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Abstract. The paper deals with the multi-scale approximation of the influence of a small inhomogeneity of arbitrary
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1. Introduction

An important engineering and mathematical literature is devoted to inclusions embedded in elastic
media as for instance in automotive industry to design tires having specific structure stiffnesses. A
good understanding of these inclusions influence is crucial to preserve the quality required by the
traffic safety and driver comfort as well as to reduce maintenance costs.

We are interested in this work to some small elastic inhomogeneous inclusions in an elastic body.
Without adapted treatment, the numerical approximation of this problem requires a mesh refinement
near the inclusions which is rather costly from numerical viewpoint, especially when the inclusion is
small compared to the domain of interest. The homogenization techniques can be used in the particular
case where the inclusions are arranged within a periodic or nearly periodic network. The reader is
referred for instance to [19, 26] for further details. However, these techniques are not convenient when
one needs to evaluate the influence of isolated inclusions. These inclusions are often omitted in many
applications at least for the smallest ones because of the induced computational cost. The asymptotic
analysis could be used to determine isolated inclusions influence, see for instance [5, 7, 11, 12, 17, 20,
31, 33] and the references therein.

One of the motivations behind the design of the proposed method is, similarly to the asymptotic
study presented in [4], to start from the problem without inclusion and write successive correctors on
the solution. This comes from a practical concern in numerical modeling of a complex structure, for
instance the whole simulation of a tire, a concern of our industrial partner. Clearly, the addition of
a number of meshes adapted to small inclusions to take account of their influence is very penalizing
for the complete calculation of the structure. Thus, the primary objective of our method is to keep
a complete calculation of the structure with a mesh that does not account for the inclusions and to
calculate the influence of the inclusions by a separate local calculation on each inclusion. The remainder
of this paper presents the case of a single inclusion, but can easily be generalized to any number of
inclusions, provided they remain isolated.

A second important motivation is to produce a method that can be potentially generalized to the
case of non-linear constitutive laws, typically hyper-elasticity. It is not the aim of the present paper to
present the method in a non-linear framework, but to establish the method in a theoretical framework
which is made possible by the linear character of the chosen problem and the study carried out in [4].
Clearly, for the chosen linear transmission problem, other techniques can be also considered, such as
the use of boundary integrals (see [1]), the construction of an elastic moment tensor accounting for
the effect of the inclusions as in [7], the use of matched asymptotic expansion as in [2, 6], or inverted
finite element techniques [9] to derive an enrichment basis for the solution as in [21]. These methods
do not generalize well to nonlinear constitutive laws, so we propose a method based on a technique
close to domain decomposition techniques.

Consequently, this paper focuses on an approximation of the influence of a small inhomogeneity in
an elastic medium by the construction of a patch type method, computing successive approximations of
the deformation, starting from the deformation without the inclusion. Unlike the analytical approaches
derived from Eshelby’s seminal work [15] and various extensions analyzed later on in [3, 16, 23, 24, 25,
29, 32], the considered inclusion is of arbitrary geometry and elastic property. The proposed method
is close to the Schwarz type domain decomposition method with total overlap (see [14] for instance) as
well as to the patch methods described in [18, 28, 30], except the important difference that the micro
and large scale problems do not take into account the same physics. It is also close to the structural
zoom methods [10, 13] with the main difference of starting from the solution without inclusion and
iterating on correctors to this solution. This last characteristic has the advantage of being less intrusive
for an existing finite element code (the large scale computation is performed on the whole geometry
without taking into account the inclusion) and it allows the link with the asymptotic analysis developed
in [4] and enable us to guarantee some approximation orders.

140
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The paper is organized as follows. A geometrical setting is presented and the solvability is recalled
in Section 2. Our patch method is introduced in Section 3. This method involves incorporating an
intermediate polygonal domain, the so-called influence domain or Patch domain, which contains the
inclusion. Hence a corrector is evaluated on the patch domain by using a mesh refinement and added to
the solution without inclusion evaluated on the whole domain by using a coarse mesh. This procedure
can be iterated to improve the approximation accuracy. Some convergence results of the iterations
to the solution of the transmission problem are given. Then, Section 4 makes the link between our
patch method and the asymptotic analysis in [4]. In the particular case of Dirichlet condition on the
boundary of the domain, it allows us to state an order of convergence with respect to the inclusion and
patch sizes for the corrector on the first iteration. Finally, the numerical patch method is introduced in
Section 5 with a two-scale finite element approximation and some numerical tests on a simple geometry
and a circular inclusion that are compared to the theoretical results of Sections 3 and 4.

2. Mathematical formulation of the transmission problem

Let Ω be a bounded Lipschitz domain in R2 with a Lipschitz-continuous external boundary Γ = ∂Ω. Let
Ω1

f be a bounded connected domain of characteristic size 2 representing the geometry of the inclusion,
and Ωf = εΩ1

f the domain of characteristic size 2ε representing the inclusion, satisfying Ωf ⊂ Ω. Let
Γε = ∂Ωf be the curve separating the two domains and Ωm

def= Ω\Ωf the rest of the domain. The
inclusion is assumed to be small enough compared to the characteristic size R of the domain Ω. We
assume also that the boundary Γ is split into two disjoint sets ΓD and ΓN where Dirichlet and Neumann
boundary conditions are considered, respectively. Finally, we denote by Λ a patch domain supposed
to be included in Ω and containing Ωf (for ε of interest) and by ∂Λ its boundary (see Figure 2.1).

R

Γε

Ωm

O Ωf

2ε

Γ

∂Λ

Λ

Figure 2.1. A small inclusion in an elastic medium

We focus in this work on a two-dimensional multi-scale problem with discontinuous coefficient α
across Γε. Let u : Ω → R2, be the displacement of the body Ω and h be the prescribed Neumann
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boundary condition on ΓN. The mathematical problem is formulated as follows
−αf ∆uf = f in Ωf , (2.1a)

−αm∆um = f in Ωm, (2.1b)
uf = um on Γε, (2.1c)

αf
∂uf

∂n
= αm

∂um

∂n
on Γε, (2.1d)

u = 0 on ΓD, (2.1e)
∂u

∂n
= h on ΓN, (2.1f)

where ∂
∂n denotes the normal derivative, αf > 0 and αm > 0 are the constant shear coefficients in

the inclusion and in the matrix, respectively, while uf and um are the restriction of u to Ωf and Ωm,
respectively. A perfect transmission conditions of u and its normal derivative is assumed. We denote
by u0 the solution to the problem without any inclusion which reads:

−αm∆u0 = f in Ω, (2.2a)
u0 = 0 on ΓD, (2.2b)

∂u0

∂n
= h on ΓN. (2.2c)

We describe the weak formulation associated to problems (2.1) and (2.2). To this aim, we introduce
the following vector space:

V0
def= {v ∈ H1(Ω) : v|ΓD

= 0}. (2.3)
We state the problem (2.1) in a variational form as

find u ∈ V0 such that for all v ∈ V0,∫
Ωm

αm∇u · ∇v dx +
∫

Ωf

αf ∇u · ∇v dx =
∫

Ω
fv dx +

∫
ΓN

hv dS,
(2.4)

while the variational form associated to problem (2.2) is given by
find u0 ∈ V0 such that for all v ∈ V0,∫

Ω
αm∇u0 · ∇v dx =

∫
Ω

fv dx +
∫

ΓN
hv dS.

