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Abstract. For a general class of nonlinear port-Hamiltonian systems we develop a high-order time discretization
scheme with certain structure preservation properties. The finite or infinite-dimensional system under consideration
possesses a Hamiltonian function, which represents an energy in the system and is conserved or dissipated along
solutions. For infinite-dimensional systems this structure is preserved under suitable Galerkin discretization in space.
The numerical scheme is energy-consistent in the sense that the Hamiltonian of the approximate solutions at time
grid points behaves accordingly. This structure preservation property is achieved by specific design of a continuous
Petrov–Galerkin (cPG) method in time. It coincides with standard cPG methods in special cases, in which the latter
are energy-consistent. Examples of port-Hamiltonian ODEs and PDEs are presented to visualize the framework. In
numerical experiments the energy consistency is verified and the convergence behavior is investigated.
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Keywords. port-Hamiltonian system, Hamiltonian system, gradient system, energy conserving, structure
preservation, Petrov-Galerkin.

The framework of port-Hamiltonian systems allows to model complex physical systems of ordinary
and partial differential equations that obey inherent energy conservation and dissipation principles.
Applications arise for example in mechanics, in electronics, and in energy systems, see, e.g., [35, Ch. 6]
and [32, 36]. Also various complex fluid systems [22] feature a Hamiltonian structure.

Port-Hamiltonian systems

Many infinite-dimensional port-Hamiltonian systems are of the form
∂tz(t) = J(H′(z(t))) − R(H′(z(t))) + B(t, H′(z(t))) for t ≥ t0, (0.1)

with time-dependent state function z,for nonlinear operators J, R, B, subject to initial conditions on
z. The precise formulation is contained in Section 1.1. In this formulation, the operator J describes
conservative effects and the operator R describes dissipative effects. The term B contains further
interactions with the environment, e.g., controls, and it is related to the output of the system. There
is a Hamiltonian H associated with this system, which is non-increasing along sufficiently smooth
solutions z if B ≡ 0, see Lemma 1.7. If additionally there is no dissipation in the system, i.e., R ≡ 0,
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then the Hamiltonian is conserved. The formulation (0.1) includes port-Hamiltonian ODEs and PDEs,
and Hamiltonian systems and gradient systems are special cases.

It seems that up to now there is no consensus on the notion of a nonlinear infinite-dimensional port-
Hamiltonian systems. The class of problems of the form (0.1) is very general since we only impose the
structure needed for our method to work. Notably, this formulation includes systems without a Dirac
structure. Below we shall address, under which conditions it is possible to reformulate system (0.1)
in the form of a classical port-Hamiltonian system. Also, slightly more general formulations with
z-dependent operators can be addressed, see Remark 1.2 below.

Structure preservation

To ensure robust computations, structure preservation properties of the numerical schemes are of
particular interest. Especially for Hamiltonian ODEs structure-preserving schemes have a long history,
see, e.g., [26] for an overview. In the context of (port)-Hamiltonian systems various different notions
of structure preservation are available, such as symplecticity [26], the conservation in time of the
Hamiltonian by the approximate solutions [14, 24, 33], or the preservation of the (port)-Hamiltonian
structure under spatial discretization [14, 33]. Here we focus on the latter two types, in the following
referred to as energy consistency and as structure-preserving space discretization, respectively. We call
a scheme energy-consistent if for any port-Hamiltonian system the energy of solutions to the scheme
has the same behavior at all time grid points as the energy of the exact solution; see Proposition 2.5
for the precise notion. In particular, for systems without control the Hamiltonian is (exactly) non-
increasing, and if additionally there is no dissipation, then the Hamiltonian is exactly preserved,
cf. also [7, Def. III.2] and [29, Def. 1].

This is a stronger notion of energy consistency than the one used, e.g., in [31, Sec. IIIC], for
a comparison see Remark 2.6 below. Note that due to the celebrated Ge–Marsden Theorem [18]
energy-consistent schemes (as introduced before) with fixed time step size, cannot be symplectic for
Hamiltonian systems. For this reason our scheme is not symplectic. We call a space discretization
of a port-Hamiltonian system (0.1) structure-preserving, if the space discrete system has again the
form (0.1). Numerical schemes with these properties are presented in [14, 33].

Available methods

Exact energy preservation for Hamiltonian systems and energy dissipation for gradient systems has
attracted a lot of attention, and there is a wide range of methods available including some of high
order.

Discrete gradient methods date back to [21, 30] and usually are exactly energy-preserving for Hamil-
tonian systems and of second order. By now, also high-order generalizations are available, among
others [15], see also the references therein.

Another class of methods are the averaged vector field collocation methods, also referred to as
energy-preserving collocation methods [11, 24, 25]. They are exactly energy-preserving for Hamiltonian
systems, and energy-dissipating for gradient systems. Furthermore, they have been applied to port-
Hamiltonian systems and to gradient flows on Riemannian manifolds in [6, 7]. Note that they are of
arbitrary order and they are energy-consistent.

A structure preserving DG space discretization was presented in [27] for the linearized KdV equation.
In combination with the Crank–Nicolson scheme in time it is proven to be energy-consistent. In [28]
this approach was extended to energy-consistent schemes of lowest order in time for some dispersive
Hamiltonian systems.

Further methods include the continuous and discontinuous Petrov–Galerkin methods (cPG and
dPG for short); see, e.g., [16, Sec. 69, 70] for their formulation for general evolution equations. DPG
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methods are energy-dissipating rather than energy-preserving for Hamiltonian systems with convex
Hamiltonian. On the other hand, cPG methods have inherent energy consistency properties as shown
in [17] for gradient flows (ODEs and PDEs). It can easily be verified that standard cPG methods are
energy-consistent for Hamiltonian systems with linear operator J . For nonlinear operator J , this is
not true in general. The picture changes if quadrature is applied, e.g. the lowest order cPG method
with the midpoint rule is energy-consistent only for quadratic Hamiltonian, but not in general. Hence,
it is evident that energy consistency is not available in general for nonlinear operator J and for non-
quadratic Hamiltonian. The cPG methods have been well-investigated, for example in [4] for the heat
equation. Therein, the authors use Gauß quadrature for the numerical approximation of the nonlinear
terms and prove superconvergence at the time grid points. In [37] the cPG method (referred to as dPG
method therein) was proven to dissipate energy for linear ODEs and gradient flows. It should be noted,
that for linear systems with B ≡ 0 it reduces to a collocation method. In combination with certain
quadrature rules for Hamiltonian systems with linear operator J , cPG methods are energy-preserving
at the corresponding quadrature nodes [23].

For a specific class of Hamiltonian and gradient systems in [14] the authors design an energy-
consistent Petrov–Galerkin method of arbitrary order with the beneficial property that Galerkin pro-
jection in space preserves the Hamiltonian or gradient structure. A range of nonlinear systems can be
formulated in this framework. Unfortunately, for some systems it is not straightforward to see whether
they can be reformulated to fit into the framework of [14], since this involves inverting certain oper-
ators. For example this is the case for the quasilinear wave equation with friction, see Example 1.11
below. A more detailed discussion is presented in Remark 1.4 below.

In [33, Sec. 7.4] a cPG scheme for an alternative formulation of port-Hamiltonian systems is used,
which is energy-consistent and allows for a structure preserving space discretization, as presented
in [33, Sec. 7.2]. More specifically, instead of R(H′(z)) as in (0.1), the author considers terms of the
form R̃(z)H′(z), where R̃(z) is a z-dependent linear operator acting on H′(z), and analogously for the
term involving J . While many nonlinear port-Hamiltonian systems fit into both formulations, there are
examples of models for which our formulation is more natural since it clearly shows the monotonicity
of the operators. Examples are the p-Laplace equation or the quasilinear wave equation with nonlinear
friction term. Our strategy to achieve energy consistency and structure preservation by means of a
suitable projection of H′(z) is similar to the one in [33].

However, our setup avoids problems with singularities in cases where R̃(z) is singular, but R̃(z)H′(z)
is not. The schemes agree only if J̃(z), R̃(z) are independent of z and J, R are linear, but not in general.
See also Remark 2.4 below for a detailed discussion.

There are more classes of methods that are exactly energy-consistent only for the special case
of quadratic Hamiltonian, such as standard collocation methods and certain types of Runge–Kutta
methods. For example collocation methods were used in [29, Thm. 2], [31, Sec. III C], and some
Runge–Kutta methods were used in [33].

To summarize, previous to this contribution the only high-order energy-consistent and structure-
preserving time discretization methods available for (port)-Hamiltonian systems with non-quadratic
Hamiltonian were energy-preserving collocation methods [24] for general port-Hamiltonian systems,
and continuous Petrov–Galerkin methods for a specific class of Hamiltonian and gradient systems [14],
and [33, Sec. 7] projecting in a different way. We refer to Remark 1.6 below for a comparison of the
formulations.

