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Abstract. In this paper, we propose to revisit a reciprocity gap method for solving point inverse source problem in
an advection diffusion equation. The motivation of this problem is in ecology for pollutant source identification in
a river. We propose the construction of original (numerically computed) adjoint functions that allows to consider
more realistic geometries and river flows. The method is combined with a state estimator which allows to accelerate
the identification process. The proposed method is validated on several examples.
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1. Introduction

This work is motivated by the development of numerical methods for source identification in the context
of ecology [2, 14, 15, 18, 19]. In particular, we are interested here in pollutant source localization in
a river given some downstream data, that is to say data on a part of the boundary of the domain.
To describe the pollutant propagation, we consider a simple model from the literature: an advection-
diffusion equation [11, 15, 20]. The source term is assumed to be a point to correspond to a localized
source. This problem corresponds to a classical inverse source problem, and several studies already
have been dedicated to this subject. Let us recall some of them relevant in our context.

A first question that naturally arise in inverse problem is the question of identifiability. In other
words, can we recover the unknown information from the available data? For the problem of point
source identification in a diffusion equation, it was shown in [3, 7, 12] that we can uniquely recover the
source position given measurements on the boundary of the domain. For advection diffusion problem,
given upstream and downstream boundary data (that is to say, on a part of the boundary), a similar
result was shown in [13, 15, 17] (for different situations, 1D, 2D or 3D) under some assumptions on the
flow and the diffusion tensor. The proof of the result relies on the reciprocity gap method. Based on this
identifiability result, a non iterative algorithm is proposed to solve the inverse problem. The general
idea is to construct analytically appropriate adjoint functions to reformulate the inverse problem
as a simple non linear equation (the identifiability result coming from the injectivity of the adjoint
functions). A major advantage of this approach comes from the fact that the numerical algorithm of
resolution of the inverse problem is fast and no minimization process is required. Yet, a drawback is
the analytical construction of the adjoint functions which requires relatively strong assumptions on
the geometry of the river, the flow and the diffusion tensor [15, 17].

Other approaches can be found in the literature such as gradient minimization approach, see [10, 25]
and references inside, or Kalman filtering approach, see for instance [24, 26], which allow greater
flexibility on the hypotheses on the parameters of the model, but usually require larger computational
effort to solve the inverse problem. Let us also mention [8, 9] which consider also the problem of source
identification using an observer approach but for a different equation (wave equation).
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A. Tonnoir

Besides, as initiated in [17], we wish to propose an “online” monitoring procedure that allows to
estimate the pollutant source position at each time (making the identification procedure in real time).
To be able to do that efficiently, one needs a state estimator for the advection diffusion equation that
describes the pollutant propagation. Building this type of estimator is not an easy task, especially with
partial boundary data. Let us mention some papers in our context. In [4] a Kalman estimator with
an efficient implementation based on matrix compression is proposed for general elliptic equations,
and in particular for the advection-diffusion equation. From stabilization process, see [21, 23] and the
reference inside, one can also derive a state estimator. Yet, boundary stabilization methods usually
rely on the knowledge of the solution in the whole domain, which is not affordable in our case since
we consider only measurements on a part of the boundary.

In this work, we propose to revisit the reciprocity gap approach and more precisely the construction
of the adjoint functions via a (semi-)numerical computation, the idea being to take advantage as much
as possible of the separation of variables method. We wish to propose a method that gives a general
way to construct these adjoint functions and allows to fully relax the conditions needed to build
them analytically. Thus, it generalizes previous works and keep the advantage of a fast identification
procedure. Also, we explain how to implement the identification procedure to get an online monitoring
and to identify multiple sources in the case when they are “well-separated” (in a sense that will be
clarify hereafter). A second main contribution of this work is the construction of a simple and cheap
state estimator based on (partial) boundary data (under some assumptions) for which we give an error
bound.

The rest of the paper is organized as follows. In Section 2, we present the model and give the
mathematical formulation of the inverse problem. Then, in Section 3 we recall the general approach of
the adjoint functions method and give the reformulation of the inverse problem as a simple resolution
of two non-linear equations. In Section 4, we present the construction of a cheap state estimator based
only on (partial) boundary measurements. In Section 5, we study in details the case of a rectangular
river. This particular example allows to illustrate many physical intuitions and to propose a general
procedure to construct the adjoint functions. Finally, in Section 6 several generalization and tests are
presented to assess the method in more realistic situations. In particular, we consider a synthetic case
of two sources identification in the Seine river in Rouen (France).

2. Mathematical model and formulation of the problem

To describe the diffusion and propagation of a quantity u of a pollutant in a river, we consider the
following simple linear model:

∂tu+ V · ∇u− div(D∇u) = f in Ω,
u = 0 on Γin,
D∇u · ν = 0 on Γout ∪ Γ,

(2.1)

where V describes the velocity field, D is the diffusion tensor1 (a 2× 2 positive definite matrix) and
the domain Ω ⊂ R2 represents the geometry of the river, see Figure 2.1. The boundary of the domain
∂Ω is split into three parts: Γin corresponding to the in-flow boundary, Γout corresponding to the out-
flow boundary and Γ corresponding to the “lateral” boundary. The homogeneous Dirichlet boundary
condition in Γin corresponds to the fact that we suppose that no pollutant comes from upstream,
and the homogeneous Neumann boundary condition in Γout corresponds to a simple open domain
boundary conditions (modeling the fact that the river do not stop at Γout).

1Note that V and D may vary with the position (x, y).
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Γout

Γin

Γ

Γ

Figure 2.1. Geometry of the river Ω. The black arrow corresponds to the velocity field V.

In the sequel, we will assume the following hypotheses:

(H1) the initial condition in (2.1) is u(t = 0, · ) = 0, which corresponds to assume that there is no
pollutant in the domain at initial time.

(H2) the vector field V is irrotational and divergence free (which amounts to consider that it comes
from a potential flow), and V · ν = 0 on Γ where ν is the outward normal (no flow across the
lateral boundary),

(H3) and the source term is very localized so that we consider

f(t, x, y) = δs(x, y)λ(t) (2.2)

where λ ≥ 0 and δs is the Dirac distribution at position s corresponding to the pollutant
source. The function λ represents the amount of pollutant emitted at each time t and the
source is supposed to vanish after time T0 > 0, which means that λ(t) = 0 for all t ≥ T0. This
time T0 is supposed to be unknown, as well as λ.

Remark 2.1. One could also consider a reaction term in (2.1) with a parameter R ≥ 0. The method-
ology presented below is the same. In particular, if R is constant then we can always come back to
equation (2.1) using the change of unknown u = ũ eRt where ũ is the solution of the problem with the
reaction coefficient.

The purpose then is: Given the boundary measurements over time [0, T ], T > T0,

M = {(u,D∇u · ν) on [0, T ]× {Γin ∪ Γout}} (2.3)

find the source position s in the shortest time. Note that this inverse problem “simply” amounts to find
the two coordinates (sx, sy) of the source term. An important difference with the previous mentioned
works is the fact that we wish here to have an online procedure, that is to say a procedure that gives
an estimate of the source position at each time t ∈ [0, T ]. This means in particular that we wish to
avoid the “direct” least-square minimization approach which would require to know the measurements
during all time [0, T ].

Also, we can be interested in the reconstruction of the function λ( · ), but this issue will not be
discussed in this work. This can be done a posteriori as in [14, 16]. We will see that even if λ( · ) is
unknown, we can recover the total amount of emitted pollutant and the source position. As already
mentioned, the question of identifiability for this inverse problem have been studied in several previous
work [7, 15, 17] requiring additional (quite strong) hypotheses on the tensor D, the velocity field V
and the geometry Ω to be ensured. Here, we will focus on a numerical procedure to reconstruct s or
a candidate for s even if identifiability is not ensured.
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Remark 2.2. Using classical regularity results, see [12, 22], one can show that if the source term is not
on the boundary, the solution is in C0([0, T ], H1/2(Ω)) and the data u|Γout is in C0([0, T ], L2(Γout)).

