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Abstract. Approximation of high-dimensional functions is a problem in many scientific fields that is only feasible if
advantageous structural properties, such as sparsity in a given basis, can be exploited. A relevant tool for analysing
sparse approximations is Stechkin’s lemma.

In its standard form, however, this lemma does not allow to explain convergence rates for a wide range of relevant
function classes. This work presents a new weighted version of Stechkin’s lemma that improves the best n-term rates
for weighted ℓp-spaces and associated function classes such as Sobolev or Besov spaces. For the class of holomorphic
functions, which occur as solutions of common high-dimensional parameter-dependent PDEs, we recover exponential
rates that are not directly obtainable with Stechkin’s lemma.

Since weighted ℓp-summability induces weighted sparsity, compressed sensing algorithms can be used to approx-
imate the associated functions. To break the curse of dimensionality, from which these algorithms suffer, we utilise
that sparse approximations can be encoded efficiently using tensor networks with sparse component tensors. We also
demonstrate that weighted ℓp-summability induces low ranks, which motivates a second tensor train format with
low ranks and a single weighted sparse core. We present new alternating algorithms for best n-term approximation
in both formats.

To analyse the sample complexity for the new model classes, we derive a novel result of independent interest that
allows the transfer of the restricted isometry property from one set to another sufficiently close set. Although they
lead up to the analysis of our final model class, our contributions on weighted Stechkin and the restricted isometry
property are of independent interest and can be read independently.

2020 Mathematics Subject Classification. 15A69, 41A30, 62J02, 65Y20, 68Q25.
Keywords. least squares, sample efficiency, sparse tensor networks, alternating least squares.

1. Introduction

Approximating an unknown function from data is a fundamental problem in computational science
and machine learning. In many applications, the sought function may depend on a large number of
parameters, rendering the approximation task susceptible to the curse of dimensionality (CoD), i.e.
an exponential complexity in the dimension of the problem or the amount of sample points required
to obtain an accurate approximation. This is particularly problematic when the amount of data avail-
able is limited due to practical constraints. Nevertheless, many practically relevant functions can be
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approximated efficiently using a judiciously chosen set of functions. Given a function that can be well
approximated by a sparse expansion on some basis, results in compressive sensing guarantee an accu-
rate approximation from a small number of sample points. The required sets (or dictionaries) can be
found by exploiting regularity properties of the sought function. A common characterisation of smooth
functions is given in terms of the decay of their Fourier series. This can be viewed as promoting a struc-
tured sparsity where low-order Fourier modes are more likely to contribute to the total norm of the
function. As a consequence, smooth functions admit approximately sparse representations, enabling
an efficient numerical reconstruction.

Another form of low-dimensional structure induced by smoothness is low-rank approximability. This
structure is exploited e.g. in reduced basis methods or proper orthogonal decomposition [17, 41] and
in a more general form in hierarchical tensor formats such as the popular tensor trains (TT) [43].

The aim of this paper is to develop a sparse approximation algorithm which simultaneously ex-
ploits sparsity and low-rank properties, thus enabling an efficient approximation of large function sets.
Central tools for this are a new weighted version of the well-known Stechkin’s lemma and a novel
analysis of the restricted isometry property which allows to accommodate any space which can be
approximated by weighted sparse expansions. These developments should be of independent interest
in the study of sparse and general nonlinear least squares approximations. We carry out the theoretical
analysis of convergence rates for weighted ℓp functions. Moreover, we present representations of these
sparse vectors (or sequences) in sparse low-rank formats and discuss the application to parametric
PDEs.

This is not the first work that proposes the utilisation of sparsity in the component tensors of a
tensor network. In [26] and [40], the authors consider the abstract setting of empirical risk minimi-
sation on bounded model classes of potentially sparse tensor networks. They present model selection
strategies for the network topology and sparsity pattern. Due to the use of empirical risk minimisation,
they obtain standard error bounds for arbitrary risk functions satisfying boundedness and Lipschitz
continuity assumptions (cf. [40], which relies on approximation results from [3, 4]). However, in the
case of least squares risk, these strong assumptions restrict the application to bounded model classes.
Moreover, they do not guarantee an equivalence of errors, which translates to the error decreasing
with a slow Monte Carlo rate. This is intolerable when striving for small relative errors, which is often
the case in numerical schemes.

In [16] the authors propose an algorithm that computes a sparse best approximation in the model
class of sparse rank-1 tensors. Conceptually, this algorithm is very similar to our Algorithm 2 but is
restricted to a sum of unweighted sparse rank-1 tensors. The restriction to a sum of rank-1 tensors
implies a suboptimal convergence with respect to the rank and the use of unweighted sparsity means
that, in the worst case, vastly more sample points may be required than are actually necessary.

A very similar (s2-PGD) method is also proposed in [47]. The method optimises with regard to the
same model class as our Algorithm 2 but does not orthogonalise the component tensors in between
the micro steps. It is not clear if this lack of orthogonalisation can result in numerical instabilities
as it would in the classical ALS method. Moreover, the lack of orthogonalisation prevents the use of
the correct weight sequence in the micro steps of their sparse ALS and does not allow for the same
automatic rank adaptation as our algorithm.

Finally, block-sparse tensor networks are a well-known tool in the numerics of quantum mechan-
ics [51] and were recently introduced to the mathematics community by [8]. This theory is already
used in [24] to perform least squares regression in a model class of tensor trains restricted to subspaces
of homogeneous polynomials of fixed degree. The basis selection performed in our second algorithm
is conceptually very similar to the restriction to eigenspaces used in [8] to ensure block-sparsity. We
believe that our algorithm can be interpreted as a generalisation of the regression on block-sparse
tensor trains. In contrast to this approach, where the sparsity structure has to be known in advance,
our algorithms explores the sparsity automatically.

290



Weighted sparse tensor networks for least squares

1.1. Weighted sparsity

Sparse approximability of a function can be expressed by the ℓq-summability of the coefficients sequence
of its basis or frame representation. The following central result, commonly attributed to Stechkin [18,
21], is a key tool to provide convergence rates for sparse approximations.

Lemma 1.1 (Stechkin). Let 0 < q < p ≤ ∞ and let v ∈ ℓq. Define Jn as the set of indices correspond-
ing to the n largest elements of the sequence |v| and PJnv =

∑
j∈Jn

vjej, where ej is the sequence with
1 at index j and 0 everywhere else. Then

∥v − PJnv∥ℓp ≤ (n+ 1)−s∥v∥ℓq , s := 1
q

− 1
p
.

Given a separable Banach space V of functions with a normalized basis (or frame) {Bk}k∈N ⊆ V ,
each element u ∈ V can be identified with its coefficient sequence u with respect to this basis.
Lemma 1.1 hence yields the convergence estimate for the best n-term approximation un of u:

∥u− un∥V ≤ ∥u − PJnu∥ℓp ≤ (n+ 1)−s∥u∥ℓq , s = 1/q − 1/p,
for p = 1 > q in the general Banach case, or p = 2 > q when V is a Hilbert space and {Bk}k∈N is an
orthonormal basis of V . A disadvantage of the standard Stechkin’s lemma is that it can only predict
algebraic approximation rates, and these rates are suboptimal for some relevant classes of functions.

Contributions. To overcome these issues, we introduce for any sequence ω ∈ [0,∞]N the ω-weighted
sequence space

ℓqω := {v ∈ RN : ∥v∥ℓq
ω

:= ∥ωv∥ℓq < ∞},
where ωv = (ωνvν)ν denotes the element-wise multiplication of the two sequences ω and v. With
these spaces, a corresponding weighted version of Stechkin’s lemma is derived, which enables to better
exploit classical regularity in terms of convergence rates, significantly improving results of the classical
lemma. Indeed, in Section 2 we recall that the weighted ℓqω-spaces correspond to a variety of function
spaces such as Barron, Besov and Sobolev spaces. This makes possible to relate the summability u ∈ ℓq

directly to more natural regularity assumptions such as u being in the Sobolev space Hk (cf. Exam-
ple 2.12). We compare the obtained results to previous works and discuss the relation of the weighted
ℓp spaces to unweighted and monotone ℓp spaces (cf. [1]). If the employed weight sequence increases
super-algebraically, the new weighted bound has a significantly faster decay than the corresponding un-
weighted bound. Moreover, there are also improvements for algebraically increasing weight sequences,
namely a significant reduction of multiplicative constants in the approximation estimate. Because of
this, the analysis provides immediate convergence bounds even in the non-asymptotic setting, i.e. for
finite-dimensional linear spaces.

1.2. Application to parametric partial differential equations

The numerical solution of high-dimensional parametric operator equations has become a highly active
research field in the last decade, particularly in the area of Uncertainty Quantification (UQ) and in
relation to modern (scientific) machine learning, see for instance [17, 50] and references therein. The
parameter domain is often high- or even infinite-dimensional, making it computationally challenging to
approximate the solution in linear spaces due to the CoD. It hence is mandatory to exploit structural
properties of the respective functions. When relying on sparsity as we do, the required summability
constraints can be deduced from smoothness. Indeed, it is shown in Section 2 that weighted summa-
bility with algebraically increasing weight sequences can often be derived from standard regularity
assumptions. Morevover, certain assumptions on the data allow us to derive even stronger summabil-
ity properties for the solution of parametric PDEs as shown e.g. in [5, 6].
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We recall a prototypical parametric linear second order elliptic problem and its solution properties
as a motivation for the results of this work. For a given bounded Lipschitz domain D ⊆ Rd with d ∈ N
and some source function f ∈ L2(D), consider the linear elliptic PDE

− divx(a(x, y)∇xu(x, y)) = f(x), in D,

u(x, y) = 0, on ∂D,
(1.1)

where y ∈ RL is a high-dimensional (L ∈ N) or infinite-dimensional (L = ∞) parameter vector
determining the coefficient field a and hence the solution u. With typical applications in modelling
stochastic flow through porous media (such as groundwater flow [56]), the diffusion coefficient is often
defined by a Karhunen–Loève type expansion [39, 52], which can be constructed to represent random
fields with bounded variance and typically takes the form

a(x, y) =
L∑

j=1
aj(x)yj + a0(x) with y ∼ U([−1, 1])⊗L or (1.2)

ln(a(x, y)) =
L∑

j=1
aj(x)yj with y ∼ N (0, 1)⊗L. (1.3)

In these applications, the functions aj : D → R are scaled L2(D)-orthogonal eigenfunctions of the
covariance operator of a or ln(a). This specific choice is not necessary for the application of our theory
and other more advantageous expansions (cf. [7]) may be considered as well.

We recall some results from [5, 6] on the analysis and approximation of the parameter-to-solution
map

y 7→ u(y) := u( • , y),
induced by the model (1.1)–(1.3). For (1.2), the following result was shown recently.

Theorem 1.2 (Theorem 3.1 in [6]). Consider problem (1.1) with affine coefficients (1.2). Assume that
there exists a sequence ρ ∈ (1,∞)L such that

sup
x∈D

1
a0

∑
j∈[L]

ρj |aj(x)| < 1.

Then the map y 7→ u(y) belongs to Lk([−1, 1]L, dγ;H1
0 (D)) for all k ∈ N ∪ {∞}, where γ is the

uniform measure. Hence, there exists an expansion of u(x, y) =
∑

ν∈F uν(x)Lν(y) in terms of Legendre
polynomials (Lν)ν∈F , where F is the set of multi-indices in NL with finite support. Moreover, the
sequence of coefficients satisfies ∑

ν∈F
ω2

ν∥uν∥2
H1

0 (D) < ∞,

with ων :=
∏

j∈[L](2νj + 1)−1/2ρ
νj

j .

For the case of unbounded Gaussian parameters (1.3), we recall the following result.

Theorem 1.3 (Theorems 2.2, 3.3 and 4.2 in [5]). Consider the model (1.1) with affine coefficients (1.3).
Assume that there exists an r ∈ N and a sequence ρ ∈ (0,∞)L such that

sup
x∈D

∑
j∈[L]

ρj |aj(x)| < ln 2√
r

and
∑

j∈[L]
exp(−ρ2

j ) < ∞.

Then the map y 7→ u(y) belongs to Lk(RL, dγ;H1
0 (D)) for all k ∈ N, where γ is the Gaussian measure

on RL. Hence, there exists an expansion of u(x, y) =
∑

ν∈F uν(x)Hν(y) in terms of Hermite polyno-
mials (Hν)ν∈F , where F is the set of multi-indices in NL with finite support. Moreover, the sequence
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of coefficients satisfies ∑
ν∈F

ω2
ν∥uν∥2

H1
0 (D) < ∞,

with ων :=
∏

j∈[L](
∑r

l=0
(νj

l

)
ρ2l

j )1/2.

Contributions. Using the weighted sequence spaces and Stechkin’s lemma, we propose an alterna-
tive method of proof for the summability of the solution of parametric PDEs in Section 3. We show
that in the case of a single parameter (L = 1), these summability properties already follow from the
analyticity of the parameter to solution map. The new derivation only relies on the weighted version of
Stechkin’s lemma and elementary techniques. This results in similar bounds to those in Theorem 1.2
and 1.3 with exponential decay of the basis coefficients.

1.3. Numerical methods for weighted sparse approximation using sparse tensor train
format

Equally important as the approximation error analysis is the availability of actual computational
methods. For a probability measure γ on some set Y , let M ⊆ L2(Y, γ) be a model class of functions
in which u ∈ V should be approximated. Defining the norms

∥ • ∥ := ∥ • ∥L2(Y,γ) and ∥ • ∥w,∞ := ∥w1/2 • ∥L∞(Y,γ), (1.4)

where w is some positive weight function, the problem of determining the best-approximation of u in
M can be formulated as

uM ∈ arg min
v∈M

∥u− v∥.

Since the L2-norm cannot be computed exactly in high-dimensional settings, a popular remedy is to
introduce an empirical estimator with samples y := {yi}n

i=1 and the respective weighted least-squares
minimisation, namely

uM,n ∈ arg min
v∈M

∥u− v∥n with ∥v∥n :=
(

1
n

n∑
i=1

w(yi)|v(yi)|2
)1/2

. (1.5)

A natural choice is to take w such that
∫

Y w
−1 dγ = 1, and to draw the points yi independently

from the measure w−1γ for all i = 1, . . . , n. This approach results in approximations with guaranteed
error bounds when assuming the restricted isometry property (RIP) that is known from compressed
sensing [2, 12]. It is defined for a given set of functions A by

RIPA(δ) :⇔ (1 − δ)∥u∥2 ≤ ∥u∥2
n ≤ (1 + δ)∥u∥2 ∀ u ∈ A.

If satisfied for a parameter δ ∈ (0, 1), the error of estimator (1.5) can be bounded as follows.

Proposition 1.4 (Theorem 3 in [54]). If RIP{uM}−M(δ) holds, then

∥u− uM,n∥ ≤ ∥u− uM∥ + 2√
1−δ

∥u− uM∥w,∞ .

The assumption of RIP{uM}−M(δ) is a weaker version of the standard assumption RIPM−M(δ),
which is often used when considering nested sequences (Mr)r≥1 of model classes, like r-sparse vectors
or rank-r tensors, which satisfy Mr − Mr ⊆ M2r. We show that such a nestedness property is also
satisfied for the model classes of sparse low-rank tensors considered in this paper.

Because RIPM(δ) is a random event, a sufficient number of sample points has to be used to guarantee
that it holds true. For theoretical reasons and since obtaining new sample points may be costly, a
practical goal is to achieve this property with a minimal number n.
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To leverage the existing results from least squares methods [19] in the development of numerical
methods, one may rely on explicit bounds on the coefficients or a weighted summability property of
the form u ∈ ℓ2ω. Given such a bound, we may define the sets Λn corresponding to the n smallest
weights and prove that

∥(I − PΛn)u∥ ≲ n−s,

where s relates to the summability of the sequence ω. An example of this can be seen in [20]. From a
statistical point of view, this has the advantage that there exist bounds that guarantee that a small
number of parameter evaluations is sufficient to result in a quasi-best sparse approximation with high
probability. Finding sets Λn with the prescribed error bounds, however, relies on the knowledge of an
exponentially increasing weight sequences ω. Such sequences do not exist for every PDE and their
existence is not always easy to prove. Moreover, due to the reliance on optimal sampling, the cited
work also requires the ability to draw new samples from a problem adapted measure.

An alternative approach that mitigates these issues is the use of weighted sparsity [11, 45]. Let v
denote the sequence of coefficients of v ∈ V with respect to a given basis. Then the set of ω-weighted
r-sparse sequences is given by the ball

Bℓ0
ω
(0, r) = {v : ∥v∥ℓ0

ω
≤ r}, (1.6)

where the ℓ0ω-“norm” is a generalisation of the standard ℓ0-“norm” and is defined in Section 2. In [46]
the authors show that a significantly improved bound for the probability of the RIP of Bℓ0

ω
(0, r)

can be derived when the ℓ0-“norm” is replaced by its weighted version. Although the shown a priori
convergence rates still rely on weighted summability assumptions, the method itself does not. The
only requirement is an upper bound on the L∞-norm of the basis functions. As a consequence, it can
be applied easily in practice and is less reliant on the rate of decay of the sequence ω. The following
theorem is a slight generalisation of this result.

Theorem 1.5. Fix parameters δ, p ∈ (0, 1). Let {Bj}j∈[D] be orthonormal in L2(Y, γ) and let w ≥ 0 be
any weight function satisfying ∥w−1∥L1(Y,γ) = 1. Assume the weight sequence ω in the definition (1.6)
of the model class M satisfies ωj ≥ ∥w1/2Bj∥L∞(Y,γ) and fix

n ≥ Cδ−2rmax{log3(r) log(D),− log(p)}.
Let y1, . . . , yn be drawn independently from w−1γ. Then the probability of RIPB

ℓ0
ω

(0,r)(δ) exceeds 1 −p.

Proof. To make the weight function w that is used explicit, we define ∥v∥n,w := 1
n

∑n
i=1w(yi)v(yi)2.