In this work we develop a (high-order) energy-consistent cPG method for nonlinear port-Hamiltonian
systems of the form (0.1), including Hamiltonian systems for general Hamiltonian. More specifically,
we present a modified continuous Petrov–Galerkin method that coincides with the classical one for
the special case of quadratic Hamiltonian and linear J and R. However, it is energy-consistent also for
non-quadratic Hamiltonian and nonlinear J and R. Our framework is not suitable for problems where
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irregular solutions display additional dissipation effects, e.g., shock solutions in hyperbolic models.
Also, our approach does not apply to models with degeneracy which induces lack of regularity. In
combination with a suitable space discretization the (port)-Hamiltonian structure is preserved under
space discretization.

By now, an extension of our scheme is available: In very recently announced and independent work [3]
the authors construct a general class of high-order in time energy-preserving methods for Hamiltonian
systems and dissipative differential equations. Remarkably, they even achieve the conservation of an
arbitrary number of invariants of finite-dimensional Hamiltonian systems by use of an additional
auxiliary variable per invariant. This leads to a larger mixed problem and can be reformulated in
terms of L2-projections. This approach is showcased on several examples and extended to, e.g., the
compressible Navier–Stokes equation in [3]. Without control and for state-independent J and R their
approach applied to the continuous Petrov–Galerkin agrees with our proposed method.

Main contributions and outline

The class of nonlinear infinite-dimensional port-Hamiltonian systems under consideration is introduced
in Section 1.1 in Assumption 1.1. Examples fitting into this framework include the quasilinear wave
equation, possibly with friction and viscosity, and doubly nonlinear parabolic equations, that in special
cases reduce to the porous medium equation and the p-Laplace equation. Those examples are discussed
in Section 1.4. Furthermore, in Section 1.2 we present the corresponding finite-dimensional setting
which encompasses many classical finite-dimensional port-Hamiltonian systems, and we present some
examples in Section 1.4.

For the class of port-Hamiltonian systems described above, in Section 2.2 we introduce a continuous
Petrov–Galerkin scheme (Scheme 2.2) of arbitrary polynomial degree k ∈ N. On the nonlinear terms
a quadrature formula is used, and we only require positivity of the quadrature weights. Our scheme
is designed to be energy-consistent, as proved in Proposition 2.5. The main tool to achieve this for
general Hamiltonian is the L2-projection mapping to piecewise polynomials of maximal degree k − 1
in time. This is rather natural, since stability estimates for the L2-projection of the solution can be
obtained as in [1, Lem. 4.1]. For linear port-Hamiltonian systems with quadratic Hamiltonian the
projection cancels, and hence our proposed scheme reduces to the standard cPG method.

Our approach has similarities with mixed methods, because it can be reformulated by use of an
auxiliary variable. It has been extended in the more recent work [3]. For finite-dimensional port-
Hamiltonian systems similar ideas were used in [9] for the purpose of structure preserving model
reduction. For infinite-dimensional (port)-Hamiltonian systems the use of an orthogonal projection
in space allows to preserve the (port)-Hamiltonian structure under space discretization. In the PhD
thesis [27] such an approach was used for a DG space discretization of some dispersive Hamiltonian
system, and was extended in several contributions thereafter [8, 28] for continuous and discontinuous
space discretization for several Hamiltonian PDEs. In Section 3.4 we present the corresponding struc-
ture preserving conforming space discretization in our general framework. A similar discretization has
also been used for port-Hamiltonian systems of a slightly different form in [33, Sec. 7.2].

Furthermore, in Section 3 we present numerical experiments using Gauß quadrature to verify the
energy consistency for some of the examples presented in Section 1.4. Indeed, we need quadrature
to handle the projections as well as the nonlinear terms involving R, J and B. More specifically, we
examine for which type of quadrature the energy consistency is satisfied up to machine precision.
Additionally, we investigate the convergence in the time discretization parameter. We observe that
using Gauß quadrature with k nodes (with exactness degree 2k−1) both for the terms involving J and
R and for the approximation of the projection, leads to optimal convergence order k + 1 in the time
discretization parameter of the error in the L∞-norm. Of course, this requires sufficient regularity of
the solutions. This matches with the results in [4] and indicates that the use of the L2-projection does
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not corrupt the convergence if applied correctly. Furthermore, we observe superconvergence at the time
grid points of order 2k in the time discretization for some of the examples. These are exactly the rates
known for parabolic problems [4], and hence also in this regard we do not lose anything by means of
the projection. Moreover, for some infinite-dimensional examples we use a structure preserving space
discretization. We find that the projection does not reduce the convergence order. Additionally, we
investigate the convergence order in the time discretization parameter for several space discretization
parameters, and observe that the errors are independent of the space discretization. Energy consistency
is achieved by using a sufficiently high number of nodes in the Gauß quadrature for the projection.

Discussion and outlook

The main novelty of our scheme is that it yields energy consistency for arbitrary Hamiltonian, it
preserves the port-Hamiltonian structure under space discretization for a general class of nonlinear
infinite-dimensional port-Hamiltonian systems, and it is of arbitrary order. It applies to a large class
of (port)-Hamiltonian systems of form (0.1). In contrast to [14] it does not require a reformulation of
the model, and in contrast to [33] it allows us to treat port-Hamiltonian systems with singularities.

Our method extends the standard cPG method in a very natural way. Unlike the method in [14],
our scheme does not coincide with any of the collocation methods [7, 11] for special port-Hamiltonian
systems, except for polynomial degree k = 1.

Besides proving energy consistency, in this work we do not perform any numerical analysis such
as proving well-posedness of the discrete solutions. This is due to the fact that nonlinear problems
require a highly problem adapted approach, which does not fit well with the general framework we
present here. Also for a priori and a posteriori error estimates more structure of the specific problems
has to be used, and is therefore not addressed here.

Notation

Let X and Y be Banach spaces and I ⊆ R be an interval. We denote the set of all bounded linear
operators mapping from X to Y by L(X, Y ). The Fréchet derivative of a mapping f : X → Y is
denoted by f ′. For an open set D ⊂ X we denote by C1(D;R) the set of mappings, that are Fréchet
differentiable at all v ∈ D, and for which D ∋ v 7→ f ′(v) ∈ L(X, Y ) is continuous. We denote the dual
space of X by X ′ and the dual pairing between X and X ′ by ⟨·, ·⟩X′,X .

For a bounded Lipschitz domain Ω ⊂ Rd with d ∈ N, and p ∈ [1, ∞] we denote by Lp(Ω) the
Lebesgue space and by W 1,p(Ω) the Sobolev space. By Lp(I; X) we denote the Bochner space of
functions g : I → X that are Bochner measurable and that have finite norm, with norms

∥g∥Lp(I;X) :=
(∫

I
∥g(t)∥p

X dt

)1/p

if p ∈ [1, ∞),

∥g∥L∞(I;X) := ess sup
t∈I

∥g(t)∥.

Furthermore, C(I; X) denotes the space of continuous functions with values in X. We denote by
|·| the Euclidean norm in Rd, by ⟨·, ·⟩ the Euclidean inner product, and by ∥·∥2 the spectral norm
on matrices. Generic constants c may change in a sequence of inequalities and only depend on the
quantities specified.

1. Problem setting

In this section we introduce the precise formulation of the nonlinear port-Hamiltonian systems under
consideration. We start with the infinite-dimensional case in Section 1.1, and we present the special case
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of finite-dimensional port-Hamiltonian systems in Section 1.2. The energy balance for these systems is
discussed in Section 1.3. Finally, in order to demonstrate the strength of our framework in Section 1.4
we present a number of examples that fit in.

1.1. Infinite-dimensional case

In the following we consider a very general setup for port-Hamiltonian systems.

Assumption 1.1 (problem formulation). Let Z be a Hilbert space identified with its dual Z ∼= Z ′,
and assume that (X, ∥·∥X) is a reflexive Banach space with continuous and dense embedding X ↪→ Z.
The duality relation between X and its dual space X ′ is denoted by ⟨·, ·⟩X′,X . Let I = [0, T ] ⊂ R be a
non-empty bounded interval.

(A1) H : D → R is a Fréchet differentiable operator with H ∈ C1(D;R) for some open subset
D ⊂ Y ↪→ X for a Banach space Y and we denote η := H′;

(A2) j, r : X × X → R and b : I × X × X → R are functionals, which are linear and Lipschitz
continuous in their last argument, and continuous in the remaining arguments. We assume
that there exists p ∈ (1, ∞), a function b ∈ C(I) and a constant c > 0 such that

|j(v, w)| + |r(v, w)| + |b(t, v, w)| ≤ c(b(t) + ∥v∥p−1
X )∥w∥X , (1.1)

for any v, w ∈ X and any t ∈ I. Furthermore, for j, r we assume that

(A2i) j satisfies for any v ∈ X that

j(v, v) = 0;

(A2ii) r is dissipative in the sense that for any v ∈ X we have that

r(v, v) ≥ 0.

