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Abstract. We consider a non-isothermal compositional gas liquid model for the simulation of well operations in
geothermal processes. The model accounts for phase transitions assumed to be at thermodynamical equilibrium
and is based on a hydrodynamical Drift Flux Model (DFM) combined with a No Pressure Wave approximation of
the momentum equation. The focus of this work is on the design of a robust discretization accounting for slanted
and multibranch wells with the ability to simulate both transient behavior such as well opening as well as coupled
simulations at the time scale of the reservoir. It is based on a staggered finite volume scheme in space combined
with a fully implicit Euler time integration. The construction of consistent and stable numerical fluxes is a key
feature for a robust numerical method. This is achieved by combining a monotone flux approximation for the phase
superficial velocities with an upwind approximation of the phase molar fractions, density and enthalpy. In order to
facilitate the coupling of the well and reservoir models, the Newton linearization accounts for the elimination of
the hydrodynamical unknowns leading to Jacobian systems using the same primary unknowns than those of the
reservoir model. The efficiency of our approach is investigated on both stand alone well test cases without and with
cross flow, and on a fully coupled well-reservoir simulation.

2020 Mathematics Subject Classification. 65M08, 65Y05, 76S05, 76T10.
Keywords. thermal well model, drift flux model, liquid gas compositional model, geothermal system, multi-
segmented well, finite volume scheme, staggered finite volume, monotone flux, Coats formulation.

1. Introduction

Wells are key objects during the operation of geothermal reservoirs: they provide the connection
between the surface and the geothermal reservoir at depth, enable fluid and heat exchanges with the
geological structure, and are among the places of two-phase flows and phase changes. During appraisal
phases well tests provide valuable information on the target and during geothermal field operation, it
is very important to correctly describe the behavior of wellbore flows in order to predict the quality
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of the fluids produced at the surface. A thorough understanding of wells and their modeling allow a
better understanding of the reservoir behavior.

Physical phenomena and exchanges with the reservoir are complex. For example, the start-up of
a high-temperature geothermal well, fed by a hot liquid, gives rise to transient flows with flash in
the well. Geothermal wells may also be connected by several feed zones at different pressures, and
some feed zones will be produced in the well, while others may receive fluids from the well, even when
the latter is in production. Finally, in addition to describing wells over transient short periods, well
modeling can also be used to predict the operational behavior of a reservoir over a period of several
years. In this case, the well model has to be coupled with a flow model in the geological structures.

Flows occurring in geothermal wells are generally described as two-phase thermal pipe flows. Given
the well’s radius/length aspect ratio, the usual assumption is to rely on 1D models. This type of flow
is relevant not only to the geothermal industry, but also to the oil and gas industry (for example,
[25] for steady flows, [8] for transient flows or [13]). The nuclear industry has also a strong interest in
multiphase thermal flows in pipes ([9] for a review). We present below a few bibliographical elements
relevant to our work for geothermal processes, but readers interested in more details may find further
information in [28], where Tonkin et al. recently proposed an in-depth review of mathematical models
of flows in geothermal boreholes.

The specifics of geothermal flows lie in the description of the interaction between the well and the
reservoir, and the consideration of feed zones and cross-flow phenomena. Bjornsson [6] was one of the
first to propose a multi-feedzone well simulator. These well models are either transient or steady-state;
transient well models are particularly useful for interpreting well tests or, for example, well start-up,
while steady-state models are more dedicated to operations follow-up (for example, [11] for matching
field data or [3] for the modeling of the IDDP-1 supercritical well). Let us also refer to [15, 16, 19, 27]
for the development of numerical non-isothermal multi-segmented well models and their coupling with
the reservoir.

One of the greatest difficulties in modeling multiphase flows in geothermal wells arises from the
complexity and variety of flow regimes encountered. The simplest homogeneous flow model, in which
all phases flow at the same velocity, is unsuitable because it cannot satisfactorily reproduce the in-situ
well volume fraction and flow rate of each phase. Drift Flux Models (DFM) are more complex models in
which a drift velocity (or slip law) is introduced to describe the relative motion between phases [30, 33].
These DFM require a number of empirical correlations derived from experiments for different flow
regimes in order to correctly describe phase slip and in situ phase volume fractions [9, 28, 30]. Given
the diversity of flow regimes encountered in geothermal wells, preference is given to DFM capable of
describing all flow regimes encountered during production well operations [16, 19, 24, 26, 28].

It is usually assumed that the thermodynamical equilibrium assumption applies in the well, but
some authors are interested in non-equilibrium phenomena [2, 22] to describe scaling or kinetics phe-
nomena [14, 17, 23, 32]. Nevertheless, these reactive phenomena will not be considered in our work.
Our objective is to set-up an extensible framework for the modeling of transient multi-component two-
phase geothermal wellbore flows with a focus on robust numerical schemes and the ability to couple
reservoir and wellbore flow models.

The considered well thermodynamical model accounts for a two-phase liquid gas compositional non-
isothermal system as for the reservoir model described in [31]. This two-phase compositional system
uses a Coats-type formulation in order to account for a large class of equilibrium thermodynamical
models ranging from single phase, two-phase immiscible to two-phase fully compositional with phase
appearance and disappearance. Choosing the same formulation for both the well and the reservoir
ensures robust coupling between these two systems. Then, following [4], to be able to consider complex
well geometries with slanted or multi-branched paths, the geometry of each well is defined as a set of
edges of the reservoir mesh assumed to define a rooted tree oriented away from the root.
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The hydrodynamical model is based on the DFM introduced in [24] for the slip law. Moreover,
following [16, 18, 29], we consider a “No Pressure Wave” (NPW) approximation, where the mixture
momentum equation is reduced to a static balance accounting for gravity and wall friction pressure
losses. This simplified NPW model has been shown to provide good results in pipe flow simulations
even in the highly transient case of severe slugging [18, 29] as well as in typical reservoir simulations as
stated in [16]. It is possible, however, that for some flow regimes the kinetic terms will not be negligible
compared with the gravity and wall friction pressure drop terms. In that case our approach could be
extended to incorporate these additional terms, but at the price of giving up the elimination of the
edge mixture velocities from the Jacobian system at each nonlinear iteration. This investigation goes
beyond the present work.

The discretization is based on a staggered finite volume scheme with edge center superficial velocities
and nodal pressure, temperature, saturation and molar fraction unknowns. This choice is consistent
with the Vertex Approximate Gradient (VAG) nodal discretization [31] used in the reservoir. It is
combined with a two-point monotone flux for the phase superficial velocities and a phase based upwind
approximation of the phase molar fractions, molar density and molar enthalpy. The monotonicity of
the superficial velocity fluxes is a key property for the stability of the scheme. Moreover, it guarantees
the consistent definition of the phase based upwinding according to the sign of the phase superficial
velocity. The clear understanding of this interplay between the upwinding of the phase superficial
velocities and of the upwinding of the phase transported variables is one of the main contribution
of this work. The monotonicity property of the superficial velocites is obtained on the full range of
saturations [0, 1] using a hybrid upwinding approach exploiting the mathematical properties of the drift
velocity, and profile parameters of the DFM model proposed in [24]. Note that this hybrid upwinding
methodology could be applied to other slip laws of generalized Zuber–Findlay type.

The time integration is fully implicit to account for the large reservoir time scale and for the stiffness
of the system at the gas phase appearance. The Jacobian system is reduced by the elimination of the
phase superficial velocities and of the well flow rates using the slip law, the momentum NPW equation
and the well monitoring conditions. This elimination allows the use of the same primary unknowns as
for the reservoir model [31] which facilitates the fully implicit coupling with the reservoir system.