Applying Theorem 5.2 from [46] to the L2(Y,w−1γ)-orthonormal basis {ψj := w1/2Bj}j∈[D] shows
that the probability of the event

∀ v ∈ ℓ2 : ∥v∥ℓ0
ω

≤ s

exceeds 1 − p, which implies that
(1 − δ)∥ψ⊺v∥2

L2(Y,w−1γ) ≤ ∥ψ⊺v∥2
n,1 ≤ (1 + δ)∥ψ⊺v∥2

L2(Y,w−1γ)
holds with probability higher than 1 − p. The claim follows, since ∥ψ⊺v∥L2(Y,w−1γ) = ∥B⊺v∥L2(Y,γ) and
∥ψ⊺v∥n,1 = ∥B⊺v∥n,w.

The index set Jn that contains the n largest coefficients of the function can in principle contain
arbitrary large indices. This is an issue for algorithmic realisations, where Jn must be restricted to lie
in a finite set of candidate indices Λ. The set Λ should be large enough to ensure that Jn ⊆ Λ but not
too large as to blow up the time complexity of the numerical algorithm, which scales at least linearly
with |Λ|. Specifically, it has to be chosen carefully not to re-introduce the CoD. Without assumptions
on the summability of the coefficients, such a set is difficult to find. For the model problems considered
in this work, this is not a problem since appropriate candidate sets Λ can be designed based on the
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summability conditions in Theorem 1.2. For other problems such conditions are not known, which
impedes the application of compressed sensing algorithms.

Contributions. Without prior knowledge, the exponentially large candidate set Λ = {0, . . . ,
d − 1}M is a natural choice but classical algorithms for sparse approximation would yield a com-
plexity polynomial in |Λ| = dM , hence the CoD. We propose to use tensor trains [33, 43] to alleviate
this CoD. Building upon results from [38], we show that the best n-term approximation can be repre-
sented in a sparse tensor train format with rank n. A sparse version of the ALS algorithm, which we
call SALS, can be used to optimise over the sparse components. The complexity becomes polynomial
in n and d and linear in M . This allows almost the same sample complexity bounds as in Theorem 1.5
while also admitting an admissible algorithmic realisation. We emphasise that this new algorithm is a
feasible alternative to sparse approximation algorithm, not for the approximation in low-rank tensor
format.

1.4. Numerical methods for weighted sparse and low-rank tensor train approximation

The results of Section 4 provide an approach to express sparse tensors as TTs with a rank that is
bounded by the number of nonzero entries of the component tensors. We demonstrate that tensors
with weighted sparsity are not only sparse but have also low rank, which is not exploited by the
model class of sparse tensor trains from the previous section. Due to the special structure of these
sparse tensor trains, the basis of every core tensor is strongly overparameterised. As a result, the linear
systems arising in the microsteps of the SALS may become very large and the optimisation becomes
very costly. Another consequence of this overparameterisation is that the sample size that is required
for an accurate microstep is larger than it would have to be if only a minimal basis would have been
used.

Contributions. As a possible solution to the overparametrisation issue we propose to round the
sparse tensor back to minimal rank. Although this destroys the sparsity of the orthogonal component
tensors, it retains the weighted sparsity of the core tensor. This yields a new model class of sparse and
low-rank tensor trains. Investigating the probability of the RIP for this hybrid model class is the focus
of Section 5. To do this, we show in Theorem 5.9 that the RIP on Bℓ0

ω
(0, r) induces a RIP for any model

class that is close enough with respect to an appropriate distance. This is a promising novel result that
applies to any model class. In particular, we show in Theorem 5.12 that our hybrid model class satisfies
the conditions of Theorem 5.9. It thereby inherits the RIP from sparse vectors that is guaranteed by
the stability result in Theorem 1.5. The results improve upon the previously developed theory for
tensor reconstruction of solutions of high-dimensional parametric PDEs as presented in [53, 54].

2. A weighted version of Stechkin’s lemma

In what follows, we are concerned with coefficient sequences x indexed by a set Λ, which may be finite
or countably infinite. If not specified otherwise, we always assume that Λ = N. Since any operation
defined on the coefficients can be extended to an element-wise operation defined on sequences, we
write e.g. (xy)j = xjyj as the element-wise product of two sequences x and y and (x/y)j = xj/yj

as the element-wise division. For any such sequence x and any subset J ⊆ Λ, define PJx via

(PJx)j :=
{

xj j ∈ J

0 j ∈ Λ \ J.
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In other words, PJ is the canonical projection onto the linear space span{ej : j ∈ J}, with ej the
canonical sequence having 1 at index j and 0 everywhere else. Moreover, let supp(x) := {j ∈ Λ :
xj ̸= 0} denote the support of x. To a vector ω ∈ [0,∞]Λ of weights we associate for 0 < p ≤ ∞ the
weighted ℓp spaces

ℓpω :=
{

x ∈ RΛ : ∥x∥ℓp
ω

:= ∥ωx∥ℓp < ∞
}
.

Central to our analysis is the weighted ℓ0-“norm” given by

∥x∥ℓ0
ω

=
∑

j∈supp(x)
ω2

j ,

which counts the squared weights of the non-zero entries of x. When ω ≡ 1, these weighted norms
reproduce the standard ℓp norms.

In sparse approximation theory, the assumption v ∈ ℓq is often central for the analysis. However,
it provides no guarantee for the position of the largest elements in the sequence. For the purpose of
numerical discretisation this is problematic since a truncation after the first n terms of the sequence
is not guaranteed to contain the largest elements. Without an explicit bound on the decay of v, no
bounds for the discretisation error can be given. We hence argue that it is natural to require an
ordering of the terms that is induced by a weight sequence ω. Such a weighting exists for instance
in the coefficients of solutions of parametric PDEs [5, 6]. Moreover, we will show later that such a
weighting occurs naturally for many classical regularity classes like Sobolev and Besov spaces and for
certain bases.

A very elegant proof of Stechkin’s Lemma (Lemma 1.1) is provided in [17, Lemma 3.6], which relies
on a basic bound for the decay of any v ∈ ℓq and an application of Hölder’s inequality. The same
reasoning can be applied to obtain a proof for the Stechkin inequality in the weighted setting below.

Lemma 2.1. Let 0 < q < p ≤ ∞ and α,σ,ω ∈ [0,∞]N be sequences satisfying αp = σp−qωq (or
α = σ in the case p = ∞). For a sequence v ∈ RN with ∥σv∥ℓ∞ < ∞ and ∥ωv∥ℓq < ∞ let Jn be the
set of indices corresponding to the n largest elements of the sequence σ|v|. Then

∥v − PJnv∥ℓp
α

≤ ∥PJn+1
ω
σ ∥−sq

ℓq ∥v∥ℓq
ω
, s := 1

q − 1
p .

For α ≡ 1 it holds that σ = ωq/(p−q) and the inequality simplifies to
∥v − PJnv∥ℓp ≤ ∥PJn+1ω∥−1

ℓ1/s∥v∥ℓq
ω
, s := 1

q − 1
p .

Proof. We start by proving the assertion for p = ∞. Without loss of generality, we can assume
that v is ordered such that the sequence σ|v| is decreasing. Under this assumption Jn = [n]. The
choice p = ∞ implies α = σ and ∥(I − PJn)αv∥ℓp = ∥(I − P[n])σv∥ℓ∞ = σn+1|vn+1|. Now the bound
σn|vn| ≤ ∥PJn

ω
σ ∥−1

ℓq ∥ωv∥ℓq follows from
n∑

k=1

(
ωk
σk

)q
(σn|vn|)q ≤

n∑
k=1

(
ωk
σk

)q
σq

k|vk|q =
n∑

k=1
ωq

k|vk|q ≤ ∥ωv∥q
ℓq .

This proves the claim for p = ∞. The case p < ∞ can be reduced to p = ∞ using Hölder’s inequality
via

∥(I − PJn)αv∥p
ℓp = ∥((I − PJn)σv)p−q((I − PJn)ωv)q∥ℓ1 ≤ ∥(I − PJn)σv∥p−q

ℓ∞ ∥ωv∥q
ℓq .

The claim follows by using the weighted Stechkin bound for the factor
∥(I − PJn)σv∥ℓ∞ ≤ ∥PJn+1

ω

σ
∥−1

ℓq ∥ωv∥ℓq .

The preceding lemma is a weighted generalisation of Stechkin’s Lemma 1.1 with which it coincides
for the choice α = σ = ω ≡ 1. In this setting, the parameter q has to be chosen as small as possible to
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exploit the decay of the sequence v and increase the rate of convergence s. When using the weighted
Stechkin estimate of Lemma 2.1 this is not necessary since the decay of the sequence can be measured
by means of the sequence ω.

To get a better intuition of the derived results, note that each of the sequences α, σ and ω controls
a different aspect of the estimate. The sequence α determines how the truncation error is measured,
σ controls the truncation strategy and ω measures the decay of the sequence. However, due to the
constraint αp = σp−qωq only two of these sequences can be chosen freely. Typically, these are α and ω.

In the remainder of this section, the roles of the different parameters that occur in Lemma 2.1 are
discussed with illustrative examples. We start with an examination of p and α, which should be chosen
to obtain an appropriate error norm ∥ • ∥ℓp

α
as in the following four examples.

Example 2.2 (Sobolev and spectral Barron spaces on the torus). Suppose that f is a function on
the 1-torus T and let v be its sequence of Fourier coefficients. Then p = 1 and p = 2 together with
the weight sequence α(k)j := (1 + j2)k/2 provide a natural choice of parameters since the Sobolev and
spectral Barron norms (cf. [15]) of f are then defined by

∥f∥Hk(T) := ∥v∥ℓ2
α(k)

and ∥f∥Bk(T) := ∥v∥ℓ1
α(k)

for any k ∈ R.

Example 2.3 (Sobolev and Besov spaces). Consider the Sobolev space W k,p of functions defined on
the interval [0, 1] equipped with the Lebesgue measure, with k ≥ 1 and 1 ≤ p ≤ ∞. A natural basis
for this space is the hierarchical spline basis of degree k. It can be shown (see e.g. [3]) that for any
v ∈ W k,p,

∥v∥W k,p ≍ ∥v∥ℓp
ω(k)

with ω(k)ℓ,j := 2kℓ.

A simple example for such a basis is provided in Appendix B. These results can be extended to the
wider class of Besov spaces Bk

q (Lp) for 0 < p = q ≤ ∞ [3, 37].

Example 2.4. Another useful choice of p and α can be made when f ∈ L∞(X , γ) for any measurable
set X and probability measure γ. Let v be the sequence of coefficients of f with respect to the basis
{Bj}j∈N and define the sequence αj := ∥Bj∥L∞(X ,γ). Then, by triangle inequality,

∥f∥Lp(X ,γ) ≤ ∥f∥L∞(X ,γ) ≤ ∥v∥ℓ1
α
.

By choosing weights so that αj := ∥Bj∥L∞(X ,γ) + ∥B′
j∥L∞(X ,γ), one may also arrive at bounds of the

form ∥f∥L∞(X ,γ) + ∥f ′∥L∞(X ,γ) ≤ ∥f∥ℓ1
α

, reflecting how steeper weights encourage more smoothness
(cf. [46]). This bound for instance is used in the proof of Theorem 6.1 in [1], which provides dimension
independent convergence rates for unweighted least squares approximation in high dimensions. How-
ever, the proof relies on a suboptimal weighted version of Stechkin’s lemma, which we discuss further
in Section 2.1.

Example 2.5. Another useful application of Lemma 2.1 is given by the choice p = ∞ and α ≡ 1.
The choice p = ∞ requires σ = α ≡ 1 and since α ≡ 1, the bound simplifies to

∥(I − PJn)v∥ℓ∞ ≤ ∥PJn+1ω∥−1
ℓq ∥v∥ℓq

ω
.

Replacing v by the monotonisation

vmin
k := min

j≤k
|vj | for all k ∈ N

yields Jn = [n], ∥(I − P[n])vmin∥ℓ∞ = vmin
n+1 and ∥vmin∥ℓq

ω
≤ ∥v∥ℓq

ω
and simplifies the bound even

further to
vmin

n+1 ≤ ∥P[n+1]ω∥−1
ℓq ∥v∥ℓq

ω
.
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Next, we examine the parameters q and ω and illustrate the benefits of the weighted version of
Stechkin’s lemma in terms of convergence. The subsequent two examples aim to provide an intuition
for the choice of q and ω, which should be chosen to capture the asymptotic decay of the sequence v
in the reference norm ∥ • ∥ℓq

ω
.

Example 2.6 (The choice of q and ω for algebraic decay). Consider the algebraically decaying se-
quence vj = j−ρalg for some ρalg > 1. To compare Lemma 1.1 and Lemma 2.1, let α ≡ 1 and
0 < q < p ≤ ∞ be arbitrary but fixed. Moreover, define q̄ := 1

q and p̄ := 1
p . Then Lemma A.2 provides

the equivalence
∥(1 − PJn)v∥ℓp ∼ (n+ 1)−(ρalg−p̄).

This rate is a benchmark against which both versions of Stechkin’s lemma can be compared. By
Lemma A.2 it holds that

q̄

ρalg − q̄
≤ ∥v∥q

ℓq ≤ ρalg
ρalg − q̄

for any q̄ ∈ (p̄, ρalg). Stechkin’s lemma thus yields the bound

∥(1 − PJn)v∥ℓp ≤ (n+ 1)−s∥v∥ℓq ≤ (n+ 1)−(q̄−p̄)
(

ρalg
ρalg − q̄

)q̄

.

As q̄ approaches the upper bound ρalg, the predicted rate of convergence approaches the optimal rate
ρalg − p̄. However, at the same time the factor ∥v∥ℓq diverges to infinity. This makes the bound only
useful for large n or small q̄, i.e. small s = q̄ − p̄. Although a different weight sequence ω cannot
provide a faster rate of convergence, it can change the asymptotic constant. To this end we define the
algebraically increasing sequence ωj = jr for some r < ρalg − q̄.

This choice implies σj = j−r/(sp). The technical Lemmas A.1 and A.2 in the appendix yield the
bounds

∥PJn+1
ω
σ ∥q

ℓq ≥ (n+ 1)r/s+1

r/s+ 1 and q̄

ρalg − r − q̄
≤ ∥v∥q

ℓq
ω

≤ ρalg − r

ρalg − r − q̄
.

Applying Lemma 2.1, we obtain the bound

∥(1 − PJn)v∥ℓp ≤ ∥PJn+1
ω
σ ∥−sq

ℓq ∥v∥ℓq
ω

≤ (n+ 1)−(r+s)

(r/s+ 1)−s

(
ρalg − r

ρalg − r − q̄

)q̄

.

As in the unweighted case, the factor ∥v∥ℓq
ω

diverges as r increases or q decreases. But in contrast to
the unweighted case, we can choose different values for q than in the classical Stechkin estimate while
maintaining the same rate of convergence. Denote by q̃ the value of q̄ chosen in the standard Stechkin
estimate and recall that q̃ < ρalg. We can hence choose r = q̃ − q̄ and take the limit q → p, leading to
the estimate

∥(1 − PJn)v∥ℓp ≤ (n+ 1)−(q̃−p̄)
(

p̄

ρalg − q̃

)p̄

.

Compared to the unweighted case, the asymptotic constant in the weighted case is significantly smaller.
A comparison of these constants is given in Figure 2.1. These constants makes the Stechkin bound
viable even for small values of n.

Example 2.7 (The choice of q and ω for exponential decay). Consider the exponentially decaying
sequence vj = ρj−1

exp with ρexp ∈ (0, 1). To compare Lemma 1.1 and Lemma 2.1, let α ≡ 1 and
0 < q < p ≤ ∞ be arbitrary but fixed. Moreover, define q̄ := 1

q and p̄ := 1
p . Then

∥(1 − PJn)v∥ℓp = ρn
exp(1 − ρp

exp)−p̄.
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10−610−510−410−310−210−1

ρalg − q̄

106

1014

Asymptotic constants for ρalg = 3 and p = 1/2

classical Stechkin lemma

weighted Stechkin lemma

Figure 2.1. Behaviour of the asymptotic constants of the classical and weighted
Stechkin estimates as the desired rate of convergence s approaches the optimal rate
s∗ := ρalg − p−1.

This rate is a benchmark against which both versions of Stechkin’s lemma can be compared. The
classical Stechkin lemma yields the bound

∥(1 − PJn)v∥ℓp ≤ (n+ 1)−s∥v∥ℓq = (n+ 1)−s(1 − ρq
exp)−q̄, with s = q̄ − p̄.

Notably, even though the factor ∥v∥ℓq does no longer impose a lower limit on q, the optimal exponential
rate of convergence cannot be recovered. Moreover, the asymptotic constant still grows without bounds
when q decreases. This illustrates that Lemma 1.1 cannot fully exploit the decay of the sequence, which
renders the estimates only useful as an asymptotic statement or for small values of s.

To compare the preceding bound with the weighted bound of Lemma 2.1, we choose the exponen-
tially growing weight sequence ωj = r−(j−1) for some r ∈ (ρexp, 1). This choice implies σj = r(j−1)/(sp)

and consequently

∥PJn+1
ω
σ ∥q

ℓq = r−(n+1)/s − 1
r−1/s − 1

≥ r−n/s and ∥v∥q
ℓq

ω
= 1

1 − (ρexp/r)q
.

Lemma 2.1 then yields

∥(1 − PJn)v∥ℓp ≤ ∥PJn+1
ω
σ ∥−sq

ℓq ∥v∥ℓq
ω

≤ rn(1 − (ρexp/r)q)−q̄.

This shows that in contrast to the classical Stechkin inequality, the weighted Stechkin inequality
can actually recover an exponential rate of convergence. This rate is even independent of q but the
asymptotic constant grows without bounds when r approaches ρexp.