(2.5)

We assume that h ∈ L2(ΓN) and f ∈ L2(Ω). The existence and uniqueness results to problems (2.4)
and (2.5) follow from Lax–Milgram’s theorem.

3. The proposed patch method

The aim of this section is to introduce our proposed patch method in the continuous framework and
to investigate some basic properties: convergence of the iterations and an a posteriori error estimate
result that allows to estimate if the convergence is reached or not.

Recall that the starting point of our method is u0, the solution which does not take into account
the inclusion and is defined on the whole domain Ω. Then, we define a first corrector on the patch Λ,
denoted w0, in such a way for u0 +w0 to be a better approximation of the solution to the transmission
problem. As far as finite element approximation is concerned, the idea is that the mesh used to
approximate u0 does not take the geometry of the inclusion into account, and that a more refined mesh
should be used to compute the corrector that account for the inclusion. However, in the continuous
framework of this section, it will not be discussed and treated in Section 5.1. From this first correction,
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the idea is then to propose successive iterations that converge towards the solution of the original
transmission problem, by defining successive ui and wi, i ∈ N, always with ui defined on Ω and wi a
corrector defined on the patch Λ.

It should be noted that the major difference between our method and domain decomposition meth-
ods such as [14] or structural zoom methods such as [10] is that the physics are different on the two
scales: the inclusion do not appear directly in the macro problem and is only taken into account on
the micro problem on the patch Λ.

Let us now propose some notations that will be usefull in the following. Let ⟨u, v⟩α,Ω
def=∫

Ω α∇u · ∇v dx be the scalar product and ∥u∥2
α,Ω

def=
∫

Ω α|∇u|2 dx the associated norm for all
(u, v) ∈ H1(Ω) × H1(Ω), where

α
def=

{
αf in Ωf ,

αm in Ωm,

and let
W0

def= {v ∈ H1(Ω) : v|Ω\Λ = 0},

be the Hilbert space whose associated scalar product is ⟨·, ·⟩α,Λ. We denote by ProjW0 : H1(Λ) → H1
0(Λ)

the orthogonal projection onto W0 relatively to this scalar product. Notice that W0 is isomorphic to
H1

0(Λ). In the sequel, we denote Cαf ,αm

def=
√

|αm−αf |
αf

.

3.1. The multi-scale patch method iteration

For the sake of simplicity in defining the iterations, we consider the terms w−1 = u−1 = 0. Then,
begining by the macroscopic problem, for any given wn−1 ∈ W0 and un−1 ∈ V0, n ≥ 0, we denote un

the solution to the following problem on the whole domain Ω:

find un ∈ V0 such that for all v ∈ V0,∫
Ω

αm∇un · ∇v dx =
∫

Ω
fv dx +

∫
ΓN

hv dS

−
∫

Ωf

(αf − αm)∇un−1 · ∇v dx −
∫

Λ
α∇wn−1 · ∇v dx,

(3.1)

Then, the corrector wn will be the solution to the following microscopic problem defined on the
patch Λ: 

find wn ∈ W0 such that for all v ∈ W0,∫
Λ

α∇wn · ∇v dx =
∫

Λ
fv dx −

∫
Λ

α∇un · ∇v dx.
(3.2)

It can be noted that, since w−1 = u−1 = 0, the solution u0 to (3.1) for n = 0 is the solution to the
problem without inclusion (2.5). Note also that even for n > 0, the terms on Ωf in (3.1) are only some
source terms. The approximation of Problem (2.4) will be obtained by successive iteration of the two
sub-problems (3.1) and (3.2)

3.2. Convergence of the iterations

We establish below that un+wn converges toward the solution u to problem (2.4) under some conditions
on the parameters αf and αm, or alternatively on the smallness of the inclusion size ε. To this aim,
let us introduce the following differences between the solution and the successive approximations:

an def= u − (un + wn−1) and bn def= u − (un + wn) (3.3)
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for all n ∈ N. Observe that an and bn belong to V0.
Firstly we prove that ∥bn∥α,Ω ≤ ∥an∥α,Ω and secondly we discuss the conditions under which

∥an∥α,Ω ≤ K
∥∥bn−1∥∥

α,Ω with K < 1 in order to ensure that ∥bn∥α,Ω decreases to zero and that the
iterations converge toward the expected solution.

Lemma 3.1. Assume that u, un and wn be the solutions to problems (2.4), (3.1) and (3.2), respectively
and (3.3) holds. Then, we have

∥bn∥α,Ω ≤ ∥an∥α,Ω (3.4)
for all n ∈ N.

Proof. Since u is the solution to problem (2.4), we may deduce that∫
Λ

α∇u · ∇v dx =
∫

Λ
fv dx (3.5)

for all v ∈ W0. By subtracting (3.5) from (3.2), we get∫
Λ

α∇wn · ∇v dx =
∫

Λ
α∇(u − un) · ∇v dx

for all v ∈ W0. Clearly, we may infer that wn = ProjW0(u − un) and it follows that
∥u − (un + wn)∥α,Λ ≤

∥∥∥u − (un + wn−1)
∥∥∥

α,Λ
. (3.6)

On the other hand, we have
∥u − (un + wn)∥2

α,Ω = ∥u − un∥2
α,Ω\Λ + ∥u − (un + wn)∥2

α,Λ . (3.7)
Inserting (3.6) into (3.7), the desired result follows.

Note that subtracting (3.5) from (3.2), we obtain the following identity:∫
Λ

α∇bn · ∇v dx = 0 (3.8)

with v ∈ W0. The next step consists to establish that there exists K(ε, αf , αl) ∈ ]0, 1[, depending on
ε, αf and αm such that

∥an∥α,Ω ≤ K(ε, αf , αl)
∥∥∥bn−1

∥∥∥
α,Ω

. (3.9)

We deduce from (2.4) and (3.1) that∫
Ω

αm∇un · ∇v dx =
∫

Ω
αm∇u · ∇v dx −

∫
Λ

αm∇wn−1 · ∇v dx

+
∫

Ωf

(αf − αm)∇(u − (un−1 + wn−1)) · ∇v dx

for all v ∈ V0, which according to notations (3.3) implies that∫
Ω

αm∇an · ∇v dx = −
∫

Ωf

(αf − αm)∇bn−1 · ∇v dx (3.10)

for all v ∈ V0. Choosing v = an in (3.10), we get∫
Ω

α |∇an|2 dx =
∫

Ωf

(αf − αm) |∇an|2 dx −
∫

Ωf

(αf − αm)∇bn−1 · ∇an dx.

According to Cauchy–Schwarz’s inequality, we find

∥an∥2
αm,Ωm

+ αm

αf
∥an∥2

αf ,Ωf
= −αf − αm

αf

∫
Ωf

αf ∇bn−1 · ∇an dx ≤ C2
αf ,αm

∥an∥αf ,Ωf

∥∥∥bn−1
∥∥∥

αf ,Ωf

.

(3.11)
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On the one hand, using Young’s inequality, we infer from (3.11) that for all γ > 0 we have

∥an∥2
αm,Ωm

+ αm

αf
∥an∥2

αf ,Ωf
≤ C2

αf ,αm

(
γ ∥an∥2

αf ,Ωf
+ 1

4γ

∥∥∥bn−1
∥∥∥2

αf ,Ωf

)
.