The remainder of this paper is organized as follows. Section 2 presents the well physical model, and
its staggered finite volume discretization is described in Section 3. It starts, in Subsection 3.1, by the
definition of the well mesh and discrete unknowns, while the staggered finite volume scheme is detailed
in Subsection 3.2. Subsection 3.3 defines the monotonicity properties required for the phase superficial
velocities and underlines the interplay between these properties and the upwind approximation of the
phase molar fractions, the density and the enthalpy. The detailed specific construction of the monotone
superficial velocity flux function based on a hybrid upwinding approach for the DFM model proposed
in [24] is postponed to Appendix A. The well monitoring conditions are introduced in Subsection 3.4
in the case of a production well and Appendix B recalls the definition of the reservoir-well fluxes based
on the Peaceman indexes. Then, the algorithm used to solve the coupled nonlinear system at each time
step of the simulation is addressed in Section 4. It is based on a Newton–Raphson algorithm combined
with an active set method for the phase appearance/disappearance and the well monitoring conditions.
Its main originality is related to the elimination in the linearization process of the thermodynamical,
hydrodynamical and monitoring closure laws leading to the same set of primary unknowns as for the
reservoir model in the Jacobian system. This procedure is described respectively in Subsections 4.1, 4.2
and 4.3. The objective of the numerical Section 5 is to validate the discrete model and to investigate
the efficiency of our approach on both stand alone well test cases in Subsection 5.1 and for a fully
coupled well-reservoir model in Subsection 5.2. The first test case in Subsection 5.1.1 considers the
validation of the numerical model on a simple two-phase incompressible immiscible flow which reduces
to a Buckley Leverett scalar hyperbolic equation. The second and third test cases consider a high
energy liquid vapor single component thermal flow along a multi-branch production well without and
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with cross flow in respectively Subsections 5.1.2 and 5.1.3. Finally, a single well liquid vapor geothermal
test case is considered in Subsection 5.2 to validate the fully coupled model by comparison to a simpler
well model based on a single implicit well unknown.

2. Well physical model

Let W denote the set of wells. As in [4], each multi-branch well ω ∈ W is defined by a set of ori-
ented edges of the reservoir mesh assumed to define a rooted tree oriented away from the root. This
orientation corresponds to the drilling direction of the well. We consider a two-phase liquid gas, com-
positional, and non-isothermal flow model. The liquid (ℓ) and gas (g) phases are described by their
pressure p (both liquid and gas pressures are assumed to match along the well), temperature T , volume
fraction or saturation sα, and molar fractions cα = (cα

i )i∈C , α ∈ P = {ℓ, g}, where C denotes the set
of components and P the set of liquid and gas phases. The components are not necessarily present in
both phases but at least in one of them. We consequently denote by Cα ⊂ C the set of components in
phase α and by Pi the set of phases containing the component i ∈ C.

The thermodynamical model uses a Coats formulation already developed for the reservoir model
(see e.g. [31]). It is based on the natural variables p, T , sα, cα, α ∈ Q with a set of unknowns and
equations depending on the additional unknown Q ⊂ P representing the subset of present phases at
each point of the space time domain. This formulation has the advantage to account for an arbitrary
number of phases and components and also to allow the components to be either present or absent of
each given phase. This allows to account in the same framework for models ranging from single phase
liquid, single phase gas to two-phase gas liquid, and from immiscible to fully compositional.

For each phase α, we denote by ζα(p, T, cα) its molar density, by ρα(p, T, cα) its specific density,
by µα(p, T, cα) its dynamic viscosity, by eα(p, T, cα) its molar internal energy, and by hα(p, T, cα) its
molar enthalpy. The fugacities are denoted by fα

i (p, T, cα).
The hydrodynamical model is based on the Drift Flux Model (DFM) with slip closure laws expressing

the phase superficial velocities as functions of the mixture velocity and drift velocity terms [34]. It is
combined with the No-Pressure-Wave (NPW) approximation of the momentum equation relating the
pressure gradient to the friction and gravity pressure losses [16, 29].

Let τ denote the curvilinear coordinate along the well and eτ the unit tangential vector along the
well assumed to be oriented toward the well root node. We denote by uα = uαeτ the superficial
velocity of each phase α ∈ P. The mixture velocity is defined by

um = uℓ + ug = umeτ .

The tangential divergence along the well is denoted by divτ and the tangential gradient by ∇τ . The
section along the well is denoted by Sω(τ). We also set gτ = (g · eτ )eτ where g is the acceleration of
gravity vector.

Let ϵω(τ) = (∇τ z(τ))·eτ )
|∇τ z(τ)| ∈ {−1, 1} define the orientation along the well, with arbitrary value for

∇τ z = 0 along a horizontal branch. Following [24], let us introduce the function

oω(τ) = ϵω(τ) cos(θω(τ))1/2(1 + sin(θω(τ)))2,

where θω(τ) ∈ [0, π/2] is the edge angle w.r.t. the vertical direction. Note that oω(τ) = 0 along a
horizontal branch. The slip closure law introduced in [34] expresses the gas superficial velocity ug as
a function of the mixture velocity, the drift velocity, and the profile parameter:

ug = sgUd(sg, H)oω + sgC0(sg, H)um, (2.1)
with the non-negative drift velocity Ud (for vertical wells) and the profile parameter C0 such that
C0(sg = 1, H) = 1, Ud(sg = 1, H) = 0, sgC0(sg, H) ≤ 1 and sgC0(sg, H) non-decreasing w.r.t. sg.
The drift velocity and profile parameter depend on a set of thermodynamical variables denoted by H
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and typically comprising the densities of the phases and the liquid gas interfacial tension. They also
depend on other fixed parameters such as the well radius rω.

We denote by
Tf = T f eτ ,

the wall friction law depending on the mixture velocity um and on thermodynamical quantities. As a
typical example, we will use in the following a Darcy–Forchheimer type law:

T f = −
(8µm

r2
ω

+ fqρm 1
4rω

|um|
)

um, (2.2)

where fq is the friction coefficient, µm = sgµg + sℓµℓ the mean viscosity and ρm = sgρg + sℓρℓ the
mean specific density.

The well model is based on the molar conservation of each component (2.3a), the total energy
conservation (2.3b) and the mixture momentum equation based on the NPW model (2.3c). It is
combined with the DFM slip law (2.3e) together with the thermodynamical equilibrium and the sum
to one of the saturations (2.3d): ∑

α∈Pi

(
∂t(Sωcα

i ζαsα) + divτ (Sωcα
i ζαuα)

)
= qr→ω

i , i ∈ C, (2.3a)

∑
α∈P

(
∂t(Sωeαζαsα) + divτ (Sωhαζαuα)

)
+ divτ (−Sωλ∇τ T ) = qr→ω

e , (2.3b)

∇τ p = Tf + ρm gτ , (2.3c)

fg
i (p, T, cg) = f ℓ

i (p, T, cl) if Q ∩ Pi = P,∑
i∈Cα

cα
i = 1, α ∈ Q,

sα = 0 if α ̸∈ Q,∑
α∈Q

sα = 1

(2.3d)

ug = sgUd(sg, H)oω + sgC0(sg, H)um if Q = P, (2.3e)
where qr→ω

i and qr→ω
e are the molar and energy exchange terms with the reservoir. The system is

closed with monitoring conditions at the root node and with a flash computation to determine the set
of present phases Q. The temperature and pressure continuity is also assumed at the well junctions.
Note that here the term flash is used in a broad sense of an algorithm to manage phase appearance
and disappearance which implementation depends on the considered thermodynamical laws. It can be
typically a negative flash or a stability analysis for phase appearance, and the sign of the saturation
for phase disappearance.

3. Staggered Finite Volume discretization of the well model

Notations about the well mesh and the discrete variables are introduced in Subsection 3.1. The scheme
presented in Subsection 3.2 is based on a fully implicit time integration to cope with large time steps at
the reservoir time scale. It is combined with a staggered finite volume discretization in space using node
centred control volumes for the molar and energy conservation equations and edge control volumes
for the momentum equation. A key ingredient is the discretization of the convective fluxes based
on a monotone two-point flux for the approximation of the superficial velocities. This framework is
presented in Subsection 3.3 and an example is detailed in Appendix A based on the model proposed
in [24]. Thanks to the monotonicity and consistency properties of the superficial velocities, they can
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be combined with an upwind approximation of the phase molar fractions, density and enthalpy w.r.t.
the sign of the phase superficial velocity. The monitoring conditions at the head node of the well are
described in Subsection 3.4 in the case of a production well considered in the numerical Section.