2.1. Relation to previous results

Lemma 2.1 is not the first extension of Stechkin’s lemma to the weighted case. Another extension was
proposed in [46], which we briefly recall. For a fixed parameter p and sequence ω̃ they consider the
weighted r-sparse approximation error

σr(v)ℓp
α

:= min
I⊆N

ω̃(I)≤r

∥(1 − PI)v∥ℓp
α
, ω̃ := αp/(2−p),

where for any subset I ⊆ N the weighted cardinality is defined by ω̃(I) :=
∑

i∈I ω̃2
i . To bound this

error, for a given sequence v and a threshold r > 0 the set of indices Jn corresponding to the n largest
elements of the sequence ω̃|v| is considered. Moreover, let n(r) := max{n ∈ N : ω̃(Jn) ≤ r}. By
maximality of n(r), it holds that ω̃(Jn(r)+1) > r. Consequently,

σr(v)ℓp
α

≤ ∥(1 − PJn(r))v∥ℓp
α
. (2.1)
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Using the unweighted version of Stechkin’s lemma, it is concluded in [46, Theorem 3.2] that

σr(v)ℓp
α

≤ (r − ∥ω̃∥2
ℓ∞)−s∥ω̃(2−q)/q∥ℓq , s := 1

q
− 1
p
,

for all 0 < q < p ≤ 2 and r > ∥ω̃∥2
ℓ∞ . The main weakness of this statement comes from the requirement

r > ∥ω̃∥2
ℓ∞ . This condition requires that the sequence ω̃ is bounded and implies at the same time that

the bound only applies for a large threshold r, i.e. asymptotically. Hence, either the sparse vectors
are part of a finite dimensional space, which contradicts the asymptotical nature of the result, or the
sparse vectors are in an infinite dimensional space but the sequence is asymptotically constant, which
only results in a very limited generalisation of the classical Stechkin lemma. These shortcomings can
be eliminated by using our weighted version of Stechkin’s lemma. In fact, applying Lemma 2.1 with
α = ω̃(2−p)/p and ω = ω̃(2−q)/q to the bound (2.1) yields the subsequent corollary of Lemma 2.1.

Corollary 2.8. For ω̃ ∈ [0,∞]N and 0 < q < p ≤ 2 define α := ω̃(2−p)/p, σ := ω̃−1 and ω := ω̃(2−q)/q.
Let v ∈ ℓ∞σ ∩ ℓqω and let Jn be the set of indices corresponding to the n largest elements of σ|v|. Then,
for any r ≥ 0,

σr(v)ℓp
α

≤ ∥(1 − PJn(r))v∥ℓp
α

≤ r−s∥v∥ℓq
ω
, s := 1

q
− 1
p
.

This new weighted version of Stechkin’s lemma results in improved bounds in the original work [46]
as well as derived works such as [1].

Example 2.9. Let {Bj}j∈N be an L2(Y, ρ)-orthonormal basis and identify v ∈ L2(Y, ρ) with its
sequence of coefficients v ∈ ℓ2. Moreover, define the weight sequence ωj := ∥Bj∥w,∞ and the model
class

M := {v ∈ ℓ2 : ∥v∥ℓ0
ω

≤ r}.
Combining Proposition 1.4 and Theorem 1.5 with Corollary 2.8 yields the bound

∥v − vM,y∥ ≤ ∥v − vM∥ + 2√
1−δ

∥v − vM∥w,∞

≤ ∥v − vM∥ℓ2 + 2√
1−δ

∥v − vM∥ℓ1
ω

≤ (1 + 2√
1−δ

)∥v − vM∥ℓ1
ω

≤ r−1(1 + 2√
1−δ

)∥v∥
ℓ

1/2
ω3/2

,

which holds with high probability if n ≳ r log3(r)δ−2.

2.2. The relation of ℓpω to other spaces

It is of general interest to examine the relation of weighted sequence spaces depending on exponents
and the weight sequences, which is the topic of this section. We first substantiate our claim that ω
measures the decay of the sequence v by noting that a sequence in ℓqω decays in modulus with a rate
of ω−1.

Lemma 2.10. Let v ∈ ℓqω. Then |vk| ≤ ω−1
k ∥v∥ℓq

ω
.

Proof. Obviously, ωk|vk| ≤ ∥ωv∥ℓq .

The regularity in the ℓqω space is described by the two parameters q and ω. The preceding lemma
implies that a sequence v ∈ ℓpω̃ also lies in ℓqω, if its upper bound lies in this space, i.e.

∥v∥ℓq
ω

≤ ∥ω̃−1∥v∥ℓp
ω̃
∥ℓq

ω
= ∥ω̃−1∥ℓq

ω
∥v∥ℓp

ω̃
.
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This indicates that the exponent parameter q can be increased by simultaneously increasing the weight
sequence parameter ω. This is made precise in the subsequent lemma.

Lemma 2.11. Let 0 ≤ q ≤ p ≤ ∞ and ω, ω̃ ∈ [0,∞]N. Then for any sequence v ∈ ℓpω̃, it holds that

∥v∥ℓq
ω

≤ ∥ω̃−1∥
ℓ

1/s
ω

∥v∥ℓp
ω̃
, s = 1

q − 1
p .

Proof. By Hölder’s inequality
∥v∥q

ℓq
ω

= ∥ωqvq∥ℓ1 = ∥(ω
ω̃ )q(ω̃v)q∥ℓ1 ≤ ∥(ω

ω̃ )q∥ℓr ∥(ω̃v)q∥ℓt = ∥ω
ω̃ ∥q

ℓrq ∥ω̃v∥q
ℓtq ,

where r ∈ [1,∞] and t ∈ [1,∞] satisfy 1
r + 1

t = 1. Choosing t = p
q yields the claim.

Example 2.12 (Sparse polynomial approximation rates in Gaussian Sobolev spaces). Let γ be the
standard Gaussian measure on R and {Bj}j∈N be the basis of normalised Hermite polynomial in
L2(R, γ). Since these polynomials constitute an Appell sequence, it holds that

∥v∥Hk(R,γ) = ∥v∥ℓ2
ω̃(k)

with ω̃(k)j :=
√∑min{j,k}

ℓ=0
Γ(j+1)

Γ(j−ℓ+1) ≍ jk/2 := ω(k)j .

Applying Lemma 2.1 yields the following bound for the best n-term approximation vn of v:

∥v − vn∥L2(R,γ) = ∥v − PJnv∥ℓ2 ≤ ∥PJn+1ω(k − ε)∥−1
ℓ2 ∥v∥ℓ1

ω(k−ε)
≲ (n+ 1)−(k+1−ε)/2∥v∥ℓ1

ω(k−ε)
.

The required weighted summability v ∈ ℓ1ω(k−ε) can usually not be inferred directly from the smooth-
ness of the function. However, since ∥ω̃(k + 1)−1∥ℓ2

ω(k−ε)
is finite, Lemma 2.11 can be used to obtain

the more natural summability condition v ∈ ℓ2ω̃(k+1). Consequently, for arbitrary ε > 0,

∥v − vn∥L2(R,γ) ≲ (n+ 1)−(k+1−ε)/2∥v∥Hk+1(R,γ).

Remark 2.13 (Best n-term rates in higher dimensions). To briefly discuss the best n-term rates
in higher dimensions, we consider isotropic weight sequences of the form ω̄(a) = ω(a)⊗M , where
a ∈ (0,∞) determines growth of ω(a) (rates for anisotropic product weight sequences should follow by
similar arguments). To obtain worst-case rates for the approximation, we apply Lemmas 2.1 and 2.11

∥u − PJnuu∥ℓ2 ≤ ∥PJn+1ω̄(a)∥−1
ℓ2 ∥u∥ℓ1

ω̄(a)
≤ ∥PJn+1ω̄(a)∥−1

ℓ2 ∥ω̄(A)−1∥ℓ2
ω̄(a)

∥u∥ℓ2
ω̄(A)

and compute an upper bound for the decay rate ε(n) := ∥PJn+1ω̄(a)∥−1
ℓ2 . Then, for fixed a, we choose

the parameter A > a as small as possible while ensuring that ∥ω̄(A)−1∥ℓ2
ω̄(a)

is finite.

Exponential decay (analytic regularity). Consider the weight sequence ω(a)j = fa(j) with
fa(x) := exp(ax). In this case, there exists a constant cR such that

ε(n) ≲ n−(M−1)/(2M) exp(−cRan
1/M )

and it holds that ∥ω̄(A)−1∥ℓ2
ω̄(a)

< ∞ for any a < A.

Algebraic decay (mixed Sobolev regularity). Consider the weight sequence ω(a)j = ga(j) with
ga(x) := (x+ 1)a. In this case, we obtain the bound

ε(n) ≲ n−(a+1/2) ln(n)a(M−1).

and it holds that ∥ω̄(A)−1∥ℓ2
ω̄(a)

< ∞ for any a < A − 1
2 . Proofs for these statements can be found

in appendix C. Note that interestingly, the best n-term approximation rate seems to depend on
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the dimension M in the exponential case while it is independent of M in the algebraic case. To-
gether with Example 2.12, this provides best n-term L2-approximation rates in the Sobolev spaces
Hk,mix(RR, γ⊗M ) for the tensor product Hermite polynomial basis. It can also be shown [31] that the
similar rate ∥(I − PJn)u∥L2 ≤ n−k∥u∥Hk,mix also holds (up to logarithmic factors) for the hierarchical
tensor product spline basis in the Sobolev spaces Hk,mix([0, 1]M , λ⊗M ) from Example 2.3.

Finally, we use these insights to highlight the relation of weighted sequences spaces to other well-
knwon sequence spaces. We start our discussion with the relation of ℓpω for different values of p and
ω. In particular, we show that ℓq can not be embedded into ℓpω for any p and any unbounded ω. It is
clear that this is not possible, because otherwise Lemma 2.10 would provide decay rates for sequences
in ℓp. A concrete counterexample is provided in the proof of the subsequent lemma.
Lemma 2.14. Let 0 < q ≤ p ≤ ∞ and ω ≲ ω̃ ∈ [0,∞]N. Then

(i) ℓqω ⊆ ℓpω and ℓpω̃ ⊆ ℓpω.

Moreover,

(ii) if 1 ≲ ω is bounded, then ℓpω ≃ ℓp and

(iii) if ω is unbounded, then ℓq ̸⊆ ℓpω ⊆ ℓp for any q > 0.

Proof. The two inclusions ℓqω ⊆ ℓpω and ℓpω̃ ⊆ ℓpω follow by definition and the assertion (ii) holds
because ∥v∥ℓp ≲ ∥ωv∥ℓp ≤ ∥ω∥ℓ∞∥v∥ℓp . Hence, the mapping v 7→ ω−1v provides an isometry between
ℓp and ℓpω. To show the assertion (iii), assume that ω is unbounded. Then there exists a strictly
increasing function σ : N → N, which defines a subsequence of ω such that ωσ(k) ≥ 2k for all k ∈ N.
Now let ε > 0 and define the sequence v by

vσ(j) = j−(1+ε)/q and vk = 0 otherwise.
This sequence satisfies v ∈ ℓq and v ̸∈ ℓpω since

∥v∥q
ℓq =

∑
k∈N

|vk|q =
∑
j∈N

|vσ(j)|q =
∑
j∈N

j−(1+ε) < ∞ and

∥v∥p
ℓp

ω
=
∑
k∈N

|ωkvk|p =
∑
j∈N

|ωσ(j)vσ(j)|p ≥
∑
j∈N

2jpj−(1+ε)p/q = ∞.

Finally, we examine the relation of the weighted ℓqω spaces to the monotone ℓq,mon spaces (cf. [1]).
For any sequence v, define the minimal monotone majorant vmon by

vmon
j := sup

k≥j
|vk| for all j ∈ N.

The space ℓq,mon is then defined as the set of all sequences for which the norm ∥v∥ℓq,mon := ∥vmon∥ℓq

is finite.
Lemma 2.15. Let 0 < p, q ≤ ∞ and ω ∈ [0,∞]N and define κk := (k + 1)−1/p. Then,

(i) ℓqω ⊆ ℓp,mon if ω−1 ∈ ℓp,mon and

(ii) ℓp,mon ⊆ ℓqω if κ ∈ ℓqω.

Proof. For the first assertion, assume that v ∈ ℓqω. Then, by Lemma 2.10, |vmon
k | = supj≥k|vj | ≤

supj≥k ω−1
j ∥v∥ℓq

ω
= (ω−1)mon

k ∥v∥ℓq
ω
. To show the second assertion, let v ∈ ℓp,mon. Then, by Lemma 1.1,

|vk| ≤ |vmon
k | ≤ κk∥v∥ℓp,mon and consequently ∥ωv∥ℓq ≤ ∥ωκ∥ℓq ∥v∥ℓp,mon .
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3. Sparse approximation of parametric PDEs

This section is concerned with an application of the weighted Stechkin lemma for a popular class of
functions where weighted sparsity is encountered naturally. In what follows, we consider solutions of
parametric PDEs that have become popular in the field of Uncertainty Quantification. We restrict
our attention to two prototypical examples mentioned above in Theorems 1.2 and 1.3 that exhibit a
holomorphic dependence on the parameter y. The proofs of these bounds are typically rather involved
and e.g. make use of techniques from complex analysis. With the weighted version of Stechkin’s
lemma deduced in the preceding section, alternative proofs for such bounds can be derived with more
elementary techniques. The principle is demonstrated in this section for the one-dimensional case
L = 1 as a use case of Lemma 2.1.

Assuming that the coefficient a(y) ≥ ǎ(y) > 0 is finite and bounded from below for every y ∈ R and
f ∈ H−1(D), Lax–Milgram theorem allows us to define the solution u(y) in the space H1

0 (D) through
the variational formulation∫

D
a(x, y)∇xu(x, y) · ∇xv(x) dx =

∫
D
f(x)v(x) dx for all v ∈ H1

0 (D).

Moreover, a standard Lax–Milgram a priori estimate tells us that
∥u(y)∥H1

0
≤ ǎ(y)−1∥f∥H−1(D).

Using the machinery of weighted ℓpω-spaces developed in Section 2, we now derive a priori best
n-term convergence bounds for the solution of (1.1) from first principles. Both results rely on the
holomorphy of the solution map y 7→ u(y) := u( • , y) and make use of the following extension of
Cauchy’s inequality to Banach spaces.

Theorem 3.1 (Lemma 2.4 in [18]). Let ρ ∈ (1,∞), X be a Banach space and v : BC(0, ρ) → X be
holomorphic such that supy∈BC(0,ρ)∥v(y)∥X ≤ M < ∞. Then the power series coefficients v ∈ XN of
v satisfy

∥vk∥X ≤ Mρ−k.

3.1. Affine coefficients

We first consider the model problem (1.1) with affine coefficients (1.2). Summability of the power
series of solution u can be shown based on its holomorphy.

Theorem 3.2. Let ρ > 1 and the uniform ellipticity assumption (UEA)

C := inf
x∈D

a0(x) − ρ
∑
j≥1

|aj(x)| > 0

be satisfied. Moreover, let u be the solution of the diffusion equation (1.1) with affine coefficients (1.2).
Then the map y 7→ u(y) is holomorphic from [−1, 1] to H1

0 (D) and belongs to Lp([−1, 1], γ;H1
0 (D))

for all p ∈ N ∪ {∞}, where γ is the uniform measure. Moreover, for any r ∈ (0, ρ), the power series
coefficients u of u satisfy the bound

∥uk∥H1
0 (D) ≤ ∥f∥H−1(D)C

−1r−k.

We omit the proof of this theorem since it follows by the same arguments as the one of the more
interesting log-affine case in Theorem 3.7. Moreover, we note that in higher dimensions an anisotropic
choice of ρ can be used to reduce the regularity assumptions on a as it is done in the log-affine case.

The preceding lemma guarantees a decay of the power series coefficients of u. However, in nu-
merical applications an expansion in terms of an orthonormal basis is preferable. For the diffusion
equation (1.1) with affine coefficients (1.2), a suitable basis is given by the Legendre polynomials. The
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subsequent two lemmas show how the decay of the power series coefficients translates into a decay of
the Legendre coefficients.

Lemma 3.3 (see [36]). Let v satisfy the conditions of Theorem 3.1 and let v be the power series
coefficients of v. Then

v(z) =
∑

m∈N
v̂mLm(z),

where Lm is the mth normalised Legendre polynomial and v̂m satisfies

v̂m =
∑
n∈N

(2m+ 1)1/2(m+ 2n)!
2m+2nn!(3

2)m+n
vm+2n,

where the Pochhammer symbol (a)k is defined as (a)0 = 1, (a)k+1 = (a)k(a+ k).

Theorem 3.4. Let u be the solution of the diffusion equation (1.1) with affine coefficients (1.2).
Moreover, let the parameters ρ > 1 and C > 0 be defined as in Theorem 3.2. Then, for any r ∈ (1, ρ),
the Legendre basis coefficients û of u satisfy

∥ûm∥H1
0 (D) ≤ ∥f∥H−1(D)C

−1√
2m+ 1 r−m

r2 − 1 .

This implies that û ∈ ℓqω for all q ∈ (0,∞] and ωn := p(n)rn with r ∈ (1, ρ) and any positive function
p growing at most polynomially.

Proof. Denote by u the power series coefficients of u and define the double sequence

αm,k :=
√

2m+ 1 k!
2k((k −m)/2)!(3

2)(k+m)/2
.

By Lemma 3.3 it holds that ûm =
∑

k∈m+2N αm,kuk and hence
∥ûm∥H1

0 (D) ≤ ∥Pm+2Nu∥ℓ1
αm
, (3.1)

where the ∥u∥ℓ1
αm

=
∑

k∈N αm,k∥uk∥H1
0 (D). This bound is tight, since equality holds for uk+1 = vkuk

and any non-negative sequence 0 ≤ v ∈ ℓ1αm
. By Theorem 3.2 it holds that ∥uk∥H1

0 (D) ≤ cr−k with
c := ∥f∥H−1(D)C

−1. Moreover, expressing the Pochhammer symbol in terms of the Gamma function
yields the bound

(3
2)k =

Γ(k + 3
2)

Γ(3
2)

>

(
min

z∈[0,∞)

Γ(z + 3
2)

Γ(z + 1)

)
︸ ︷︷ ︸

=Γ( 3
2 )

Γ(k + 1)
Γ(3

2)
= k! .

Substituting both bounds into (3.1) yields

∥ûm∥H1
0 (D) ≤ c

√
2m+ 1r−m

∑
n∈N

2−(m+2n)
(
m+ 2n
n

)
︸ ︷︷ ︸

=pm+2n(n)≤1

r−2n ≤ c
√

2m+ 1r−m

r2 − 1 ,

where pm+2n is the probability mass function of a binomial distribution with m + 2n trials and a
success probability of 1

2 . The final claim follows directly from this bound and the ratio test for series
convergence.