Taking αm
αf

≥ 1 and γ = 1, we obtain

∥an∥2
α,Ω ≤ 1

4
(αm

αf
− 1

) ∥∥∥bn−1
∥∥∥2

αf ,Ωf

. (3.12)

On the other hand, (3.11) implies that

min
(
1,

αm

αf

)
∥an∥α,Ω ≤ C2

αf ,αm

∥∥∥bn−1
∥∥∥

αf ,Ωf

. (3.13)

Hence, defining C̃ > 0 as

C̃
def=



1
4

(αm

αf
− 1

)
if αm

αf
≥ 1,

C2
αf ,αm

min
(
1, αm

αf

) elsewhere,
(3.14)

we may deduce from (3.12) and (3.13) that for 1
2αf < αm < 5αf , ∥bn∥α,Ω ≤ C̃

∥∥bn−1∥∥
α,Ω with C̃ < 1.

Consequently, bn converges to 0 in H1(Ω) under this condition. However, this result can be improved
as we will see later on. To this aim, we define the two following auxiliary problems:

find ζ ∈ H1(Λ) with ζ = q on ∂Λ such that for all z ∈ W0,

⟨ζ, z⟩αm,Λ
def=

∫
Λ

αm∇ζ · ∇z dx = 0,
(3.15)

and 
find η ∈ H1(Λ) with η = q on ∂Λ such that for all z ∈ W0,

⟨η, z⟩α,Λ
def=

∫
Λ

α∇η · ∇z dx = 0.
(3.16)

The existence and uniqueness results to problems (3.15) and (3.16) follow from Lax–Milgram’s the-
orem, the verification is left to the reader. Under appropriate regularity assumptions on bound-
ary conditions, we establish below that ∥ζ∥αf ,Ωf

and ∥η∥αf ,Ωf
are of order O(ε). In the sequel,

we will use the following notations: X def= H1/2(∂Λ) and X ′ def= H−1/2(∂Λ). We will also denote
ε

def= sup[(x − x′)2 + (y − y′)2]1/2, the sup being taken on (x, y), (x′, y′) ∈ Ωf × Ωf and dist(0, ∂Λ)
the distance between 0 and ∂Λ.

Lemma 3.2. Assume that q ∈ X and ζ be the solution to problem (3.15). Then

∥ζ∥αf ,Ωf
≤

4
√

2αf

dist(0, ∂Λ)ε ∥q∥X . (3.17)

Proof. Let 0 < ε < ε0 with ε0 small enough. We assume that ε0 is chosen so small that Ωf ⊂ Cϱ/2 ⊂
Cϱ ⊂ Λ for 1

2dist(0, ∂Λ) ≤ ϱ < dist(0, ∂Λ). Here, Cϱ denotes a disk with radius ϱ > 0 centered at the
origin. For any (x, y) ∈ Cϱ/2, we set z

def= x + iy. Using the Poisson kernel, we get ζ(x, y) = Rf(z) with
f(z) = 1

2 π

∫ π
−π

ϱeiθ+z
ϱeiθ−z

ζ(ϱ cos(θ), ϱ sin(θ))dθ. Since |z| ≤ ϱ/2, we have∣∣f ′(z)
∣∣ ≤ 1

π

∫ π

−π

∣∣∣ ϱeiθ

(ϱeiθ − z)2

∣∣∣ |ζ(ϱ cos(θ), ϱ sin(θ))| dθ ≤ 4
√

2
ϱ
√

π
∥ζ∥L2(∂Cϱ) .
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The euclidian norm |∇ζ(x, y)| satisfies the same inequality, which by integration over Ωf gives

∥ζ∥2
αf ,Ωf

≤ 32αf

πϱ2 |Ωf | ∥ζ∥2
L2(∂Cϱ) ≤ 32αf ε2

ϱ2 ∥ζ∥2
H1(Λ) ≤ 32αf ε2

ϱ2 ∥q∥2
X

for 0 < ε < ε0. Replacing ϱ by dist(0, ∂Λ), we get (3.17).

Lemma 3.3. Assume that q ∈ X and η be the solution to problem (3.16). Then, defining K =

max{αf , αm}
4(1+C2

αf ,αm )
√

2αf

dist(0,∂Λ) , one has

∥η∥αf ,Ωf
≤ K ε ∥η∥α,Λ .

Proof. Let us define ν
def= ζ − η where ζ and η are the solution to problems (3.15) and (3.16),

respectively. Hence it comes that∫
Λ

α∇ν · ∇z dx =
∫

Ωf

(αm − αf )∇ζ · ∇z dx,

for all z ∈ W0. Since ν ∈ W0, we get
∥ν∥α,Λ ≤ C2

αf ,αm
∥ζ∥αf ,Ωf

. (3.18)
It follows by using the triangular inequality and (3.18) that

∥η∥αf ,Ωf
≤

(
1 + C2

αf ,αm

)
∥ζ∥αf ,Ωf

.

Hence, Lemma 3.2 and trace inequality lead to
∥η∥αf ,Ωf

≤ Cε ∥q∥X ≤ max{αf , αm} Cε ∥η∥α,Λ ,

with C =
4(1+C2

αf ,αm
)
√

2αf

dist(0,∂Λ) , which completes the proof.

Finally, we prove below that there exists a positive constant K < 1 such that

∥bn∥α,Ω ≤ K
∥∥∥bn−1

∥∥∥
α,Ω

(3.19)

for any n ∈ N, provided ε > 0 is small enough.

Proposition 3.4. Assume that the assumptions of Lemma 3.3 hold. Then, for ε small enough and
any n ∈ N, (3.19) holds true with K

def= K C̃ ε and C̃ defined by 3.14.

Proof. According to Lemma 3.1, we have ∥bn∥α,Ω ≤ ∥an∥α,Ω. Since ∥an∥α,Ω ≤ C̃
∥∥bn−1∥∥

αf ,Ωf

(see (3.13)), we obtain
∥bn∥α,Ω ≤ C̃

∥∥∥bn−1
∥∥∥

αf ,Ωf

. (3.20)

Appealing to (3.8) and Lemma 3.3, with η = bn−1, we have∥∥∥bn−1
∥∥∥

αf ,Ωf

≤ K C̃ ε
∥∥∥bn−1

∥∥∥
α,Λ

. (3.21)

Finally, (3.20) and (3.21) lead to (3.19).

3.3. A posteriori error estimate

Let us introduce a result that allows to estimate the error norm ∥bk∥α,Ω with respect to a norm of the
correctors on the boundary of the patch. This result is of practical interest to compute an estimation
of the error in a numerical procedure.
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Lemma 3.5. Still considering bk def= u − (uk + wk), for all k ≥ 1, we have

∥bk∥α,Ω ≤ C
∥∥∥∂wk−1

∂n
− ∂wk

∂n

∥∥∥
X ′

.

Proof. If g is a function defined on Ω, we denote by g1 and g2 the restrictions to Ω\Λ and Λ\Ωf ,
respectively. Let n be the unit outward normal to the boundary of Λ.
From (3.8), we have ∆bk = 0 on Λ. Hence, by using Green’s formula, we get∫

Λ
α∇bk · ∇v dx =

〈
αm

∂

∂n
(u2 − (uk

2 + wk
2)), v

〉
X ′,X

(3.22)

for all v ∈ H1(Ω). Let us define Ṽ0
def= {v ∈ V0, v|Λ = 0}. Observe that bk is a solution to the following

problem: 
∫

Ω\Λ
α∇bk · ∇v dx = 0 for all v ∈ Ṽ0,

bk = 0 on ΓD,
∂bk

∂n
= 0 on ΓN.