3.1. Well discretization and notations

The set of nodes of a well ω ∈ W is denoted by Vω and its root node is denoted by vω. A partial
ordering is defined on the set of vertices Vω with v <

ω
v′ if and only if the unique path from the root vω

to v′ passes through v. The set of edges of the well ω is denoted by Eω and for each edge a ∈ Eω we set
a = vv′ with v <

ω
v′ (i.e. v is the parent node of v′, see Figure 3.1). It is assumed that Vω1 ∩ Vω2 = ∅

for any ω1, ω2 ∈ W such that ω1 ̸= ω2.
Let |Sω

a | and |Sω
vω

| denote the well section at respectively the center of the edge a and at the head
node vω. For a ∈ Eω, |a| denotes the length of the edge a. Let us define Eω

v ⊂ Eω as the set of well
edges sharing the node v ∈ Vω. For all vv′ = a ∈ Eω, let us set κa,v′ = −1 and κa,v = 1.

well

a = vv′

uα
a

pv, Tv, s
α
v , cα

v

uα
ω

v

vω

v′

qr→ω
v,i

qr→ω
v,e

Figure 3.1. Example of multi-branch well ω with its root node vω, one edge a = vv′

(v parent node of v′) and the main physical quantities: the head node superficial
velocities uα

ω (non-negative for production wells and non-positive for injection wells),
the molar and energy flow rates between the reservoir and the well qr→ω

v,i , qr→ω
v,e , the

well node pressure, temperature, saturations and phase molar fractions pv, Tv, sα
v, cα

v,
and the phase superficial velocity uα

a at the edge a oriented positively from v′ to v.

For each edge a = vv′ ∈ Eω, let us denote by uα
a the superficial velocity of phase α along the edge a

oriented positively from v′ to v. Using the Coats formulation, the set of well unknowns is defined at
each node v ∈ Vω by

• the set of present phases Qv,

• the well pressure pv,
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• the well temperature Tv,

• the well saturations sα
v for α ∈ P,

• the well molar fractions cα
v for α ∈ Qv,

• the number of moles ñv,i for i ∈ C̃Qv ,

and by

• the edge superficial velocities uα
a for α ∈ P at each well edge a ∈ Eω,

• the head node superficial velocities uα
ω for α ∈ P at the well head node vω.

In the above definition, C̃Q denotes the set of components not contained in
⋃

α∈Q Cα. For C̃Qv ̸= ∅,
the additional unknowns ñv,i corresponding to the number of moles of the absent components i ∈ C̃Qv

are needed first to avoid the singularity of the Jacobian and second to track the appearance of the
missing phase containing these absent components (see [31] for details). Note that the saturation sα

v
of an absent phase α ̸∈ Qv vanishes. In the following, we assume that the monitoring conditions at
the well head node correspond to the case of a production well in line with the numerical section.

For a given thermodynamical phase property ξα at a node v, we will use the notation
ξα

v = ξα(pv, Tv, cα
v),

with typically ξα = ζα, ρα, eα, hα, fα
i , µα.

The molar and energy flow rates between the reservoir and the well ω at a given node v ∈ Vω

are defined by a two point flux approximation between the reservoir, and the well properties at
node v based on the Peaceman approach combined with a phase potential upwinding. They are
denoted respectively by qr→ω

v,i for each component i ∈ C and qr→ω
v,e in what follows (see Figure 3.1 and

Appendix B for their definitions).

3.2. Fully implicit Finite Volume scheme

Let us define at each nodal control volume v, the total number of mole of each component and the
total energy as follows

nv,i =


∑

a∈Eω
v

|Sω
a | |a|

2

 ∑
α∈Qv∩Pi

cα
v,is

α
vζα

v if i ̸∈ C̃Qv ,

ñv,i otherwise,

nv,e =

∑
a∈Eω

v

|Sω
a | |a|

2

 ∑
α∈Qv

sα
vζα

v eα
v,

where the case of an absent component i ∈ C̃Qv is accounted for by the introduction of the additional
unknown ñv,i in order to avoid the singularity of the discrete system.

For each edge a = vv′ ∈ Eω, and each phase α, let us define the following upwind approximation of
the phase molar fractions, density and enthalpy w.r.t. the sign of the phase superficial velocity:

ξα
a =

{
ξα

v′ if uα
a ≥ 0,

ξα
v if uα

a < 0,
(3.1)

with ξα = cα, ζα, hα.
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We denote by (0, tF ) the time interval and consider its discretization given by tn, n = 0, . . . , N
with t0 = 0, tN = tF and ∆tn = tn − tn−1 > 0 for all n = 1, . . . , N . The time discretization of
the system (2.3) is based on an implicit Euler integration scheme. To simplify the notations only the
accumulation terms nv,i, nv,e at time tn−1 will be specified by the n − 1 superscript. For all other
quantities considered at the current time tn, we will drop the n superscript for simplicity.

Then, the discretization of the well equations (2.3a)-(2.3b)-(2.3c)-(2.3d) at each time step n =
1, . . . , N are respectively defined by the equations (3.2a)-(3.2b)-(3.2c)-(3.2d) as follows:

nv,i − nn−1
v,i

∆tn
+
∑
a∈Eω

v

∑
α∈Pi

−κa,v|Sω
a |cα

a,iζ
α
a uα

a

= qr→ω
v,i − δvω

v
∑

α∈Pi

|Sω
vω

|cα
v,iζ

α
v uα

ω, i ∈ C, v ∈ Vω, (3.2a)

nv,e − nn−1
v,e

∆tn
+
∑
a∈Eω

v

|Sω
a |
(

λa

|a|
(Tv − Tv′) +

∑
α∈P

−κa,vhα
a ζα

a uα
a

)
= qr→ω

v,e − δvω
v
∑
α∈P

|Sω
vω

|hα
vζα

v uα
ω, v ∈ Vω, (3.2b)

pv − pv′ = −ρm
a g(zv − zv′) + T f

a |a|, vv′ = a ∈ Eω, (3.2c)

fg
i,v = f ℓ

i,v if Qv ∩ Pi = P, v ∈ Vω,∑
i∈Cα

cα
v,i = 1, α ∈ Qv, v ∈ Vω,

sα
v = 0 if α ̸∈ Qv, v ∈ Vω,∑

α∈Qv

sα
v = 1, v ∈ Vω.

(3.2d)

where δ stands for the Kronecker symbol with δvω
v = 1 if v = vω, else 0. In (3.2), the edge thermal

conductivity of the mixture is defined by

λa =
∑
α∈P

sα
v + sα

v′

2 λα,

with λα the thermal conductivity of the phase α assumed constant for simplicity. The wall friction
term T f

a is given by the Darcy–Forchheimer law (2.2) leading to

T f
a = −

(8µm
a

r2
a

+ fqρm
a

1
4ra

|um
a |
)

um
a , (3.3)

with the following arithmetic means of the mixture specific density and dynamic viscosity at the edge a

ρm
a = 1

2

( ∑
α∈Qv

sα
vρα

v +
∑

α∈Qv′

sα
v′ρα

v′

)
, µm

a = 1
2

( ∑
α∈Qv

sα
vµα

v +
∑

α∈Qv′

sα
v′µα

v′

)
. (3.4)

It remains to define the discretization of the edge superficial velocities uα
a accounting for the slip

law (2.3e) at given mixture velocity um
a = ug

a + uℓ
a. This framework is detailed in the next subsection

based on a monotone two-point flux. Note that the edge mixture velocity um
a will be derived from the

momentum equation (3.2c) combined with the wall friction law (2.2), as detailed in Section 4.2.1.
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3.3. Monotone two-point flux for the edge superficial velocities

Let us define the arithmetic average of a thermodynamical variable ξα for a given phase α at a well
edge a = vv′ with α ∈ Qv ∪ Qv′ by

ξ
α
a =



ξα(pv, Tv, cα
v) if α ∈ Qv and α ̸∈ Qv′ ,

ξα(pv′ , Tv′ , cα
v′) else if α ̸∈ Qv and α ∈ Qv′ ,

sα
vξα(pv, Tv, cα

v) + sα
v′ξα(pv′ , Tv′ , cα

v′)
sα

v + sα
v′

else if sα
v + sα

v′ > ϵ,

1
2
(
ξα(pv, Tv, cα

v) + ξα(pv′ , Tv′ , cα
v′)
)

otherwise.

This arithmetic averaging is used to compute the thermodynamical variables Ha at the well edge
a = vv′ which enter in the definition of the slip law (2.3e).