Remark 3.5. It is possible to use Lemma 2.1 to bound (3.1). But as shown in Examples 2.6 and 2.7,
Stechkin’s lemma cannot fully exploit the decay of a weight sequence. In fact, if possible it is preferable
to derive a bound directly as in the previous proof.
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Example 3.6. Let u be the solution of the diffusion equation (1.1) with affine coefficients (1.2). We
denote by Lm the mth normalised Legendre polynomial and by û the Legendre basis coefficients of u.
Moreover, define the weight sequence ωj := ∥Lj∥∞ =

√
2j + 1 and the model class

M := {v ∈ ℓ2 : ∥v∥ℓ0
ω

≤ r}.

We know from Example 2.9 that

∥u− uM,y∥ ≤ r−1(1 + 2√
1−δ

)∥u∥
ℓ

1/2
ω3/2

holds with high probability if n ≳ r log3(r)δ−2. Theorem 3.4 guarantees that

∥u∥1/2
ℓ

1/2
ω3/2
≲
∑

m∈N
(2m+ 1)3/4

(√
2m+ 2r−m

)1/2
=
∑

m∈N
(2m+ 1)r−m/2 =

√
r(

√
r + 1)

(
√
r − 1)2

is indeed finite. Note that we can probably obtain better rates by using a faster growing weight
sequence ω and Lemma 2.1 instead of Corollary 2.8.

3.2. Log-affine coefficients

The analysis of (1.1) with log-affine coefficient (1.3) is much more involved from a theoretical and
practical side than the affine case. As in the affine case, we begin by showing holomorphy of the
solution u. The analysis is based on the approach in [17], where only the affine case was considered
and an explicit decay of the coefficients ∥uν∥H1

0 (D) was not shown.

Theorem 3.7. For every x ∈ D, let a(x) denote the sequence of coefficients (aj(x))j∈N. Assume that
there exists a sequence ρ ∈ (0,∞)N such that

sup
x∈D

∥a(x)∥ℓ∞
ρ

= C1 < ∞ and ∥ρ−1∥ℓ2 = C2 < ∞.

Then the map y 7→ u(y) is entire and belongs to Lp(R, γ;H1
0 (D)) for all p ∈ N, where γ denotes the

Gaussian measure. Moreover, the power series coefficients satisfy the bound

∥uν∥H1
0 (D) ≤ ∥f∥H−1(D) exp(∥ν∥1)

(
νρ
C1

)−ν
.

Proof. We start by providing a lower bound for ǎ(y) > 0. Since
inf
x

exp((a(x), y)ℓ2) = exp(inf
x

(a(x)ρ,ρ−1y)ℓ2)

≥ exp(− sup
x

∥a(x)∥ℓ∞
ρ

∥ρ−1y∥ℓ1)

= exp(−C1∥ρ−1y∥ℓ1),
it holds that ǎ(y) ≥ exp(−C1∥ρ−1y∥ℓ1). The integrability of u now follows by the simple calculation

Ey[ǎ(y)−k] ≤ Ey[exp(kC1∥ρ−1y∥ℓ1)]

=
∏
j∈N

Eyj [exp(kC1ρ−1
j |yj |)]

≲
∏
j∈N

exp(1
2k

2C2
1ρ−2

j )

= exp(1
2k

2C2
1C

2
2 )

< ∞.
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We now show that the extension of the map y 7→ u(y) to the complex domain is analytic. Following [17],
we start by defining for r ∈ (0,∞)N the open polydiscs Ur :=

∏
k∈NB(0, rk) on which u is uniformly

bounded by
∥u∥L∞(Ur ;H1

0 (D)) ≤ exp(−C1∥ρ−1r∥ℓ1)∥f∥H−1(D). (3.2)

Now, we introduce for any coefficient field a the operator B(a) : v 7→ − divx(a∇xv) mapping from
H1

0 (D) to H−1(D) and decompose the map y 7→ u(y) into the chain of holomorphic maps
y 7→ a(y) 7→ B(a(y)) 7→ B(a(y))−1 7→ B(a(y))−1f = u(y).

The first map is holomorphic by definition and the second and last map are continuous linear maps
and thereby also holomorphic. The third map is the operator inversion which is holomorphic at any
invertible B. Since B(a(y)) is invertible for every y ∈ CN, the map y 7→ u(y) is entire. Applying
Cauchy’s inequality in Theorem 3.1 to (3.2), we hence obtain

∥uν∥H1
0 (D) ≤ ∥f∥H−1(D) exp(−C1∥ρ−1r∥ℓ1)r−ν .

Choosing for every fixed multi-index ν the sequence rk := νkρk
C1

yields ∥ρ−1r∥ℓ1 = 1
C1

∥ν∥ℓ1 and proves
the result.

In the setting of log-affine coefficients (1.3), a suitable basis is given by the Hermite polynomials.
Similar to the Lemma 3.3 and Theorem 3.4, the subsequent two results show how the decay of the
power series coefficients translates into a decay of the Hermite coefficients.

Lemma 3.8. Let v satisfy the conditions of Theorem 3.1 and let v be the power series coefficents of
v. Then

v(z) =
∑

m∈N
v̂mHm(z),

where Hm is the mth normalised Hermite polynomial and v̂m satisfies

v̂m =
∑
n∈N

(m+ 2n)!
2nn!

√
m!

vm+2n.

Proof. For every m ∈ N, let Hem denote the kth monic probabilist’s Hermite polynomial. Then,
by [44, Chapter 11, Section 110],

zk =
∑
n∈N
2n≤k

k!
2nn!(k − 2n)!Hek−2n(z).

Plugging this into the power series expansion for v yields

v(z) =
∑

k,n∈N
2n≤k

k!
2nn!(k − 2n)!vkHek−2n(z) =

∑
k,n,m∈N

2n≤k
m=k−2n

k!
2nn!m!vkHem(z) =

∑
n,m∈N

(m+ 2n)!
2nn!m! vm+2nHem(z).

Substituting Hem =
√
m!Hm yields the desired relation.

Theorem 3.9. Let u be the solution of the diffusion equation (1.1) with log-affine coefficients (1.3).
Moreover, let the parameters ρ and C1 be defined as in Theorem 3.7. Finally, let L = 1 and assume
that ρ > C1. Then, the Hermite basis coefficients û of u satisfy ∥ûm∥H1

0 (D) ≲
∥f∥H−1(D)√

(m−1)!
. This implies

that û ∈ ℓqω for all q ∈ (0,∞] and ω that grow subfactorially.
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Proof. Define the double sequence

αm,k := k!
2(k−m)/2((k −m)/2)!

√
m!
.

By Lemma 3.8 it holds that ûm =
∑

k∈m+2N αm,kuk. Hence
|ûm| ≤ ∥Pm+2Nu∥ℓ1

αm
≤ ∥(1 − P[m−1])u∥ℓ1

αm
. (3.3)

This bound is tight, since equality holds for any sequence u ≥ 0 with uk = 0 for all k ∈ m+ 2N. By
Theorem 3.7 it holds that ∥uk∥H1

0 (D) ≤ ∥f∥H−1(D) exp(k)( kρ
C1

)−k and by Stirling’s approximation
√

2πk(k
e )k exp( 1

12k+1) < k! <
√

2πk(k
e )k exp( 1

12k ).
Substituting all three estimates into (3.3) and assuming m ≥ 1 yields

∥ûm∥H1
0 (D) ≤ ∥f∥H−1(D)

√
2(m+ 1)

m!
∑
k≥m

(
k −m

e

)−(k−m)/2( ρ

C1

)−k

≤ 2∥f∥H−1(D)

(
√
e+ e

2 + (C1/ρ)m+3

1 − C1/ρ

)
1√

(m− 1)!
.

Corollary 3.10. Let û be the sequences of Hermite basis coefficients from Theorem 3.9 with L = 1
and assume that ρ ≥ C1. Then, if ωj = r̃j/2 with r̃ ∈ [1, 2) and Jn is the set of indices corresponding
to the n largest elements of the sequence ω−1

k ∥ûk∥H1
0 (D), it holds that

∥(1 − PJn)û∥L2 ≲ ∥f∥H−1(D)

√
2√

2 −
√
r̃
r̃−n/2.

Proof. From Theorem 3.9, we know that ∥ûm∥H1
0 (D) ≲

∥f∥H−1(D)√
(m−1)!

. Since m! ≥ 2m−1, it holds that
1√

(m−1)!
≲ 2−m/2 =: γm. Applying Lemma 2.1 with p = 2, q = 1 and α ≡ 1 yields

∥(1 − PJn)û∥L2 = ∥(1 − PJn)û∥ℓ2 ≤ ∥PJn+1ω2∥−1/2
ℓ1 ∥û∥ℓ1

ω
≲ ∥f∥H−1(D)∥PJn+1ω2∥−1/2

ℓ1 ∥γ∥ℓ1
ω
.

The claim follows since ∥γ∥ℓ1
ω

=
√

2√
2−

√
r̃

and ∥PJn+1ω2∥ℓ1 ≥ ∥P[n+1]ω
2∥ℓ1 ≥ r̃n.

Remark 3.11. Note that the proofs of Theorem 3.4 and 3.9 rely essentially on the formulas in
Lemma 3.3 and Lemma 3.8. The similarity of these formulas indicates a deeper relation stemming
from the explicit representations of (pn, Lm)L2 and (pn, Hm)L2 with pn(z) := zn. We conjecture that
similar representations can be derived for all families of orthonormal polynomials by means of the
corresponding three-term recurrence relation.

4. Sparse approximation using tensor trains

In this section we consider sparse approximation problems in a high-dimensional setting where weighted
sparse vectors can be identified with tensors. We show that tensors in ℓqω can be approximated efficiently
in a model class of tensor trains with (weighted) sparse component tensors. The derivation of this relies
heavily on results in [38], from which we recall some theorems. For the sake of completeness and since
the proofs foster some interesting insights, they are also provided.

Finally, we provide a practical algorithm to obtain these representations which provides an alterna-
tive for classical sparse approximation algorithms (such as weighted ℓ1-minimisation) that circumvents
the CoD.
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4.1. Tensor train representation of sparse tensors

This section recalls basic representation results for sparse tensors that are originally due to [38]. We
first introduce some basic operations on tensors.

Definition 4.1 (Vectorisation). For any tensor A ∈ Rd1×···×dM of order M ∈ N>0, the vectorisation
of A is a vector vec(A) ∈ Rd1···dM defined by the equality

Ai1,i2,...,id
= vec(A)∑

k∈[M ] ikDk
with Dk :=

M∏
ℓ=k+1

dℓ and DM := 1.

Definition 4.2 (Unfolding [43]). For any tensor A ∈ Rd1×···×dM and k ∈ [M ], the k-unfolding of A
is a matrix unfoldk(A) ∈ RC1×C2 with C1 =

∏k
j=1 dj and C2 =

∏M
j=k+1 dj , defined by the equality

vec(A) = vec(unfoldk(A)).

Definition 4.3 (Orthogonality). A tensor A ∈ Rd1×···×dM is called left-orthogonal, if
unfoldM−1(A)⊺ unfoldM−1(A) = I.

It is called right-orthogonal if
unfold1(A) unfold1(A)⊺ = I.

Definition 4.4 (Contraction). Given two tensors A ∈ Rd1×···×dM and B ∈ RdM ×···×dN , we define the
contraction of A and B along the last dimension of A and the first dimension of B as

(A ◦B)i1,...,iM−1,iM+1,...,iN :=
∑

iM ∈[dM ]
Ai1,...,iMBiM ,...,iN .

The tensor train (TT) decomposition [43] represents a tensor of order M as the contraction of M
lower order tensors. A tensor A ∈ Rd1×···×dM is said to have a TT representation of rank r ∈ NM−1 if

A = A(1) ◦ · · · ◦A(M)

with component tensors A(k) ∈ Rrk−1×dk×rk and the convention that r−1 = rM = 1. By fixing the
second index of every A(k) to ik, we obtain a matrix A(k)

ik
. The entries of A can then be computed by

Ai1,...,iM = A
(1)
i1

· · ·A(M)
iM

.

Now suppose that the tensor A is R-sparse, i.e. that there exists a set J of size R such that Ai ̸= 0
if and only if i = (i1, . . . , iM ) ∈ J . Then A can be represented as the sum of R rank-1 tensors,

A =
∑
i∈J

ei1 ⊗ · · · ⊗ (Aieik
) ⊗ · · · ⊗ eiM , (4.1)

where eil
∈ Rdl are the standard basis vectors and the choice of the index k ∈ [M ] is arbitrary. Since

every summand is a TT of rank 1, the sum (4.1) can be represented as a TT of rank R.

Lemma 4.5 (Section 4.1 in [43]). Let A,B ∈ Rd1×···×dM be two tensors given in TT format

Ai = A
(1)
i1

· · ·A(M)
iM

, Bi = B
(1)
i1

· · ·B(M)
iM

.

The sum C = A+B can be represented in TT format with components

C
(1)
i1

=
[
A

(1)
i1

B
(1)
i1

]
, C

(k)
ik

=
[
A

(k)
ik

B
(k)
ik

]
, C

(M)
iM

=

A(M)
iM

B
(M)
iM

 ,
where k = 2, . . . ,M − 1 and empty spaces denote blocks of zeros of appropriate dimension.
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The proof of Lemma 4.5 follows directly from the definition of the TT decomposition. Together
with the decomposition (4.1) it implies that any R-sparse tensor A ∈ Rd1×···×dM can be represented
as a TT of rank R.

This decomposition can be written as

A = P (1) ◦ · · · ◦ P (k−1) ◦ C ◦ P (k+1) ◦ · · · ◦ P (M),

with P (1) ∈ {0, 1}1×d1×R, P (j) ∈ {0, 1}R×dj×R for 1 < j < M , P (M) ∈ {0, 1}R×dM ×1, and C ∈
RR×dk×R. If J = {i1, . . . , iR}, then by the definition of the component tensors in Lemma 4.5 it holds
that

unfold2(P (1)) =
[
ei1

1
· · · eiR

1

]
, unfold2(P (j)) =


ei1

j

. . .
eiR

j

 , unfold1(P (M)) =


e⊺

i1
M...

e⊺
iR
M

 ,
where C exhibits the same sparsity pattern as the corresponding P (j). Note that all components in
this representation are R-sparse and that similar representations exist for k = 1 or k = d.

Now consider the case that i11 = i21 = k. Then the column ek appears at least twice in the matrici-
sation unfold2(P (1)) resulting in an ambiguous representation of the tensor. This is a principal effect
of the representation in Lemma 4.5 and is not specific to the sparse TT decomposition. In classical
tensor algorithms, uniqueness of the representation is restored (up to orthogonal transformations) by
performing a sequence of rank-revealing QR decompositions on the factors P (j). However, since the
QR decomposition is not guaranteed to preserve sparsity, we introduce a sparse QC decomposition
X = QC, where Q is orthogonal and sparse and C is sparse. The idea behind this decomposition is
that the image space of X is spanned by those standard basis vectors ei for which the row vector e⊺iX
is non-zero. We can hence define Q as the sparse orthogonal matrix containing these standard basis
vectors as its columns.

To rigorously define this decomposition, recall that any R-sparse matrix A ∈ Rn×m can be repre-
sented by the three R-tuples

row(A) ∈ [n]R, col(A) ∈ [m]R and data(A) ∈ RR.

Here row(A)i and col(A)i are the row and column indices of the ith non-zero entry in A and data(A)i

is its value. Conversely, given three R-tuples r ∈ [n]R, c ∈ [m]R and d ∈ RR such that the pairs
{(ri, ci)}i∈[R] are unique, we can uniquely define an R-sparse matrix coo(r, c, d) with

row(coo(r, c, d)) = r, col(coo(r, c, d)) = c and data(coo(r, c, d)) = d.

Finally, define for every R ∈ N the R-tuples

range(R) := (1, . . . , R) and ones(R) := (1, . . . , 1)

as well as the tuple unique(r) for every tuple r ∈ NR, containing only the unique elements of r. As
usual, we define for any vector x ∈ Rd the dimension dim(x) := d.

Definition 4.6. Let X ∈ Rn×m be an R-sparse matrix. Then the sparse QC decomposition X = QC
is given by

Q := coo(s, range(r), ones(r)) ∈ Rn×r and C := Q⊺X,

where s := unique(row(X)) and r := dim(s) ≤ R.

Lemma 4.7. Let X ∈ Rn×m be an R-sparse matrix and X = QC be its sparse QC decomposition.
Then Q ∈ Rn×r is orthogonal and r-sparse with r ≤ R and C ∈ Rr×m is R-sparse.
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Proof. Recall that Q := coo(s, range(r), ones(r)) with s := unique(row(X)) and r := dim(s). This
means that Q is r-sparse with r = dim(s) ≤ dim(row(X)) = R. Moreover, since the kth column of Q
is the standard basis vector esk

and since the indices in s are unique, it follows that Q is orthogonal.
For the same reason, C = Q⊺X is just a version of X with the non-zero rows removed. Therefore, C
is R-sparse.

Applying the sparse QC decomposition sequentially to the unfoldings of all component tensors
results in a TT representation

A = U (1) ◦ · · · ◦ U (k−1) ◦ C ◦ V (k+1) ◦ · · · ◦ V (M). (4.2)

An implementation of this procedure is listed in Algorithm 1. The resulting component tensors U (j) ∈
{0, 1}rj−1×d×rj are rj-sparse and left-orthogonal and the component tensors V (j) ∈ {0, 1}rj−1×d×rj are
rj−1-sparse and right-orthogonal. The ranks rj are uniformly bounded by R and the core tensor C
remains R-sparse. These properties are summarised in the following definition.