Remark 2.3. If we suppose the time dependency of the source λ( · ) known, then the identifiability
of the source with boundary measurements can be obtained using the results of [1]. Indeed, the
advection-diffusion equation considered here fits into the general framework proposed in this paper.

3. The general approach

3.1. Reformulation of the inverse problem

The starting point of the method consists in testing equation (2.1) with appropriate adjoint functions.
So, multiplying equation (2.1) with a function v and integrating in time and space, we get:∫ T

0
⟨u,L∗v⟩ dt+ B(u, v, T ) +

∫
Ω
u(T, · )v(T, · ) =

∫ T

0
λ(t)v(t, s)dt (3.1)

where ⟨ · , · ⟩ is the duality product between H1/2(Ω) and H−1/2(Ω), L is the operator defined by

L(v) = ∂tv + V · ∇v − div(D∇v), ∀ v ∈ C0([0, T ], H1/2(Ω)), (3.2)

and L∗ is the adjoint operator of L

L∗(v) = −∂tv −V · ∇v − div(D∇v), ∀ v ∈ C0([0, T ], H1/2(Ω)). (3.3)

The boundary term B is given by

B(u, v, T ) =
∫ T

0

∫
∂Ω
uvV · ν − vD∇u · ν + uD∇v · νdΓ. (3.4)

The idea then consists in taking v satisfying L∗v = 0. Also, following the idea of separation of variables,
we seek for v of the form: v(t, x, y) = µ(t)w(x, y). Simple computations then show that µ(t) := eαt for
any real constant α and w must satisfy

−div(D∇w)−V · ∇w + αw = 0. (3.5)

In the sequel, we will consider the case α = 0 so that v(t, x, y) = w(x, y) (which means stationary
solutions), the motivation of this choice being explained after in Remark 3.5. Then, to fully determine
the function w one only need to specify the boundary conditions. They are chosen according to the
boundary data knowledge and the goal is to keep in B(u, v, T ) only known terms. Therefore, on Γ we
will impose homogeneous Neumann conditions. On Γout, we will impose a (non homogeneous) Dirichlet
boundary conditions and on Γin either homogeneous Neumann or Dirichlet conditions. To sum up, we
will have

Definition 3.1 (Adjoint function). Given gout ∈ H1/2(Γout), the adjoint function w is defined as the
unique solution in H1(Ω) to

−div(D∇w)−V · ∇w = 0 in Ω,
D∇w · ν = 0 on Γ,
w = gout on Γout,
βD∇w · ν + (1− β)w = 0 on Γin,

(3.6)

where β = 0 or β = 1, depending on the condition one wishes to impose on Γin.

This problem is well-posed thanks to the Dirichlet condition on Γout and using Lax–Milgram the-
orem. Thus, using the boundary conditions satisfied by v = w, the term B(u, v, T ) = B(u,w, T )
simplifies and we get
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Lemma 3.2. For any adjoint function w solution to (3.6), we have:

B(u,w, T ) =
∫ T

0

∫
Γout

uwV · ν + uD∇w · ν dΓ−
∫ T

0

∫
Γin

wD∇u · ν dΓ. (3.7)

The proof of this result is direct noticing that:

B(u,w, T ) =
∫ T

0

∫
Γin∪Γout

uwV · ν − wD∇u · ν + uD∇w · ν dΓ,

=
∫ T

0

∫
Γout

uwV · ν + uD∇w · ν dΓ−
∫ T

0

∫
Γin

wD∇u · ν dΓ.
(3.8)

As mentioned, computing this term requires only the knowledge of u on the out-flow boundary Γout

and D∇u · ν on the in-flow boundary Γin. Note also that one could avoid the knowledge of the data
D∇u · ν on Γin by taking w = 0 on Γin (i.e. β = 0 in (3.6)).

Now, with this adjoint function, equation (3.1) can also be simplified and we straightforwardly get

Lemma 3.3. For any adjoint function w solution to (3.6), we have:

B(u,w, T ) +
∫

Ω
u(T, · )w( · ) = w(s)Λ(T ) where Λ(T ) =

∫ T

0
λ(t)dt. (3.9)

Corollary 3.4. Taking successively w = 1 (which is solution to (3.6) with β = 1 and gout = 1),
w = wA and w = wB two other solutions to (3.6), we obtain

Λ(T ) = B(u, 1, T ) + (u(T, · ), 1)L2(Ω) ,

wA(sx, sy) =
B(u,wA, T ) + (u(T, · ), wA)L2(Ω)

Λ(T ) ,

wB(sx, sy) =
B(u,wB, T ) + (u(T, · ), wB)L2(Ω)

Λ(T ) .

(3.10)

In the above system, the unknown terms are the final state u(T, · ) and the source position s =
(sx, sy). Λ(T ) the total amount of pollutant emitted during time [0, T0] is given by the known boundary
term B(u, 1, T ) and u(T, · ). For the final state u(T, · )2, we will approximate it by an estimator û that
will be explained in the next section. Note that a basic idea of state estimator is to take û = 0 since
the solution u of the direct problem tends to 0 as t tends to +∞. Yet, as we will see, we can do better
in many cases.

Then, replacing u(T, · ) by û(T, · ) the quantity Λ(T ) can be estimated by
Λ(T ) ≃ B(u, 1, T ) + (û(T, · ), 1)L2(Ω) . (3.11)

Let us note that this gives an estimate of the total amount of pollutant that has been emitted.

Remark 3.5. Note that if we take α ̸= 0 in (3.5), one should in fact compute∫ T

0
λ(t)eαt dt instead of Λ(T ) =

∫ T

0
λ(t) dt in (3.9).

Yet, since v(x, y, t) = eαt does not satisfy L∗v = 0 (for α ̸= 0), we cannot use B(u, eαt, T ) +(
û(T, · ), eαt

)
L2(Ω) to estimate the above quantity. This is why we took α = 0. Nevertheless, let us

note that B(u, 1, T ) + (û(T, · ), 1)L2(Ω) can be a good approximation of the above quantity for small α.

Similarly, we replace u(T, · ) by û(T, · ) in the equations satisfied by wA and wB in (3.10) and we get
2Let us remark that in adjoint state method for the computation of the gradient of the functional to minimize, we

usually take v(T, · ) = 0 to eliminate this term.
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Definition 3.6 (Reformulation of the inverse problem). We will seek for the estimate source position
ŝ = (ŝx, ŝy) solution to the system:

wA(sx, sy) = DA(T ),
wB(sx, sy) = DB(T ),

(3.12)

where

DA(T ) =
B(u,wA, T ) + (û(T, · ), wA)L2(Ω)
B(u, 1, T ) + (û(T, · ), 1)L2(Ω)

and DB(T ) =
B(u,wB, T ) + (û(T, · ), wB)L2(Ω)
B(u, 1, T ) + (û(T, · ), 1)L2(Ω)

. (3.13)

This problem is nothing but a system of two non-linear equations. In fact, the coordinates (ŝx, ŝy)
of the source localization can be interpreted simply as the intersection of the two level sets of wA and
wB. Let us also remark that the question of identifiability amounts to know if system (3.12) has a
unique solution. In particular, if we can find wA(x, y) = wA(x) and wB(x, y) = wB(y) solution to (3.6),
then the two equations are decoupled and identifiability can be easily shown providing monotonicity
properties of wA and wB. Following this idea, we will propose a way to construct wA and wB first on
a simple rectangular geometry in Section 5, and then on a general case in Section 6.