(3.23)

It follows that ∆bk
|Ω\Λ

= 0 and therefore by Green’s formula leads to∫
Ω\Λ

α∇bk · ∇v dx = −
〈
αm

∂

∂n
(u1 − uk

1 − wk
1), v

〉
X ′,X

(3.24)

for all v ∈ V0. Hence, by (3.22) and (3.24), we have∫
Ω

α∇bk · ∇v dx =
〈
αm

∂

∂n
(u2 − uk

2 − wk
2) − αm

∂

∂n
(u1 − uk

1 − wk
1), v

〉
X ′,X

(3.25)

for all v ∈ V0. Next, notice that (u − uk − wk−1) ∈ H1(Ω) satisfies∫
Ωm

αm∇(u − uk − wk−1) · ∇v dx = 0

for all v ∈ H1
0(Ωm), due to (2.4), (3.1) and wk−1 = 0 on Ω\Λ. Hence we have ∆

(
(u − uk − wk−1)|Ωm

)
=

0 and ∆
(
(u − uk − wk−1)|Ωm

)
∈ L2(Ωm). Since ∂Λ ⊂ Ωm, we get the following jump relation:

∂

∂n
(u2 − uk

2 − wk−1
2 ) − ∂

∂n
(u1 − uk

1 − wk−1
1 ) = 0 on ∂Λ. (3.26)

According to (3.25), (3.26) and wk
1 = wk−1

1 = 0, we obtain∫
Ω

α∇bk · ∇v dx = −
〈
αm

∂

∂n
(wk−1

2 − wk
2), v

〉
X ′,X

(3.27)

for all v ∈ V0. Taking v = bk in (3.27), using Cauchy–Schwarz’s and trace inequalities, the desired
result follows.

Remark 3.6. Note that from a numerical viewpoint, the X ′-norm is difficult to compute. However,
in a numerical context, it would be sufficient to compute a L2(∂Λ)-norm, the result of Lemma 3.5
being still valid with this norm and the two norms being equivalent for a fixed mesh size.

4. The patch method and asymptotic analysis approaches

The aim of this section is to describe the link between the first iteration of our patch method (namely
u0 and w0) and the asymptotic analysis given in [4, 22]. This link allows us to provide an error estimate
between the result of the first iteration and the solution to the original problem, exhibiting a linear
dependency of the error with respect to the patch size and a quadratic dependency with respect to
the inclusion size. This study is restricted to the case ΓD = ∂Ω since the asymptotic analysis has only
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been developed in this framework. The main result is given by Lemma 4.3 which provides an estimate
of the difference between the corrector of the first iteration of the proposed patch method and the first
term of the asymptotic expansion. Then Lemma 4.4 gives an estimate of the normal derivative of the
corrector, which also gives an error estimate due to Lemma 3.5 and the fact that w−1 = 0.

Let us recall that the first order expansion of the problem with the small inclusion can be written

u(x) = u0(x) + εW 0
(x

ε

)
+ O(ε2),

where W 0 is the solution to the following problem
find W 0 ∈ ṼR0

log such that for all v ∈ ṼR0
log ,∫

Ω1
f

(αf − αm)∇u(0)(0) · ∇v dx +
∫

Ω1
f

αf ∇W 0 · ∇v dx +
∫

Ω∞
αm∇W 0 · ∇v dx = 0,

(4.1)

where Ω1
f is Ωf for ε = 1, Ω∞ = Rd \ Ω1

f , and for a fixed R0 > 1, the space ṼR0
log is a closed subspace of

Vlog
def=

{
v ∈ D′(R2) : (1 + |x|2)−1/2(log(2 + |x|2))−1v ∈ L2(R2) and ∇v ∈ L2(R2)2}

,

defined by

ṼR0
log

def=
{

v ∈ Ṽlog :
∫ π

−π
v(R0 cos(θ), R0 sin(θ))dθ = 0

}
,

and endowed with the norm

∥v∥ṼR0
log

def=
(
∥(1 + |x|2)−1/2(log(2 + |x|2))−1v∥2

L2(R2) + ∥∇v∥2
L2(R2)

)1/2
.

For the self consistence of the paper, the estimate on the rest of the first order expansion is recalled
below (see for instance [22]). The rest of the section will be dedicated to demonstrate that the difference
between the corrector of the patch method w0 and εW 0( ·

ε

)
is of order O

(
ε2

diam(Λ)
)
. We give also the

result that
∥∥∂w0

∂n

∥∥
H−1/2(∂Λ) is of order O

(
ε2

diam(Λ)3/2

)
. These results gives also some estimates on the

rest u − (u0 + w0).

Lemma 4.1. There exists a constant C > 0, independent of ε, such that∥∥∥∥u − u0 − εW 0
( ·

ε

)∥∥∥∥
H1(Ω)

≤ Cε2. (4.2)

Proof. The corrector W 0 satisfies∫
Ωf

(αf − αm)∇u(0)(0) · ∇v dx +
∫

Ωf

αf ∇
(
εW 0

( ·
ε

))
· ∇v dx +

∫
Ωm

αm∇
(
εW 0

( ·
ε

))
· ∇v dx = 0 (4.3)

for all v ∈ H1
0(Ω). On the other hand, by subtracting (2.4) from (2.5), we obtain∫

Ωf

(αf − αm)∇u0 · ∇v dx +
∫

Ωf

αf ∇(u − u0) · ∇v dx +
∫

Ωm

αm∇(u − u0) · ∇v dx = 0. (4.4)

Then, it comes by subtracting (4.4) from (4.3) that∫
Ωf

(αf − αm)(∇u(0) − ∇u(0)(0)) · ∇v dx +
∫

Ωf

αf ∇
(
u − u(0) − εW 0

( ·
ε

))
· ∇v dx

+
∫

Ωm

αm∇
(
u − u(0) − εW 0

( ·
ε

))
· ∇v dx = 0 (4.5)

for all v ∈ H1
0(Ω).
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Let L : H1/2(Γ) → H1(Ω) be a continuous lifting operator (see for instance [27]). We define zε def=
L

(
−εW 0( ·

ε

))
and ξε def= u − u0 − εW 0( ·

ε

)
− zε. Note that for v ∈ H1

0(Ω) and by using (4.5), we find∫
Ωf

αf ∇ξε · ∇v dx +
∫

Ωm

αm∇ξε · ∇v dx +
∫

Ωf

(αf − αm)(∇u0(0) − ∇u0) · ∇v dx

= −
∫

Ωf

αf ∇zε · ∇v dx −
∫

Ωm

αm∇zε · ∇v dx. (4.6)

Choosing v = ξε ∈ H1
0(Ω) in (4.6), we get

αf ∥∇ξε∥2
L2(Ωf ) + αm ∥∇ξε∥2

L2(Ωm) +
∫

Ωf

(αf − αm)(∇u0(0) − ∇u0) · ∇ξε dx

= −
∫

Ωf

αf ∇zε · ∇ξε dx −
∫

Ωm

αm∇zε · ∇ξε dx,

which by using Cauchy–Schwarz’s inequality leads to
∥∇ξε∥L2(Ω) ≤ C

(∥∥∥∇u0(0) − ∇u0
∥∥∥

L2(Ωf )
+ ∥∇zε∥L2(Ω)

)
.