Definition 4.8. A tensor train representation

A = U (1) ◦ · · · ◦ U (k−1) ◦ C ◦ V (k+1) ◦ · · · ◦ V (M)

is called sparsely canonicalised with core position k if

(1) U (j) ∈ {0, 1}rj−1×d×rj are left-orthogonal and rj-sparse for all 1 ≤ j < k,

(2) V (j) ∈ {0, 1}rj−1×d×rj are right-orthogonal and rj−1-sparse for all k < j ≤ M and

(3) C ∈ Rrk−1×d×rk is min{rk−1, rk}-sparse.

Algorithm 1: Sparse canonicalisation
input: Tensor train representation A = A(1) ◦ · · · ◦A(M), desired core position k.
output: Sparsely canonicalised representation of A with core position k.

1 Initialise C(0) := I.
2 for j = 1 to k − 1 do
3 Define X(j) := C(j−1) unfold2(A(j)).
4 Compute the sparse QC decomposition (cf. Definition 4.6) X(j) = Q(j)C(j).
5 Define unfold2(U (j)) := Q(j).
6 end
7 Initialise C(M+1) := I.
8 for j = M to k + 1 do
9 Define X(j) := unfold1(A(j))C(j+1).

10 Compute the sparse QC decomposition (cf. Definition 4.6) (X(j))⊺ = (Q(j))⊺(C(j))⊺.
11 Define unfold1(V (j)) := Q(j).
12 end
13 Define C := C(k−1)A(k)C(k+1).
14 return A = U (1) ◦ · · · ◦ U (k−1) ◦ C ◦ V (k+1) ◦ · · · ◦ V (M).
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4.2. Approximation results

The deliberations of the preceding section give rise to a model class of tensor trains with sparse
component tensors. Moreover, due to the special structure of the component tensors any weighted
summability condition on the full tensor translates into a weighted summability condition on the core
tensor. This is made precise in the subsequent theorem.
Theorem 4.9. Every R-sparse tensor A ∈ Rd1×···×dM can be represented in a sparsely canonicalised
TT format

A = U (1) ◦ · · · ◦ U (k−1) ◦ C ◦ V (k+1) ◦ · · · ◦ V (M)

with ranks that are uniformly bounded by R, independent of the chosen core position k ∈ [M ]. Moreover,
we can define the operator Q ∈ L(Rrk×dk×rk+1 ,Rd1×···×dM ) ≃ Rd1···dM ×rkdkrk+1 via

Q = unfoldk(U (1) ◦ · · · ◦ U (k−1)) ⊗ Idk
⊗ unfold1(V (k+1) ◦ · · · ◦ V (M))⊺, (4.3)

where ⊗ denotes the matrix Kronecker product. This means that A = QC. Interpreted as a matrix,
Q is left-orthogonal and its columns are standard basis vectors and for every q ∈ [0,∞] and ω ∈
[0,∞]d1×···×dM it holds that

∥A∥ℓq
ω

= ∥C∥ℓq
β
,

where β := Q⊺ω is a (reshaped) subsequence of ω.
Proof. Q is a linear operator mapping a component tensor from Rrk×dk×rk+1 to the space of
full tensors Rd1×···×dM . After vectorising these tensor spaces, we can interpret Q as a matrix Q ∈
{0, 1}d1···dM ×rkdkrk+1 . We now show that Q is an orthogonal matrix where every column is a standard
product basis vector. We begin by showing that the matrices

Bk := unfoldk+1(U (1) ◦ · · · ◦ U (k))
are left-orthogonal with columns that are standard basis vectors. Following the lines of [57, Appendix
B], this can be proved by induction. For k = 1 the assertion is true by construction of U (1). For k > 1
it holds that Bk = (Irk−1 ⊠ Bk−1) unfold2(U (k)), where Irk−1 ⊠ Bk−1 denotes the Kronecker product.
The two matrices (Irk−1⊠Bk−1) and unfold2(U (k)) are left-orthogonal and their columns are standard
basis vectors. This implies the assertion, since the matrix product preserves these properties. A similar
argument shows that the matrices

Dk := unfold1(U (k) ◦ · · · ◦ U (M))⊺

are left-orthogonal with columns that are standard basis vectors. This proves the claim, since Q =
Bk−1 ⊗ Idk

⊗Dk+1.

Let A be an R-sparse coefficient tensor with ∥A∥ℓ0
ω

≤ r. Then Theorem 4.9 ensures that A = QC
with

Q ∈ QR,k := { unfoldk(U (1) ◦ · · · ◦ U (k−1)) ⊗ Idk
⊗ unfold1(V (k+1) ◦ · · · ◦ V (M))⊺

: U (j), V (j) ∈ {0, 1}rj−1×dj×rj with rj−1, rj ≤ R

: all U (j) are left-orthogonal and rj-sparse

: all V (j) are right-orthogonal and rj−1-sparse }
and

C ∈ CQ,r,ω := Bℓ0
Q⊺ω

(0, r) = {C ∈ Rrk−1×dk×rk : ∥C∥ℓ0
Q⊺ω

≤ r}.
Since such a representation exists for all k = 1, . . . ,M , this motivates the definition of the model class

MR,r,ω :=
⋂

k∈[M ]

⋃
Q∈QR,k

QCQ,r,ω.
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Since Q⊺ω is a subsequence of ω, ω ≥ 1 implies ∥C∥ℓ0
Q⊺ω

≥ ∥C∥ℓ0 . The memory footprint of v ∈ MR,r,ω

for ω ≥ 1 is thus bounded by (M − 1)R + r. As before, we identify the set of coefficient tensors
MR,r,ω with the corresponding set of functions. The following corollary then translates the result of
Corollary 2.8 to the model class MR,r,ω and shows that it exhibits similar approximation rates as the
more classical sets of weighted sparsity.

Corollary 4.10. Let τ ∈ ([0,∞]N)M and T (R) := min{∥PJτ∥2
ℓ2 : |J | = R+1} be the sum of the R+1

smallest elements in τ 2. Moreover, let 0 < q < p ≤ 2 and define α := τ (2−p)/p and ω := τ (2−q)/q.
Then every v ∈ ℓqω(NM ) can be approximated by a tensor ṽ ∈ MR,r,ω with accuracy

∥v − ṽ∥ℓp
α

≤ min{T (R), r}−s∥v∥ℓq
ω
, s := 1

q − 1
p .

Proof. Let Jn be defined as in Corollary 2.8 and recall that v can be approximated by the n-sparse
tensor ṽ := PJnv with an error of at most

∥(1 − PJn)v∥ℓp
α

≤
(
∥PJn+1σ−1∥q

ℓq
ω

)−s
∥v∥ℓq

ω
=
(
∥PJn+1τ∥2

ℓ2

)−s
∥v∥ℓq

ω
.

Define n(r) := max{n ∈ N : ∥PJnτ∥2
ℓ2 ≤ r} and choose n = min{R,n(r)}. Then ṽ is R-sparse and

τ -weighted r-sparse and Theorem 4.9 guarantees that it can be represented in MR,r,ω. The desired
error bounds follows by case distinction. If n = R then ∥PJn+1τ∥2

ℓ2 ≥ T (R) by definition of T (R).
Hence (∥PJn+1τ∥2

ℓ2)−s ≤ T (R)−s. If n = n(r) then ∥PJn+1τ∥2
ℓ2 ≥ r by maximality of n(r). Hence

(∥PJn+1τ∥2
ℓ2)−s ≤ r−s.

Using the model class MR,r,ω, the optimisation (1.5) becomes feasible on product basis. We use the
remainder of this section to provide theoretical guarantees for this optimisation. To apply Proposi-
tion 1.4, we first show that the model class satisfies the required nestedness property MR,r,ω−MR,r,ω ⊆
M2R,2r,ω and then show RIPMR,r,ω

(δ) holds with high probability. For this to make sense, we let
b : Y → Rd be a vector of L2(Y, ρ)-orthonormal basis functions, define the tensor product basis
B(y) := b(y1) ⊗ · · · ⊗ b(yM ) and suppose that the weight sequence ω satisfies ωj ≥ ∥Bj∥L∞ . We now
identity the space of coefficents v ∈ MR,r,ω with the corresponding space of functions y 7→ (B(y), v)ℓ2 .

Proposition 4.11. It holds that MR,r,ω − MR,r,ω ⊆ M2R,2r,ω.

Proof. Let A,B ∈ MR,r,ω with core position k. By Lemma 4.5, the difference C = A − B can be
represented in TT format with components

C
(1)
i1

=
[
A

(1)
i1

−B(1)
i1

]
, C

(j)
ij

=

A(j)
ij

B
(j)
ij

 , C
(M)
iM

=

A(M)
iM

B
(M)
iM

 ,
for j = 2, . . . ,M − 1. After removing duplicate columns in the matricisations of C(j) for j ̸= k, the
resulting tensor satisfies the unweighted sparsity, orthogonality and rank constraints of M2R,2r,ω. And
since

∥C(k)∥ℓ0
Q⊺ω

= ∥A−B∥ℓ0
ω

≤ ∥A∥ℓ0
ω

+ ∥B∥ℓ0
ω

≤ 2r,

the weighted sparsity constraints are satisfied as well.

The following immediate consequence of Theorem 1.5 provides a bound for the probability of
RIPMR,r,ω

(δ).

Corollary 4.12. Fix parameters δ, γ ∈ (0, 1). Let {Bj}j∈[D] be orthonormal with respect to the measure
ρ and let w ≥ 0 be any weight function satisfying ∥w−1∥L1 = 1. Assume the weight sequence satisfies
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ωj ≥ ∥w1/2Bj∥L∞ and fix

n ≥ Cδ−2rmax{log3(r) log(dM ),− log(γ)}.
Let y1, . . . , yn be drawn independently from w−1ρ. Then the probability of RIPMR,r,ω

(δ) exceeds 1 − γ.

Proof. Theorem 4.9 guarantees that every A ∈ MR,r,ω can be written as A = QC with ∥A∥ℓ0
ω

=
∥C∥ℓ0

β
≤ r and where β = Q⊺ω. This implies that MR,r,ω ⊆ Bℓ0

ω
(0, r). The assertion follows, since

Theorem 1.5 implies RIPB
ℓ0
ω

(0,r)(δ) and, consequently, RIPMR,r,ω
(δ).

4.3. Numerical method

Recall that we want to solve the optimisation problem (1.5). This means we want to approximate
u ∈ V = L2(Y, ρ). To present an efficient numerical implementation, we assume that Y = RM ,
ρ = ρ⊗M

1 is a product measure and b : R → Rd is a vector of L2(R, ρ1)-orthonormal basis functions.
Defining the product basis

Bi1...iM (y1, . . . , yM ) := bi1(y1) · · · biM (yM ),
an approximation to u is given by

u(y) ≈ (v,B(y))Fro :=
d∑

i1=1
· · ·

d∑
iM =1

vi1...iMBi1...iM (y) (4.4)

for some v ∈ (Rd)⊗M . The preceding section suggests that we can restrict the minimisation in (1.5) to
the model class M of functions of the form (4.4) with v ∈ MR,r,ω. To write the resulting optimisation
problem compactly, we define the vector F ∈ Rn and bounded linear operator E : (Rd)⊗M → Rn by

Fi =
√
w(yi)u(yi) and (Ev)i =

√
w(yi)(v,B(yi))Fro. (4.5)

Then equation (1.5) is equivalent to the optimisation problem

minimise
v∈MR,r,ω

∥F − Ev∥2
ℓ2 . (4.6)

We propose to solve this problem by a sparse variant of the alternating least squares (ALS) algorithm
introduced in [33, 43]. The ALS method solves (4.6) by refining an initial guess in a sequence of
microsteps, each optimising a single component tensor while keeping the others fixed. Since every
v ∈ MR,r,ω can be written as a sparsely canonicalised tensor train v = QC with core position k, the
microstep optimising the kth component tensor can be written as

minimise
C∈CQ,r,ω

∥F − EQC∥2
ℓ2 .

The operator Q can be efficiently computed by Algorithm 11 and the resulting sparse tensor train
representation allows for an efficient evaluation of EQ. A classical approach to handle the weighted
sparsity constraints in CQ,r,ω = {C ∈ Rrk−1×dk×rk : ∥C∥ℓ0

Q⊺ω
≤ r} is to promote the weighted

ℓ0-constraints via a weighted ℓ1-regularisation term. Using the Hadamard product (βQ ⊙ C)ijk :=
(βQ)ijkCijk, the resulting problem reads

minimise
C∈Rrk−1×dk×rk

∥F − EQC∥2
ℓ2 + λ∥βQ ⊙ C∥1, (4.7)

1Indeed the operator Q at core position k can be efficiently updated from its value at position k − 1 or k + 1 by means
of a single sparse QC decomposition.
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Algorithm 2: Sparse Alternating Least Squares (SALS)
input: Data pairs (yi, u(yi)) ∈ RM × R for i = 1, . . . , n, univariate basis functions {b1, . . . , bd},

and weight sequences ωm ∈ Rd for m = 1, . . . ,M .
output: A coefficient tensor v ∈ M such that y 7→ (v, B(y))Fro approximates the data.

1 Initialize the coefficient tensor v.
2 while not converged do
3 for k = 1 to M do
4 Compute the sparse canonicalisation (4.2) with core position k.
5 Compute Q as in (4.3) and βQ := Q⊺ω.
6 Update C by solving equation (4.8) and use cross-validation to select λ.
7 end
8 end
9 return v.

where βQ := Q⊺ω can be efficiently computed due to the tensor train representation and sparsity
structure of Q. Substituting D = βQ ⊙ C into (4.7) we obtain the standard LASSO problem [22, 48]

minimise
D∈Rrk−1×dk×rk

∥F − EQ(β−1
Q ⊙D)∥2

ℓ2 + λ∥D∥1. (4.8)

The regularisation parameter λ controls the sparsity of C and must be chosen appropriately to
remain in the model class MR,r,ω. To do this, recall the following two facts.

(1) Theorem 4.9 implies ∥C∥ℓ0
βQ

= ∥v∥ℓ0
ω
, which ensures that the weighted sparsity constraint is

satisfied for all components as soon as it is satisfied for the optimised component.

(2) Theorem 4.9 implies ∥C∥ℓ0 = ∥v∥ℓ0 , which ensures that the rank R is bounded by the number
of nonzero entries of the core tensor ∥C∥ℓ0 .

It is thus sufficient to choose λ such that ∥C∥ℓ0
βQ

≤ r and ∥C∥ℓ0 ≤ R to remain in MR,r,ω during
optimisation. Although this would be easy to implement, we propose to choose λ by 10-fold cross-
validation instead. This allows the algorithm to choose a different regularisation parameter λ, i.e. a
different sparsity level, for every core position k. Moreover, since the rank R in the sparsely canoni-
calised representation depends on the sparsity of the solution of the microstep, the resulting algorithm
is inherently rank-adaptive. We call this algorithm sparse alternating least-squares (SALS) since it
modifies a standard ALS method to work on sparse tensors. A listing of the complete algorithm,
in pseudo-code, is provided in Algorithm 2. There it can be seen that the algorithm differs from a
standard ALS only in two points.

(1) The standard regression in the microstep is replaced by a (weighted) LASSO.

(2) The rank revealing QR decomposition, commonly used to compute the operators Q, is replaced
by a sparse QC decomposition.

It is therefore straight-forward to implement.

5. Low-rank and sparse Tensor Train approximation

Despite its straightforward sample bound and built-in rank adaptivity, the sparse tensor train model
class from the previous section and the associated Algorithm 2 are not optimal, since the resulting
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tensor representation does not have minimal rank in general. Motivated by promising practical results
with low-rank tensor reconstructions for holomorphic functions as considered in [23, 53], this section
introduces a new tensor train format which incorporates sparsity and low-rank.

To illustrate the advantage of this new format, we consider the approximation of the rank-1 function
x 7→ exp(x1 + . . . + xM ) by Legendre polynomials in Appendix D. The remainder of this section is
devoted to investigating this idea in the general setting.

5.1. Approximation results

To obtain an operator Q which still allows for a meaningful concept of sparsity in the component
tensor C, we replace the sparse QC decomposition from the preceding section with an ω-weighted QC
decomposition.
Definition 5.1. We say that a matrix Q is ω-orthogonal if Q⊺ diag(ω)Q is diagonal.
Definition 5.2. Let A ∈ Rn×m be a rank-r matrix. A ω-orthogonal QC decomposition of A is a
decomposition A = QC with Q ∈ Rn×r and C ∈ Rr×m for which Q is orthogonal and ω-orthogonal,
i.e. Q⊺Q = I, and Q⊺ diag(ω)Q is diagonal.

Even though this new decomposition may not retain the sparsity as well as the sparse QC decom-
position did, the resulting factors still exhibit a considerable amount of sparsity.
Lemma 5.3. Let A ∈ Rn×m be a rank-r matrix. Then there exists an ω-orthogonal QC-decomposition
A = QC. This decomposition is unique up to reordering of the columns of Q. Moreover, if A is R-
sparse then r ≤ R and Q and C are Rr-sparse. (Note that the complexity is independent of n and
m.)
Proof. Let A = Q1C1 be the sparse QC decomposition of A and let C1 = Q2C2 be the QR decompo-
sition of C1. Moreover, let Q12 := Q1Q2 and UΛU⊺ be the spectral decomposition of Q⊺12 diag(ω)Q12,
define Q := Q12U and C := U⊺C2. Then A = QC by construction and it holds that

Q⊺ diag(ω)Q = U⊺(Q⊺12 diag(ω)Q12)U = U⊺(UΛU⊺)U = Λ.
Note that Q is a product of three orthogonal matrices and hence orthogonal. Since the QR decom-
postion A = Q12C2 is unique and since the spectral decomposition of Q⊺12 diag(ω)Q12 is unique up to
reordering of the columns U , the matrix Q = Q12U is unique up to reordering of its columns. Now
suppose that A is R-sparse. Then Q1 ∈ {0, 1}n×R̃ with R̃ ≤ R. This means that C1 ∈ RR̃×m, which
yields the standard bound r ≤ min{R̃,m} ≤ R. Moreover, since the columns of Q1 are standard
basis vectors, only the rows in row(Q1) ∈ [n]R̃ are nonzero. Consequently, only the same rows can be
nonzero in the product Q = Q1(Q2U). In the worst case, all of the r columns of Q become nonzero for
every of these R̃ rows. This yields a total of R̃r ≤ Rr nonzero entries. To obtain a sparsity bound for
C, let A⊺ = Q̃C̃ be the sparse QC decomposition and C̃⊺ = QC̄ be the ω-weighted QC decomposition.
Now define C = C̄Q̃⊺ and observe that A = QC is a valid ω-weighted QC decomposition. Since the
rows of Q̃⊺ are standard basis vectors, only the columns in col(Q̃) ∈ [m]R̃ are nonzero. Consequently,
only the same columns can be nonzero in the product C = C̄Q̃⊺. In the worst case, all of the r rows
of C will be nonzero for every of these R̃ columns. This yields a total of R̃r ≤ Rr nonzero entries.