3.2. Algorithm for the “online” monitoring

To end this section, let us emphasize that the position estimate can be computed in fact at any time t,
not only T . This allows to consider an “online” monitoring of the section of river Ω by solving (3.12)
at each time t and replacing therefore DA(T ) and DB(T ) by

DA(t) =
B(u,wA, t) + (û(t, · ), wA)L2(Ω)
B(u, 1, t) + (û(t, · ), 1)L2(Ω)

and DB(t) =
B(u,wB, t) + (û(t, · ), wB)L2(Ω)
B(u, 1, t) + (û(t, · ), 1)L2(Ω)

. (3.14)

As explained, the resolution can be done by computing the level sets associated to each adjoint function.
Yet, in the sequel the adjoint functions will be only known numerically on a mesh (we use Lagrange
Finite Elements for the discretization and resolution of problem (3.6)), i.e. at some positions (xk, yk)k

k ∈ {1, . . . , Ns} with Ns > 0. Therefore, instead of computing the level set, we simply consider the set
of points for which wi is in an interval around Di(t), i ∈ {A,B}3:

Si(t) = {(xk, yk), k ∈ {1, Ns} s.t. wi(xk, yk) ∈ [Di(t)− tol,Di(t) + tol]}. (3.15)

If SA(t)∩SB(t) = ∅, the idea is to gradually increase the value of tol > 0 until the intersection is not
empty. Then, the estimate position of the source is defined by

Definition 3.7 (Position estimate). The estimate source position ŝ(t) = (ŝx(t), ŝy(t)) at time t is
given by

(ŝx(t), ŝy(t)) = argmin
(x,y)∈SA(t)∩SB(t)

(wA(x, y)−DA(t))2 + (wB(x, y)−DB(t))2. (3.16)

Let us underline that this minimization problem is easy to solve since the set SA(t) ∩ SB(t) is very
small. Let us also remark that other choices are possible for the functional in (3.16).

Remark 3.8. The parameter tol in (3.15) can also be used to determine a possible area of the source
term, in case of uncertainties on the data.

3One could also use an interpolation technique to compute the level sets.

238



Reciprocity gap and state estimator for source identification

Besides, to get an efficient implementation of B(u,w, t) we can remark that it can be computed
recursively. Indeed, if ∆t > 0 denotes the time stepping of the measurements and tn = n∆t, we have:

B(u,w, tn+1) ≃ B(u,w, tn)

+ ∆t
(∫

Γout

u(tn+1, · ) (wV · ν +D∇w · ν) dΓ−
∫

Γin

wD∇u(tn+1, · ) · ν dΓ
)
. (3.17)

The procedure of source position estimation is sum up in Algorithm 1. Note that the source estimate
is computed as soon as the estimate of total emitted pollutant |B(u, 1, t) + (û(t, · ), 1)L2(Ω) | is larger
than a given value ε > 0.

Algorithm 1 Source estimation
Require: wA and wB appropriate adjoint functions solutions to (3.6)

while tn ≤ T do
Update the term B(u,w, tn) using equation (3.17)
Compute the state estimator û at time tn (See Section 4)
if |B(u, 1, tn) + (û(tn, · ), 1)L2(Ω) | ≥ ε then

Compute DA(tn) and DB(tn) using equation (3.14)
tol← 10−5

Compute the sets of SA and SB using equation (3.15)
while SA ∩ SB = ∅ do

Increase tol by a factor > 1
Update the sets SA and SB using equation (3.15)

end while
Solve the minimization problem (3.16) to get the estimate (ŝx, ŝy)

end if
Update time: tn ← tn + ∆t

end while

4. The state estimator

In this section, the purpose is to construct a state estimator û of u. Given boundary data, this is
a difficult task for an advection diffusion equation, as explained in the introduction. We require the
estimator the following criteria:

• It is based only on the measurements of u on Γout and it converges to u as t tends to +∞,

• The computational cost is low enough to allow “online” monitoring as explained in the previous
section.

4.1. Spectral decomposition of the solution

Since the source term is unknown, the idea is to build a state estimator for t ≥ t0 ≥ T0 (although we
do not know the extinction time T0 of the source term)4 when the source is null. In other words, we
wish to estimate for all t ≥ t0 u solution to:

∂tu+ V · ∇u− div(D∇u) = 0 in Ω,
u = 0 on Γin,
D∇u · ν = 0 on Γout ∪ Γ,

(4.1)

4The introduction of t0 will be useful in the sequel
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with the unknown initial data u(t0, · ). To construct this estimator, we will rely on a spectral decompo-
sition of the solution. To be able to justify this decomposition, we need to add the following hypothesis
on V and D:

(H4) we suppose that
rot
(
D−1V

)
= 0 ⇐⇒ ∂y(D−1V)1 = ∂x

(
D−1V

)
2. (4.2)

If this hypothesis is not satisfied, then the spectral decomposition we will present hereafter is wrong and
so is the associated estimator. Let see now where does this condition comes from. To get the spectral
decomposition of u solution to (4.1), one needs to compute the eigenvalues λ and the eigenfunctions
φ of the eigenvalue problem:

−div (D∇φ) + V · ∇φ = λφ in Ω,
φ = 0 on Γin,
D∇φ · ν = 0 on Γ ∪ Γout.

(4.3)

Using the fact that div(V) = 0 and setting φ( · ) := eζ( · )ψ( · ), we get that

− div
(
D∇φ− 1

2Vφ
)

+ 1
2V · ∇φ = λφ,

⇐⇒ − div
(
eζD∇ψ +

(
D∇ζ − 1

2V
)
eζψ

)
+ 1

2V · ∇(eζψ) = λeζψ,

(4.4)

Under hypothesis (4.2), one can choose ζ s.t.

D∇ζ − 1
2V = 0 ⇐⇒ ∇ζ = 1

2D
−1V. (4.5)

Thus, equation (4.4) becomes:

− div (D∇ψ)−D∇ψ · ∇ζ + 1
2(V · ∇ψ)︸ ︷︷ ︸

=0

+1
2(V · ∇ζ)ψ = λψ,

⇐⇒ − div (D∇ψ) + 1
4
(
V ·D−1V

)
ψ = λψ,

and the eigenvalue problem (4.3) can rewrite as follows

−div (D∇ψ) + 1
4
(
V ·D−1V

)
ψ = λψ in Ω,

ψ = 0 on Γin,
D∇ψ · ν + 1

2V · νψ = 0 on Γ ∪ Γout.

(4.6)

Since the operator −div(D∇· ) + 1
4(V ·D−1V)( · ) (with the above B.C.) is self-adjoint and positive,

we are ensured that there is a family (ψk)k∈N of (real) eigenfunctions associated with a non-decreasing
sequence of positive eigenvalues (λk)k∈N that tends to +∞. Moreover, this family (ψk)k∈N can be
normalized to form an orthonormal basis of L2(Ω). Thus, we can justify the following decomposition
of u:
Proposition 4.1 (Spectral decomposition). Under the condition (4.2), the solution u to (4.1) is
given by

u(t, x, y) =
∑
k≥0

Ak(t0)e−λk(t−t0)φk(x, y) where φk(x, y) = eζ(x,y)ψk(x, y), ∀ k ∈ N, (4.7)

with (ψk)k∈N the family of orthonormal eigenfunctions solutions to (4.6). Also, the parameters Ak(t0)
are uniquely determined by the value of u at time t0 and explicitly given by:

Ak(t0) =
(
e−ζu(t0, · ), ψk

)
L2(Ω)

, ∀ k ∈ N.
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Let us recall that u(t0, · ) is unknown, this is why we need an estimator. One can notice that the
family (φk)k∈N is not orthonormal according to the scalar product in L2 but, since eζ is uniformly
strictly positive, it is an orthonormal basis of L2(Ω) according to the weighted scalar product:

(φ, φ̃)ζ =
∫

Ω
φ(x, y)φ̃(x, y)e−2ζdΩ. (4.8)

Indeed, using the properties of (ψk)k∈N, we clearly have (φk, φl)ζ = δkl and for any function f ∈ L2(Ω):

f =
∑
k≥0

(fe−ζ , ψk)φk =
∑
k≥0

(f, φk)ζ φk.