According to Poincaré’s inequality, we find
∥ξε∥H1(Ω) ≤ C

(∥∥∥∇u0(0) − ∇u0
∥∥∥

L2(Ωf )
+ ∥zε∥H1(Ω)

)
.

Notice that ξε = u − u0 − εW 0( ·
ε

)
− zε allows to infer that∥∥∥∥u − u0 − εW 0

( ·
ε

)∥∥∥∥
H1(Ω)

≤ C
(∥∥∥∇u0(0) − ∇u0

∥∥∥
L2(Ωf )

+ ∥zε∥H1(Ω)
)
. (4.7)

By using the continuity of the lifting operator from H1/2(Γ) to H1(Ω), we get∥∥∥∥u − u0 − εW 0
( ·

ε

)∥∥∥∥
H1(Ω)

≤ C
(∥∥∥∇u0(0) − ∇u0

∥∥∥
L2(Ωf )

+ ε
∥∥∥W 0

( ·
ε

)∥∥∥
H1/2(Γ)

)
. (4.8)

We evaluate now separately the two terms on the right hand side of (4.8). On the one hand, we observe
that

∇u0(x) = ∇u0(0) + O(|x|).
Consequently, we find ∥∥∥∇u0(x) − ∇u0(0)

∥∥∥
L2(Ωf )

≤ C ∥x∥L2(Ωf ) ≤ Cε2. (4.9)

On the other hand, the last term on the right hand side of (4.8) can be evaluated thanks to an
expansion of W 0 in polar coordinates. Let x

def= (r cos(θ), r sin(θ)) for all r ≥ εR0 with R0 > 1. Since
W 0 is an harmonic function, for all n ∈ N∗ and θ ∈ [0, 2π], there exists (ãn, b̃n) ∈ R2 such that

W 0
(x

ε

)
=

∑
n≥1

(εR0
r

)n
(ãn cos(nθ) + b̃n sin(nθ)). (4.10)

Let Ωc be a subset of R2 with Γ ⊂ Ω̊c, such that there exists (ϱ1, ϱ2) ∈ R2 with ϱ1 < |x| < ϱ2, for all
x ∈ Ωc. Then, the trace inequality leads to∥∥∥W 0

( ·
ε

)∥∥∥
H1/2(Γ)

≤ C
∥∥W 0

( ·
ε

)∥∥∥
H1(Ωc)

. (4.11)

Choosing ε > 0 such that ε < ϱ1
R0

, we get∥∥∥W 0
( ·

ε

)∥∥∥2

L2(Ωc)
≤ 2ε2R2

0|Ωc|
ϱ2

1

∑
k≥1

(εR0
ϱ1

)2(k−1)(
|ãk|2 + |b̃k|2

)
≤ Cε2, (4.12a)

∥∥∥∇W 0
( ·

ε

)∥∥∥2

L2(Ωc)
≤ 4ε2R2

0|Ωc|
ϱ2

1

∑
k≥1

k2
(εR0

ϱ1

)2(k−1)(
|ãk|2 + |b̃k|2

)
≤ Cε2, (4.12b)
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where |Ωc| stands for the usual measure of Ωc. Introducing (4.12) into (4.11), we get∥∥∥W 0
( ·

ε

)∥∥∥
H1/2(Γ)

≤ Cε. (4.13)

Carrying (4.9) and (4.13), we finally obtain (4.2).

In order to make a comparison with respect to the size of the inclusion ε and the size of the patch,
without changing its geometry, we introduce a fixed size patch Λ̃ ⊂ Ω (such that ∂Λ̃ ∩ ∂Ω = ∅). We
consider Λ = Λ̃

p with p > 1. It is also convenient to introduce the following notation:

hp : Λ̃ −→ Λ
u 7−→ u/p.

In the sequel, we denote by L : H1/2(∂Λ̃) → H1(Λ̃) the continuous harmonic lifting operator in the
fixed configuration. We define Lp : X → H1(Λ) as the scaled harmonic lifting operator, for all fp ∈ X
and x ∈ Λ, we get

(Lp(fp))(x) = (Lf)(px)

with f(z) def= fp(z/p) for any z ∈ ∂Λ̃. Notice that

∥∇(Lpfp)∥2
L2(Λ) = ∥∇(Lf)∥2

L2(Λ̃) . (4.14)

The following estimate between W 0( ·
ε

)
and ProjW0

(
W 0( ·

ε

))
is an intermediate result which allow

us to get an estimate between w0 and W 0( ·
ε

)
.

Lemma 4.2. There exists a constant C > 0, independent of ε and p, such that∥∥∥∥W 0
( ·

ε

)
− ProjW0

(
W 0

( ·
ε

))∥∥∥∥
α,Λ

≤ Cpε. (4.15)

Proof. Let Wp
def= W 0( ·

ε

)
− ProjW0

(
W 0( ·

ε

))
, W

def= W 0( ·
pε

)
, fp

def= W 0( ·
ε

)
|∂Λ and f

def= W|∂Λ̃
=

W 0( ·
pε

)
|∂Λ̃

. Observe that Wp is the unique solution of the following variational formulation:
find Wp ∈ H1(Λ) with Wp = fp on ∂Λ such that for all z ∈ W0,∫

Λ
α∇Wp · ∇z dx = 0.

Hence, we can apply (3.18) to η = Wp and ζ = Lpfp, we find
∥Wp − Lpfp∥α,Λ ≤ Cαf ,αm ∥Lpfp∥αf ,Ωf

≤ Cαf ,αm ∥Lpfp∥α,Λ .

It follows that
∥Wp∥α,Λ ≤ (1 + Cαf ,αm) max (αf , αm) ∥∇(Lpfp)∥L2(Λ) ≤ (1 + Cαf ,αm) max (αf , αm) ∥∇(Lf)∥L2(Λ̃) ,

by (4.14). Finally, by using (4.13), we find
∥Wp∥α,Λ ≤ C max (αf , αm) ∥f∥H1/2(∂Λ̃) ≤ C max (αf , αm)pε.

We can now establish the following estimate between the corrector w0 given by the patch method
and W 0( ·

ε

)
the corrector of the asymptotic analysis.

Lemma 4.3. Let w0 be the solution to Problem (3.2) for n = 0. Then, we have∥∥∥∥w0 − εW 0
( ·

ε

)∥∥∥∥
α,Λ

≤ Cpε2. (4.16)
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Proof. Note that the triangle inequality leads to∥∥∥∥w0 − εW 0
( ·

ε

)∥∥∥∥
α,Λ

≤
∥∥∥∥w0 − ProjW0

(
εW 0

( ·
ε

))∥∥∥∥
α,Λ

+ ε

∥∥∥∥ProjW0

(
W 0

( ·
ε

))
− W 0

( ·
ε

)∥∥∥∥
α,Λ

. (4.17)

Since w0 = ProjW0(u − u0), it comes that∥∥∥w0 − ProjW0

(
εW 0

(
·
ε

))∥∥∥
α,Λ

≤
∥∥∥∥ProjW0

(
u − u0 − εW 0

( ·
ε

))∥∥∥∥
α,Λ

≤
∥∥∥∥u − u0 − εW 0

( ·
ε

)∥∥∥∥
α,Λ

. (4.18)

According to inequality (4.17), Lemmas 4.1 and 4.2, (4.16) follows.

On the one hand, we observe that

∥u − (u0 + w0)∥α,Λ ≤ ∥u − u0 − εW 0
( ·

ε

)∥∥∥
α,Ω

+
∥∥∥w0 − εW 0

( ·
ε

)∥∥∥
α,Λ

≤ Cε2 + Cpε2 ≤ Cpε2.

On the other hand, this implies

∥u − (u0 + w0)∥α,Ω ≤
∥∥∥u − u0 − εW 0

( ·
ε

)∥∥∥
α,Ω

+
∥∥∥w0 − εW 0

( ·
ε

)∥∥∥
α,Ω

≤
∥∥∥u − u0 − εW 0

( ·
ε

)∥∥∥
α,Ω

+
∥∥∥w0 − εW 0

( ·
ε

)∥∥∥
α,Λ

+ ε
∥∥∥W 0

( ·
ε

)∥∥∥
αm,Ω\Λ

≤ Cε2 + Cpε2 + ε
∥∥∥W 0

( ·
ε

)∥∥∥
αm,Ω\Λ

.

By using (4.12) for ϱ1, which is the largest radius of the circle included in Λ, for ε < ϱ1
R0

, we find∥∥∥W 0
( ·

ε

)∥∥∥
αm,Ω\Λ

≤ C
ε

ϱ1
≤ Cpε,

which implies that ∥∥∥u − (u0 + w0)
∥∥∥

α,Ω
≤ Cpε2. (4.19)

We give now an estimate for
∥∥∂w0

∂n

∥∥
X ′ .

Lemma 4.4. There exists a constant C > 0, independent of ε and p, such that∥∥∥∂w0

∂n

∥∥∥
X ′

≤ Cp3/2ε2 ≤ Cε2

diam(Λ)3/2 . (4.20)

Proof. We evaluate first ∥f∥H1/2(∂Λ̃) with respect to ∥fp∥X . To this aim, we define the linear operator
Dp as follows

Dp : H (∂Λ) −→ H (∂Λ̃)
fp 7−→ f

(4.21)

where H could be L2, or H1/2 or H1. On the one hand, we observe that

∥f∥2
L2(∂Λ̃) =

∫
∂Λ̃

|f(u)|2 dS =
∫

∂Λ̃
|fp(u/p)|2 dS = p ∥fp∥2

L2(∂Λ) ,

and
∥∇f∥2

L2(∂Λ̃) =
∫

∂Λ̃

1
p2 |∇fp(u/p)|2 dS = 1

p
∥∇fp∥2

L2(∂Λ)

for all p ≥ 1. We deduce that

∥Dp∥L2 = sup
fp∈L2(∂Λ)

∥f∥L2(∂Λ̃)
∥fp∥L2(∂Λ)

= √
p,

∥Dp∥H1 = sup
fp∈H1(∂Λ)

∥f∥H1(∂Λ̃)
∥fp∥H1(∂Λ)

≤ √
p + 1

√
p

with p ≥ 1.
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By interpolating [8], we find
∥Dp∥H1/2 ≤ C ∥Dp∥1/2

L2 ∥Dp∥1/2
H1 ≤ C

√
1 + p,

with a constant C > 0 independent of ε > 0 and p ≥ 1. Let θ ∈ C∞(Λ̃, [0, 1]) be a cut-off function such
that θ(x) = 1 for x in a small tubular neighborhood T of ∂Λ̃ and θ(x) = 0 outside a small tubular
neighborhood containing T and θp = θ ◦ (hp)−1. Using the regularity of w0 and Green’s formula, it
comes that ∫

Λ
α∇w0 · ∇(θpLpfp)dx =

〈∂w0

∂n
, fp

〉
X ′,X

for all fp ∈ H1/2(∂Λ). Denoting T̃ = {x ∈ Λ̃ : θ(x) > 0} and T = T̃
p , we deduce that∣∣∣〈∂w0

∂n
, fp

〉
X ′,X

∣∣∣ ≤ αm

∥∥∥∇w0
∥∥∥

L2(T )
∥∇(θpLpfp)∥L2(Λ) = αm

∥∥∥∇w0
∥∥∥

L2(T )
∥∇(θLf)∥L2(Λ̃) .

However, we have
∥∇(θLf)∥L2(Λ̃) ≤ ∥θ∥W1,∞(Λ̃)∥Lf∥H1(Λ̃) ≤ C ∥f∥H1/2(∂Λ̃)

≤ C ∥Dpfp∥H1/2(∂Λ̃) ≤ C ∥Dp∥H1/2 ∥fp∥X ≤ C
√

1 + p ∥fp∥X ,

and ∥∥∥∇w0
∥∥∥

L2(T )
≤

∥∥∥∥∇w0 − ε∇W 0
( ·

ε

)∥∥∥∥
L2(Λ)

+ ε

∥∥∥∥∇W 0
( ·

ε

)∥∥∥∥
L2(T )

. (4.22)

On the one hand, Lemma 4.3 leads to∥∥∥∥∇w0 − ε∇W 0
( ·

ε

)∥∥∥∥
L2(Λ)

≤ Cpε2.

On the other hand, (4.12) and since |x| > ϱ1 for x ∈ T̃ , we get∥∥∥∥∇W 0
( ·

ε

)∥∥∥∥
L2(T )

=
∥∥∥∥∇W 0

( ·
pε

)∥∥∥∥
L2(T̃ )

≤ Cpε.

Consequently, we obtain∣∣∣〈∂w0

∂n
, fp

〉
X ′,X

∣∣∣ ≤ Cpε2 √
1 + p ∥fp∥X ≤ Cε2p3/2 ∥fp∥X ,

which proves the lemma.

5. Numerical study

5.1. Numerical multi-scale patch method

In this section, we present a multi-scale discrete patch method defined by the iterative patch pro-
cedure (3.1) and (3.2). To this aim, we introduce T Λ and T Ω two non-degenerated non-overlapping
triangulations, the respective polygonal domain partitions of Λ and Ω. More precisely, T Λ is a refined
mesh of Λ with a maximal size equal to h that accounts for the inclusion and T Ω is a relatively coarse
mesh of Ω with a maximal size H that is generally not conformal to the inclusion. However, for the
sake of simplicity, T Ω is taken conformal to the boundary of Λ. In order to approximate un and wn,
we first introduce the following Lagrange finite element spaces, for k a chosen degree:

VH
0

def= {v ∈ C0(Ω) : for all K triangle of T Ω, v|K ∈ P k(K), v|ΓD
= 0} ⊂ V0,

Wh
0

def= {v ∈ C0(Ω) : for all K triangle of T Λ, v|K ∈ P k(K), v|Ω\Λ = 0} ⊂ W0.
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We still use the convention w−1
h = u−1

H = 0 for the simplicity of the definition of the iterations. Hence
for any wn−1

h and un−1
H given, n ≥ 0, we first solve the following macro problem on T Ω:

find un
H ∈ VH

0 such that for all vH ∈ VH
0 ,∫

Ω
αm∇un

H · ∇vH dx =
∫

Ω
fvH dx +

∫
ΓN

hvH dS

−
∫

Ωf

(αf − αm)∇un−1
H · ∇vH dx −

∫
Λ

α∇wn−1
h · ∇vH dx,

(5.1)

and then we solve the following micro problem on T Λ:
find wn

h ∈ Wh
0 such that for all vh ∈ Wh

0 ,∫
Λ

α∇wn
h · ∇vh dx =

∫
Λ

fvh dx −
∫

Λ
α∇un

H · ∇vh dx.
(5.2)