Then, the superficial velocities uα
a are obtained at given mixture velocity um

a using a numerical
two-point monotone flux denoted by

F g
a (sg

v′ , sg
v, Ha),

for the continuous flux function

fa(sg) = sgUd(sg, Ha)oa + sgC0(sg, Ha)um
a ,

where oa is the value of the function oω along the edge a. Note that the flux function fa(sg) is related
to the Buckley Leverett scalar hyperbolic equation obtained assuming immiscible liquid and gas phases
with constant molar densities, a constant well section and no source terms, leading to the gas phase
volume conservation equation

∂ts
g + divτ (fa(sg)eτ ) = 0, (3.5)

combined with the incompressibility condition on the mixture velocity divτ (umeτ ) = 0. This motivates
our choice of the numerical flux F g

a which, for such scalar hyperbolic equation (3.5), must satisfy the
following consistency and stability properties:

• consistency property:

F g
a (sg, sg, Ha) = fa(sg) for all sg ∈ [0, 1],

• monotonicity property which specifies that, for all (sg
v′ , sg

v) ∈ [0, 1] × [0, 1], F g
a (sg

v′ , sg
v, Ha) is

non-decreasing w.r.t. its first argument sg
v′ and non-increasing w.r.t. its second argument sg

v.

Then the superficial velocities uα
a are defined by{

ug
a = F g

a (sg
v′ , sg

v, Ha),
uℓ
a = um

a − ug
a.

(3.6)

From the consistency and monotonicity properties, it results that

• sg
v′ = 0 ⇒ ug

a = F g(0, sg
v) ≤ 0 for all sg

v ∈ [0, 1],

• sg
v = 0 ⇒ ug

a = F g(sg
v′ , 0) ≥ 0 for all sg

v′ ∈ [0, 1],

• sg
v′ = 1 ⇒ uℓ

a = um
a − F g(1, sg

v) ≤ 0 for all sg
v ∈ [0, 1],

• sg
v = 1 ⇒ uℓ

a = um
a − F g(sg

v′ , 1) ≥ 0 for all sg
v′ ∈ [0, 1],
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which numerically accounts for the fact that gas cannot flow out of a liquid only node control volume,
and that liquid cannot flow out of a gas only node control volume. These properties are key for the
definition (3.1) of the upwind approximations of the phase molar fractions, phase molar density and
phase molar enthalpy w.r.t. the sign of the phase superficial velocity. Indeed, they ensure that either
the phase is present at the upwind node or that its superficial velocity vanishes ensuring that the
product ξα

a uα
a is always properly defined, with ξα = ζα, cα, hα.

Note also that if Qv ∪ Qv′ = {α} (single phase α present at both nodes), the properties of the
numerical flux function imply that uα

a = um
a and uβ

a = 0 for the absent phase β. It means that, in that
cases, the thermodynamical variables Ha do not need to be computed which would have required a
cumbersome extension of the molar fractions of the absent phase.

The specific construction of the two-point monotone flux function F g
a depends on the profile pa-

rameter C0 and drift velocity Ud laws. We propose in Appendix A a monotone two-point flux for
the gas liquid DFM model introduced in [24] on the full range of gas saturation. Our methodology is
based on a hybrid upwinding strategy [10, 12] using a physical splitting of the flux function fa(sg) =
fm
a (sg)+fd

a (sg) as the sum of the mixture fm
a (sg) = sgC0(sg, Ha)um

a and drift fd
a (sg) = sgUd(sg, Ha)oa

velocity terms. Then, a consistent monotone numerical flux F g
a is obtained by summing consistent

monotone fluxes for each continuous flux functions fm
a and fd

a . Since sgC0(sg, Ha) must be physically
a non-decreasing function, the numerical flux for fm

a (sg) is just based on an upwinding of the gas sat-
uration w.r.t. the sign of um corresponding to the Godunov scheme. On the other hand the function
fd
a (sg) is never monotone on the full range of gas saturations since it vanishes both for sg = 0 and

sg = 1. As a result, the design of a monotone flux for fd
a (sg) must be adapted to the specific definition

of Ud and will also be dependent on the orientation of the pipe corresponding to the sign of oa. The
specific construction described in Appendix A uses the fact that sgUd(sg, Ha) is the product of two
non-negative functions which are respectively non-decreasing and non-increasing w.r.t. sg.

3.4. Monitoring conditions

Assuming the case of a production well, the monitoring conditions prescribe a minimum head node
pressure pω and a maximum well molar flow rate qω ≥ 0. Setting

pω = pvω and qω =
∑
α∈P

|Sω
vω

|ζα
vω

uα
ω, (3.7)

the boundary condition at the head node vω combines the complementary constraints on the pair(
qω − qω, pω − pω

)
with the slip law:

qω ≤ qω, pω ≥ pω, (qω − qω)(pω − pω) = 0,

ug
ω = F g(sg

vω
, sg

vω
, Hvω ) = sg

vω
C0(sg

vω
, Hvω )um

ω + sg
vω

Ud(sg
vω

, Hvω ),
um

ω = ug
ω + uℓ

ω.

(3.8)

4. Nonlinear solver

Given the subset of present phases Qv, let us define the set of well unknowns at node v ∈ Vω

Xv =
(
pv, Tv, sg

v, sℓ
v, cα

v, α ∈ Qv, ñv,i, i ∈ C̃Qv

)
.

The discrete nonlinear system to be solved at each time step is defined for each well by the set of
unknowns

(Xv)v∈Vω , (Qv)v∈Vω , (ug
a, uℓ

a)a∈Eω , (ug
ω, uℓ

ω),
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and the set of equations (3.2)-(3.6)-(3.8) complemented by the flash equations of type Qv = flash(Xv)
for each node v ∈ Vω. It is coupled fully implicitly to the reservoir system through the source terms
qr→ω

v,i , qr→ω
v,e for v ∈ Vω. Let us refer to Appendix B for their expressions depending on the reservoir

and well pressure, temperature, molar fractions and saturations at node v.
This system is solved using a Newton–Raphson algorithm based on an active set method for the

subsets of present phases and for the well active constraints. This type of algorithm can be viewed as
an active set formulation of a Newton–Min semi-smooth Newton algorithm (see e.g. [31] and [5]).

The assembly of the Jacobian system is performed at each Newton iteration given the sets of present
phases and the well active constraints which are updated after each Newton update. An important
feature of the implementation is the Jacobian system reduction by elimination of the local thermody-
namical and sum to one of the saturations closure laws (3.2d), of the hydrodynamical equations (3.2c)-
(3.6) and of the well monitoring conditions (3.8). The elimination of the local thermodynamical and
sum to one of the saturations closure laws is also applied to the reservoir equations. The reduced linear
system couples the component and energy conservation equations with a block structure of #C + 1
equations and primary unknowns at each well and reservoir nodes. This elimination procedure detailed
in the next subsections facilitates the assembly of the coupled linear system and reduce the cost of its
resolution.

4.1. Elimination of the thermodynamical and sum to one of the saturations closure laws

Let us denote by Cv(Xv) the thermodynamical and sum to one of the saturations closure equa-
tions (3.2d) at node v. The elimination of these closure laws is based on a splitting of the unknowns
Xv = (Xp

v, Xs
v) into #C + 1 primary unknowns Xp

v and the remaining secondary unknowns Xs
v. This

splitting classically depends on the set of present phases Qv and is such that ∂Cv(Xp
v,Xs

v)
∂Xs

v
is non-singular.

It results that, after Newton linearization, the secondary unknowns dXs
v can be expressed as a linear

function of dXp
v and of the residual Cv(Xv) (see [31] for details in the case of the Coats formulation

of the reservoir model).

4.2. Elimination of the hydrodynamical equations

For all well edge a = vv′, given Xv, Xv′ , Qv, Qv′ , the hydrodynamical module computes the phase
superficial velocities

uα
a for α ∈ Qv ∪ Qv′ ,

and their Newton linearization accounting for the elimination of the thermodynamical and sum to one
of the saturations closure laws, such that

duα
a = Aα

a,vdXp
v + Aα

a,v′dXp
v′ + Bα

a for α ∈ Qv ∪ Qv′ . (4.1)
This computation is detailed in the next two paragraphs. Note that, from the properties of the nu-
merical flux function F g

a , we have uα
a = 0 for α ̸∈ Qv ∪ Qv′ , hence this case does not need to be

considered.

4.2.1. Mixture velocity

Let us define the difference of potential at the well edge a = vv′ by
∆aΦ = pv − pv′ + ρ m

a g(zv − zv′).
Considering the wall friction law (2.2), the momentum equation (3.2c) can be solved for the mixture
velocity as a function of ∆aΦ depending on the sign of ∆aΦ as follows

um
a = −sign(∆aΦ)(αc − αb)

2αa
, (4.2)
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with
αa = |a|fq

ρ m

4ra
, αb = 8|a| µ m

(ra)2 , αc =
√

(αb)2 + 4|∆aΦ|αa,

and the definition (3.4) of the mean specific density ρ m
a and viscosity µ m

a .
Note that for more general wall friction laws, the elimination of the mixture velocity is not always

possible at the nonlinear level. In that case it is done at the linear level after Newton linearization
taking into account the momentum equation residual. The mixture velocity um

a is computed from (4.2)
as a function of the entries

∆aΦ, ρ m
a , µ m

a ,

as well as its derivative w.r.t. the 3 entries.
Then, using the two-point monotone flux function F g

a , we can compute both superficial velocities
as detailed below.

4.2.2. Superficial velocities

For Qv ∪ Qv′ = {α} ∈ P, {β} = P \ {α}, we simply have

uα
a = um

a , uβ
a = 0,

with um
a defined by (4.2).

For Qv ∪Qv′ = P, we first compute um
a from (4.2), and then, the gas superficial velocity is obtained

from the two-point monotone flux F g
a . Using the model detailed in Appendix A, the entries of F g

a are

sg
v′ , sg

v, ρ ℓ
a , ρ g

a , σgℓ,a, um
a .

The flux function F g
a computes ug

a as well as its derivatives w.r.t. the 6 entries. Then the liquid
superficial velocity is given by

uℓ
a = um

a − ug
a.

Combining the derivatives of the mixture velocities and superficial velocities w.r.t. to the above entries
with the derivatives of the thermodynamical variables, we can compute (4.1).

4.3. Elimination of the monitoring conditions

The complementary constraints are solved using an active set method meaning that we impose either
a fixed pressure pω = pω with qω ≤ qω or a fixed molar flow rate qω = qω with pω ≥ pω. The active
constraint is updated at each Newton iteration according to the remaining inequality constraint.

The elimination of the head node superficial velocities is performed as follows. In case of active flow
rate constraint, the well total molar flow rate is prescribed with

qω = qω, (4.3)
In case of active pressure constraint, it is obtained by the sum over i of the molar conservation
equations at node vω

qω = −
∑
i∈C

nvω ,i − nn−1
vω ,i

∆tn
+
∑
i∈C

qr→ω
vω ,i +

∑
a∈Eω

vω

∑
α∈P

κa,vω |Sω
a |ζα

a uα
a . (4.4)

Note that this equation must hence be substituted by the equation pω = pω in the system of primary
equations and unknowns. Using the total molar flow rate qω computed from (4.3) or (4.4), we can
eliminate the head node mixture velocity um

ω as follows. Using (3.7) and (3.8), we set

um
ω = qω

|Sω
vω

|ζα
vω

if Qvω = {α},
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and, if Qvω = P, setting C0,vω = C0(sg
vω , Hvω ), Ud,vω = Ud(sg

vω , Hvω ), we obtain the equation
qω

|Sω
vω

|
= ζg

vω

(
sg

vω
C0,vω um

ω + sg
vω

Ud,vω

)
+ ζℓ

vω

(
(1 − sg

vω
C0,vω )um

ω − sg
vω

Ud,vω

)
.

providing

um
ω =

qω

|Sω
vω

| + (ζℓ
vω

− ζg
vω )sg

vω Ud,vω

ζg
vω sg

vω C0,vω + ζℓ
vω

(1 − sg
vω C0,vω ) .

Once um
ω is known we can compute the head node superficial velocities uα

ω from (3.8).

5. Numerical experiments

The objectives of this numerical Section is to validate the numerical model and investigate its ability
to simulate both well opening transient test cases without and with cross flow and fully coupled test
cases at the reservoir time scale. The well stand alone test cases are presented in Subsection 5.1 and a
fully coupled test case is considered in Subsection 5.2 where it is compared for validation to a simpler
single implicit unknown well model.

5.1. Stand alone well model

5.1.1. Validation on a Buckley Leverett solution

Let us consider a two component C = {1, 2}, two-phase P = {ℓ, g}, immiscible, incompressible and
isothermal model obtained by setting in the general compositional framework Cℓ = {1} and Cg = {2}.
The well is vertical of diameter 0.1 m and centerline (0, H) with z = 0 corresponding to the leaf
node and z = H = 100 m to the head node. The molar and specific densities as well as the dynamic
viscosities are considered constant.

Let us set
ug(sg) = sgUd(sg) + sgC0(sg)um,

and
uℓ(sg) = um − ug(sg).

The volume conservation equations for each phase write{
∂ts

g + ∂zug(sg) = 0,

∂ts
ℓ + ∂zuℓ(sg) = 0.

Summing the above equations we obtain ∂zum = 0 meaning that the mixture velocity depends only
on time. It will be fixed by the input boundary condition at the leaf node fixing the mixture velocity
to um = 0.5 m · s−1. Thus, we obtain the scalar hyperbolic Buckely Leverett equation

∂ts
g + ∂zug(sg) = 0,

with the flux function ug(sg) at fixed mixture velocity. In this test case we compare the solution of the
model developed in this work to the one obtained by solving numerically the scalar hyperbolic equation.
The same Euler implicit time discretization is used for both implementations. The scalar hyperbolic
discretization is based on a cell centered Finite Volume (FV) scheme while the compositional model
uses the node centered FV scheme described in this work. The data set is defined by ρg = 4 kg · m−3,
ρℓ = 1000 kg · m−3, by the input gas superficial velocity at the leaf node ug = 0.55 m · s−1 and the
output liquid velocity at the leaf node uℓ = −0.05 m · s−1. The DFM model [24] (see Appendix A)
is used with the parameters A = 1.2, B = 0.3, a1 = 0.2, a2 = 0.4, Ku = 1.5 and σgℓ is fixed to
71.97 × 10−3 (see the resulting flux function on the left Figure 5.1). The solutions are computed with
both models using a uniform mesh of 200 cells, a uniform time stepping with 200 time steps and the
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simulation time tF = 50 s. The right Figure 5.1 shows that both models provide basically the same
gas saturation plot at final time tF . We also plot in Figure 5.2 the fine mesh gas saturation (Left) and
superficial velocities (Right) at final time obtained with the compositional model using 1000 cells and
1000 time steps. The gas moves up at a higher velocity than the mixture velocity as a result of the
drift velocity allowing the liquid to go out of the well at the leaf node.
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Figure 5.1. (Left): gas superficial velocity as a function of the gas saturation (flux
function) at fixed mixture velocity um = 0.5 m · s−1 for the Buckley Leverett test case.
(Right): Comparison between the Buckley Leverett (BL) and compositional (Comp)
gas saturations at final time on the Buckley Leverett test case
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Figure 5.2. (Left): Compositional gas saturation at final time using the fine mesh
with 1000 cells and 1000 time steps on the Buckley Leverett test case. (Right): liquid
and gas superficial velocities obtained with the compositional model at final time using
the fine mesh with 1000 cells and 1000 time steps on the Buckley Leverett test case.

5.1.2. Thermal test case with a chair shaped production well

We consider a single H2O component liquid vapor thermal flow along the chair shaped production
well illustrated in Figure 5.3. The internal energy, mass density and viscosity of H2O in the liquid
and gas phases are defined by analytical laws as functions of the pressure and temperature (refer [1,
Section 4.1] for details). The vapour pressure Psat(T ) is given in Pa by

psat(T ) = 10−3(T − 273)4.
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The DFM model [24] is used with the parameters A = 1.2, B = 0.3, a1 = 0.2, a2 = 0.4, Ku = 1.5 and
σgℓ is fixed to 71.97×10−3 (see Appendix A). The Darcy–Forchheimer friction law (2.2) is set up with
the friction parameter fq = 6 × 10−2. The well radius is fixed to 0.05 m, the thermal conductivity is
considered constant for simplicity with λ = 2.

The well is monitored with the minimum well head pressure set to pω = 5×105 Pa and the maximum
well mass flow rate set to qω = 15 kg · s−1. The initial temperature is set to 350 K along the well and
the initial pressure is hydrostatic at liquid state with pressure set to 5 × 105 Pa at the head node.

Feed zones are modeled at each of the two leaf nodes at high temperature and high pressure in
liquid state. At both leaves the reservoir pressure is fixed to 1.1 × 107 Pa, the temperature to 520 K,
the Darcy well index to WID = 10−12 m and the Fourier well index to WIF = 100 J · s−1 · K−1.

The well is meshed using a uniform discretization of each of the four branches with 40 edges for
both bottom vertical branches, 40 edges for the horizontal branch and 60 edges for the top vertical
branch. The simulation time is fixed to tF = 2000 s at which the stationary state is basically reached,
and the time stepping is set up with an initial time step of 10 s and a maximum time step of 40 s.
The stopping criterion of the Newton nonlinear solver is fixed to either 10−8 on the relative residual l1

norm or to 10−10 on the l∞ norm of the Newton increment dsg + dp
105 + dT

100 . The time step is multiplied
by the factor 1.1 until it reaches the maximum time step in case of Newton convergence in less than
50 iterations and restarted with a twice smaller time step otherwise. Using this setting, the simulation
runs in 58 time steps with no time step failure and a total number of 438 Newton iterations. Figures 5.4
and 5.5 exhibit the final pressure, temperature, gas saturation and superficial velocities. The rise of
the hot temperature front induces the appearance of the gas phase at the top of the well starting at
roughly t = 1200 s (see Figure 5.6). Figure 5.6 plots the time histories of the well pressure pω, the
mass flow rate qω, the leaf pressures and the gas volume inside the well. The well starts to produce at
the fixed minimum well head pressure of 5 × 105 Pa with a rising mass flow rate. This rising flow rate
is induced by the temperature increase along the well which reduces the weight of the liquid column.
This can be checked in the leaf pressures plot showing the decrease of the leaf pressures in the first
part of the simulation at fixed minimum well pressure. Then, the well flow rate reaches its maximum
value of 15 kg · s−1 and the well operates at fixed maximum mass flow rate with a rising well head
pressure which speeds up when the gas phase appears. At around t = 1400 s, the well head pressure
starts to decrease rapidly as a result of the pressure drop induces by the high gas velocity, until the
well operates again at fixed minimum well head pressure of 5 × 105 Pa. We can also notice, in the leaf
pressures plot, the gap between the two leaf pressures which results from the additional wall friction
along the horizontal branch.

Figure 5.3. Chair shaped well with one junction and four branches of sizes 600 m
(upper vertical branch), 400 m (lower left vertical branch), 400 m (lower vertical branch)
and 400 m (horizontal branch).
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Figure 5.4. Pressure (Pa), temperature (K), gas saturation solutions at final time for
the chair shaped thermal well test case.

Figure 5.5. Liquid and gas superficial velocities (m · s−1) at final time for the chair
shaped thermal well test case.
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Figure 5.6. Well mass flow rate, well head pressure, leaf pressures, and gas volume
in the well as a function of time for the chair shaped thermal well test case.

5.1.3. Thermal test case with cross flow

We consider the same liquid vapor thermal model as in the previous test case along the T shaped
production well illustrated in Figure 5.7. The DFM model [24] is again used with the same parameters
as in the previous test case. In order to obtain cross flow, i.e. a well acting as a producer at some
points along the well and as an injector at others, the reservoir properties at the two leaf nodes are
set up as follows. The bottom left leaf will act as an injection point and is set up with the reservoir
pressure 9 × 106 Pa, the reservoir temperature 520 K, the Darcy well index WID = 10−12 m and the
Fourier well index WIF = 100 J · s−1 ·K−1. The right leaf will act as a feed zone and is set up with the
reservoir pressure 7 × 106 Pa, the reservoir temperature 500 K, the Darcy well index WID = 10−12 m
and the Fourier well index WIF = 100 J · s−1 · K−1.

The well is monitored as in the previous test case with the minimum well head pressure set to
pω = 5 × 105 Pa and the maximum well mass flow rate set to qω = 15 kg · s−1. The initial temperature
is set to 350 K along the well and the initial pressure is hydrostatic at liquid state with pressure set
to 5 × 105 Pa at the head node.

The well is meshed using a uniform discretization of each of the three branches with 40 edges for the
bottom vertical branch, 40 edges for the horizontal branch and 60 edges for the top vertical branch.
The simulation time is fixed to tF = 2500 s to reach the stationary state and the time stepping is set
up with an initial time step of 0.1 s and a maximum time step of 40 s. Using the same nonlinear solver
setting as in the previous test case, the simulation runs in 147 time steps with 5 time step failures and
a total number of 1056 Newton iterations.
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Figure 5.9 exhibits the final superficial liquid and gas velocities and Figure 5.12 plots the liquid and
gas superficial velocities along the vertical (b1) and horizontal (b2) parts of the well at times 1000 s
and 2500 s. These figures clearly exhibit the cross flow between the right leaf acting as a feed zone
and the bottom leaf acting as an injection point.

Figure 5.8 exhibits the final pressure, temperature, and gas saturation. The high temperature front
propagates from the right leaf to both the top and the bottom sides of the vertical part of the well.
The rise of the hot temperature front at the low pressure top side of the well induces the appearance of
the gas phase starting at roughly t = 1800 s (see also Figure 5.10). Figure 5.10 plots the time histories
of the well pressure pω, the mass flow rate qω, the leaf pressures and the gas volume inside the well.
It is shown that the well is monitored at the minimum well head pressure until the gas phase appears
reducing the weight of the column which reduces the pressure at the right leaf node and allows to reach
the maximum mass flow rate. The well rapidly switches back to the minimum pressure monitoring
due to the increase of the wall friction induced by the high gas velocity.

Figure 5.11 exhibits the plots of the pressure, temperature, gas saturation along the vertical (b1)
and horizontal (b2) parts of the well at times 1000 s and 2500 s showing the propagation of the
temperature front on both sides of the vertical part of the well, as well as the decrease of the pressure
along the well as a result of the temperature increase.

Figure 5.7. T shaped well with one junction and three branches of sizes 600 m (upper
vertical branch), 400 m (lower left vertical branch), and 400 m (horizontal branch).
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Figure 5.8. Pressure (Pa), temperature (K), gas saturation solutions at final time for
the cross flow thermal well test case.

Figure 5.9. Liquid and gas superficial velocities (m · s−1) at final time for the cross
flow thermal well test case.
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Figure 5.10. Well mass flow rate, well head pressure, leaf pressures, and gas volume
in the well as a function of time for the cross flow thermal well test case.
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Figure 5.11. Pressure, temperature and gas saturation at different times along the
left vertical left branches (b1) and the right horizontal branch (b2) for the cross flow
thermal well test case.
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Figure 5.12. Liquid and gas superficial velocities at different times along the left
vertical left branches (b1) and the right horizontal branch (b2) for the cross flow thermal
well test case.

5.2. One production well coupled with a reservoir

The objective of this test case is to validate the coupled reservoir multi-segmented well model by
comparison with the results obtained using a simpler well model based on a single implicit unknown.
We consider single component H2O two-phase (liquid and vapor), non-isothermal flow. The DFM
model [24] parameters are the same as the ones used in the test case 5.1.2. However, the Darcy–
Forchheimer friction law (2.2) is set up with the friction parameter fq ∈ {0.001, 0.06} where the
case fq = fq1 = 0.001 corresponds to a very small friction coefficient. This choice will be useful for
comparison with previous published results in the literature without friction as explained below. The
case fq = fq2 = 0.06 corresponds a typical order of magnitude. The geothermal reservoir is defined
by the domain Ω = (−H, H)2 × (0, Hz) where H = 1000 m and Hz = 200 m, and we consider one
vertical producer well along the line {(x, y, z) ∈ Ω | x = y = 0} of radius rω = 0.1 m. The reservoir is
assumed homogeneous with isotropic permeability K = kI, k = 5 × 10−14m2 and porosity ϕ = 0.15. It
is assumed to be initially saturated with pure water in liquid phase. The internal energy, mass density
and viscosity of water in the liquid and gas phases are defined by analytical laws as functions of the
pressure and temperature (refer [1, Section 4.1] for details). The vapour pressure Psat(T ) is given in
Pa by the Clausius–Clapeyron equation

psat(T ) = 100 exp
(

46.784 − 6435
T

− 3.868 log(T )
)

.