This remark will simplify some computations in what follows. Let us note also that this scalar product
leads to an equivalent norm with the classical L2 norm. Moreover, we have:

f ∈ L2(Ω) ⇐⇒ ∥f∥2ζ =
∑
k≥0

(f, φk)2
ζ < +∞. (4.9)

Similarly, we have that:
f ∈ H1(Ω) ⇐⇒ ∥f∥2H1

ζ
=
∑
k≥0

(1 + λk)(f, φk)2
ζ < +∞. (4.10)

Here again, this defines an equivalent norm with the classical H1 norm. This last remark will be useful
for using the trace theorem in the sequel.

Remark 4.2. Let us note that the hypothesis (4.2) is always satisfied if D = d Id with d > 0 a
constant parameter. In that particular case, the function ζ defined in (4.5) can be deduced directly
from the potential of V.

4.2. State estimator

Let us consider the data u on Γout during a time frame [t− tf , t], with tf > 0 given. The purpose will
be to design an estimate of u(t, · ) based on these data. According to Proposition 4.1, we will seek for
û of the form:

û(s, x, y) =
N∑

k=0
Âk(t− tf )φk(x, y)e−λk(s−t+tf ), ∀ s ∈ [t− tf , t], (4.11)

where N is the given number of eigenfunctions we wish to consider. The coefficients Âk(t − tf ) cor-
respond to the decomposition of û at time t0 = t− tf . Once these coefficients are determined, we get
the estimate of u(t, · ):

Definition 4.3 (State estimator). Under the condition (4.2) and given the coefficients Âk(t− tf ), the
estimate of u(t, · ) is obtained by:

û(t, x, y) =
N∑

k=0
Âk(t− tf )φk(x, y)e−λktf . (4.12)

Since the data are known only on the boundary, we cannot take advantage of the orthonormality of
the eigenfunctions in L2(Ω) to compute the coefficients Âk(t− tf ). Also, the family of traces (φk|Γout)k

is usually not a linearly independent family of functions 5, so we cannot simply decompose the data
u(t − tf , · )|Γout . The idea is then to consider the whole data during the time frame [t − tf , t] and to
solve the minimization problem:

min
(Âk(t−tf ))k∈{0,...,N}

∫ t

t−tf

∥u(s, · )|Γout − û(s, · )|Γout∥2L2(Γout) ds. (4.13)

5We can simply show it for instance in the case of a rectangular domain
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Proposition 4.4. The solution to the minimization problem (4.13) is given by the resolution of the
linear system:

GÂ(t− tf ) = g, (4.14)

where the Gramian matrix G is given by

Gij =
(
φje

−λj( · −t+tf ), φie
−λi( · −t+tf )

)
L2([t−tf ,t]×Γout)

,

=
(
φje

−λj( · ), φie
−λi( · )

)
L2([0,tf ]×Γout)

, ∀ (i, j) ∈ {0, . . . , N}2,
(4.15)

the vector g ∈ RN+1 is defined by

gk =
(
u|Γout , φke

−λk( · −t+tf )
)

L2([t−tf ,t]×Γout)
, k ∈ {0, . . . , N},

and the vector Â(t − tf ) ∈ RN+1 is the vector of components Âk(t − tf ) defined in the state estima-
tor (4.12).

Proof. The proof is very classical. Since û(s, · ) is defined by (4.11), we deduce that

∥u(s, · )|Γout − û(s, · )|Γout∥2L2(Γout) =
∥∥∥∥∥

N∑
k=0

Âk(t− tf )φk( · , · )|Γout

∥∥∥∥∥
2

L2(Γout)

e−2λk(s−t+tf )

− 2
N∑

k=0
Âk(t− tf )

(
φk(x, y)|Γout , û(s, · )|Γout

)
L2(Γout)

e−λk(s−t+tf )

+ ∥û(s, · )|Γout∥2L2(Γout)

Integrating in time in [t− tf , t] and using the definition of G, g and Â(t− tf ), we get∫ t

t−tf

∥u(s, · )|Γout − û(s, · )|Γout∥2L2(Γout) ds =
(
GÂ(t− tf )

)
· Â(t− tf )− 2Â(t− tf ) · g

+
∫ t

t−tf

∥û(s, · )|Γout∥2L2(Γout) ds.

We conclude using the fact that G is a symmetric matrix so that the minimum of the above quantity
is given by the resolution of the linear system (4.14).

Let us make some remarks on linear system (4.14). First, the Gramian matrix is independent of t,
so its computations and factorization can be done once and then used for the estimate at any time
t. Also, though for N large the matrix G is (usually) very ill-conditioned, it is still better than the
Gramian matrix obtained only with the family (φk|Γout)k (as we will illustrate in the numerical results
hereafter). Intuitively, this can be understood by the fact that the time evolution brings information
by the speed of decrease of the solution via the eigenvalues λk. Finally, let us mention that at each
time t, the main cost for computing the estimator û(t, · ) is the computation of the coefficients gk. To
speed up these computations, we can use a recursive formula, as for the coefficient B(u,w, t). Once
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again from a computational point of view (with ∆t > 0 the time stepping and tn = n∆t), we have

gk(tn+1) =
∫ tn+∆t

tn+∆t−tf

∫
Γout

u|Γoutφk|Γoute
−λk(s−(tn+∆t−tf )) dΓ ds,

≃ eλk∆t

(∫ tn

tn−tf

∫
Γout

u|Γoutφk|Γoute
−λk(s−(tn−tf )) dΓ ds

− ∆t
∫

Γout

u(tn − tf )|Γoutφk|Γoute
−λk(tn−tf ) dΓ

)
+ ∆t

∫
Γout

u(tn+1)|Γoutφk|Γoute
−λktn+1 dΓ,

≃ eλk∆t
(
gk(tn)−∆t

∫
Γout

u(tn − tf )|Γoutφk|Γoute
−λktn−tf dΓ

)
+ ∆t

∫
Γout

u(tn+1)|Γoutφk|Γoute
−λktf dΓ.

(4.16)

Unfortunately, the recursive formula (4.16) becomes unstable for large n, so in the implementation,
every ns steps we recompute the coefficient gk(tn) using a classical quadrature formula for the integral
in time between [tn − tf , tn].

Let us sum up the algorithm for the implementation of the state estimate:

Algorithm 2 State estimator
Require:

Pre-computation of the eigenfunctions φk solutions to (4.3) for k ∈ {0, . . . , N}
Pre-computation and factorization of the Gramian matrix G defined in (4.15)

while tn ≤ T do
if n ≡ 0 mod ns then

Compute each component of g(tn) using a quadrature formula
else

Update each component of g(tn) using equation (4.16)
end if
Solve the linear system (4.14)
Compute the state estimate û(tn, · ) using equation (4.12)
Update time: tn ← tn + ∆t

end while

4.3. Error estimate

Now, assuming we can solve the linear system (4.14) (i.e. the functions (φk|Γoute
−λk( · −t+tf ))k∈{1,...,N}

are linearly independent in L2((0, T )×Γout)), a natural question is: can we have an error bound between
û and u in Ω at time t? Indeed, since the family (φk|Γoute

−λk( · −t+tf ))k∈N is not an orthonormal basis,
we cannot a priori ensure that the coefficients Âk(t − tf ) computed by the resolution of (4.13) are
equal (or close) to the coefficients Ak(t− tf ) of the decomposition of u at time t0 = t− tf .

Let us define by uN the truncated series:

uN (s, x, y) =
N∑

k=0
Ak(t− tf )φk(x, y)e−λk(s−t+tf ), ∀ s ∈ [t− tf , t]. (4.17)
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We denote by gN the associated vector which components are defined by

gN
k =

(
uN |Γout , φke

−λk( · −t+tf )
)

L2([t−tf ,t]×Γout)
.

The difficulty comes from the fact that we do not have gN = g. Yet, the vector A(t − tf ) which
components are given by Ak(t− tf ) for k ∈ {1, . . . , N} is solution to

GA(t− tf ) = gN ,

so, we can deduce that

∥Â(t− tf )−A(t− tf )∥RN ≤ ∥G−1∥∥g− gN∥RN , (4.18)

where we consider the classical ℓ1-norm in RN . Now, using the orthogonality of the functions (φk)k

with respect to the scalar product ( · , · )ζ we have

∥û(t, · )− uN (t, · )∥ζ =
∥∥∥∥∥

N∑
k=1

(
Âk(t− tf )−Ak(t− tf )

)
e−λktfφk

∥∥∥∥∥
ζ

,

=
N∑

k=1
|Âk(t− tf )−Ak(t− tf )|e−λktf ≤ ∥Â(t− tf )−A(t− tf )∥RN .

(4.19)

Using Cauchy–Schwarz inequality, we can bound the term ∥g− gN∥RN as follows:

∥g− gN∥RN =
N∑

k=1

∣∣∣∣(u(s, · )|Γout − uN (s, · )|Γout , φke
−λk(s−t+tf )

)
L2((t−tf ,t)×Γout)

∣∣∣∣ ,
≤ ∥u(s, · )|Γout − uN (s, · )|Γout∥L2((t−tf ,t)×Γout)

N∑
k=1
∥φke

−λk(s−t+tf )∥L2((t−tf ,t)×Γout)︸ ︷︷ ︸
=C

,

≤ C∥u(t, · )|Γout − uN (s, · )|Γout∥L2((t−tf ,t),

where we can note that C is uniformly bounded in t since C ≤
√
tf
∑N

k=1 ∥φk∥L2(Γout)
6. We deduce

then that:
∥û(t, · )− uN (t, · )∥ζ ≤ C∥G−1∥∥u|Γout − uN |Γout∥L2((t−tf ,t)×Γout). (4.20)

and thus:

∥û(t, · )− u(t, · )∥ζ ≤ ∥û(t, · )− uN (t, · )∥ζ + ∥uN (t, · )− u(t, · )∥ζ ,
≤ C∥G−1∥∥u|Γout − uN |Γout∥L2((t−tf ,t)×Γout) + ∥uN (t, · )− u(t, · )∥ζ .

(4.21)

In the next, the constant C may vary from one line to another. The main point is that it does not
depend on t. On the one hand, we have using (4.7) with t0 = T0 and the properties of the functions
(φk)k:

∥uN (t, · )− u(t, · )∥ζ = ∥
∑

k≥N+1
e−λk(t−T0)(u(T0, · ), φk)ζφk∥ζ

≤ e−λN+1(t−T0)∥u(T0, · )∥ζ ,
(4.22)

6Yet, we can already note that C grows with N .
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where we recall that T0 is the extinction time. On other hand, we have using the trace theorem and
the equivalence between the H1

ζ -norm with the classical H1-norm:

∥u|Γout − uN |Γout∥2L2((t−tf ,t)×Γout) =
∫ t

t−tf

∥u(s, · )|Γout − uN (s, · )|Γout∥2L2(Γout) ds,

≤
∫ t

t−tf

∥u(s, · )− uN (s, · )∥2H1(Ω) ds,

≤ C
∫ t

t−tf

∥u(s, · )− uN (s, · )∥2H1
ζ

ds,

(4.23)

where the constant C comes from the equivalence between the two norms. Now, using (4.10) we easily
get that:

∥u|Γout − uN |Γout∥2L2((t−tf ,t)×Γout) ≤ C
∫ t

t−tf

∥
∑

k≥N+1
e−λk(s−T0)Ak(T0)φk∥2H1

ζ
ds,

≤ C
∫ t

t−tf

e−2λN+1(s−T0) ∑
k≥0

Ak(T0)2(1 + λk) ds,

≤ Ctfe−2λN+1(t−(tf +T0))∥u(t0, · )∥2H1
ζ
.

(4.24)

This leads finally to the following result:

Theorem 4.5 (Error bound). Under the condition (4.2), the state estimator û(t, · ) defined in (4.7)
satisfies

∥û(t, · )− u(t, · )∥ζ ≤ ∥u(t0, · )∥ζe−λN+1(t−T0) + C
√
tf e

−λN+1(t−(tf +T0)) ∥u(T0, · )∥H1
ζ
, (4.25)

which tends to 0 as t→ +∞.

According to this result, we can notice that the estimator û converge to u for t larger that tf + T0.
This means that tf should not be too large and if possible, we will take it small. Yet, tf cannot be
too small otherwise the matrix G is very ill conditioned, as illustrated hereafter. Similarly, N cannot
be too large otherwise G is also very ill conditioned

5. The instructive case of a rectangle river

In this section, let us consider the case where

Ω = [0, L]× [0, h], Γin = {0} × [0, h] and Γout = {L} × [0, h], (5.1)

with L > 0 and h > 0. We will consider also a uniform uniaxial flow and a constant diagonal tensor
D, that is to say:

V =
[
Vx

0

]
and D =

[
dxx 0
0 dyy

]
(5.2)

where Vx > 0, dxx > 0 and dyy > 0. Let us remark that in that case, condition (4.2) is satisfied so we
will be able to use the state estimator we developed.

In this configuration, let us now describe how to compute the adjoint functions wA and wB using
separation of variables method.
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5.1. The longitudinal adjoint function

To recover the x−component of s, the best situation is to have an adjoint function wA only depending
on x so that its level sets are simply vertical lines. Now, if wA(x, y) = wA(x), the boundary conditions
on Γ are satisfied and problem (3.6) rewrites as follows:

−dxx∂
2
xxwA − Vx∂xwA = 0 in ]0, L[

wA = 1 on {x = L}
−βdxx∂xwA + (1− β)wA = 0 on {x = 0}

(5.3)

where we took gout = 1 (if gout is not constant, then wA depends on y). This equation is a simple
linear ODE of order 2 which general solution is given by

wA(x) = K1 +K2 e
− Vx

dxx
x (5.4)

where the coefficients K1 and K2 are uniquely determined by the boundary conditions. More precisely,
if β = 1 we get K1 = 1 and K2 = 0 which is an invariant solution also in x and therefore cannot be
use for solving equation (3.12). If β = 0 then we get:

wA(x) = 1− e−Pe
x
L

1− e−P e
, (5.5)

where Pe is the so-called Péclet number

Pe = LVx

dxx
> 0. (5.6)

This number gives the ratio between the transport due to advection and the transport due to diffusion.
With this expression, we can remark that:

• If Pe is small, then wA “slowly” increases from 0 to 1 as x goes from 0 to L, see Figure 5.1. In
particular, since the function is strictly increasing, this ensure that the first equation of (3.12)
has a unique solution. Also, by the mean value theorem we easily show that

|x1 − x2| ≤ L
eP e − 1
Pe

|wA(x1)− wA(x2)| , ∀ (x1, x2) ∈ [0, L]2. (5.7)

This stability result shows that for close values of wA(x1) and wA(x2), the arguments x1 and
x2 should be close (since Pe is small).

• If Pe is large, then wA is almost constant equal to 1 and sharply increases for x close to Γin,
see Figure 5.1. Once again, the function is strictly increasing so we are ensure that the first
equation of (3.12) has a unique solution. Yet, this time, inequality (5.7) shows that although
wA(x1) and wA(x2) might be close, x1 and x2 can be very distant. In other words, recovering
the position sx of the source is not easy and require extremely precise measures, which are
usually not affordable.