Applying the ω-weighted QC decomposition sequentially to the unfoldings of all component tensors
results in a TT representation

A = QC = U (1) ◦ · · · ◦ U (k−1) ◦ C ◦ V (k+1) ◦ · · · ◦ V (M),

where the component tensors U (j) ∈ Rrj−1×d×rj are rjR-sparse and left-orthogonal and the component
tensors V (j) ∈ Rrj−1×d×rj are rj−1R-sparse and right-orthogonal, the ranks rj are uniformly bounded
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by R and the core tensor C remains R-sparse. An implementation of this procedure can be obtained
from Algorithm 1 by replacing all sparse QC decompositions with ω-weighted QC decompositions.
Analogously to the model class MR,r,ω, which is based on the sparse QC decomposition, we define
the model class

M̃R,r,ω :=
⋂

k∈[M ]

⋃
Q∈Q̃k,R,ω3

QCQ,r,ω3 ,

which is based on the ω-weighted QC decomposition. The elements of this new model class are tensors
A = QC with Q ∈ Q̃k,R,ω and C ∈ CQ,r,ω, where

Q̃k,R,ω :=
{
Q ∈ L(Rrk×dk×rk+1 ,Rd1×···×dM )

∣∣∣ Q is orthogonal and ω2-orthogonal and rk, rk+1 ≤ R
}

and
CQ,r,ω := {C ∈ Rrk−1×dk×rk : ∥C∥ℓ0

βQ

≤ r with β2
Q := diag(Q⊺ diag(ω2)Q)}.

Note that the new definition of CQ,r,ω is a generalisation of the old definition to cases where the columns
of Q are not standard basis vectors. It may seem natural to assume that the memory footprint of
the approximation grows from (M − 1)R+ r for v ∈ MR,r,ω to MR2d for v ∈ M̃R,r,ω. However, since
MR,r,ω ⊆ M̃R,r,ω, an approximation of v ∈ MR,r,ω may be possible in M̃R̃,r,ω with R̃ ≪ R.

The representation of v ∈ M̃R,r,ω corresponds to the choice of
• a basis for the core space Q as well as

• a weight sequence βQ.

In Theorem 5.12 we show that this choice ensures that a tensor with an ℓ0βQ
-sparse core is close to

a sparse vector in ℓ0ω. This is quite surprising since for any sparse core C there exists an easy to
construct C-dependent orthogonal basis U such that all coefficients of the full tensor UC are equal to
∥C∥2. This means that UC is the least sparse tensor possible. However, using information about the
weight sequence ω, we can construct a basis Q and a weight sequence βQ such that the full tensor
QC retains some of the sparsity of the core C.
Remark 5.4. Since MR,r,ω ⊆ M̃R,r,ω, the approximation error for M̃R,r,ω can be bounded from
above by Corollary 4.10. To obtain a tighter bound, the total approximation error can be split into
the low-rank approximation error and a subsequent weighted best n-term approximation of the core
tensor

∥v − vlow-rank & sparse∥L2 ≤ ∥v − vlow-rank∥L2 + ∥vlow-rank − vlow-rank & sparse∥L2 .

The first term is a classical low-rank approximation error, which is studied in [9, 10, 49] for v ∈
Hk([0, 1]m) and in [9, 30] for v ∈ Hk1([0, 1]d1) ⊗ · · · ⊗ Hkm([0, 1]dm). The second term is a sparse
approximation error, which can in principle be bounded by applying the weighted Stechkin’s lemma
to the core tensor C of vlow-rank = QC. This gives the bound

∥vlow-rank − vlow-rank & sparse∥L2 = ∥(I − PJn)C∥ℓ2 ≤ c(β, q, n)−1∥C∥ℓq
β

≤ c̄(β, q, n)−1∥C∥ℓ2
β̄

for some q < 2 and weight sequences β and β̄. However, bounding ∥C∥ℓ2
β̄

in terms of some norm of the
full tensor ∥QC∥ℓ2

ω̄
, for some arbitrary ω̄, requires knowledge of the operator norm ∥Q⊺∥ℓ2

β̄
→ℓ2

ω̄
, which

is unknown a priori. However, if Q is ω̄-orthogonal and β̄ = Q⊺ω̄, then the low-rank approximation
can be carried out with respect to the stronger ℓ2ω̄-norm and we can bound

∥C∥2
ℓ2

β̄

= C⊺ diag(β̄2)C = (QC)⊺ diag(ω̄2)QC = ∥vlow-rank∥2
ℓ2

ω̄
≤ ∥v∥2

ℓ2
ω̄
.

But this requires the low-rank approximation to be carried out with respect to a stronger norm than
L2. To the knowledge of the authors no rates for this are known.
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Remark 5.5 (Rank bounds for mixed Sobolev spaces). Consider a function u of M variables and
the corresponding sequence of coefficients u ∈ RN ⊗ · · · ⊗ RN with respect to a tensor product basis.
Moreover, suppose that u is ℓ2ω̄-summable with respect to the product weight sequence ω̄ := ω⊗M with
ωj := (j+1)k. The space ℓ2ω̄ captures the regularity of the mixed Sobolev spacesHk,mix ≃ Hk⊗· · ·⊗Hk.
To bound the rank of u by means of weighted sparsity we utilise the best n-term approximation rates
for u from Remark 2.13. Recall that r-term approximation in a product basis can be represented with
rank r in the CP format and that the rank of any tree-based format is upper bounded by the CP
rank (but may indeed be much smaller). This naïve bound yields (up to logarithmic factors) the best
rank-r approximation rates

∥u− ur∥Hj ≤ r−(k−j)∥u∥Hk

for all 0 ≤ j < k. For j = 0, these bounds slightly extend the rates from [27, 28] but are worse
than the more recent r−2k rates that are derived in [30] for the rank in the tensor train format.
We conjecture that sparsity implies simple rank bounds with sparse components and a subsequent
rounding can reduce the rank from r2 to r. Note, however, that both rank bounds imply roughly the
same approximation rates. By Theorem 4.9, the number of parameters that are needed to represent
the best r-term approximation in the sparse tensor train format is bounded by N = Mr. This implies
an approximation rate of ( N

M )−k. If we consider the best rank-r rate r−2k from [30], and assume that
the component tensors in the corresponding tensor train representation are dense, then the number
of parameters scales like N ∈ O(Mr2) and we obtain the same approximation rate of ( N

M )−k. We
also remark that the best r-term approximation rates crucially depend on the chosen basis, while the
ranks do not. Therefore, the rank-r approximation rates that are obtained by this method can only
provide upper bounds. Moreover, the ordering of the modes matters for the ranks of a tensor train
representation. This is not reflected in these simple bounds, where the ordering is only important for
an anisotropic choice of weight sequences.

Remark 5.6 (Constructive rank bounds for Sobolev spaces). Similar to the hierarchical SVD (or
PCA) that can be used to construct classical low-rank representation, we can perform the weighted
LASSO hierarchically to construct simultaneously sparse and low-rank representations. In this remark
we demonstrate this procedure for the Tucker decomposition. Consider a function u of M variables and
the corresponding sequence of coefficients u ∈ RN ⊗ · · · ⊗ RN with respect to a tensor product basis.
Moreover, suppose that u is ℓ2ω̄-summable with respect to the weight sequence ω̄ :=

∑M
m=1 1⊗(m−1) ⊗

ω ⊗1⊗(M−m) with ωj := (j+1)k. The space ℓ2ω̄ captures the regularity of the standard Sobolev spaces

Hk ≃
M⋂

m=1
(L2)⊗(m−1) ⊗Hk ⊗ (L2)⊗(M−m).

We can bound the Tucker-rank of u by means of weighted sparsity. The method that we use to derive
our rank bounds is constructive and proceeds analogously to the HOSVD algorithm. We define for
every m = 1, . . . ,M the matricisation

(u(m)
j )i1,...,iM−1 = ui1,...,im−1,j,im,...,iM−1 ,

which we interpret as a sequence of tensors of order M − 1. Applying the weighted Stechkin lemma
to the sequence u(m), we select r many (M − 1)-dimensional “slices” of u and set the remaining slices
to zero. This results in a new tensor which we denote by ũ(m). This construction can be performed
sequentially for every m = 1, . . . ,M , leading to the sequence of approximations

u =: ũ(0) ⇝ ũ(1) ⇝ . . .⇝ ũ(M).
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The approximation error of this scheme is given by the telescoping sum

∥u − ũ(M)∥2
ℓ2 =

M∑
m=1

∥ũ(m−1) − ũ(m)∥2
ℓ2

≲
M∑

m=1
r−2k∥(1⊗(m−1) ⊗ ω ⊗ 1⊗(M−m))ũ(m−1)∥2

ℓ2 ,

where the inequality follows from the weighted Stechkin lemma applied to the tensor-valued sequence
ũ(m−1), which is weighted by ω and a subsequent application of Lemma 2.11. Bounding ∥(1⊗(k−1) ⊗
ω ⊗ 1⊗M−k−1)ũ(k)∥ℓ2 ≤ ∥u∥ℓ2

ω̄
yields the simplified expression

∥u− ur∥L2 = ∥u − ũ(M)∥ℓ2 ≲
√
Mr−k∥u∥ℓ2

ω̄
. =

√
Mr−k∥u∥Hk .

But in contrast to the model class in Section 4 the matricesQ ∈ Q̃k,R,ω are not spanned by a subbasis
of the standard product basis. As a consequence, M̃R,r,ω is no longer a subset of the sparse vectors
ℓ0ω and Theorem 1.5 can no longer be applied directly, as it was done in the proof of Corollary 4.12.
Instead, we rely on the following strong property: If the RIP is satisfied at a point, it is satisfied in a
small neighbourhood of that point. This is stated formally in the subsequent lemma.

Lemma 5.7. Let δ, τ ∈ [0, 1). Then there exists a constant ε ≥ 8τ such that for every a ∈ L∞
w

RIP{a}(δ) ⇒ RIPBL∞
w

(a,∥a∥τ)(δ + ε),

with ε ≤ 15τ , if δ ≤ 1
2 and τ ≤ 1

4 . For δ ≤ 1
2 and τ ≤ δ

15 , this implies
RIP{a}(δ) ⇒ RIPBL∞

w
(a,∥a∥τ)(2δ).

To prove this lemma, we require the following result.

Lemma 5.8. Let a, b ∈ V be bounded with respect to ∥ • ∥w,∞ and define ã := a
∥a∥ and b̃ := b

∥b∥ .
Moreover, let ∥ • ∥∗ denote either the norm ∥ • ∥ or the empirical norm ∥ • ∥n. Then

∥ã− b̃∥∗ ≤ 1 + ∥b̃∥∗
∥a∥

∥a− b∥L∞
w
.

Proof. By triangle and reverse triangle inequality, it holds that∥∥∥∥ a

∥a∥
− b

∥b∥

∥∥∥∥
∗

≤ 1
∥a∥

(
∥a− b∥∗ + ∥b− ∥a∥

∥b∥ b∥∗
)

= ∥a− b∥∗
∥a∥

+ |∥b∥ − ∥a∥|
∥a∥

∥b∥∗
∥b∥

≤ ∥a− b∥∗
∥a∥

+ ∥a− b∥
∥a∥

∥b∥∗
∥b∥

.

The claim follows, since both ∥ • ∥ and ∥ • ∥n are dominated by ∥ • ∥L∞
w

.

Proof. [Proof of Lemma 5.7] Let B := B∥ • ∥w,∞(a, r) with r := ∥a∥τ and define b̃ := b
∥b∥ for any b ∈ B.

We want to show that
RIPB(δ + ε) ⇔ |∥b̃∥2 − ∥b̃∥2

n| ≤ δ + ε for all b ∈ B, (5.1)
given that RIP{a}(δ) ⇔ |∥ã∥2 − ∥ã∥2

n| ≤ δ holds. For this, let ∥ • ∥∗ denote either ∥ • ∥ or ∥ • ∥n and
observe that for any b ∈ B it holds that∣∣∣∥ã∥2

∗ − ∥b̃∥2
∗

∣∣∣ ≤ (∥ã∥∗ + ∥b̃∥∗)∥ã− b̃∥∗ ≤ (∥ã∥∗ + ∥b̃∥∗)(1 + ∥b̃∥∗)τ, (5.2)
where the last inequality follows from Lemma 5.8 and the assumption ∥a − b∥L∞

w
≤ r = ∥a∥τ . By

assumption, it holds that ∥ã∥n ≤
√

1 + δ and using the fact that ∥a − b∥∗ ≤ ∥a − b∥L∞
w

≤ r, we can
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bound
∥b̃∥n = ∥b∥n

∥b∥
≤ ∥a∥n + r

∥a∥ − r
≤

√
1 + δ∥a∥ + r

∥a∥ − r
=

√
1 + δ + τ

1 − τ
.

Inserting these estimates into equation (5.2) gives the bounds∣∣∣∥ã∥2 − ∥b̃∥2
∣∣∣ ≤ 4τ and

∣∣∣∥ã∥2
n − ∥b̃∥2

n

∣∣∣ ≤ 4τc,

with c := 1+δ
(1−τ)2 . We can now use the triangle inequality to prove (5.1) via

|∥b̃∥2 − ∥b̃∥2
n| ≤ |∥b̃∥2 − ∥b̃∥2

n − (∥ã∥2 − ∥ã∥2
n)| + |∥ã∥2 − ∥ã∥2

n|

≤ |∥b̃∥2 − ∥ã∥2| + |∥b̃∥2
n − ∥ã∥2

n| + |∥ã∥2 − ∥ã∥2
n|

≤ 4τ + 4τc︸ ︷︷ ︸
=:ε

+δ.

To obtain the lower bound for ε, observe that c ≥ 1 with equality when δ = τ = 0. Therefore,
ε = 4(1 + c)τ ≥ 8τ . To obtain the other bound, observe that the function (δ, τ) 7→ c(δ, τ) is increasing
in both arguments. Therefore c(δ, τ) ≤ c(1

2 ,
1
4) = 8

3 for any δ ≤ 1
2 and τ ≤ 1

4 . This results in the loose
upper bound

ε ≤ 15τ.
The special case τ ≤ δ

15 follows immediately.

For the sake of brevity, let A := MR,r,ω and B := Bℓ0
ω
(0, r). In the preceding section, we used the

fact that A ⊆ B to trivially obtain the restricted isometry property of A from that of B. Lemma 5.7
implies that this inclusion is not necessary for the RIP of B to extend to A if the set A is close enough
to B. To make this intuition rigorous, we define the scale-invariant non-symmetric distance function

dsiL∞
w

(A,B) := sup
a∈A

dL∞
w

(Cone(a), U(B)),

where the distance function dL∞
w

(A,B) is defined as
dL∞

w
(A,B) := inf

a∈A
inf
b∈B

∥a− b∥L∞
w
.

With this definition, we can formulate the following theorem.

Theorem 5.9. Let δ, r ∈ [0, 1) and assume that dsiL∞
w

(A,B) ≤ r. Then there exists ε ≥ 8r such that
RIPB(δ) ⇒ RIPA(δ + ε),

with ε ≤ 15r if δ ≤ 1
2 and r ≤ 1

4 . For δ ≤ 1
2 and r ≤ δ

15 , this implies
RIPB(δ) ⇒ RIPA(2δ).

Proof. Since dsiL∞
w

(A,B) ≤ r, it holds that for all a ∈ A there exists t ∈ (0,∞) and b ∈ U(B)
such that dL∞

w
(ta, b) ≤ r. Assuming RIPB(δ), Lemma 5.7 guarantees that there exists a constant ε

satisfying the given bounds such that
RIPB(δ) ⇒ RIPU(B)(δ) ⇒ RIP{b}(δ) ⇒ RIPBL∞

w
(b,r)(δ + ε) ⇒ RIP{ta}(δ + ε) ⇒ RIP{a}(δ + ε).

This implies RIP{a}(δ + ε) for all a ∈ A and consequently RIPA(δ + ε).

Remark 5.10. Note that
dsiL∞

w
(A,B) := sup

a∈A
dL∞

w
(Cone(a), U(B)) ≤ sup

ã∈U(A)
dL∞

w
(ã, U(B)) =: dh(U(A), U(B)),

where dh is the directed Hausdorff distance between sets. This bound can be used in conjunction with
Theorem 5.9 to provide a simple proof of one of the major corollaries in [54]. Consider the setting of

319



P. Trunschke, M. Eigel & A. Nouy

Proposition 1.4. Assume that M is a manifold with strictly positive reach R := rch(M, uM) at point
uM, and define Mr := M ∩B(uM, r) for any r ≤ R. By Proposition 16 in [54], it holds that

dh(U({uM} − Mr), U(TuMM)) ≤ r

R
.

From this follows that there exists ε > 0 such that
RIPTuM M(δ) ⇒ RIP{uM}−Mr

(δ + ε).

This means that if the RIP holds for the tangent space at uM then it also holds for a neighbourhood
of uM in M. This is precisely the property that is required in Proposition 1.4.

Remark 5.11. Note that Theorem 5.9 may also be used to verify RIPA(2δ) by checking RIPB(δ) for
a finite subset B ⊆ A with dsiL∞

w
(A,B) ≤ δ

15 .

The preceding theorem can be utilised to prove the RIP for our model class of semi-sparse tensors
M̃R,r,ω. This is done in the subsequent theorem, which chooses A := M̃R,r,ω and B := Br̃(ℓ0ω) and
shows that

dsiL∞
w

(A,B) ≤ O
(√

r

r̃

)
.

Theorem 5.12. Let {Bj}j∈[D] be orthonormal with respect to the measure ρ and let w ≥ 0 be any
weight function satisfying ∥w−1∥L1 = 1. Assume the weight sequence satisfies ωj ≥ ∥w1/2Bj∥L∞ and
fix c, r > 0 and r̃ := (1 + c2)∥ω−1∥2

ℓ2/3r. Then it holds that

dsiL∞
w

(M̃R,r,ω, Bℓ0
ω
(0, r̃)) ≤ 1

c
.

Hence, if δ ≤ 1
2 and c ≥ 15

δ , then RIPB
ℓ0
ω

(0,r̃)(δ) implies RIPM̃R,r,ω
(2δ).

Proof. Let A ∈ M̃R,r,ω. Since ων ≥ ∥Bν∥L∞ , Corollary 2.8 states that for every r̃ > 0 there exists
J̃ ⊆ N and Ã := PJ̃A such that Ã ∈ Bℓ0

ω
(0, r̃) and

∥A− Ã∥L2 ≤ ∥A− Ã∥L∞ ≤ ∥A− Ã∥ℓ1
ω

≤ r̃−1/2∥A∥
ℓ

2/3
ω2
. (5.3)

The final ℓ2/3
ω2 -norm can be bounded by Lemma 2.11 via

∥A∥
ℓ

2/3
ω2

≤ ∥ω−3∥
ℓ

2/3
ω2

∥A∥ℓ2
ω3

= ∥ω−1∥ℓ2/3∥A∥ℓ2
ω3
. (5.4)

Recall that A ∈ M̃R,r,ω can be written as A = QC with Q ∈ Q̃k,R,ω for some k ∈ [M ] and C ∈ CQ,r,ω.
Thus,

∥A∥2
ℓ2

ω3
= (QC)⊺ diag(ω6)(QC) = C⊺ diag(β2

Q)C = ∥C∥2
ℓ2

βQ

. (5.5)

Now let J := supp(C) and bound
∥C∥2

ℓ2
βQ

=
∑
j∈J

β2
Q,jC

2
j ≤

∑
j∈J

(∑
j∈J

β2
Q,j

)
C2

j = ∥C∥ℓ0
βQ

∥C∥2
ℓ2 ≤ r∥C∥2

ℓ2 = r∥A∥2
ℓ2 . (5.6)

Combining equations (5.3), (5.4), (5.5) and (5.6) results in the bound
∥A− Ã∥L2 ≤ ∥A− Ã∥L∞ ≤

√
c1

r
r̃ ∥A∥L2 ,

with c1 := ∥ω−1∥2
ℓ2/3 . Finally, recall that Ã := PJ̃A and hence

∥Ã∥2
L2 = ∥A∥2

L2 − ∥A− Ã∥2
L2 ≥ r̃−c1r

r̃ ∥A∥2
L2 .

This means that for every A ∈ M̃R,r,ω there exists Ã ∈ Br̃(ℓ0ω) such that

∥A− Ã∥L∞ ≤
√
c1

r
r̃ ∥A∥L2 ≤

√
c1

r
r̃ ·
√

r̃
r̃−c1r ∥Ã∥L2 =

√
c1r

r̃−c1r ∥Ã∥L2 = 1
c ∥Ã∥L2 ,
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where the final equality follows from the choice r̃ := (1 + c2)∥ω−1∥2
ℓ2/3r = c2c1r+ c1r. This shows that

for all A ∈ M̃R,r,ω there exists a constant t := ∥Ã∥−1
L2 > 0 and an element Ā := tÃ ∈ U(Bℓ0

ω
(0, r̃))

such that dL∞(tA, Ā) ≤ 1
c . In other words,

dsiL∞(M̃R,r,ω, Bℓ0
ω
(0, r̃)) ≤ 1

c
.

The claim now follows from Theorem 5.9.

Even though Theorem 5.12 is valid for any weight sequence ω, an increasing sequence ω is necessary
in practice. If ω ∝ 1, then r̃ = (1 + c2)∥ω−1∥2

ℓ2/3r ∝ (1 + c2) dim(ω)3r, where the dimension of the
weight vector ω is the dimension of the ambient tensor product space. Hence, applying Theorem 5.12
with a constant weight sequence would require the RIP to hold for the entire ambient tensor product
space.

The nestedness property of the model classes M̃R,r,ω can be proved in the same way as for the
model class MR,r,ω.

Proposition 5.13. It holds that M̃R,r,ω − M̃R,r,ω ⊆ M̃2R,2r,ω.

This allows the application of Proposition 1.4. As in the preceding section, we can use Theorem 1.5
to provide a bound for the required number of samples when the model class M̃R,r,ω is used in the
optimisation problem (1.5). As before, let b : Y → Rd be a vector of L2(Y, ρ)-orthonormal basis
functions, define the tensor product basis B(y) := b(y1) ⊗ · · · ⊗ b(yM ) and suppose that the weight
sequence ω satisfies ωj ≥ ∥Bj∥L∞ . Then the following proposition holds true.

Corollary 5.14. Fix parameters γ ∈ (0, 1) and δ ∈ (0, 1
2). Let {Bj}j∈[D] be orthonormal with respect

to the measure ρ and let w ≥ 0 be any weight function satisfying ∥w−1∥L1 = 1. Assume the weight
sequence satisfies ωj ≥ ∥w1/2Bj∥L∞ and fix r̃ := (1 + c2)∥ω−1∥2

ℓ2/3r for some c > 15
δ . Then, if

n ≥ Cδ−2r̃max{log3(r̃) log(dM ),− log(γ)}
and y1, . . . , yn are drawn independently from w−1ρ, the probability of RIPM̃R,r,ω

(2δ) exceeds 1 − γ.

Proof. Under the given assumptions, Theorem 1.5 guarantees RIPB
ℓ0
ω([d]M )(0,r̃)(δ). This implies

RIPM̃R,r,ω
(2δ) by Theorem 5.12.

Although it is not clear how to write an algorithm that remains in this model class, this is not
a significant drawback, since we can again choose r by cross-validation and R by standard rank
adaptation strategies.

5.2. Numerical method

We call the resulting algorithm semisparse ALS (SSALS). The only difference of this method to the
sparse ALS (Algorithm 2) is the usage of the ω-orthogonal QC decomposition instead of a sparse
QC decomposition. Due to this change, the SSALS looses the intrinsic rank-adaptivity of the SALS.
But since SSALS is stable by design, the tensor train rank of the coefficient tensor can be chosen
arbitrary. Note that from an approximation error point of view, it would even be optimal to perform
SSALS on a full rank tensor, which is infeasible due to the size of the resulting component tensors. We
hence propose to implement a rank-adaptive algorithm that is based on the rank-adaptation strategy
proposed in [25]. This approach splits the sequence of singular values of a singular value decomposition
into two groups. The first group contains all singular values that exceed a certain significance threshold
and the second group contains all remaining singular values. By fixing the size of the second group,
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dropping the smallest singular values or adding small random singular values if necessary, adaptivity
is achieved. Moreover, since the second group is assumed insignificant, the corresponding singular
vectors can be perturbed randomly without adversely affecting the approximation error. This allows
to randomly explore the space of singular vectors in order to find those that are necessary to represent
the sought function. If a singular vector in the second group is important to represent the sought
function, the corresponding singular value increases during optimisation and is eventually assigned to
the first group.

An important aspect of any iterative algorithm is its initialisation. Since both algorithms are adap-
tive by nature, we can choose as initialisation the constant function returning the empirical mean.

To monitor convergence, we split the data set into training and validation sets, computing the least
squares residual on both sets. We terminate after a fixed number of iterations (50 in the experiments
below) or when the training set error does not decrease for 3 consecutive iterations. (The cross-
validation procedure in the microstep prevents overfitting.) During the iteration, we store the iterate
with minimum validation set error and return it once the algorithm terminates.

More details can be found in our source code at github.com/ptrunschke/sparse_als.

6. Experiments

This section is concerned with numerical experiments that illustrate the practical performance of the
sparse ALS algorithms derived from the theoretical results in the previous sections. We examine the
reconstruction of a quantity of interest of the finite dimensional Darcy problem (1.1) with affine and
log-affine coefficients. From Theorem 1.3 it is known that the solution lies in an exponentially weighted
ℓ2 space. As a consequence, a weighted LASSO as used in the SALS should (at least theoretically)
provide good approximation rates. Since the bases of the micro steps may become very large, as
discussed in Section 5, we modify the SALS to terminate after a fixed maximal time.

The source code of the implementation is available at github.com/ptrunschke/sparse_als. More-
over, we compare our results to the highly optimised tensap library [42], which can be found at
github.com/anthony-nouy/tensap.

6.1. Affine Darcy equation

Our first experiment is taken from [11], where a weighted ℓ1 minimisation was used. We consider model
problem (1.1) on the unit interval D = [0, 1] and parameter domain Y = [−1, 1]L with L = 20. We
consider the forcing term f ≡ 10 and the diffusion coefficient

a(x, y) := 1
10 + π2

3 +
L∑

m=1
k−2am(x)ym,

where a2m−1(x) = cos(mπx) and a2m = sin(mπx). The PDE in its variational form is solved on a
uniform grid with 50 nodes using conforming P1 finite elements. In this first experiment we consider
the quantity of interest

U(y) :=
∫

D
u(x, y) dx.

We use the probability measure ρ = 1
2L dy and weight function w ≡ 1 (cf. (1.4)) and search for the best

approximation with respect to ∥ • ∥L2(Y,ρ), using a product basis with d = 20 Legendre polynomials in
each variable. Concerning the weight sequence, we utilise the smallest possible choice ωα := ∥Bα∥L∞ .
Note that this is not the exponential weighting, that we could have used according to Lemma 2.1 and
Theorem 1.2. Numerical results for the proposed algorithms for the empirical best-approximation of
U is provided in Table 6.1.
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n = 50 n = 100 n = 500 n = 1000

SALS (ours)

SSALS (ours)

tensap

[5.9 · 10−4, 4.0 · 10−3] [4.4 · 10−4, 3.5 · 10−3] [1.2 · 10−3, 2.9 · 10−3] [1.2 · 10−3, 2.8 · 10−3]

[2.3 · 10−3, 4.0 · 10−3] [2.3 · 10−3, 3.8 · 10−3] [2.0 · 10−3, 3.1 · 10−3] [1.3 · 10−3, 3.0 · 10−3]

[8.6 · 10−4, 4.9 · 10−3] [4.9 · 10−4, 3.5 · 10−3] [1.0 · 10−4, 2.8 · 10−3] [4.9 · 10−5, 8.4 · 10−4]

Table 6.1. Relative L2-approximation error for the quantity of interest in Section 6.1.
The relative error in the L2-norm is estimated on a test set of 1 000 independent sam-
ples. The experiments are performed 10 times and the 5% and 95% quantiles are dis-
played. All algorithms use the same samples to compute the empirical approximation
(in each column) and the errors are always computed on the same test set. SALS and
SSALS are compared to the TreeBasedTensorLearning procedure with basis adapta-
tion from tensap.

6.2. Log-affine Darcy equation

The second example considers the Darcy equation with log-affine coefficient with D = [0, 1]2 and
Y = RL where L = 20. We define f ≡ 1 and

a(x, y) := exp
(
Sk

L∑
m=1

m−k sin(π⌊m
2 ⌋x1) sin(π⌈m

2 ⌉x2)ym

)
,

where k ∈ {1, 2}, S1 := 2.4 and S2 := 1.9. As before, we solve the resulting PDE in its variational
form on a uniform grid with 50 × 50 nodes using conforming P1 elements. The examined quantity
of interest now is the coefficient of the most important POD mode corresponding to 20 000 sample
points. The POD is computed by performing a SVD on the matrix of solution snapshots. The resulting
singular vectors constitute an (almost) orthogonal basis and the coefficeient for the basis function that
is associated with the largest singular value is used as the QoI. We choose ρ = N (0, I) as a multivariate
standard normal distribution and w such that w−1ρ is a multivariate centred normal distribution with
variance 2I or 4I.

In this experiment we search for the best approximation with respect to ∥ • ∥L2(Y,ρ), using a basis
of d = 20 Hermite polynomials in each mode. Similar to Theorem 1.3, the used weight sequence
ωα := ∥

√
wBα∥L∞ exhibits an exponential scaling. The results are depicted in Table 6.2 for k = 1 and

in Tables 6.3 and 6.4 for k = 2.

6.3. Discussion

The numerical results illustrate that the obtained accuracy of the newly proposed sparse ALS algo-
rithms SALS and SSALS is comparable to the highly optimised algorithm implemented in tensap,
which we consider as base line. To understand the constraints of our sparse approach, recall the sample
complexity bound

n ≥ Cδ−2rmax{log3(r) log(D),− log(p)}
from Theorem 1.5 with D denoting the dimension of the full tensor product space. Given a fixed
sample size n, stability parameter δ and probability p, this provides a heuristic upper bound on the
weighted sparsity r that can be achieved with our adaptive algorithms. To make this concrete, let
δ =

√
C and p ≥ 1

2 . Then
r ≤ n

log(D) = n

20 log(20) ≤ n

50 ,
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n = 50 n = 100 n = 500 n = 1000

SALS (ours)

SSALS (ours)

tensap

[3.3 · 10−1, 1.3 · 100] [2.4 · 10−1, 1.3 · 100] [1.5 · 10−1, 3.4 · 10−1] [1.0 · 10−1, 1.9 · 10−1]

[3.4 · 10−1, 1.3 · 100] [2.3 · 10−1, 8.8 · 10−1] [1.5 · 10−1, 4.0 · 10−1] [1.1 · 10−1, 3.2 · 10−1]

[3.9 · 10−1, 8.3 · 10−1] [1.9 · 10−1, 8.8 · 10−1] [1.2 · 10−1, 4.5 · 10−1] [9.1 · 10−2, 3.2 · 10−1]

Table 6.2. Relative L2-approximation error for the quantity of interest for k = 1
in Section 6.2. The relative error in the L2-norm is estimated on a test set of 1 000
independent samples. The experiments are performed 10 times and the 5% and 95%
quantiles are displayed. All algorithms use the same samples to compute the empirical
approximation (in each column) and the errors are always computed on the same test
set. SALS and SSALS are compared to the TreeBasedTensorLearning procedure with
basis adaptation from tensap.

n = 50 n = 100 n = 500 n = 1000

SALS (ours)

SSALS (ours)

tensap

[3.3 · 10−2, 2.3 · 10−1] [1.7 · 10−2, 8.3 · 10−2] [1.0 · 10−2, 3.4 · 10−2] [7.3 · 10−3, 2.8 · 10−2]

[3.3 · 10−2, 9.2 · 10−2] [2.1 · 10−2, 8.4 · 10−2] [8.4 · 10−3, 3.2 · 10−2] [8.3 · 10−3, 2.2 · 10−2]

[3.8 · 10−2, 2.3 · 10−1] [2.1 · 10−2, 1.1 · 10−1] [1.1 · 10−2, 3.0 · 10−2] [6.4 · 10−3, 4.1 · 10−2]

Table 6.3. Relative L2-approximation error for the quantity of interest for k = 2
and a sampling distribution w−1ρ = N (0, 2I) in Section 6.2. The relative error in the
L2-norm is estimated on a test set of 1 000 independent samples. The experiments are
performed 10 times and the 5% and 95% quantiles are displayed. All algorithms use
the same samples to compute the empirical approximation (in each column) and the
errors are always computed on the same test set. SALS and SSALS are compared to
the TreeBasedTensorLearning procedure with basis adaptation from tensap.

indicating that our adaptive algorithms are restricted to model classes with r ≤ n
50 . We suspect

that this bound is implicitly imposed by the cross-validation inside the microstep. Since 1 ≤ r, this
argument provides a theoretical explanation for the poor performance in the small-data regime. For
n = 50, the bound r ≤ 1 allows only to recover the mean since B0 ≡ 1 is the only basis function with
∥Bj∥L∞ ≤ 1. This indicates that the problem in Subsection 6.1 is almost trivial to solve. In general, it
can be seen from the numerical experiments that the errors decrease when the sample size increases.
This is to be expected, since the probability of the restricted isometry property increases with the
number of samples.

We should also note that, although the experiments seem to work very well, the automatic rank-
adaptivity of SALS may fail in pathological scenarios. It is probably easy to construct an example
where the automatic rank adaptation of the sparse QR can not increase the rank in a productive way.
In this case, the semi-sparse ALS should nevertheless succeed, since the rank is adapted randomly.

In comparison to the baseline tensap, the shown results are quantitatively similar. We consider this
very promising since the proposed algorithms only require simple modifications of the standard ALS
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n = 50 n = 100 n = 500 n = 1000

SALS (ours)

SSALS (ours)

tensap

[3.6 · 10−2, 2.1 · 10−1] [7.2 · 10−3, 7.8 · 10−2] [2.4 · 10−3, 3.6 · 10−2] [5.1 · 10−3, 3.9 · 10−2]

[2.9 · 10−2, 1.9 · 10−1] [2.6 · 10−2, 1.3 · 10−1] [2.5 · 10−2, 1.8 · 10−1] [3.6 · 10−2, 2.2 · 10−1]

[1.5 · 10−2, 2.2 · 100] [4.1 · 10−2, 8.2 · 10−1] [4.4 · 10−2, 1.5 · 10−1] [2.2 · 10−2, 1.3 · 10−1]

Table 6.4. Relative L2-approximation error for the quantity of interest for k = 2
and a sampling distribution w−1ρ = N (0, 4I) in Section 6.2. The relative error in the
L2-norm is estimated on a test set of 1 000 independent samples. The experiments are
performed 10 times and the 5% and 95% quantiles are displayed. All algorithms use
the same samples to compute the empirical approximation (in each column) and the
errors are always computed on the same test set. SALS and SSALS are compared to
the TreeBasedTensorLearning procedure with basis adaptation from tensap.

method. Note that the tensap algorithm adapts the basis functions with strategies based on leave-
one-out cross validation [13, 14] or slope heuristics [40], and adapts the ranks based on a strategy
similar to [25].