We consider port-Hamiltonian systems which in weak form can be stated as

⟨∂tz, ϕ⟩X′,X = j(η(z), ϕ) − r(η(z), ϕ) + b(·, η(z), ϕ) for all ϕ ∈ X, pointwise on I, (1.2a)
z(0) = z0, (1.2b)

where z : I → D ⊂ X is a function with ∂tz : I → X ′, and z0 ∈ X is a given initial datum. We
usually shall suppress the time dependence and write for example z instead of z(t). The operator η is
the Fréchet derivative of the Hamiltonian H and the operators j, r and b are to be specified. Here, j
models energy conservative processes, r describes all dissipative processes, and b contains the control
of the system. Note also that b(·, η(z), η(z)) contains the output of the system.

Remark 1.2.

(a) There are several nonlinearities in (1.2): H need not be quadratic, and hence η may be non-
linear, and also j, r and b may be nonlinear.

(b) Notably, (A2i) is satisfied, if j is skew-symmetric.

(c) The estimate (1.1) in (A2) on the functionals ensures that all terms on the right-hand side
of (1.2) are integrable in time for test functions in Lp(I; X) and provided that the solution is
sufficiently regular. Later we shall consider solutions z to (1.2) with η(z) ∈ C(I; X).
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(d) One may consider more general systems with functional ĵ(z, η(z), ϕ), with the property that
ĵ(z, v, v) = 0 for any z ∈ D, and any v ∈ X (and similarly for r). Such an operator represents
a z-dependent operator Ĵ(z, η(z)) in (0.1). While in general Ĵ may be nonlinear in both
arguments, the case of z-dependent linear operator v 7→ Ĵ(z, v) is a special case. Thus, the
formulation includes in particular systems with Dirac structure. In this case X would have to
be a Hilbert space.
We comment on the time-discretization for z-dependent operators in Remark 2.4 below.

Remark 1.3 (DAEs). Note that port-Hamiltonian DAEs are not contained in our framework. There
is a number of numerical schemes available in the literature: the discrete gradient method in [39] is
energy-consistent and of second order; cPG method for certain DAEs can be found in [2]; the collocation
methods in [29, Thm. 2], [31, Sec. III C], and the Runge–Kutta methods in [33] are energy-consistent
for quadratic Hamiltonian; the cPG methods in [14, 33], are energy-consistent.
Remark 1.4. The analysis in [14] covers systems not covered by our analysis and vice versa. Let us
discuss systems covered by our analysis but not by [14]: Therein, the authors consider Hamiltonian
and gradient systems of the form

C(z)∂tz = −H′(z) + f(z), (1.3)
for Hamiltonian H, and C(·) positive semi-definite for any argument, and for given function f . This
formulation has the advantage, that the structure is preserved under Galerkin projection in space,
which is not the case for systems of the form (1.2), as discussed in detail in [14]. For invertible C(z),
one may transform the systems (1.2) and (1.3) into each other if either for given C the operators j, r
are such that

−⟨C(z)−1η(z), ϕ⟩ = j(η(z), ϕ) − r(η(z), ϕ),
or, if for given r, j, the operator C is such that the same identity holds.

Below in Section 1.4 we present examples of infinite-dimensional systems that fit in our framework.
However, for one of them (Example 1.11 on the wave equation with viscosity or friction) a reformulation
in the form (1.3) is not available to the best of our knowledge. Indeed, the difficulty consists in the
fact that the right-hand side has several terms that would require a different operator C−1 each. Note
that for two invertible operators their sum is not invertible in general. Even for linear operators on
finite-dimensional spaces this requires certain commutation properties.

1.2. Finite-dimensional case

For the purpose of visualization let us also present the port-Hamiltonian system for the simpler case
with finite-dimensional (Hilbert) space Z = X = Rd. Then, the port-Hamiltonian system (1.2) in
strong form reduces to

∂tz = J(η(z)) − R(η(z)) + B(·, η(z)) pointwise on I, (1.4a)
z(0) = z0, (1.4b)

for z0 ∈ Rd. In this special case Assumption 1.1 simplifies considerably.
Assumption 1.5 (problem formulation in finite dimensions). With d ∈ N we assume that:

(a1) H ∈ C1(D;R) for some open subset D ⊂ Rd and we denote η := H′;

(a2) J, R : Rd → Rd and B : I × Rd → Rd are continuous mappings. We assume that there exists
p ∈ (1, ∞), a function b ∈ C(I) and a constant c > 0 such that

|J(v)| + |R(v)| + |B(t, v)| ≤ c(b(t) + |v|p−1), (1.5)
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for any v ∈ Rd and any t ∈ I. Furthermore, on J and R we assume that

(a2i) J satisfies for any v ∈ Rd that

⟨J(v), v⟩ = 0;

(a2ii) R is dissipative in the sense that for any v ∈ Rd one has

⟨R(v), v⟩ ≥ 0.

Remark 1.6 (classical state dependent port-Hamiltonian systems). The general conditions on J, R, B
in (a2) include z-dependent operators, if η is invertible. We consider the following conditions:

(a1′) H ∈ C2(Rd;R) is strictly convex and we denote η := H′ ∈ C1(Rd;Rd).

(a2′) J̃(v), R̃(v) ∈ Rd×d and B̃(v) ∈ Rd×l are continuous as functions in v ∈ Rd. We assume that
there exists p ∈ (1, ∞), and a constant c > 0 such that

∥J̃(v)∥2 + ∥R̃(v)∥2 + ∥B̃(v)∥2 ≤ c(1 + |η(v)|p−2), (1.6)

for any v ∈ Rd. Furthermore, we assume that

(a2i′) for any v ∈ Rd the matrix J̃(v) is skew-symmetric;
(a2ii′) for any v ∈ Rd the matrix R̃(v) is positive semi-definite.

The classical formulation of port-Hamiltonian systems reads

∂tz =
(
J̃(z) − R̃(z)

)
η(z) + B̃(z)u pointwise on I, (1.7a)

z(0) = z0. (1.7b)

Here u : I → Rl with l ≤ d is some control and z0 ∈ Rd is a given initial datum.
In case η is invertible, this is indeed a special case of (1.4): Then, the operators J, R : Rd → Rd and

B : I × Rd → Rd can be defined by

J(v) := J̃(η−1(v))v, R(v) := R̃(η−1(v))v and B(t, v) := B̃(η−1(v))u(t)

for any v ∈ Rd, and any t ∈ I. Assumption 1.5 on J, R follows from (a2′).
In case η is not surjective, system (1.7) can still be transformed into the form (1.4) by defining J, R

and B on the image of η.
Note that in (1.7) the splitting of an operator into a (symmetric) positive definite part and a skew-

symmetric part is unique. In the more general case of nonlinear operators in finite dimensions (1.4),
and in infinite dimensions (1.2) a splitting into dissipative part r and a conservative part j is not so
obvious, and depends on the modeling. However, a unique splitting of the corresponding right-hand
side of (1.2) is not used in the following investigation.

In [33] finite and infinite-dimensional systems of the form (1.7) are investigated. Even though the
examples considered below fit in both formulations, some of the resulting energy-consistent discretiza-
tions differ, as explained in Remark 2.4 below.

1.3. Energy balance

The structural assumptions on the port-Hamiltonian system entail that the Hamiltonian is diminished
by the dissipative term r, and affected by b which may include boundary terms and controls and
includes the output.
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Lemma 1.7 (energy balance). Let Assumption 1.1 be satisfied. Then, any sufficiently smooth solution
z to system (1.2), with η(z) ∈ L1(I; X), satisfies the following energy balance

H(z)(s) − H(z)(s̃) =
∫ s

s̃
−r(η(z), η(z)) + b(·, η(z), η(z)) dt

≤
∫ s

s̃
b(·, η(z), η(z)) dt for any 0 ≤ s̃ ≤ s ≤ T.

(1.8)

Proof. Using the properties of H in Assumption 1.1(A1), employing equation (1.2) and condi-
tion (A2i) on j we find that

H(z)(s) − H(z)(s̃) =
∫ s

s̃

d
dt

H(z) dt =
∫ s

s̃
⟨∂tz, H′(z)⟩X′,X dt =

∫ s

s̃
⟨∂tz, η(z)⟩X′,X dt

=
∫ s

s̃
j(η(z), η(z)) − r(η(z), η(z)) + b(·, η(z), η(z)) dt

=
∫ s

s̃
−r(η(z), η(z)) + b(·, η(z), η(z)) dt.

In combination with the dissipative nature of r according to (A2ii) this proves the claim.

Remark 1.8. For a finite-dimensional port-Hamiltonian system (1.7) the energy balance reads
d
dt

H(z) = −⟨R̃(z)η(z), η(z)⟩ + ⟨B̃(z)u, η(z)⟩ ≤ ⟨B̃(z)u, η(z)⟩. (1.9)

In the context of port-Hamiltonian modeling the quantity y := B̃(z)Tη(z) is the system output. In
this case ⟨B̃(z)u, η(z)⟩ can be replaced by ⟨y, u⟩ to arrive at the customary formulation of the energy
balance for port-Hamiltonian systems.

Note that in the finite-dimensional case the condition η(z) ∈ C(I; X) is satisfied, provided that
z ∈ C(I;Rd).