Remark 5.1. Note that the result for large Pe is coherent with the fact that in absence of diffusion
(that is to say Pe → +∞ since dxx → 0), we cannot recover the position sx. Indeed, in this case
with constant parameters V and D, the solution to (2.1) is given by u(t, x, y) = u0(x− tVx, y) where
u0(x, y) = u(T0, x, y) for t ≥ T0, T0 being the time of extinction of the source. Therefore, we cannot
distinguish two source terms shifted in time and space which would lead to the same measurements
since u0(x − tVx, y) = u0((x − t0Vx) − (t − t0)Vx, y). On the contrary, if Pe → 0, we can easily show
that wA tends to the linear function x

L which is the best situation for solving (3.12) and recovering sx.
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Figure 5.1. On the left, the function wA(x, y) with a low Péclet number Pe = 1.2 and
on the right, a higher Péclet number Pe = 12.

The above remarks can be used to determine the maximum distance between Γin and Γout one can
consider to still be able to identify sx with wA given the velocity V and the diffusion tensor D. For
instance, if we have Vx = 1, dxx = 1 and we wish to determine the exact position sx up to a precision
of 10−1 being able to generate measurements with a precision of 10−5, then L should be small enough
to ensure

eL − 1
1 10−5 ≤ 10−1 ⇐⇒ eL ≤ 1 + 104

which gives approximatively L ≤ 9.21. In most interesting cases, as we will see, since the Péclet number
will grow will the length L of the river, this adjoint function will in fact not be useful.

5.2. The transverse adjoint function

Now, the purpose is to determine the y-component of s. The most favorable situation would be to
have wB(x, y) = wB(y) so that the level sets would be horizontal lines. Yet, we easily show that such
solutions are necessarily constant solutions. The idea then is to look for separate variables solutions
wB(x, y) = τ(y)χ(x) which leads to

Lemma 5.2. Separate variables solutions to (3.6) in the rectangular domain Ω defined by (5.1) are
given by

wk+1 = cos
(
kπ
y

h

)
χk(x), k ∈ N, (5.8)

where

χk(x) = K1e
r1(k) x

L +K2e
r2(k) x

L ,
r1(k) = −Pe

2 +

√
P 2

e + (2L
hkπ)2 dyy

dxx

2 ,

r2(k) = −Pe

2 −

√
P 2

e + (2L
hkπ)2 dyy

dxx

2 ,

(5.9)

and the constant K1 and K2 are determined by the boundary conditions.

Proof. When looking for solutions of the form wB(x, y) = τ(y)χ(x), we easily get that τ(y) = τk(y) =
cos

(
kπ y

h

)
, k ∈ N, and χk must satisfies

−dxx∂
2
xxχk − Vx∂xχk + dyy(kπ

h )2χk = 0 in ]0, L[,
χk = 1 on {x = L},
β∂νχk + (1− β)χk = 0 on {x = 0}.

(5.10)

Solving this second order ODE leads to the expected result.
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Figure 5.2. On the left, the function wB = χ1(x) cos(π y
h) with a low Péclet number

(Pe = 1.2) and on the right the same function with a higher Péclet number (Pe = 12).

Remark 5.3. Let us remark that for k = 0, we recognize equation (5.3) and the first adjoint func-
tion wA.

In the expression (5.9), we can observe that r1(k) ≥ 0 whereas r2(k) < 0 and also |r1(k)| ≤ |r2(k)|.
For k = 1, the exponential term with r1(1) will “slowly” increase from 0 to L. The idea then is to
choose the parameter β of the boundary condition in order to get K2 close to 0. A simple way to do
so is to take β = 1 so that we impose an homogeneous Neumann condition on Γin and we get:

χ1(x) = r2(1)
er1(1)r2(1)− er2(1)r1(1)

er1(1) x
L − r1(1)

er1(1)r2(1)− er2(1)r1(1)
er2(1) x

L .

In Figure 5.2, we represent the corresponding adjoint function wB = χ1(x) cos(π y
h) for two Péclet

numbers. As we can see, this time the larger the Péclet number is, the better the situation is for
solving (3.12). Indeed, if Pe → +∞ and L remains constant, simple computations shows that the
function χ1 tends to 1, so that wB tends to cos(π y

h). This is the opposite situation as for the previous
adjoint function wA! So, if the advection dominates, wB is a “good” adjoint function to determine sy.

Remark 5.4. Note that one could choose β in the Robin condition on Γin to get exactly K2 = 0. Yet,
this is possible only because we know the analytical expression of the solution. In the general case,
this will not be possible anymore, this is why we consider here the choice β = 1 that gives always an
approximation of an open domain on Γin.

For this particular example, we can easily show

Proposition 5.5 (Identifiability). Taking wA = w1 and wB = w2 where wk is defined in (5.8), we
uniquely identify the position s solution to (3.12).

Proof. As previously explained, the position sx of the estimate source is uniquely determined because
wA only depends on x and is monotonous. Then, since wB(sx, · ) is also monotonous in y, we uniquely
determine the position sy.

In more general situations, we may wonder if it is worth considering other adjoint functions for
k ≥ 1

wk+1 =
(

r2(k)
er1(k)r2(k)− er2(k)r1(k)

er1(k) x
L − r1(k)

er1(k)r2(k)− er2(k)r1(k)
er2(k) x

L

)
cos

(
kπ
y

h

)
, (5.11)

solutions to (3.6) with gout = cos(kπ y
h) and β = 1. In fact, this is necessary as soon as the Péclet

number is a bit high and the first adjoint function wA = w1 increases too sharply, so it cannot be used
numerically for solving equation (3.12). This will be illustrated in the next section.
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Remark 5.6. Let us remark that if we use (wA, wB) = (w2, w3) for the adjoint functions, we still
have identifiability in the case of the rectangular river.

5.3. An example of source localization

To conclude on this particular case of a rectangular river, let us show an example of source identifica-
tion. We will consider the following parameters:

Ω = [0, 300] m× [0, 100] m, V =
[
0.2
0

]
m.s−1 and D =

[
3 0
0 3

]
m2.s−1.

We consider a source at position s = (150, 25) m and the function λ is defined by

λ(t) = 100 sin( πt
180) if t ≤ 180 s,

0 if not.
The synthetic data on Γin / Γout are recorded during time [0, T ] with T = 3000 s at interval ∆t = 1 s.

In Figure 5.3, we have represented at different time snapshots of the solution u in Ω on the left, the
estimator û defined by (4.12) (using N = 5 and tf = 400 s)7 and the sets SA(t) (in orange), SB(t) (in
purple) and their intersection SA(t)∩SB(t) (in red). The estimated source position ŝ(t) = (x̂s(t), ŷs(t))
is represented by the red cross. The results are presented for three choices of coupled of adjoint
functions. As we can see for small t no estimate is computed. Indeed, this corresponds to the case
where no (sufficiently enough) pollutant has reached the boundary Γout (the data on Γin are neglected)
and therefore |B(u, 1, t) + (û(t, · ), 1)L2(Ω)| is almost null. As t grows, the estimation is performed and
we can see that for the couple of adjoint functions (w2, w3), it converges to the true position (the errors
come from the discretization in space and time (numerical quadrature), and from the fact that the
data are generated on a different mesh from the one use for the adjoint functions and the estimator).
For the two other couples, using w1 as adjoint function, we see that the algorithm fails to converge. As
explained before, this is due to the fact that in that case, this adjoint function is not adapted because
the Péclet number is too big.