From a numerical viewpoint, the micro and macro coupling terms in (5.1) and (5.2) are computed us-
ing standard (but eventually composite) Gauss-quadrature formulas on the macro and micro meshes,
respectively. Clearly, the solution wn−1

h to the micro problem (5.2) (resp. un
H to the macro prob-

lem (5.1)) is implicitly employed in the macro problem (5.1) (resp. the micro problem (5.2)) through
its orthogonal projection onto the space VH

0 (resp. Wh
0 ) with respect to the scalar product ⟨·, ·⟩α,Λ

(more rigorously by the scalar product induced by approximate integration). Let

un
hH

def= un
H + wn

h . (5.3)
The reader may notice that un

hH is an approximate solution of u (see (2.4)) on the nth iteration. We
denote by T ref a regular mesh with a maximal size href conformal to both boundaries ∂Λ and Γε.
The reference solution uref, used later in the numerical simulations, is the solution to the discrete
variational formulation:

find u ∈ Vhref
0 such that for all v ∈ Vhref

0 ,∫
Ωm

αm∇u · ∇v dx +
∫

Ωf

αf ∇u · ∇v dx =
∫

Ω
fv dx +

∫
ΓN

hv dS.
(5.4)

Assume that wn
h and un

H converge to wh and uH , respectively, as n tends to ∞. It follows by
adding (5.1) and (5.2) that∫

Ω
α∇(uH + wh) · ∇(vH + vh)dx =

∫
Ω

f(vH + vh)dx +
∫

ΓN

h(vH + vh)dS,

for all vH ∈ VH
0 and all vh ∈ Wh

0 which means that uhH = uH + wh is the best approximation to the
solution on the sum of the approximation spaces VH

0 + Wh
0 .

5.2. Test problem definition

The numerical tests presented below are performed on a simple square geometry Ω = (−L, L)×(−L, L)
with L = 10. We assume that the boundary Γ is split into two distinct parts, namely, Dirichlet and
Neumann boundaries denoted by ΓD = (−L, L) × {−L} ∪ (−L, L) × {L} and ΓN = {−L} × (−L, L) ∪
{L} × (−L, L), respectively, where homogeneous conditions are prescribed. Furthermore, we suppose
that the inclusion is a disk of center (3, 2) and radius ε (see Figure 5.1), while the patch domain is a
square Λ = (3 − l, 3 + l) × (2 − l, 2 + l). Unless otherwise stated, the values of ε and l are 1 and 4,
respectively. We choose the volumetric source term f equal to 10 cos( π

4 L x) cosh( y
2 L). Note that the

reference solution (see Figure 5.2a) is computed on the reference mesh T ref (see Figure 5.2b) while
all the numerical simulations are performed using a macro mesh T Ω conformal to the patch boundary
∂Λ. We use quadratic finite elements (k = 2) and standard fourth-order Gauss-quadrature formulas
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on the triangles of both meshes. However, for the coupling terms, we utilize composite quadrature
formulas, dividing each triangle into three ones, for a higher accuracy integration.

Ω

Λ
∂Λ Ωf

Γε

ΓN ΓN

ΓD

ΓD

Figure 5.1. A simple square domain containing an inclusion and a patch.

x

10.0
7.5

5.0
2.5

0.0
2.5

5.0
7.5

10.0

y

10.0
7.5

5.0
2.5

0.0
2.5

5.0
7.5

10.0

0
1
2
3
4
5
6

uref

1

2

3

4

5

6

(a) Reference solution (αm = 75 and αf = 100) (b) Conformal mesh

Figure 5.2. A reference solution and an example of a conformal mesh with href = L
20
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5.3. Numerical convergence of the iterations

5.3.1. Convergence of the iterations with a single mesh for the reference, micro and macro models

In this section, our goal is to test the convergence of the iterations without the influence of the
difference between the meshes (and the corresponding projections) of macro and micro problems by
using the same mesh for the three problems, although this situation is not really of practical interest.
When the convergence occurs and since VH

0 +Wh
0 = VH

0 = Vhref
0 , the iterations should converge toward

the reference solution up to machine precision
We consider, in the numerical simulations, several values of αm and αf and for h = H = href = L

40 .
We illustrate the impact of the contrast between αm and αf on the solution by plotting the difference
between the solutions associated to the reference model uref and the macro model (see Figures 5.3a
and 5.3b). Recall that u0

H is the approximate solution of (2.2) without any inclusion (it is the solution
to (5.1) for n = 0).
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Figure 5.3. Plot of uref − u0
H for two different contrasts.

The relative error rate in the H1(Ω)-norm between uref and un
hH is plotted in Figure 5.4 according

to the variation of the iterations number n. We observe that the iterative procedure converges within
few iterations. Since the convergence occurs for all tested contrast values, the results obtained by the
numerical simulations are much better than expected by the theoretical results presented in Section 3.2.

5.3.2. Convergence of the iterations with non-matching meshes

In order to highlight the influence of the difference of meshes on micro and macro problems, we consider
now three independent meshes. The reference solution is computed by using an adaptive mesh, where
the maximum size near the inclusion is set as href = L

600 , while in the remaining domain it is L
80 .

Furthermore, meshes are generated for the micro and macro models, having maximal sizes h = L
120

and H = L
40 , respectively. Note that the mesh for the macro model is non-conformal to the inclusion

boundary ∂Ωf .
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Figure 5.4. The relative error in H1(Ω)-norm for different values of contrast (between
αm and αf = 100) and with the same mesh for the reference, micro and macro model
(h = H = href = L

40).
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Figure 5.5. The relative error in H1(Ω)-norm with respect to the variation of the
number of iteration n for different values of contrast between αm and αf = 100, non-
matching meshes (h = L

120 , H = L
40) and a non-conformal macro mesh with the inclu-

sion ∂Ωf .

We observe that if αm ≥ 15, the iterative procedure converges quickly for the H1(Ω)-norm (see
Figure 5.5) but with higher relative error than in the case where the same mesh is used for the three
models. While in the case where αm < 15, the error decreases during the first iterations, but the
procedure finally diverges. Consequently, this scenario is less advantageous than the one involving

156



A multi-scale patch approximation for Poisson problems

identical meshes and aligns more closely with the theoretical outcomes presented in Section 3.2 which
predicts convergence for not too high contrast or for a sufficiently small inclusion. However, in both
cases, the error resulting from halting after the second iteration is quite low.

Finally, we might note that the iterations convergence in the case where αm < 15 can be recovered
by a refinement of the patch mesh (see Figure 5.6), i.e. by taking the micro mesh size h sufficiently
small. Here we choose H = L

40 , αm = 1 and αf = 100.
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ef
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80
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h = L
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320

Figure 5.6. The relative error in H1(Ω)-norm with respect to the variation of the
number of iteration n for different values of micro-mesh size (with αm = 10 and
αf = 100), non-matching meshes (H = L

40) and a non-conformal macro mesh with
the inclusion ∂Ωf .

5.4. A relaxation method to recover the convergence

As an alternative approach to the refinement of the patch mesh, we propose below a relaxation method
in the case of a high contrast. Since Problem (5.2) corresponds to a descent method on the potential
energy associated to the system in the direction wn

h , it does not alter the iteration convergence. The
non-convergence for high contrast values arises from the term un−1

H in (5.1). This term follows the
asymptotic expansion and ensures that u0

H is the solution without the inclusion. Furthermore, w0
h is

close to the first corrector of the asymptotic expansion and globally un
H is a smooth solution which does

not take into account the local variations across the interface between the matrix and the inclusion
which is handled by wn

h . To decrease the influence of this term on the convergence, we propose to
introduce a relaxation keeping u0

H and w0
h unchanged and, for β ∈ (0, 1) a relaxation coefficient, to

modify from the second iteration as follows:

• denoting now ũn
H a solution to (5.1) for n ≥ 1 and taking un

H = βũn
H +(1−β)un−1

H instead ũn
H .

• the remaining is unchanged, in particular, wn
h is still a solution to (5.2).

Note that this relaxation method is applied only to the step (5.1) and, thus, it slightly differs from
the relaxation method proposed in [18]. Looking at Figure 5.7, it is clear that with a sufficiently
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low relaxation coefficient (specifically, β ≤ 0.05 in this scenario), our iterative approach can recover
convergence even under high-contrast conditions (with αm = 1 and αf = 100). However, the cost of
this restored convergence is an elevation in the required number of iterations for achieving convergence.
Numerically, it seems that there is approximately a linear dependence between the largest value of β
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= 0.5
= 1

Figure 5.7. The relative error in H1(Ω)-norm with respect to the variation of the
number of iteration n for different values of the relaxation coefficient (with αm = 1 and
αf = 100), non-matching meshes (h = L

120 , H = L
40) and a non-conformal macro mesh

with the inclusion ∂Ωf .

ensuring the convergence and the contrast, namely β = 5 αm
αf

. In Figure 5.8, we found that choosing
β = 5 αm

αf
guarantees the convergence for a wide range of contrast and ε values even though the number

of iterations to reach the convergence varies.

5.5. Influence of the patch size

In this section the reference solution is computed using an adaptive mesh with a maximal size href
equal to L

600 in the inclusion vicinity and L
80 in the remained domain. In order to study the effect of

the patch domain size on the accuracy of the obtained solution by the multi-scale patch strategy, we
plot in Figure 5.9 the relative error in L2(Ω) and H1(Ω) norms according to the patch characteristic
parameter p with h = L

80 , H = L
40 and a non-conformal mesh with the boundary ∂Ωf for the macro

model. As expected, we observe that the relative error between u0
hH and uref , decreases in both L2(Ω)

and H1(Ω) norms, when the patch size increases (see the Figure 5.9a). Note that the convergence rate
of order 1 in H1(Ω)-norm given by the theoretical estimate (4.19) is not fully reached for large value
of p. This corresponds to patch sizes close to the inclusion size for which there is probably some side
effects. On the other hand, the relative errors between uhH and uref , in both L2(Ω) and H1(Ω) norms,
remain almost constant when the patch size varies (see the Figure 5.9b). Consequently, we conclude
that the choice of a relatively small patch can be compensated by using an adequate iterations number
of the proposed method.
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Figure 5.8. The relative error in H1(Ω)-norm with respect to the variation of the
number of iterations n for different values of the size of the inclusion ε (with αm = 1
and the relaxation coefficient β = 5 αm

αf
), non-matching meshes (h = L

120 , H = L
40) and

a non-conformal macro mesh with the inclusion ∂Ωf
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Figure 5.9. The relative error in L2(Ω) and H1(Ω) norms for the first (u0
hH) and

last iteration (uhH) of the iterative method with respect to the patch characteristic
parameter p with h = L

80 , H = L
40 and a non-conformal mesh with the macro model

boundary ∂Ωf (recall that un
hH and uhH are defined in Section 5.1).

5.6. Influence of the inclusion size

In this section, the reference mesh (resp. the micro mesh) is conformal to disks of radii ϵ1 = 1.5, ϵ2 =
1, ϵ3 = 0.5, and ϵ4 = 0.25. The maximum size of the reference mesh (resp. the micro mesh) near each
circle i (1 ≤ i ≤ 4) is href = ϵi/40 (resp. h = ϵi/20), while in the remaining domain, it is equal to
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L/80 (resp. L/40). The macro mesh is non-conformal to the inclusion boundary ∂Ωf and possesses
a maximum size H equal to L/40. In order to study the effect of the inclusion size on the solution
accuracy, we first plot in Figure 5.10 the variation of the relative error in L2(Ω) and H1(Ω) norms
according to the size of the inclusion. We observe that the relative error between u0

hH and uref , in
both L2(Ω) and H1(Ω) norms, decreases when the size of the inclusion decreases (see Figure 5.10a).
The convergence rates are approximately of order 2 for both L2(Ω) and H1(Ω) relative error norms.
Such a convergence rate confirms the result in (4.19). Furthermore, the Figure 5.10b shows that the
relative error between uhH and uref , in both L2(Ω) and H1(Ω) norms, also decreases and is several
order of magnitude smaller than for the first iteration. However, a certain saturation of the error
can be observed, probably due to the difference in element sizes between the reference mesh and the
macro and micro meshes. We plot in the Figure 5.11 the relative error in H1(Ω) norm according to
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Figure 5.10. The relative error in L2(Ω) and H1(Ω) norms according to the size of
the inclusion ε with a non-conformal mesh with the macro model boundary ∂Ωf .

the number of iterations n for three values of ε with αm = 5, αf = 100, href = L
2000 , h = ε

20 , H = L
40

and a non-conformal mesh with the boundary ∂Ωf for the macro model. We observe that the iterative
method diverges when ε = 1 but converges for smaller values of ϵ, specifically ε ≤ 0.5, confirming the
outcome stated in Proposition 3.4.

Conclusion

We presented in this work an iterative patch method for a problem with a small inhomogeneity. The
main interest of this method is that it starts from the problem without inclusion, which allows to
use a standard code to compute the large scale solution without meshing the inclusion. The method
build a local corrector on a patch surrounding the inclusion leading to a robust solution as long as
the inclusion is small enough (or the contrast between the coefficient is small enough) and the patch
is sufficiently large. Furthermore, an iterative procedure allows to converge to the best finite element
approximation, at least for a small inclusion or contrast as well.

We obtained some theoretical results for the iterations convergence of our patch method and we es-
tablished some convergence order with respect to the inclusion and patch sizes. These results, together
with the presented numerical examples, indicate that the first iteration corrector allows to improve
the solution in all the cases. This means that in many cases, no supplementary iteration is necessary
to get an accurate approximation.
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Figure 5.11. Evolution through iterations of the relative error in H1(Ω)-norms for
three inclusion sizes.

The numerical examples highlight that the numerical multi-scale patch method convergence is not
guaranteed for high values of the contrast of the stiffness in accordance with our theoretical results.
For an unclear reason, this limitation is not noted in the numerical results when the meshes for the
micro and macro problems are the same (which of course does not really correspond to a situation in
agreement with the objectives of the proposed method), and also when the mesh for the micro problem
is sufficiently refined. We proposed then a relaxation method to recover the convergence for arbitrary
meshes.

Some natural perspectives for further work are extensions to the nonlinear case of finite deformation
problems and to the case of multiple inclusions.
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