In general, the regularity of the considered function is encoded in ω in the weighted Stechkin
lemma. Since the target functionals in all experiments are (anisotropically) holomorphic functions,
the best n-term sets Jn are (anisotropic) balls in the index space. These are downward-closed sets
matching exactly the basis selection strategy of tensap. It hence should almost be impossible to
improve practical results on the selected model problems.

7. Conclusion

Motivated by the exceptional advantages that weighted sparsity brings to least squares approximation
in terms of stability (cf. [46]), this paper considers the integration of weighted sparsity into tensor
networks algorithms. To this end, we present a comprehensive framework for the weighted sparse and
low-rank approximation of high-dimensional functions. Central to this approach is the introduction
of a weighted version of Stechkin’s lemma, which not only refines the classical convergence estimates
but also better captures the decay properties inherent to many function classes, such as those arising
in parametric PDEs. We harness the structure of the weighted Stechkin estimates using two different
model classes and derive approximation rates. These theoretical insights are then translated into con-
crete numerical methods. Numerical experiments demonstrate that the proposed methods consistently
yield near-optimal recovery of the target functions while mitigating the curse of dimensionality.

However, integrating weighted sparsity into tensor networks and utilising the results for parametric
PDEs turns out to be too exhaustive for a single research paper, and many open questions remain.

In this work, we only derive weighted sparsity estimates for solutions of parametric PDEs with
a single parameter. While we expect that these arguments will extend naturally to multi-parameter
problems, this remains an open problem.

We present the proposed approximation algorithms without an analysis of numerical stability or a
quantitative convergence analysis.

Translating the presented sparsity results to tight rank bounds for hierarchical and more general
tensor formats also seems to be an exciting direction for future research. While Remark 5.5 provides
the currently best rank bounds for general tensor network approximation in Sobolev spaces with mixed
smoothness, it only yields suboptimal bounds for the special case of L2-approximation with hierarchical
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tensor formats (cf. [30]). Since the tensor networks in this construction exhibit sparse components and
the ones in [30] do not, we conjecture that a subsequent rounding can reduce the rank from r2 to r.
However, a proof of this fact and an explicit construction remains an open problem. In Remark 5.6,
we present an explicit and optimal (cf. [29]) construction for Tucker format approximation in Sobolev
spaces on product domains.

Finally, we derive a novel result demonstrating that the restricted isometry property transfers
automatically from any model class to any other “sufficiently close” model class (see Theorem 5.9).
We believe that this insight provides a theoretical bridge for extending generalisation guarantees to
more complex, less structured model classes, possibly even subsets of neural networks.
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Appendix A. Basic harmonic summation formulas

Lemma A.1. For any s > 0 and n ∈ N, we have ns+1

s+1 ≤
∑n

k=1 k
s ≤ (n+1)s+1

s+1 .

Proof. Both estimates rely on estimating the sum by an integral of the function f(x) := xs. Since
this function is convex, we know that the trapezoidal rule overestimates the integral and

n∑
k=1

ks = 1
2(f(1) + f(n)) +

n−1∑
k=1

f(k) + f(k + 1)
2 ≥ ns + 1

2 +
∫ n

1
f(x) dx = ns + 1

2 + ns+1 − 1
s+ 1 .

This gives the lower bound. For the upper bound, observe that f is increasing and therefore a left
Riemann sum underestimates the integral. Consequently,

n∑
k=1

ks ≤
∫ n+1

1
f(x) dx = (n+ 1)s+1 − 1

s+ 1 ≤ (n+ 1)s+1

s+ 1 .

Lemma A.2. For any s > 1 and s ∈ N, we have 1
s−1k

1−s ≤
∑∞

j=k j
−s ≤ s

s−1k
1−s.

Proof. Both estimates rely on estimating the sum by an integral of the function f(x) := x−s. Since
the function is decreasing, we know that a left Riemann sum overestimates the integral and

∞∑
j=k

j−s ≥
∫ ∞

k
f(x) dx = 1

s− 1k
1−s.

For the same reason, a right Riemann sum underestimates the integral and
∞∑

j=k

j−s ≤ f(k) +
∫ ∞

k
f(x) dx = k−s + k1−s

s− 1 ≤
(

1 + 1
s− 1

)
k1−s = s

s− 1k
1−s.

Appendix B. Example of a hierarchical basis

For k = 1 and p = 2 the equivalence of Example 2.3 is easy to see. In this case, we can use the basis

ϕℓ,j(x) ∝ max{1 − |2ℓx− j|, 0}, ∥ϕℓ,j∥L2 = 1,
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for any ℓ ∈ N and odd 0 < j < 2ℓ. If we represent v ∈ W 1,2 by successive L2-projections onto the
spaces Vℓ := span{ϕℓ,j : 0 < j < 2ℓ odd}, it is easy to see that

∥v∥2
L2 =

∥∥∥∥∥∥
∑
ℓ∈N

∑
j

vℓ,jϕℓ,j

∥∥∥∥∥∥
2

L2(λ)

=
∑
ℓ∈N

∥∥∥∥∥∥
∑

j

vℓ,jϕℓ,j

∥∥∥∥∥∥
2

L2(λ)

=
∑
ℓ∈N

∑
j

|vℓ,j |2,

where the second equality follows due to the hierarchical projection and the third follows since ϕℓ,j

have disjoint support for fixed ℓ. Moreover, it is easy to see that all ϕj,ℓ are orthogonal with respect
to the H1

0 semi inner product. This implies that

∥v∥2
H1

0 (λ) =
∑
ℓ∈N

∑
j

|vℓ,j |2∥ϕℓj∥2
H1

0 (λ) = 3
∑
ℓ∈N

∑
j

22ℓ|vℓj |2.

Appendix C. Best n-term rates in higher dimensions

Recall that we consider isotropic weight sequences of the form ω̄(a) = ω(a)⊗M , where a ∈ (0,∞)
determines growth of ω(a). To obtain worst-case rates for the approximation, we apply Lemmas 2.1
and 2.11

∥u − PJnuu∥ℓ2 ≤ ∥PJn+1ω̄(a)∥−1
ℓ2 ∥u∥ℓ1

ω̄(a)
≤ ∥PJn+1ω̄(a)∥−1

ℓ2 ∥ω̄(A)−1∥ℓ2
ω̄(a)

∥u∥ℓ2
ω̄(A)

and compute an upper bound for the decay rate ε(n) := ∥PJn+1ω̄(a)∥−1
ℓ2 . Then, for fixed a, we choose

the parameter A > a as small as possible while ensuring that ∥ω̄(A)−1∥ℓ2
ω̄(a)

is finite.

C.1. Exponential decay (analytic regularity)

First, consider the weight sequence ω(a)j = fa(j) with fa(x) := exp(ax) and note that ω̄(a)j =
f̄a(j) :=

∏M
m=1 fa(jm). To obtain a worst-case bound for the best n-term approximation of sequences

u with ∥u∥ℓ2
ω̄(A)

= 1, we seek sets J∗
n of size n that maximise the factor ∥PJ∗

n
ω̄(a)∥−1

ℓ2 . Finding such a
set is equivalent to finding a set that minimises ∥PJ∗

n
ω̄(a)∥2

ℓ2 . Since f̄a(j) = exp(a∥j∥1) is monotonic
in ∥j∥1, we can define for every R ∈ N the set J◦

R := {j ∈ NM : ∥j∥1 ≤ R}, which minimises

d(R) := ∥PJ◦
R

ω̄(a)∥2
ℓ2 =

∑
∥j∥1≤R

f̄a(j)2

over all sets J◦
R with cardinality bounded by

n(R) := |J◦
R| =

∑
∥j∥1≤R

1.

This means that for every R ∈ N we can find a set of size n(R) which results in the error bound
d(R)−1/2. Solving this relation for n gives an expression for ε(n) = d(R(n))−1/2. Note that this
expression is technically only correct if n = n(R) for some R ∈ N. To obtain an explicit bound
that is valid for all values of n, we derive monotonic lower and upper bounds d(R) ≤ d(R) and
n(R) ≥ n(R) and define the inverse R(n) := n−1(n) as well as ε(n) := d(R(n))−1/2. Since these
bounds are monotonic, it holds that R(n) ≤ R(n) and thus

ε(n) = d(R(n))−1/2 ≤ d(R(n))−1/2 = ε(n)
if n = n(R) for some R. Moreover, since n(R) increases monotonically with R, we can choose for any
n ∈ N a value R ∈ N such that n(R) ≤ n ≤ n(R+ 1) ≤ n(R+ 1). Then we can bound

ε(n)
ε(n) ≤ ε(n(R))

ε(n(R+ 1)) =
(
d(R(n(R+ 1)))
d(R(n(R)))

)1/2
=
(
d(R+ 1)
d(R)

)1/2
≤
(
d(R+ 1)
d(R)

)1/2
.
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Hence, if cε :=
(

supR∈N
d(R+1)

d(R)
)1/2 remains bounded, we obtain for any n ∈ N the bound

ε(n) ≤ cεε(n).

To find analytic expressions for d and n, we interpret the sums in d(R) and n(R) as Riemann sums

d(R) ≳
∫

∥x∥1≤R
x≥0

f̄a(x)2 dx and n(R) ≲
∫

∥x∥1≤R
x≥0

1 dx.

To compute the integrals, recall that the volume and surface area of the M -dimensional ℓ1-ball are
given by

VM (R) = 2M RM

M ! and AM (R) = 2M
√
M
R(M − 1)
(M − 1)! .

Utilising the symmetry of the ℓ1-ball, this immediately yields

n(R) ≲
∫

∥x∥1≤R
x≥0

1 dx = 2−M
∫

∥x∥1≤R
1 dx = 2−MVM (R) = RM

M ! .

To bound d(R), note that Fubini’s theorem implies∫
∥x∥1≤R

x≥0
exp(a∥x∥1) dx =

∫ R

0

∫
∥x∥1=r

x≥0
exp(a∥x∥1) dx dr =

∫ R

0
exp(ar)

∫
∥x∥1=r

x≥0
1 dx dr

=
∫ R

0
exp(ar)2−M

∫
∥x∥1=r

1 dx dr =
∫ R

0
exp(ar)2−MAM (r) dr

=
∫ R

0
exp(ar)

√
M

rM−1

(M − 1)! dr (∗)=
√
M(−a)−M

(
1 − exp(aR)

M−1∑
k=0

(−aR)k

k!

)

=
√
Ma−M exp(aR)

∣∣∣∣∣exp(−aR) −
M−1∑
k=0

(−aR)k

k!

∣∣∣∣∣,
where the equality (∗) follows from the definition of the incomplete gamma function. Note that the
last line approaches

√
Ma−M exp(aR) (aR)M−1

(M−1)! =
√
M RM−1

a(M−1)! exp(aR) as R increases. For the sake of
simplicity, we hence compute the rates only up to asymptotic equivalence. This yields the bounds

• n(R) = cn
RM

M ! ,

• R(n) = cRn
1/M with cR := (M !

cn
)1/M and

• d(R) = cd

√
M RM−1

2a(M−1)! exp(2aR).

Moreover, it holds that cε = supR∈N≥1

(
1 + 1

R

)(M−1)/2
exp(2a) < ∞ and, consequently,

ε(n) ≤ cεε(n) = cεcdn
−(M−1)/(2M) exp(−cRan

1/M ).

Finally, observe that ∥ω̄(A)−1∥ℓ2
ω̄(a)

< ∞ is valid for any a < A.
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C.2. Algebraic decay (mixed Sobolev regularity)

Consider the weight sequence ω(a)j = ga(j) with ga(x) := (x + 1)a and note that ω̄(a)j = ḡa(j) :=∏M
m=1 ga(jm). Since ga(x) = fa(ln(x + 1)), this case can be reduced to the case of exponential decay.

The set of indices which minimise the decay rate are J◦
R := {j ∈ NM : ∥ln(j + 1)∥1 ≤ R}. Replacing

the (Riemann) sums by integrals and performing the change of variables y := ln(x+ 1), we obtain

d(R) ≳
∫

∥ln(x+1)∥1≤R
x≥0

ḡa(x)2 dx =
∫

∥y∥1≤R
y≥0

f̄a(y)2 exp(∥y∥1) dy =
∫

∥y∥1≤R
y≥0

exp((2a+ 1)∥y∥1) dy,

n(R) ≲
∫

∥ln(x+1)∥1≤R
x≥0

1 dx =
∫

∥y∥1≤R
y≥0

exp(∥y∥1) dy.

This yields the bounds

• n(R) = cn

√
M RM−1

(M−1)! exp(R),

• R(n) = (M − 1)W
(
cRn

1/(M−1)
)

with cR := 1
M−1

(
(M−1)!
cn

√
M

)1/(M−1)
and

• d(R) = cd

√
M RM−1

(2a+1)(M−1)! exp((2a+ 1)R).

Moreover, it holds that cε = supR∈N≥1

(
1 + 1

R

)(M−1)/2
exp(2a + 1) < ∞. To obtain a decay rate, we

define y := cRn
1/(M−1) and recall that [34]

ln(y) − ln ln(y) ≤ W (y) ≤ ln(y) − 1
2 ln ln(y) ≤ ln(y)

for every y ≥ e. This implies
d(R(n)) ∝ W (y)M−1 exp((2a+ 1)(M − 1)W (y))

= y(2a+1)(M−1)W (y)−2a(M−1)

≥ y(2a+1)(M−1) ln(y)−2a(M−1)

∝ n2a+1 ln(n)−2a(M−1),

which yields the bound
ε(n) ≲ n−(a+1/2) ln(n)a(M−1).

Finally, observe that ∥ω̄(A)−1∥ℓ2
ω̄(a)

< ∞ is valid for any a < A− 1
2 .

Appendix D. The advantage of low ranks for approximation

To illustrate the advantage of this new format, consider approximating the rank-1 function x 7→
exp(x1 + . . . + xM ) by Legendre polynomials. To solve this approximation problem by means of an
ALS-type algorithm, a sequence of microsteps have to be performed that read

minimise
∥C∥

ℓ0
β

≤r
∥F −MQC∥2

ℓ2 .

Here, the vector F and operator M are defined as in (4.5) with B = vec(b⊗ · · · ⊗ b) given by a vector
of tensor product Legendre polynomials b : [−1, 1] → Rd of degree at most d−1. The operator Q maps
the core tensor C to the full tensor and corresponds to a choice of basis Q⊺B for the least squares
problem of the microstep. Note that the weighted sparsity constraint ∥C∥ℓ0

β
≤ r is less restrictive the

better the sought function u can be expressed in the basis Q. It is therefore instructive to compare
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the basis Q that is chosen in the kth microstep of sparse ALS (Algorithm 2) to the minimal basis that
is chosen by a classical ALS.

Sparse ALS. In the sparse ALS, Q ∈ QR,k is (up to reshaping) an orthogonal matrix where every
column is a standard basis vector (cf. Theorem 4.9). This means that the basis functions B̃sparse := Q⊺B
in this linear least squares problem are of the form

B̃sparse
j (x) := Bα(j)(x)

for some multi-indices α(j) ∈ [d]M , i.e. that every B̃sparse
j is a product Legendre polynomial of poten-

tially high degree. Since the sought function
u(x) = exp(x1 + . . .+ xM ) = exp(x1) · · · exp(xM ) = u1(x1) · · ·uM (xM )

is of rank 1, the best approximation v = v1 ⊗ · · · ⊗ vM is of rank 1 as well. But the number of terms
in this approximation is exponentially large. This must be the case for any approximation with small
error, since the approximation error ∥u− v∥L2 is equivalent to the approximation error the individual
factors

max
k

∥uk − vk∥L2 ≲ ∥u− v∥L2 ≲ ∥u1 − v1∥L2 + · · · + ∥uM − vM ∥L2 ≲ max
k

∥uk − vk∥L2 .

Due to this error equivalence and the symmetry of u, every factor uk must be approximated to the
same accuracy by a polynomial vk of uniform degree g − 1. Thus B̃sparse has to be the product basis
B̃sparse = b̃⊗(k−1) ⊗ b ⊗ b̃⊗(M−k), where b̃ : [−1, 1] → Rg ith the vector of Legendre polynomials of
degree at most g − 1. This means that the basis has to be (gM−1d)-dimensional.

Standard ALS. Suppose that every component tensor other than the kth has been updated at least
once. Then the current approximation has the form

QC = E1 ⊗ · · · ⊗ Ek−1 ⊗ vec(C) ⊗ Ek+1 ⊗ · · · ⊗ EM ,

where the vectors Eℓ are the coefficients of one-dimensional Legendre polynomial approximations to
the exponential function

ẽxpℓ(x) := E⊺ℓ b(x)
on the interval [−1, 1]. The basis function B̃dense := Q⊺B for the microstep are hence give by

B̃dense
j (x) := bj(xk)

∏
ℓ̸=k

ẽxpℓ(xℓ).

Comparison. In the preceding two paragraphs we have seen that the basis dimension in the sparse
ALS is exponentially larger than in the standard ALS. From a computational point of view, this
drastically increases the complexity of the micro steps. From a statistical point of view this also
decreases the probability of the RIP. Assuming the approximations ẽxpℓ ≈ exp are sufficiently good,
it holds for every j ≥ 4 that

∥ẽxpℓ∥L∞([−1,1]) ≈ ∥exp∥L∞([−1,1]) = e ≤
√

2j + 1 = ∥bj∥L∞([−1,1]).

This means that ∥B̃dense
j ∥L∞ ≤ ∥B̃sparse

j ∥L∞ (approximately) for the majority of indices 1 ≤ j ≤
rk−1drk. Since Theorem 1.5 requires βj ≥ ∥B̃sparse

j ∥L∞ for the sparse ALS and βj ≥ ∥B̃dense
j ∥L∞ for

the standard ALS, the sparsity constraint ∥C∥ℓ0
β

≤ r is less restrictive for the standard ALS and the
same approximation error can be achieved with a smaller value of r. In this special case, rounding
would provide a better basis for the sparse approximation, which indicates that reducing the rank may
increase the practical performance of the (then less sparse) ALS. In general, however, the basis in the
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low-rank representation is not uniquely defined and has to be adapted before performing the sparse
approximation.
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