Now, to evaluate the interest of the state estimator, we have represented in Figure 5.4 the evolution
of the error ∥ŝ(t) − s∥R2/L (where L = 300 m is the length of the domain and s = (125, 25) m is the
true source position) versus time when using or not the state estimator (not using it corresponds to
take û = 0). These results correspond to the case where we take for the adjoint functions (wA, wB) =
(w2, w3). As we can see, using the estimator improves the speed of convergence of the method and
therefore allows a faster identification procedure (this is particularly true for N = 1). At the end, since
we almost have û ≃ u (≃ 0), the two curves are superposed.Also, we can observe that the number of
modes N has a strong influence on the result. In particular, the best situation is obtained when using
only one mode. Note that for this case N = 1, we can take tf small since it has no influence on the
condition number of G. Let us also underline that the state estimator can deteriorate the estimate of
the source position when the elapsed time is too short (see around t = 500 s for N = 5 or N = 7). A
simple way to check if the state estimator has a chance to give a good esimate (and is worth to be use)
consists in computing the differences between û(t, · )|Γout and u(t, · )|Γout . This leads to the following
criterion:

Definition 5.7 (Criterion to use the state estimator). We use the state estimator at each time t for
which the following condition is satisfied:

∥û(t, · )− u(t, · )∥L2(Γout)
∥u(t, · )∥L2(Γout)

≤ 1. (5.12)

7Although in this case we could compute the eigenfunctions of the problem (4.3) analytically, we have computed them
numerically.
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u û w1, w2 w1, w3 w2, w3

Figure 5.3. On the left, the solution of the direct problem at times t ∈
{49, 549, 949, 1169, 1624, 2914} s (from top to bottom). In the second column, the es-
timator û at the same time. In the columns 3 to 5, the set SA(t) (in orange), the set
SB(t) (in purple) and the intersection SA(t) ∩ SB(t) (in red) for different couples of
adjoint functions wA, wB (from left to right: (wA, wB) = (w1, w2), (wA, wB) = (w1, w3)
and (wA, wB) = (w2, w3)). The estimate of the source position is the red cross and the
green dot is the true position of the source.
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Figure 5.4. Error on the source position estimate (log scale) versus time using w2/w3
adjoint functions. In green: without the state estimator and in blue: with the state
estimator. From left to right: N = 1 (tf = 10 s), N = 5 (tf = 400 s) and N = 7
(tf = 400 s)

Figure 5.5. Condition number of the Gramian matrix G for N = {2, . . . , 10} versus tf .

This criterion will be used in the numerical examples in the next section. This corresponds to use
the state estimator û whenever it is closer to u on Γout than the null estimator. Let us emphasize that,
a priori, even if û is a better estimator than 0 on the exterior boundary, this does not imply that it is
a better estimator in the whole domain Ω (in other words, ∥|û− u∥L2(Ω) can be greater than ∥u∥L2(Ω)
even if ∥û(t, · )− u(t, · )∥L2(Γout) ≤ ∥u(t, · )∥L2(Γout)).

To understand why increasing N can deteriorate the results, it is interesting to have a look to the
Gramian matrix G defined in (4.15). In Figure 5.5, we have represented the condition number of G
considering various number of modes versus tf . As we can clearly see, the condition number blows up
with N the number of modes. Also, increasing tf reduces the condition number (even though for large
N it remains very high) up to a plateau. These results can explained why the best result in Figure 5.4
is obtained with N = 1.

Remark 5.8. In this particular case of a rectangular geometry, we can observe that the condition
number is the same for different numbers of modes (for instance for N = 2, 3, 4, 5). This is explained
by the fact that a part of the modes form an orthonormal basis on the exterior boundary Γout.

6. Some extensions

In this section, we will explore numerically various extensions of the proposed method.
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6.1. A non straight river

h

L

Figure 6.1. Illustration of the potential flow (the white arrows correspond to the
vector V and the background color to the norm of V) in a more realistic geometry.

Let us consider the case of a non rectangular river, as illustrated in Figure 6.1. This time, the
adjoint functions wi cannot be computed analytically and one has to solve numerically the following
problems (h corresponds to the river width in Γout):
−div(D∇w1)−V · ∇w1 = 0 in Ω,
D∇w1 · ν = 0 on Γ,
w1 = 1 on Γout,
w1 = 0 on Γin,

and

−div(D∇wk+1)−V · ∇wk+1 = 0 in Ω,
D∇wk+1 · ν = 0 on Γ,
wk+1 = cos(kπ y

h) on Γout,
D∇wk+1 · ν = 0 on Γin.

(6.1)

Let us remark that we took gout = cos(kπ y
h) as in the rectangular case expecting similar properties:

w1 shall vary in the longitudinal direction (that is to say in the flow direction) whereas w2 shall vary
mainly in the transverse direction (that is to say in the direction orthogonal to the flow). Obviously,
since the geometry is no more a rectangle, this cannot be perfectly true.

Remark 6.1. In the following examples, we will suppose that the boundary Γout is straight. For a
curved boundary Γout, the boundary condition in (6.1) is given using a similar idea. For instance,
if we consider a boundary Γout described by the parametric curve p(s) = (x(s), y(s)), s ∈ [0, 1],
we would replace y

h in the boundary condition by the projected coordinate (p(s) − p(0)) · (p(1) −
p(0))/(∥p(s)−p(0)∥2∥p(1)−p(0)∥2) along the line [p(0),p(1)]. Let us emphasize that it has not been
tested numerically.

For this new case, we consider the following parameters:

(L, h) = (500, 100) m, V =
[
0.2
0

]
m.s−1 on Γin ∩ Γout and D =

[
0.2 0
0 0.2

]
m2.s−1.

Inside the domain, the velocity V is computed solving a potential flow problem (which amounts to a
Laplace equation −∆P = 0 and we have V = ∇P ), see Figure 6.1.

In Figure 6.2, we have represented the adjoint functions w1 and w2 solutions to (6.1). As we can see,
we cannot expect to recover the longitudinal component with w1 since this function is almost constant
equal to 1 and very sharply increases near Γin from 0 to 1. To be able to recover the longitudinal
component of the source term position, the idea then is to compute wk for k ≥ 2. As we can see still in
Figure 6.2, the obtained adjoint functions oscillate in the transverse direction and slowly increase (from
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Figure 6.2. Adjoint functions w1, w2, w3 and w4 from left to right.

Figure 6.3. Condition number of the Gramian matrix G for N = {2, . . . , 10} versus
tf for the curved river.

left to right) in the longitudinal direction. This slow increase will allow us to recover the longitudinal
component of the source term position.

In that case, we consider two sources located respectively at (50, 125) m and (400, 0) m and two
associated functions:

λ1(t) = 100 sin( πt
180) if t ≤ 180s,

0 if not, and λ2(t) = 100 sin( πt
120) if t ≤ 120s,

0 if not.

The data are generated with these source terms solving the direct problem and are recorded with a
time step ∆t = 1 s during a period T = 3600 s. Here again, we only use the measurements on Γout and
neglect the measurements on Γin.

For the estimator û, the number of modes N is chosen similarly to the straight river case, that is to
say N = 1 and tf = 10 s. Here again, the condition number of the Gramian matrix G blows up with
N as represented in Figure 6.3. In our numerical tests, we also tried greater values of N but the best
results have been obtained with N = 1.

To be able to dissociate the two sources in the estimate, we study the evolution in time of B(u, 1, t)+
(û(t, · ), 1)L2(Ω) which gives an estimate of Λ(t), see Figure 6.4. If this quantity is not zero and remains
(almost) constant during a period [t1, t2], we assume that the data between [0, t1+t2

2 ] are explained
by a first source and the data for t ≥ t1+t2

2 by a second source (and similarly if more sources are
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Figure 6.4. Evolution in time of the coefficient B(u, 1, t). The red band corresponds
to the identification of one source.

considered). This allows to automatically detect if more than one source is present. In that case, the
coefficients DA and DB (defined in (3.14)) are simply reset to 0 for estimating the position of the
next source. Note that this procedure works only if the sources are “well-separated” in space or time.
We mean by well separated the fact that during a sufficiently long time t2 − t1 > 0, the variations of
B(u, 1, t) + (û(t, · ), 1)L2(Ω) induced by the two sources are smaller than a threshold.

In Figure 6.5, we have represented the solution of the direct problem and the reconstructed source
term positions at different time. As before, we have represented the sets Si (defined in (3.15)), for
different couples of adjoint functions. Here again, the data are generated without noise (except the use
of different meshes and order of FE for the computations in the direct problem and for the computation
of the adjoint functions). As we can see, we recover quite precisely the two source positions.