The reservoir thermal conductivity is fixed to λr = 2 W · m−1 · K−1, and the rock volumetric heat
capacity is given by Cs = 1.6 MJ · K−1 · m−3 with Es(p, T ) = CsT . The relative permeabilities are
set to kα

r (sα) = (sα)2 for both phases α ∈ {ℓ, g}. The gravity vector is as usual g = (0, 0, −gz) with
gz = 9.81 m · s−2. The simulation consists in two stages. At the first one, the well is closed and we
impose a Dirichlet boundary condition at the top of the domain prescribing the reservoir pressure and
the temperature equal to pr = 4 MPa and T r = (psat)−1(pr) − 1 K; respectively, and homogeneous
Neumann boundary conditions are set at the bottom and at the sides of the domain. The choice of
the initial temperature T r just below the saturated vapor temperature is made in order to make the
gas phase appear at the beginning of the production during the second stage. The first stage is run
until the simulation reaches a stationary state with the liquid phase only, a constant temperature and
a hydrostatic pressure depending only on the vertical coordinate.
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For the second stage, homogeneous Neumann boundary conditions are prescribed at the bottom
and at the top of the domain Ω, but Dirichlet boundary conditions for the pressure and temperature
are fixed at the sides of the domain to the ones at the end of stage one. The well is set in an open state,
i.e., it can produce, and its monitoring conditions are defined by the minimum bottom hole pressure
pω = 1 bar (never reached in practice) and the maximum total mass flow rate qω = 200 ton · h−1.
The second stage is run on the time interval (0, tF ) with tF = 30 days. Moreover, at the top of the
reservoir and at the root of the well, there is no coupling between them during both stages. The entire
simulation runs on uniform Cartesian mesh of size nx × ny × nz to discretize the domain Ω with
(nx, ny, nz) = (20, 20, 10). The well indexes WID and WIF introduced in Appendix B are computed
at each node of the well following [4].

In order to validate the coupled model, we compare the numerical results against the ones published
in [1, Section 4.1] using the same thermodynamic parameters, the same initialization and stages, and
the same mesh. The model presented in [4] is based on the following assumptions on the well model:

(i) the wall friction, the thermal conduction and the transient terms are all neglected all along
the well,

(ii) the thermal conduction is neglected between the reservoir and the well,

(iii) there is no cross flow and both the gas and liquid velocities are oriented in the same direction
all along the well,

(iv) the pressure drop along the well is computed based on an explicit approximation of the mean
density ρm.

In that case, the well model can be shown (see e.g. [4]) to reduce to a single implicit unknown, the
well head node pressure pω, and to a single equation, the monitoring conditions, fully coupled to the
reservoir system. The computation of the mean density ρm along the well is based on a gas liquid
flash computation providing the well temperature and gas saturation at each well node. This flash
computation is based on the lagged in time values of the well pressures and molar and energy flow
rates qr→ω

v,i , qr→ω
v,e . It usually assumes a zero slip law ug = sgum as detailed in [4], but it can also easily

account for a general slip law (2.1) by a simple modification of the gas liquid flash computation. In
order to investigate further the effects of the DFM slip law, we consider in this test case the model
proposed in [4] with both a zero slip law and its enhancement using the same slip law as the one used
in the multi-segmented well model. For the sake of completeness, the modified flash computations
implied by the non-zero slip law is detailed in Appendix C.

To make easier the comparison of the results obtained by each model, we label by MSwell-fq1 and
MSwell-fq2 the results obtained by the proposed Multi-Segmented well model (3.2) with fq1 = 0.001
and fq2 = 0.06, respectively. We label by SIUwell the ones obtained by the Single Implicit Unknown
well model proposed in [4], and we label by SIUwell-DFM its enhancement including the DFM slip
law (2.1) in the gas liquid flash computation. Figure 5.13 compares the pressure, the temperature
and the gas saturation along the well; respectively, at final time tF using this three different models.
Figure 5.14 show the total volume of gas inside the well and the reservoir as functions of time for
the three models. It can be noticed from those figures that the results obtained with the MSwell
model (3.2) with fq1 = 0.001 are very close to the ones obtained using the well model of [4] provided
that the DFM slip law is taken into account. This is expected for such configuration with no cross
flow, no significant thermal conduction losses between the well and the reservoir, no significant wall
friction, and no significant transient effects at the reservoir time scale. On the other hand, the more
realistic value fq2 of the friction coefficient induces a larger pressure drop which results in significant
variations between the MSwell-fq2 and the SIUwell-DFM models.
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Table 5.1 shows the numerical efficiency of the nonlinear solver for all models using the same mesh
for the second stage of the simulation. We denote by N∆t the number of time steps and by NNewton
the average number of Newton iterations per time step. It exhibits as expected the higher number of
Newton iterations for the multi-segmented well models compared with the single implicit unknown
well models, as a result of stronger nonlinearities. We note also that the nonlinear convergence of
the multi-segmented well model is sensitive to very small (not physical) friction coefficients due to an
increased stiffness of the mixture velocity as a function of ∆aΦ in such cases (see (4.2)).
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Figure 5.13. Pressure in Pa, temperature in ◦C and gas saturation along the well at
final time using the three different models.
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Table 5.1. Numerical behavior of the second stage of the simulation for different
models using the same mesh. N∆t is the number of time steps, and NNewton the average
number of Newton iterations per time step.

Model #M N∆t NNewton
MSwell-fq1 32000 121 10.12
MSwell-fq2 32000 120 6.15

SIUwell 32000 133 1.56
SIUwell-DFM 32000 133 1.58

6. Conclusion

A numerical model for two-phase compositional non-isothermal flow in geothermal multi-branch wells
is developed to simulate the flow and transport along the wells in geothermal field operations. The
model combines the flexible thermodynamical Coats formulation with the a drift flux hydrodynamical
model leading to a system coupling the conservation equations for each component, momentum and
energy.

The discretization is fully implicit in time and based on a staggered finite volume scheme in space,
with node centred control volumes for components and energy conservations and edge control volumes
for the momentum conservation. The numerical fluxes combine a monotone flux approximation for
the phase superficial velocities on the full range of gas saturation with an upwind approximation of
the phase molar fractions, density and enthalpy. The interplay between these two parts of the fluxes
is a key ingredient of the stability of the scheme.

The nonlinear solver benefits from the elimination of the well superficial velocities and flow rates
in the Newton linearization process leading to a Jacobian system with the same primary unknowns
both for the well and the reservoir, which makes the coupling between both models much easier.

This numerically robust well model can be used to simulate complex transient flows such as those
occurring during the start-up of a geothermal well, as well as cross-flow configurations along the wells.
It can be used either by modeling the reservoir with source terms using well indexes, or fully coupled
with a subsurface flow model. Different configurations (transient, stationary, coupled or not with a
reservoir flow model) have been tested to validate the model performance.

Future work will focus on the implementation of alternative drift flux models in particular to take
downward flows into account, and on coupled well-reservoir modeling for large scale industrial case
studies.

Appendix A. Example of monotone two-point flux for the DFM model from [24]

The gas liquid DFM model introduced in [24] is based on the following choices of the drift velocity
and profile parameter.

Let σgℓ be the gas liquid interfacial tension, and let us define the following characteristic velocity
for the rise of a gas bubble in a liquid:

Uc =
(

σgℓg
(ρℓ − ρg)

(ρℓ)2

) 1
4

.
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The profile parameter is defined by

C0(sg) = A

1 + (A − 1)γ2 ,

γ = P[0,1]

(
β − B

1 − B

)
,

β = max
(

sg, Fνsg |um|
Vsgf

)
,

Vsgf = Ku

√
ρℓ

ρg Uc,

(A.1)

with constant parameters A, B which must be such that B < (2 − A)/A to ensure that sgC0(sg) ≤ 1
and sgC0(sg) non-decreasing. Typically we set A = 1.2, B = 0.3. The Critical Kutateladze number
Ku ∈ [0, 3.5] depends on the dimensionless diameter of the pipe defined by

D̂ =
(

g
(ρℓ − ρg)

σgℓ

) 1
2

D,

where D is the diameter of the pipe. A graphical representation of the function Ku is provided in [24].
The constant parameter Fν is typically set to 1 and the projection P[0,1] is defined by

P[0,1](x) =


0 if x ≤ 0,

1 if x ≥ 1,

x if x ∈ (0, 1).

The drift velocity times sg is defined by

sgUd(sg) = G(sg)K̃(sg) Uc, (A.2)
with

G(sg) = (1 − sgC0(sg))
sgC0(sg)

√
ρg

ρℓ + 1 − sgC0(sg)
,

and

K̃(sg) =


1.53 sg if sg ≤ a1,

KuC0(sg)sg if sg ≥ a2,

1.53 a1
sg − a2
a1 − a2

+ KuC0(a2)a2
sg − a1
a2 − a1

if sg ∈ (a1, a2).

Note that the linear interpolation between a1 and a2 is done in [24] on K̃(sg)
sgC0(sg) rather than on K̃(sg).

It has been modified here to simplify the design of a monotone flux. The constant parameters 0 <
a1 < a2 < 1 are typically set to a1 = 0.2 and a2 = 0.4. We can check that G(sg) is a non-increasing
function w.r.t. sg. We also assume in the following that K̃(sg) is a non-decreasing function w.r.t. sg

which is the case provided that the condition
1.53 a1 ≤ a2KuC0(a2),

is satisfied. In practice, it seems that this condition is not very restrictive. This condition guarantees
that the following flux function F g

a is a monotone two-point flux:{
F g
a (u, v) = u C0(u)(um

a )+ + v C0(v)(um
a )−

+ G(v) K̃(u)(Ucoa)+ + G(u) K̃(v)(Ucoa)−.
(A.3)

227



D. Castanon Quiroz, L. Jeannin, et al.

In the case 1.53 a1 > a2KuC0(a2), a Godunov numerical flux K̃g(u, v) could still be computed for
the continuous flux function K̃(sg) since K̃(sg) is in that case a piecewise monotone function non
decreasing on (0, a1) ∪ (a2, 1) and non-increasing on (a1, a2). Then, the second line in (A.3) will be
replaced by G(v) K̃g(u, v)(Ucoa)+ + G(u) K̃g(v, u)(Ucoa)−.

Appendix B. Reservoir source terms

It is assumed that the radius of the wells are small compared to the cell sizes in the neighborhood of
the well. It results that the Darcy flux between the reservoir and the well at a given well node v ∈ Vω

is obtained using the Two Point Flux Approximation
V α

v = WID
v (pr,α

v − pv),
where pr,α

v is the reservoir phase pressure at node v. Fourier fluxes between the reservoir and the well
are discretized in the same way using the Two Point Flux Approximation

Fv = WIF
v (T r

v − Tv),
with T r

v denoting the reservoir temperature at node v. The Well Indexes WID
v and WIF

v are typically
computed using Peaceman’s approach (see [4, 7, 20, 21]) and take into account the unresolved singu-
larity of respectively the pressure and temperature solutions in the neighborhood of the well. Let us
denote by kα

r,v(sα) the phase relative permeability at node v as a function of the phase saturation sα,
by sr,α

v the reservoir saturation of phase α, and by cr,α
v the reservoir molar fractions of phase α.

For any a ∈ R, let us define a+ = max(a, 0) and a− = min(a, 0). The molar flow rates between
the reservoir and the well ω at a given node v ∈ Vω are defined by the following phase based upwind
approximation of the mobilities:

qr→ω
v,α,i = cα

v,i

ζα
v

µα
v

kα
r,v(sα

v)(V α
v )− + cα

v,i

ζα(pr
v, T r

v , cr,α
v )

µα(pr
v, T r

v , cr,α
v )kα

r,v(sr,α
v )(V α

v )+,

qr→ω
v,i =

∑
α∈Pi

qr→ω
v,α,i,

(B.1)

and the energy flow rate is defined similarly by

qr→ω
v,e =

∑
α∈P

(
hα

v(qr→ω
v,α )− + hα(pr

v, T r
v , cr,α

v )(qr→ω
v,α )+

)
+ Fv, (B.2)

with qr→ω
v,α =

∑
i∈Cα qr→ω

v,α,i.

Appendix C. Computations of the well temperatures and saturations for the single
implicit unknown well model

We detail in this Appendix the computations of the production well temperatures and saturations for
the single implicit unknown well model of Subsection 5.2 at given well pressures pv, molar qr→ω

v,h2o and
energy qr→ω

v,e flow rates for v ∈ Vω. Using the assumptions (i) and (ii) stated in Subsection 5.2 for
the SIUwell-DFM well model, and considering the case of a single component H2O, the conservation
equations (3.2a)-(3.2b) reduce to∑

a∈Eω
v

∑
α∈P

−κa,v|Sω
a |ζα

a uα
a = qr→ω

v,h2o − δvω
v
∑
α∈P

|Sω
vω

|ζα
v uα

ω,

∑
a∈Eω

v

∑
α∈P

−κa,v|Sω
a |hα

a ζα
a uα

a = qr→ω
v,e − δvω

v
∑
α∈P

|Sω
vω

|hα
vζα

v uα
ω,
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for v ∈ Vω. Summing these molar and energy conservation equations over all nodes v′′ ≥
ω

v, and using
assumption (iii) for the enthalpy and molar density upwind values, we obtain for all a = v′v ∈ Eω that∑

α∈P
|Sω

a |ζα(pv, Tv)uα
a =

∑
v′′∈Vω |v′′≥

ω
v

qr→ω
v′′,h2o := Qω

v,h2o,

∑
α∈P

|Sω
a |hα(pv, Tv)ζα(pv, Tv)uα

a =
∑

v′′∈Vω |v′′≥
ω

v
qr→ω

v′′,e := Qω
v,e.

It results that the thermodynamical equilibrium at fixed well pressure pv, molar Qω
v,h2o and energy

Qω
v,e provides the well temperature Tv and the well saturations sα

v at node v as follows. Let us define
the phase molar fractions cα

v, α ∈ P such that
cα

vQω
v,h2o = |Sω

a |ζα(pv, Tv)uα
a .

We first assume that both phases are present which implies that Tsat = (psat)−1(pv) and that the
liquid molar fraction is given by

cℓ
v =

hg(pv, Tsat) − Qω
v,e

Qω
v,h2o

hg(pv, Tsat) − hℓ(pv, Tsat)
,

from which we can compute cg
v = 1 − cℓ

v and the superficial velocities uℓ
a and ug

a. The following
alternatives are checked:
Two-phase state: if 0 < cℓ

v < 1, the two-phase state is confirmed. Using the slip law ug = sgUd(sg) +
sgC0(sg)(ug + uℓ), then Tv = Tsat and the gas saturation sg

v is solution of the equation
sg

vUd(sg
v) + sg

vC0(sg
v)(ug

a + uℓ
a) − ug

a = 0.

In the no slip case, corresponding to Ud = 0 and C0 = 1, it reduces to sg
v = ug

a

ug
a+uℓ

a
.

Liquid state: if cℓ
v ≥ 1, then only the liquid phase is present, we set sℓ

v = 1, sg
v = 0, and Tv is the

solution of
hℓ(pv, Tv) =

Qω
v,e

Qω
v,h2o

.

Gas state: if cℓ
v ≤ 0, then only the gas phase is present, we set sℓ

v = 0, sg
v = 1, and Tv is the solution of

hg(pv, Tv) =
Qω

v,e

Qω
v,h2o

.

We note that the same computations are done at the head node vω based on the equations∑
α∈P

|Sω
vω

|ζα(pvω , Tvω )uα
ω =

∑
v′′∈Vω

qr→ω
v′′,h2o := Qω

vω ,h2o,

∑
α∈P

|Sω
vω

|hα(pvω , Tvω )ζα(pvω , Tvω )uα
ω =

∑
v′′∈Vω

qr→ω
v′′,e := Qω

vω ,e.

Then, the pressures pv, temperatures Tv and saturations sα
v, v ∈ Vω are used to compute the edge

mean densities ρm
a defined by (3.4). These mean densities are frozen in the momentum equation for the

computation of the next time step. Together with the zero wall friction assumption (i) (which could
be relaxed by an explicit approximation), it results that the next time step well pressures depend only
on the well head node pressure pω. This is the only well unknown implicitly coupled to the reservoir
system combined with the single well equation reducing to the complementary constraints on the pair(
qω − qω, pω − pω

)
(first equation of (3.8)). Let us refer to see [4] for more details about this type of

single implicit unknown well model.
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