1.4. Examples

Let us discuss examples of port-Hamiltonian systems of the form (1.2) that fit into the framework
presented in Assumption 1.1. We focus on cases, where j or r is nonlinear in their first argument or the
Hamiltonian is not quadratic. We start by considering some finite-dimensional examples, that fit into
the framework in Section 1.2. While in the literature they are typically presented in the formulation
using the z-dependent operators J̃ , R̃, cf. Remark 1.6, we shall present the formulations that fit in
Assumption 1.5. Then, we proceed with some infinite-dimensional examples for systems as introduced
in Section 1.1.

Since the purpose of this section is to showcase the strength of the framework we usually refrain
from presenting optimal estimates. In particular, the estimates on r, j, b as in Assumption 1.1(A2) can
be sharpened in several places.

First, we consider a finite-dimensional system with non-quadratic Hamiltonian.

Example 1.9 (Toda lattice). The Toda lattice describes the motion of a circular chain of particles
in 1D, where each particle is connected to its nearest neighbors with an exponential spring, cf. [9,
Sec. 3.4.2]. For N ∈ N the number of particles, q ∈ RN the displacement vector of the particles and
p ∈ RN the momentum vector of the particles we set

z :=
(

q
p

)
∈ R2N . (1.10)
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The following system of ordinary differential equations describes the motion
∂tz = J(η(z)) − R(η(z)) + B, (1.11)

for J , R : R2N → R2N linear mappings given, for v =
(

w
y

)
∈ R2N , by

J(v) =
(

0 IdN

−IdN 0

)
v =

(
y

−w

)
,

R(v) =
(

0 0
0 diag(γ1, . . . , γN )

)
v =

(
0

diag(γ1, . . . , γN )y

)
,

where IdN ∈ RN×N is the identity matrix, and γi ≥ 0 are given damping parameters. Furthermore,
for given u ∈ R, and e1 ∈ RN the first unit vector, B ∈ R2N×1 is the (constant) vector

B = u

(
0
e1

)
.

This means that the control exerts a force on the first particle. The Hamiltonian of the system reads,
for z as in (1.10),

H(z) =
N∑

k=1

1
2p2

k +
N−1∑
k=1

exp(qk − qk+1) + exp(qN − q1) − N, (1.12)

which is smooth and strictly convex and we set η := H′. System (1.11) is of the form (1.4) and we verify
that J , R and B satisfy Assumption 1.5: Since H is smooth, (a1) holds. Furthermore J, R are linear
and B is a constant vector, and hence (1.5) is satisfied for p = 2. Note that (a2i), (a2ii) hold, because
J and R are represented by a skew-symmetric, and by a positive-semidefinite matrix, respectively. By
standard ODE theory well-posedness is available.

Next, let us consider a finite-dimensional system with quadratic Hamiltonian, but with nonlinear
operator J .

Example 1.10 (spinning rigid body). The motion of a rigid body spinning around its center of mass
in the absence of gravity and friction can be described by a system of the form

∂tz = J(Qz) + B, (1.13)
see [35, Ex. 6.2.1]. Here, the solution z(t) = (p1(t), p2(t), p3(t))T ∈ R3 is the vector of the angular
momenta of the body in three spatial dimensions. For given principal moments of inertia I1, I2, I3 > 0,
we have Q = diag(I1, I2, I3)−1 ∈ R3×3. The Hamiltonian of the system H(z) = 1

2zTQz is quadratic,
and η(z) := H′(z) = Qz. The mapping J : R3 → R3 is defined by

J(v) =

v2v3(I2 − I3)
v1v3(I3 − I1)
v1v2(I1 − I2)

 for v ∈ R3. (1.14)

Furthermore, for b1, b2, b3 ∈ R the coordinates of the axis around which torque is applied, and u ∈ R
a given control B is the vector B = (b1, b2, b3)⊤u ∈ R3. Note that system (1.13) is of the form (1.4)
with R ≡ 0. To verify Assumption 1.5 note that H is quadratic and hence (a1) is satisfied. Since B
is a constant vector and J is a quadratic function, (1.5) holds with p = 3. Furthermore, it is straight
forward to verify that ⟨J(v), v⟩ = 0 for any v ∈ R3, which verifies (a2i).

By standard ODE theory well-posedness of solutions is available.

Let us now proceed to consider examples of infinite-dimensional port-Hamiltonian systems. They
all are evolution equations posed on Q = I × Ω for given final time T > 0, time interval I := [0, T ]
and for a bounded Lipschitz domain Ω ⊂ Rd, with d ∈ N.
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Example 1.11 (quasilinear wave equation). We consider the quasilinear wave equation with friction
and viscosity:

∂tρ + div(v) = 0,

∂tv + ∇(p(ρ)) = −γ(ρ)F (v) + ν∆v,
(1.15)

on Q, subject to initial conditions (ρ, v)(0, ·) = (ρ0, v0) in Ω. The system is supplemented by suitable
boundary conditions introduced in the sequel.

Here, p, γ and F are given, possibly nonlinear functions to be specified, and ν ≥ 0 is a given
parameter. The term γ(ρ)F (v) represents friction forces, i.e., there is no friction if this term vanishes.
Similarly, the term ν∆v represents viscous forces, and the non-viscous case is recovered for ν = 0.
The function p : R → R is assumed to be strictly monotone and continuously differentiable, and
γ : R → [0, ∞) is sufficiently smooth and bounded. Typical examples for F : R → R are power law
type functions, and in the following we consider

F (v) = |v|s−2v for some s ∈ (1, ∞), (1.16)

see Remark 1.13 for possible extensions. Note that the factor |v|s−2 is singular for s ∈ (1, 2).
Let us verify that the weak formulation of (1.15) can be cast into the form (1.2) and that Assump-

tion 1.1 holds. We choose Z = L2(Ω)1+d and set z0 = (ρ0, v0)T and

z :=
(

ρ
v

)
. (1.17)

For a pressure potential P such that P ′(s) = p(s) for any s ≥ 0 we choose as Hamiltonian

H(z) :=
∫

Ω
P (ρ) dx + 1

2

∫
Ω

|v|2 dx. (1.18)

Note that p is strictly monotone if and only if H is strictly convex. Then, formally, one has

η(z) := H′(z) =
(

p(ρ)
v

)
. (1.19)

Multiplying the system (1.15) by a smooth test function ϕ = (ξ, w)T ∈ C∞(Q)1+d, assuming that z is
sufficiently regular that all of the following integrals are finite, integrating over Ω, and integration by
parts on the second and on the last term on the right-hand side we obtain∫

Ω
∂tz · ϕ dx = −

∫
Ω

div(v) ξ dx −
∫

Ω
∇(p(ρ)) · w dx −

∫
Ω

γ(ρ)F (v) · w dx + ν

∫
Ω

∆v · w dx

= −
∫

Ω
div(v) ξ dx −

∫
∂Ω

p(ρ) w · n dσ +
∫

Ω
p(ρ) div(w) dx (1.20)

−
∫

Ω
γ(ρ)|v|s−2v · w dx + ν

∫
∂Ω

wT∇v n dσ − ν

∫
Ω

∇v : ∇w dx,

where : denotes the Frobenius product between two matrices, and n is the outer unit normal to ∂Ω.
This weak formulation is to be understood as an identity pointwise in time.

To consider the boundary conditions and to identify the Banach space X ↪→ Z, let us distinguish
the cases with and without viscosity:

(a) If ν ̸= 0, then we may consider homogeneous boundary conditions on v on part of the boundary
Γ and natural boundary conditions on the relative complement ∂Ω \ Γ, i.e.,

v = 0 on I × Γ,

(p(ρ)Id − ν∇v)n = g on I × ∂Ω \ Γ,
(1.21)
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for some given function g ∈ C(I; L2(∂Ω \ Γ)d). We assume that Γ is sufficiently regular, e.g., it
has finitely many components with sufficiently smooth boundary in ∂Ω. Starting from (1.20),
imposing the first condition on the function space and the latter one weakly we arrive at∫

Ω
∂tz · ϕ dx = −

∫
Ω

div(v) ξ dx +
∫

Ω
p(ρ) div(w) dx

−
∫

Ω
γ(ρ)|v|s−2v · w dx − ν

∫
Ω

∇v : ∇w dx −
∫

∂Ω\Γ
g · w dσ,

(1.22)

for anyϕ = (ξ, w)T ∈ C∞(Q)1+d with w|I×Γ = 0. This suggests the choice of function spaces
with continuous and dense embedding

X := L2(Ω) × (H1
Γ(Ω)d ∩ Ls(Ω)d) ↪→ L2(Ω) × L2(Ω)d =: Z, (1.23)

with s ≥ 2 as in (1.16). Here H1
Γ(Ω)d is defined as closure of {f ∈ C∞(Ω)d : f |Γ = 0} with

respect to the norm in H1(Ω)d. Depending on the growth properties of p the Banach space
Y ⊂ X and the open set D ⊂ Y have to be chosen sufficiently small that H : D → R as in (1.18)
is well-defined. Fréchet differentiability of H as well as continuity of D → Y ′, v 7→ H′(v) =: η(v)
are available, provided that p is continuously differentiable and D ⊂ Y ↪→ X is sufficiently
small. Under those conditions Assumption 1.1(A1) is satisfied.

We define the functionals j, r : X × X → R and b : I × X × X → R by

j(χ, ϕ) := −
∫

Ω
div(χ2)ϕ1 dx +

∫
Ω

χ1div(ϕ2) dx, (1.24)

r(χ, ϕ) := ν

∫
Ω

∇χ2 : ∇ϕ2 dx +
∫

Ω
γ(χ1)|χ2|s−2χ2 · ϕ2 dx, (1.25)

b(t, χ, ϕ) := −
∫

∂Ω\Γ
g(t) · ϕ2 dσ, (1.26)

for any χ, ϕ ∈ X and any t ∈ I. If s ≥ 2 as in (1.16), using Young’s inequality with s − 1 ≥ 1,
a trace inequality and boundedness of γ, one can show that

|j(χ, ϕ)| + |r(χ, ϕ)| + |b(t, χ, ϕ)| ≤ c(1 + ∥g(t)∥L2(∂Ω\Γ) + ∥χ∥s−1
X )∥ϕ∥X , (1.27)

for any ϕ, χ ∈ X, with X as defined in (1.23). If on the other hand s ∈ (1, 2), then we obtain
with the continuous embedding H1(Ω) ↪→ Ls(Ω) and Young’s inequality with 1

s−1 > 1 that

|j(χ, ϕ)| + |r(χ, ϕ)| + |b(t, χ, ϕ)| ≤ c(1 + ∥g(t)∥L2(∂Ω\Γ) + ∥χ∥X)∥ϕ∥X , (1.28)

for any ϕ, χ ∈ X. Consequently, with p = max(s, 2) the estimate in Assumption 1.1(A2) is
satisfied. Note that j, r, b are linear in ϕ, and hence by estimate (1.27) also Lipschitz continuous
in ϕ. The same arguments hold for all terms depending on χ except of the last term of r, which
ensures continuity in χ. Since s > 1 in (1.16), also the last term of r is continuous in χ2, and
hence in χ.

To verify (A2) it remains to show (A2i) and (A2ii). Directly from the definition of j we see
that j(v, v) = 0 for any v ∈ X. The dissipative nature of r, namely r(v, v) ≥ 0 follows from
the fact that the power-law relation (1.16) is monotone and γ(·) ≥ 0.

(b) If ν = 0, then in (1.20) all terms involving ν vanish, and we consider the boundary conditions
v · n = 0 on I × Γ,

p(ρ) = g on I × ∂Ω \ Γ,
(1.29)
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for some given function g ∈ C(I; H1(Ω)). Again starting from (1.20) with ν = 0 we impose
the first condition on the function space and the second one weakly and obtain∫

Ω
∂tz · ϕ dx = −

∫
Ω

div(v) ξ dx +
∫

Ω
p(ρ) div(w) dx −

∫
Ω

γ(ρ)|v|s−2v · w dx

−
∫

∂Ω\Γ
g w · n dσ,

(1.30)

for anyϕ = (ξ, w)T ∈ C∞(Q)1+d with w · n|I×Γ = 0. For s ≥ 2 as in (1.16) we choose

X := L2(Ω) × (HΓ(div; Ω)d ∩ Ls(Ω)d) ↪→ L2(Ω) × L2(Ω)d =: Z, (1.31)

where HΓ(div; Ω) denotes the closure of {f ∈ C∞(Ω)d : (f · n)|Γ = 0} with respect to the norm
∥f∥H(div;Ω) := ∥f∥L2(Ω) + ∥divf∥L2(Ω). The validity of (A1) follows analogously as in the case
ν ̸= 0 for suitably chosen D ⊂ Y ↪→ Z.
Now, we define the functionals j, r : X × X → R and b : I × X × X → R by

j(χ, ϕ) := −
∫

Ω
div(χ2)ϕ1 dx +

∫
Ω

χ1div(ϕ2) dx, (1.32)

r(χ, ϕ) :=
∫

Ω
γ(χ1)|χ2|s−2χ2 · ϕ2 dx, (1.33)

b(t, χ, ϕ) := −
∫

∂Ω\Γ
g(t) ϕ2 · n dσ, (1.34)

for any χ, ϕ ∈ X and any t ∈ I. To show that Assumption 1.1(A2) is satisfied with p = s, we
only have to argue that the estimate (1.27) holds for X as defined in (1.31).
For j the estimate still holds for any χ, ϕ ∈ L2(Ω) × HΓ(div; Ω). For r we have one term less
than before, and the remaining term is estimated as before using the fact that the second
component of functions in X are contained in Ls(Ω)d. Finally, for the bound on b(t, χ, ϕ) we
use the fact that the trace operator is bounded from H(div; Ω) to H−1/2(∂Ω), which is the
dual space of the fractional space H1/2(∂Ω), see, e.g., [20, Ch. I.2.2]. Thus, it follows that

|b(t, χ, ϕ)| ≤ ∥g(t)∥H1/2(∂Ω)∥ϕ2 · n∥H−1/2(∂Ω)

≤ c∥g(t)∥H1/2(∂Ω)∥ϕ2∥H(div;Ω)

≤ c∥g(t)∥H1(Ω)∥ϕ2∥H(div;Ω),

and the remaining arguments are as above, assuming that g ∈ C(I; H1(Ω)).

Example 1.12 (doubly nonlinear parabolic equation). For functions α, β to be specified we consider
the nonlinear scalar evolution equation

∂tα(v) − div(β(∇v)) = f on Q, (1.35)
for given function f : Q → R. This is supplemented by the following boundary conditions: For some
sufficiently smooth part of the boundary Γ ⊂ ∂Ω, we impose

v = 0 on I × Γ, (1.36a)
β(∇v) · n + δv = g on I × (∂Ω \ Γ), (1.36b)

for a given function g : I × ∂Ω \ Γ → R, and a constant δ > 0, with n the outer unit normal on ∂Ω.
Furthermore, initial conditions are imposed.

The functions α : R → R and β : Rd → Rd are assumed to be monotone and may be singular for
v = 0, and for ∇v = 0, respectively. In one space dimension d = 1 this equation is of particular
relevance to gas flow in pipelines in the high-friction and low Mach number regime, cf. [13].
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If α is invertible, then formally from (1.35) one may derive the equation for z := α(v) as

∂tz − div(β(∇(α−1(z)))) = f. (1.37)
In the following we assume that α and β are given by

α(v) = |v|−1/q′

v for some q ∈ [1, ∞), (1.38a)
β(∇v) = |∇v|p−2∇v for some p ∈ (1, ∞), (1.38b)

with q′ ∈ (1, ∞] the Hölder conjugate to q, defined by 1
q + 1

q′ = 1. In the following we assume that
p ≥ 2d

d+1 .
For α, β as in (1.38) we obtain v = α−1(z) = |z|q−1z, and then (1.37) reads

∂tz − div
(
|∇v|p−2∇v

)
= ∂tz − div

(∣∣∇ (
|z|q−1z

) ∣∣p−2
∇

(
|z|q−1z

))
= f. (1.39)

Note that for q = 1 this evolution equation reduces to the p-Laplace equation, and for p = 2 it reduces
to the porous medium equation.

Let us determine the setup for (1.39) to fit into the framework described in (1.2) with Assump-
tion 1.1 satisfied. For any ϕ ∈ C∞(Q), with ϕ|I×Γ = 0, integrating by parts, employing the boundary
conditions, and using v = α−1(z) one can show that

−
∫

Ω
div (β(∇v)) ϕ dx = δ

∫
∂Ω\Γ

v ϕ dσ −
∫

∂Ω\Γ
g ϕ dσ +

∫
Ω

|∇v|p−2∇v · ∇ϕ dx.

Thanks to p ≥ 2d
d+1 > 2d

d+2 we have a continuous and dense embedding

X := W 1,p
Γ (Ω) ↪→ L2(Ω) =: Z, (1.40)

where W 1,p
Γ (Ω) denotes the closure of {f ∈ C∞(Ω): f |Γ = 0} with respect to the norm in W 1,p(Ω).

The Hamiltonian of (1.39) is given by

H(z) := 1
q+1

∫
Ω

|z|q+1 dx,

which is defined for any z ∈ Lq+1(Ω) ∩ X. With the Fréchet derivative

η(z) := H′(z) = α−1(z) = |z|q−1z,

one can check, that H′ ∈ C1(D;R) for example for D := Y := Lq+1(Ω)∩X. Thus, Assumption 1.1(A1)
is satisfied, since η(z) ∈ L(q+1)′(Ω) ⊂ Y ′ for any z ∈ Y ⊂ Lq+1(Ω).

With X = W 1,p
Γ (Ω) the functionals j, r : X × X → R and b : I × X × X → R are chosen as

j(v, ϕ) ≡ 0 and

r(v, ϕ) :=
∫

Ω
|∇v|p−2∇v · ∇ϕ dx + δ

∫
∂Ω\Γ

vϕ dσ,

b(t, v, ϕ) :=
∫

Ω
f(t) ϕ dx +

∫
∂Ω\Γ

g(t) ϕ dσ,

for any v, ϕ ∈ X, and for given u := (f, g) ∈ C(I; L2(Ω)) × C(I; L2(∂Ω)). Obviously they are linear
in ϕ. Due to p ≥ 2d

d+1 , the trace operator is bounded from W 1,p(Ω) to L2(∂Ω). Hence, with a trace
inequality, the embedding W 1,p(Ω) ↪→ L2(Ω), as well as Hölder’s and Young’s inequalities one can
show that

|r(v, ϕ)| + |b(t, v, ϕ)| ≤ c
(
1 + ∥f(t)∥L2(Ω) + ∥g(t)∥L2(∂Ω) + ∥v∥max(2,p)−1

W 1,p(Ω)

)
∥ϕ∥W 1,p(Ω), (1.41)

for any v, ϕ ∈ X and any t ∈ I. Thus, the estimate in (A2) is satisfied with exponent max(2, p).
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By linearity of r and b in ϕ and the estimate (1.41) Lipschitz continuity in ϕ follows. Continuity
in v is obvious for the linear term in r, and also holds for the nonlinear term of r for p ∈ (1, ∞). Since
b does not explicitly depend on v the corresponding properties are trivial. To verify (A2) we only have
to show dissipativity of r. Indeed, with δ ≥ 0 we have that

r(v, v) = ∥∇v∥p
Lp(Ω) + δ∥v∥2

L2(∂Ω) ≥ 0 for any v ∈ X.

Note that the nonlinearity of r in v stems from the p-Laplace structure, and the non-trivial η(z) arises
from the porous medium part of the equation.

For well-posedness to (1.35) for pq > 1 subject to homogeneous Dirichlet boundary conditions, i.e.,
Γ = ∂Ω, see [34]. For well-posedness in case Γ = ∅ see [38] for certain p, q.

Remark 1.13. Several structural assumptions on α, β in Example 1.12 and on F in Example 1.11
can be relaxed. For example, alternative monotone functions, so-called Orlicz functions can be used,
see, e.g., [12].

2. Structure-preserving time discretization

In this section we introduce the general structure-preserving time-discrete numerical scheme for port-
Hamiltonian systems of the form (1.2). All of this equally applies to the finite-dimensional case in (1.4).

In Section 2.1 we collect the tools that are used in the following. Section 2.2 introduces the time-
discrete scheme with general quadrature. Furthermore, Proposition 2.5 contains the conservation and
dissipation of the Hamiltonian at the time grid points.

2.1. Preliminaries

For a final time T > 0 and a number m ∈ N we consider the collection of time points {t0, . . . , tm}
with 0 = t0 < t1 < . . . < tm = T . They generate a partition of I := [0, T ] denoted by

Iτ := {I1, . . . , Im},

with subintervals Ii := [ti−1, ti], for i = 1, . . . , m, and we denote the length of Ii by τi := ti − ti−1 > 0.
For convenience and with slight abuse of notation, we use the maximal mesh size τ := maxi=1,...,m τi

as index for the partition Iτ .
For a Banach space X and for arbitrary i = 1, . . . , m, by Pk(Ii; X) we denote the set of polynomials

of degree at most k ∈ N0 mapping from Ii to X. Furthermore, we define the semi-discrete (in time)
function spaces of piecewise polynomial functions of degree at most k ∈ N0 with values in X as

Vk(Iτ ; X) := {z ∈ L∞(I; X) : z|Ii ∈ Pk(Ii; X) for all i ∈ {1, . . . , m}}, and
Vc

k(Iτ ; X) := Vk(Iτ ; X) ∩ C(I; X).

Quadrature

For the numerical scheme we require a quadrature rule to approximate the integrals on the intervals
Ii, for i ∈ {1, . . . , m}. For a general quadrature formula on [0, 1] with sQ ∈ N nodes, the corresponding
quadrature formulas on Ii are Qi : C(Ii) → R of the form

Qi(g) = τi

sQ∑
j=1

ωj g(ζi
j) for i ∈ {1, . . . , m}, (2.1)

349



J. Giesselmann, A. Karsai & T. Tscherpel

for some given weights ωj and nodes ζi
j ∈ Ii, i ∈ {1, . . . , m}, j = 1, . . . , sQ. For the weights we require

that

wj > 0 for any j ∈ {1, . . . , sQ} and
sQ∑

j=1
wj = 1.

L2-projection

For a Hilbert space Z the L2-projection mapping to piecewise polynomial functions in time with values
in Z is a central tool in the numerical scheme proposed in the sequel. However, we also need to apply
the projections to functions in L2(I; X) for a Banach space X. Hence, as above we assume that Z
is a separable Hilbert space identified with its dual Z ′, and that X is a reflexive Banach space with
continuous and dense embedding X ↪→ Z, see Assumption 1.1. This means that (X, Z, X ′) forms a
Gelfand triple

X ↪→ Z ∼= Z ′ ↪→ X ′,

with dense embedding Z ′ ↪→ X ′. With inner product ⟨·, ·⟩ on Z, we have in particular that

⟨v, w⟩X′,X = ⟨v, w⟩ for any v ∈ Z, w ∈ X.

From now on let k ∈ N be fixed. The L2-projection Π: L2(I; Z) → Vk−1(Iτ ; Z) is defined by∫ T

0
⟨(Πf)(t), g(t)⟩ dt =

∫ T

0
⟨f(t), g(t)⟩ dt for all g ∈ Vk−1(Iτ ; Z), (2.2)

for f ∈ L2(I; Z). Note that since the functions in Vk−1(Iτ ; Z) are discontinuous piecewise polynomials,
the L2-projection Π is local. With the local L2-projection Πi : L2(Ii; Z) → Pk−1(Ii; Z), this means that
Πf |Ii = Πi(f |Ii).

For the sake of completeness let us summarize some stability properties of Π. While the stability in
Lp(I; Z) transfers from standard results, we are not aware of any reference for stability in the Banach
space Lp(I; X), which is why we include it.

Lemma 2.1 (stability). Let k ∈ N and let the function spaces as above. Then the L2-projection Π
in (2.2) extends to Π: L1(I; Z) → Vk−1(Iτ ; Z) and maps Lp(I; X) → Vk−1(Iτ ; X) for any p > 1.

Furthermore, the following estimates are satisfied:

∥Πf∥Lp(Ii;Z) ≤ cp∥f∥Lp(Ii;Z) for any f ∈ Lp(Ii; Z), for p ∈ (1, ∞],
∥Πf∥Lp(Ii;X) ≤ cp∥f∥Lp(Ii;X) for any f ∈ Lp(Ii; X), for p ∈ (1, ∞].

for any i ∈ {1, . . . , m}. The constant cp > 0 depends only on k and on p. The corresponding estimates
hold for Ii replaced by I.

Proof. We prove the statements on a single interval Ii with Π mapping to Pk−1(Ii; Z), for arbitrary
i ∈ {1, . . . , m}, since the global estimates are a consequence thereof.
The first estimate for p = 2 follows directly by definition of Π. For general p the estimate is proved
by inverse estimates in time: Indeed, for p ≥ 2 applying an inverse estimate in combination with the
stability in L2(Ii; Z) as well as Hölder’s inequality with p

2 ≥ 1 and 2
p + p−2

p = 1 we obtain

∥Πf∥Lp(Ii;Z) ≤ cτ
1
p

− 1
2

i ∥Πf∥L2(Ii;Z) ≤ cτ
1
p

− 1
2

i ∥f∥L2(Ii;Z) ≤ c∥f∥Lp(Ii;Z).

The constant depends only on k ∈ N and on p.
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To prove the statement for 1 < p < 2, we use the fact that (Lp′(Ii; Z))′ = Lp(Ii; Z) for p > 1. We
obtain by duality and by Hölder’s inequality with 1

p + 1
p′ = 1 that

∥Πf∥Lp(Ii;Z) = sup
g∈Lp′ (Ii;Z)

∫
Ii

⟨Πf(t), g(t)⟩ dt

∥g∥Lp′ (Ii;Z)
= sup

g∈Lp′ (Ii;Z)

∫
Ii

⟨f(t), Πg(t)⟩ dt

∥g∥Lp′ (Ii;Z)

≤ ∥f∥Lp(Ii;Z) sup
g∈Lp′ (Ii;Z)

∥Πg∥Lp′ (Ii;Z)
∥g∥Lp′ (Ii;Z)

≤ c∥f∥Lp(Ii;Z).

In the last step we have used the previously proved stability of Π in Lp′(Ii; Z) with p′ ≥ 2. This
stability ensures, that Π extends to Lp(I; Z) for any p > 1.
To prove the second identity let f ∈ Lp(Ii; X) ↪→ Lp(Ii; Z) for p ∈ (1, ∞) be arbitrary. Then the linear
functional represented by Πf satisfies

ℓ(g) :=
∣∣∣∣∫

Ii

⟨Πf, g⟩ dt

∣∣∣∣ =
∣∣∣∣∫

Ii

⟨f, g⟩ dt

∣∣∣∣ ≤ ∥f∥Lp(Ii;X)∥g∥Lp′ (Ii;X′),

for any g ∈ L2(Ii; Z). Consequently, with the (dense) embedding Lp′(Ii; Z) ↪→ Lp′(Ii; X ′) the Hahn–
Banach extension theorem shows that the bounded linear functional ℓ : Pk−1(Ii; Z) → R extends to
a bounded linear functional ℓ : Pk−1(Ii; X ′) → R with the same operator norm and by density the
extension is unique. By the uniqueness of the extension and the fact that Lp(Ii; X) ⊂ Lq(Ii; X) for
p ≥ q the extension is unique and independent of p. In particular, since X is reflexive, we have that
Πf ∈ Pk−1(Ii; X) and that

∥Πf∥Lp(Ii;X) ≤ c∥f∥Lp(Ii;X),

with constant independent of Ii and f . The estimate for p = ∞ follows again by an inverse estimate.
This proves the second estimate.

2.2. Petrov–Galerkin scheme

In this section we present the structure-preserving scheme to approximate solutions to the port-
Hamiltonian system (1.2) in the setting of Assumption 1.1. It is a Petrov–Galerkin type approximation,
meaning that it uses a variational formulation with different polynomial degrees for the solution
and for the space of test functions. More specifically, it is a continuous Petrov–Galerkin method,
cf. [16, Sec. 70.1.2]. Here “continuous” refers to the fact that the trial space consists of continuous
piecewise polynomial functions in time. We introduce it in combination with some quadrature formula
Qi approximating the integral on Ii for all nonlinear terms, see (2.1).

Scheme 2.2. Find zτ ∈ Vc
k(Iτ ; X) such that zτ (0) = z0 and∫ T

0
⟨∂tzτ , ϕ⟩ dt =

m∑
i=1

Qi [j(Πη(zτ ), ϕ) − r(Πη(zτ ), ϕ) + b(·, Πη(zτ ), ϕ)] (2.3)

holds for all ϕ ∈ Vk−1(Iτ ; X).
Since the test functions are discontinuous, (2.3) can be localized in time. Indeed, we can equivalently

reformulate it as a time stepping via∫ ti

ti−1
⟨∂tzτ , ϕ⟩ dt = Qi [j(Πη(zτ ), ϕ) − r(Πη(zτ ), ϕ) + b(·, Πη(zτ ), ϕ)] , (2.4)

for all ϕ ∈ Pk−1(Ii; X) and all i = 1, . . . , m.
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Remark 2.3.

(a) The L2-projection in the term b is not essential for the properties of the scheme, and it has
no relevance in case b is state-independent. Hence, in the implementation one may choose to
include it or not.

(b) In the special case of bilinear operators j, r the L2-projection in (2.3) drops out in the sense
that j(Πη(zτ ), ϕ) = j(η(zτ ), ϕ) since ϕ ∈ Pk−1(Ii; X) and correspondingly in r (the projection
only remains in b). Therefore, the method reduces to the standard continuous Petrov–Galerkin
method in this case. In particular, for k = 1 and midpoint quadrature rule the scheme reduces
to the implicit midpoint method.

(c) Let us briefly discuss under which conditions all the terms in (2.3) are well-defined. For
this purpose we assume that a discrete solution zτ ∈ Vc

k(Iτ ; X) ⊂ C(I; X) satisfies that
η(zτ ) ∈ C(I; X). Consequently, by Lemma 2.1 we have that Πη(zτ ) ∈ Vk−1(Iτ ; X), i.e., in
particular it is piecewise continuous. The same is true for ϕ, and with continuity of j in both
arguments, it follows that j(Πη(zτ ), ϕ) is piecewise continuous in time with respect to Iτ . There-
fore, the quadrature is well-defined, and the arguments for the other terms on the right-hand
side proceed analogously. The left-hand side is well-defined thanks to ∂tzτ , ϕ ∈ Vk−1(Iτ ; X)
and the fact that X ↪→ Z.
The scheme can also be considered without the quadrature, by integrating over Ii rather
than using a quadrature Qi. Integrability of all terms follows by the above arguments, by the
estimates in Assumption 1.1(A2), and by the stability properties of Π in Lemma 2.1.

(d) For practical purposes the L2-projection has to be computed using a further quadrature formula
to approximate

∫
Ii

⟨η(zτ ), g⟩ dt for any ϕ ∈ Pk−1(Ii; Z), cf. (2.2).

Remark 2.4 (comparison of schemes). The approach extends to the more general case of z-dependent
operators, cf. Remark 1.2(d). In this case, one would want to determine zτ ∈ Vc

k(Iτ ; X) such that
zτ (0) = z0 and∫ T

0
⟨∂tzτ , ϕ⟩ dt =

m∑
i=1

Qi

[
ĵ(zτ , Πη(zτ ), ϕ) − r̂(zτ , Πη(zτ ), ϕ) + b(·, Πη(zτ ), ϕ)

]
(2.5)

holds for all ϕ ∈ Vk−1(Iτ ; X). In the special case of ĵ linear in the second argument, this reduces to
the scheme introduced for infinite-dimensional and finite-dimensional port-Hamiltonian systems in [33,
Sec. 7] with the choice ĵ(z, v, ϕ) := (J̃(z)v, ϕ).

In this case the scheme would contain the term (J̃(zτ )Πη(zτ ), ϕ). Note that the operator J̃ may be
singular, even if J̃(v)η(v) is not singular. This may cause difficulties in the scheme, since Π(η(zτ )) may
be non-zero, where zτ is zero, and similarly for R̃. Singular operators include the friction term (1.16)
for s < 2 in the quasilinear wave equation in Example 1.11 and operator R for the p-Laplace equation
for p < 2, see Example 1.12. For the scheme as in (2.5) and [33, Sec. 7] the term R̃(zτ )Πη(zτ ) =
|∇zτ |p−2Π(∇zτ ) would occur. In contrast, the corresponding term in Scheme 2.2 reads

r(Πη(zτ ), ϕ) =
∫

Ω
|∇Πzτ |p−2∇Πzτ · ∇ϕ dx,

which is monotone and well-defined also for ∇zτ = 0.

By construction, sufficiently smooth solutions to the scheme satisfy a discrete version of the energy
balance (1.8), which we refer to as energy consistency.

352



Energy-consistent time discretization of pH systems

Proposition 2.5. Solutions zτ ∈ Vc
k(Iτ ; X) to Scheme 2.2 with η(zτ ) ∈ C(I; X) satisfy

H(zτ (ti)) − H(zτ (ti−1)) = Qi [−r(Πη(zτ ), Πη(zτ )) + b(·, Πη(zτ ), Πη(zτ ))]
≤ Qi [b(·, Πη(zτ ), Πη(zτ ))] ,

(2.6)

for all i = 1, . . . , m.

Proof. Let i ∈ {1, . . . , m} be arbitrary and let zτ ∈ Vc
k(Iτ ; X) with η(zτ ) ∈ C(I; X) be a solution to

Scheme 2.2. Then, we have in particular ∂tzτ ∈ Vk−1(Iτ ; X) ⊂ L∞(I; X). Since Π is the L2-orthogonal
projection to Vk−1(Iτ ; Z) using (2.4) we find that

H(zτ (ti)) − H(zτ (ti−1)) =
∫ ti

ti−1

d
dt

H(zτ ) dt =
∫ ti

ti−1
⟨H′(zτ ), ∂tzτ ⟩ dt

=
∫ ti

ti−1
⟨η(zτ ), ∂tzτ ⟩ dt =

∫ ti

ti−1
⟨Πη(zτ ), ∂tzτ ⟩ dt

= Qi [j(Πη(zτ ), Πη(zτ )) − r(Πη(zτ ), Πη(zτ )) + b(·, Πη(zτ ), Πη(zτ ))] .

Employing the conservation property of j and the dissipative nature of r due to Assumption 1.1(A2),
pointwise at the quadrature nodes, yields

H(zτ (ti)) − H(zτ (ti−1)) = Qi [−r(Πη(zτ ), Πη(zτ )) + b(·, Πη(zτ ), Πη(zτ ))]
≤ Qi [b(·, η(zτ ), Πη(zτ ))] ,

which proves the claim.

Remark 2.6.

(a) For finite-dimensional port-Hamiltonian systems of the form (1.4) the discrete energy balance
reduces to

H(zτ (ti)) − H(zτ (ti−1)) = Qi [−⟨R(Πη(zτ )), Πη(zτ )⟩ + ⟨B(·, Πη(zτ )), Πη(zτ )⟩]
≤ Qi [⟨B(·, Πη(zτ )), Πη(zτ )⟩] ,

and the discrete output can be defined from this.

(b) Note that for the special case of a Hamiltonian system, i.e., with r ≡ b ≡ 0, the Hamiltonian
is exactly conserved by our scheme. This is a stronger property than, e.g., the one achieved
in [31] for general Hamiltonian functions. There, the estimate is satisfied only asymptotically
for τ → 0.

(c) Proposition 2.5 makes a statement for H(zτ (t)) for t = ti, but not for arbitrary time points.
In case r is coercive in all components, boundedness of H(zτ (t)) can be obtained for any
t ∈ (ti−1, ti) using methods presented in [10]. Since those arguments are available only for
coercive r we refrain from presenting the details.

(d) For the scheme in Remark 2.4 a corresponding discrete energy balance is available.

Remark 2.7 (structure preserving space discretization). Our approach to achieve an energy-consistent
time discretization is closely related to a structure-preserving space discretization for infinite-
dimensional systems (1.2), see Section 3.4 below. With this approach the discrete system is a finite
dimensional port-Hamiltonian system of form (1.4).
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3. Numerical experiments

To showcase the performance of our cPG scheme presented in Section 2.2 we test it on some of the
examples in Section 1.4. This includes finite-dimensional port-Hamiltonian systems as well as space-
discrete versions of infinite-dimensional ones. For polynomial degree k ∈ N in Scheme 2.2 we use
Gauß quadrature with sQ ∈ N nodes for Qi and Gauß quadrature with sΠ ∈ N nodes to approximate
Π(η(zτ )), cf. (2.4). We numerically investigate the impact of the choice of sQ and sΠ on convergence
and energy consistency.

We observe optimal rates τk+1 for sufficiently smooth solutions, as for the standard cPG method,
cf. [4], provided that sQ, sΠ ≥ k. This means that the use of the L2-projection does not affect the
convergence order and neither does its approximation by means of quadrature of sufficiently high
order. Furthermore, under the same conditions we observe superconvergence of order τ2k at the time
grid points, as expected from [4].

To investigate the energy consistency recall that the property in Proposition 2.5 is proved with
quadrature Qi, but without use of quadrature for computing Πη(zτ ). Consequently, this property is
independent of the choice of sQ, but the effect of the choice of sΠ on the energy consistency has to be
addressed. In the examples under consideration we find that using quadrature on the L2-projection
energy consistency is not satisfied exactly unless η is polynomial, and sΠ is chosen such that exactness
is ensured. However, for sΠ sufficiently large the relative error is close to machine precision.

In Section 3.4 we summarize a structure preserving space discretization, similar to the one in [27, 28],
and [33, Sec. 7.2].

3.1. Implementation details

For finite-dimensional and space-discrete port-Hamiltonian systems we consider examples of (1.4)
with X = Z = Rδ, where δ ∈ N is the dimension of the system, i.e., in the latter case the number of
degrees of freedom of the space discretization. To such systems we apply Scheme 2.2. Since it localizes
as described above, in each time step one has to solve for zτ |Ii with imposed value for zτ (ti−1). For
example, zτ can be expanded in the L2-normalized Legendre polynomials forming a basis of Pk(Ii).
Note that for sΠ = k quadrature nodes and if η = Id, then the integrals in the L2-projection are
evaluated exactly.

In each time step a nonlinear system of equations has to be solved, for which we use Newton’s
method. The derivatives required in Newton’s method are computed symbolically using JAX [5]. In
the first time step the constant one vector is used as starting value for the Newton iteration, and in
subsequent time steps the numerical solution of the previous time step is used. We have not encountered
any issues regarding convergence of the Newton iteration in any of the computations.

To study the convergence of the scheme we employ manufactured solutions. This means that for a
function z and a system determined by J, R, η and B we compute B and z0 such that

∂tz = J(η(z)) − R(η(z)) + B(·, η(z)) (3.1)

subject to z(0) = z0 is satisfied. This system is again of the form (1.4) and its exact solution z is
available.

In the following we approximate the L∞-norm of the error z − zτ by evaluation on a time grid
Tfine := {iτfine : i ∈ {0, . . . , 38913}} with time step size τfine ≈ 1.29 · 10−4. The corresponding relative
error is denoted by

E := maxt∈Tfine ∥zτ (t) − z(t)∥
maxt∈Tfine ∥z(t)∥ . (3.2)
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Furthermore, we evaluate the error at the time grid points to investigate nodal superconvergence

Eτ :=
maxt∈{t0,t1,...,tm} ∥zτ (t) − z(t)∥

maxt∈{t0,t1,...,tm} ∥z(t)∥ . (3.3)

To verify the proposed energy consistency of the method we compute the quantity

E(zτ ; ti) := |H(zτ (ti)) − H(zτ (ti−1)) − Qi[−r(Π̃η(zτ ), Π̃η(zτ )) + b(·, Π̃η(zτ ), Π̃η(zτ ))]|
maxj=1,...,m |H(zτ (tj)) − H(zτ (tj−1))| , (3.4)

where Π̃ denotes the approximation of the L2-projection obtained by using quadrature. This represents
a measure for the error in the energy balance in (2.6).

3.2. Toda lattice

To approximate solutions to Example 1.9 we use N = 5, γi = 0.1 for i = 1, . . . , N and we numerically
approximate the discrete solutions on the time interval [0, T ] = [0, 5] with control input u(t) = sin(2t).

To investigate convergence we choose the manufactured solution
qi(t) = sin(t) and pi(t) = cos(t), i = 1, . . . , N

and we compute the corresponding term B and z0 in (3.1). In order to approximate the error between
the approximate solution zτ and the exact solution z in L∞(I) we evaluated the difference z − zτ

on a time grid with step size τfine ≈ 1.29 · 10−4. Figure 3.1a shows the convergence for polynomial
degrees k ∈ {1, 2, 3, 4} using Gauß quadrature with sQ = sΠ = k quadrature nodes. Evidently, our
method achieves the optimal convergence rate τk+1. Figure 3.2a uses the same settings, but computes
the errors only at the time grid points t0, . . . , tm. Here, we observe convergence rate τ2k, i.e., our
method exhibits nodal superconvergence.

To verify that sQ = sΠ = k is the best choice for convergence Figure 3.1b shows the convergence
plot for polynomial degree k = 3 = sΠ and Gauß quadrature rules Qi with varying sQ. Indeed, as
expected the results illustrate that higher order quadrature rules do not improve the convergence
order and lower order quadrature rules reduce it. Similarly, we investigate the effect of the choice of
the quadrature used to compute the L2-projection. For polynomial degree k = 3 = sQ, different Gauß
quadrature rules with sΠ nodes are employed for the approximation of the projection Πη(zτ ). The
results in Figure 3.1c demonstrate that using quadrature rules with order of exactness higher than
2k − 1 does not improve the convergence, whereas quadrature rules with lower exactness degree lead
to a reduced convergence order. Since in this example η is nonlinear, this is a meaningful case to test
the impact of the quadrature rule used in the computation of the L2-projection.

Finally, we visualize the energy consistency property of our scheme by considering (1.11) for the
function u(t) = sin(2t) and z0 = 0. In Figure 3.2b the quantity E(zτ ; ti) in (3.4), which is related to the
relative error in the energy balance (2.6), is plotted for τ = 10−2 and several polynomial degrees k ∈
{1, 2, 3, 4}, sQ = k and several numbers of Gauß quadrature nodes sΠ in the projection Πη(zτ ) over ti.
The experiment shows that our method satisfies the energy balance close to machine precision, provided
that sΠ is sufficiently large. More specifically, one can observe that sΠ ≥ max(k, 3) yields satisfactory
energy consistency.

3.3. Spinning rigid body

Let us consider Example 1.10 for given Q and B with Ii = i and bi = 1 for i = 1, . . . , 3 and for control
input u(t) = sin(2t) on the time interval [0, T ] = [0, 5]. Note that there is no dissipation since R ≡ 0.
We compute the numerical solution zτ with Scheme 2.2 for several time steps τ using Gauß quadrature
with sQ = k quadrature nodes for Qi and sΠ = k nodes for the approximation of Πη(zτ ). Since the
Hamiltonian H is quadratic in this example, and hence η is linear, this means that the computation of
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Figure 3.1. Convergence in τ for the Toda lattice (1.11) for several polynomial degrees
k and several values of sQ and sΠ.

10−3 10−2 10−1
τ

10−13

10−8

10−3

E
τ

k = 1
τ 2

k = 2
τ 4

k = 3
τ 6

k = 4
τ 8

(a) nodal superconvergence for
several k = sQ = sΠ

0 2 4
time

10−14

10−10

10−6

E(
z τ

;t
i)

k = 1, sΠ = 1
k = 1, sΠ = 2
k = 2, sΠ = 2
k = 2, sΠ = 3
k = 3, sΠ = 3
k = 4, sΠ = 4

(b) relative energy error (3.4),
τ = 10−2, for several k = sQ and sΠ

Figure 3.2. Nodal superconvergence in τ and relative error in the energy balance for
the Toda lattice (1.11) for several polynomial degrees k and several values of sQ and
sΠ.

the L2-projection is exact when using sΠ = k. Hence, by Proposition 2.5 the energy at the time grid
points is exactly preserved.

As manufactured solution we choose s = (p1, p2, p3)T with
p1(t) = sin(t), p2(t) = sin(2t) cos(t)2 + 0.5, and p3(t) = cos(t).

To investigate the convergence we approximate the L∞(I)-norm of the error by E as in (3.2) on a finer
time mesh with τfine ≈ 1.29 · 10−4 and Eτ as defined in (3.3). