushforward yields
´

Ω f0 = 0 and
´

Ω fmv =
´

Ω f . Without
loss of generality we can assume that Ω is connected, so that f0 = curl u holds for some u ∈ H0(curl; Ω)
(indeed the cohomology space {g ∈ L2(Ω) :

´
Ω g = 0 and ⟨g, curl v⟩L2(Ω) = 0 ∀v ∈ H0(curl; Ω)} is

trivial). Using the commuting property satisfied by the projection operators we then writeˆ
Ω

Π2f0 =
ˆ

Ω
Π2 curl u =

ˆ
Ω

curl Π1u =
ˆ

∂Ω
n×Π1u = 0

where last equality follows from the fact that Π1u ∈ H0(curl; Ω). Since constants belong to the
logical spaces V̂ 2

k we further see that fmv ∈ V 2
pw = V 2

h : in particular the projection property yields
Π2fmv = fmv. The result then follows by gathering the above findings:ˆ

Ω
Π2f =

ˆ
Ω

Π2fmv +
ˆ

Ω
Π2f0 =

ˆ
Ω
fmv =

ˆ
Ω
f. ■
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