To end this test, we have represented on Figure 6.6 the error ∥ŝ(t)−s∥R2
L (where ŝ(t) is the estimated

position) versus time for the two sources localization considering the different couples of adjoint func-
tions and using or not the state estimator. As we can clearly see, for the first source (located close to
Γout), the state estimator works poorly and deteriorates the convergence. This is explained by the fact
that the elapsed time between the source extinction and the measurement is too small. Nevertheless,
we observe a very sharp convergence around t = 850 s since the null estimator replaces û because
condition (5.12) is not satisfied. On the contrary, for the second source located far from Γout, we can
see that using the state estimator is interesting and the identification of the source is faster (at least
for the adjoint functions (w2, w3) and (w3, w4)).

6.2. Robustness with respect to noisy data

To assess the robustness of the method with respect to noisy data, we have considered on the same
example as before perturbed data. The data are perturbed by an additive noise proportional to the
measurements. In Figure 6.7, we have represented for a noise of {0, 5, 10}% the evolution of the error
∥ŝ(t)−s∥R2

L versus time. As we can see, the method is quite robust with respect to noisy data since
the (relative) error stays relatively small. Also, we can observe that recovering a source far from Γout

seems to be more accurate, which can be quite surprising. In fact, the diffusion effect helps to alleviate
the effect of the noise.
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u û w2, w3 w2, w4 w3, w4

Figure 6.5. On the left, the solution of the direct problem at times t ∈
{249, 609, 899, 1999, 2519, 3499} s (from top to bottom). In the second column, the esti-
mator û at the same time. In columns 3 to 5, the set SA(t) (in orange), the set SB(t) (in
purple) and the intersection SA(t)∩SB(t) (in red) for different couples of adjoint func-
tions (from left to right: (w2, w3), (w2, w4) and (w3, w4)). The estimate of the source
position (red cross). The green dot on the right pictures corresponds to the position of
the sources.
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Figure 6.6. Error on the source position estimate (log scale) versus time using from
left to right the adjoint functions: (w2, w3), (w2, w4) and (w3, w4). In green: without
the state estimator and in blue: with the state estimator.

No Noise Noise 5% Noise 10%

Figure 6.7. Evolution in time of the error (log scale) on the estimated source posi-
tion considering adjoint functions (w2, w3) (in blue), (w2, w4) (in orange), (w3, w4) (in
green). For time smaller than 1000 s, we identify the closest source, and for time greater
than 1000 s, the second source.

6.3. A more realistic case

To conclude this section on numerical tests, let us consider a more realistic situation. We consider a
section of the Seine river in Rouen, France, see Figure 6.8. The flow V is computed numerically taking
Vin = Vout = 1 m.s−1. For the diffusion tensor D, we consider the Bear’s hydrodynamic tensor [5, 6]

D = (Dm + αT ∥V∥2) Id +αL − αT

∥V∥2
VVt, (6.2)

where Dm := 0.01 m2.s−1 is the molecular diffusion, αT := 0.1 m is the transverse diffusion and
αL := 1 m is the longitudinal diffusion. In this case, condition (4.2) is not satisfied and we cannot
construct the estimator û defined in Section 4. As a consequence, we simply take û = 0.

We consider two sources located as represented in Figure 6.8. In particular, we can see that one of
the sources is quite far from the boundary Γout and in the south of an island (called “Ile Lacroix”).
The data are once again synthetic data perturbed by a noise of 5% and we consider only measurements
on Γout recorded with a time step ∆t = 10 s during time T = 50000 s.

In Figure 6.9, we have represented the reconstruction of the source term positions at different
times. Here again, we only use the measurements on Γout. As we can see, we can recover very well
the two source positions after enough time, in particular with the adjoint functions w2 and w3. Let
us emphasize that, as we can see in the direct simulation, a part of the pollutant does not cross the
boundary Γout and remains inside the river because it stays in a region where V = 0. This pollutant
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L

Γout

Sources

Figure 6.8. Potential flow on the Seine river in Rouen, France. The red dots represents
the source localization.

is only dissipated by diffusion effect. This explains why the source reconstruction in this case cannot
be perfect.

7. Conclusion and discussion

In this work, we have revisited the problem of source reconstruction using adjoint functions. We
propose a new method to compute the adjoint functions that allows to consider arbitrary (physical)
configurations. The idea is based on the analysis of the straight river case for which we are able to show
easily the identifiability result and to have a physical intuition of the effect of the Péclet number on the
resolution of the inverse problem. The generalization of this approach turns out to be efficient in the
general case and allows to identify sources even far from the boundary Γout (for instance as in the Seine
river case). Also, we have seen that it can be interesting to use several couples of adjoint functions
to bring more information on the sources localization. Indeed, some couples of adjoint functions are
more accurate for identifying a source located close to Γout or a source far from Γout.

The second main contribution of this work is to propose an “online” identification procedure using
a state estimator û which is cheap to compute and for which we prove the convergence to u (under
some assumptions). We have shown that the state estimator can be interesting for accelerating the
identification procedure (at least for sources far from the outer boundary). Unfortunately, the estimator
suffers from two main limitations. First, it can only be constructed if condition (4.2) is satisfied. It
could be interesting to build a more general state estimator valid for any tensor D. The second
limitation comes from the parameters N (the number of modes) and tf the frame time. Indeed, due
to the condition number of the Gramian matrix, we cannot take N large. Also, tf cannot be too large
otherwise the state estimator cannot work until at least t > t0 + tf . This is problematic for sources
close to Γout and it becomes even more problematic for sources that do not vanish. For this last case,
it would be interesting to construct another estimator.

To conclude, let us discuss some last questions on the hypothesis made in this work:

• What if u|Γin ̸= 0? This situation corresponds to the idea of a source term located beyond
the monitored area. If we suppose that we also have the measurements on Γin, then there
is no problem. Indeed, by a simple lifting we can remove from the data on Γout the part of

257



A. Tonnoir

u w2, w3 w2, w4 w3, w4

Figure 6.9. On the left, the solution of the direct problem at times t ∈
{5240, 9290, 11140, 15140, 34990, 49740} s (from top to bottom). On the right, the set
SA(t) (in orange), the set SB(t) (in purple) and the intersection SA(t)∩ SB(t) (in red)
for different couples of adjoint functions. The estimate of the source position (red cross).
The green dot on the right pictures corresponds to the position of the sources.
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the pollutant measured coming from the source outside the monitoring domain. If we do not
measure u on Γin, as we wish to consider in this paper, then the reconstructed source position
will give a position located on Γin. In fact, system (3.12) has no solution in that case and the
best reconstruction the algorithm gives is a position on Γin.

• What if u(t = 0, · ) ̸= 0? If at the initial time we suppose that there is already an unknown
quantity of pollutant in the river, we cannot a priori identify the sources. Yet, if this pollutant
comes from a point source that started to emit at time t− < 0 and is such that the mea-
surements of u on Γout during time [t−, 0] is negligible (in other words, the main part of the
pollutant has not reach at time t = 0 the boundary Γout), then the proposed procedure works
fine and we can identify the source position. Indeed, this simply corresponds to a shift in time
where we have neglected the (small part of the) measurements of u on Γout during time [t−, 0].

• What if two sources are too close? In that case, the reconstructed position is between the
two source positions. This was already observed in a similar context in [3]. In that case, it is
difficult to be able to separate in the data the contribution of the two sources without any
additional information.

• What if the source is not a point source? If the source has the form f(t, x, y) = λ(t)g(x, y),
then the method works still well if g has a narrow support as we can expect. If not, then this
is similar to the case of close multiple sources.

• What if the flow is not a potential flow? In many case, the flow is not constant in time and / or
not irrotational. For instance, for Stokes flow, V is still constant in time but not irrotational.
In that case, the methodology presented in this work could still apply but we expect the results
to be deteriorated by the presence of vortex (numerical investigations are still in study). For
the case of time varying V, the construction of the adjoint functions presented here does not
work anymore.
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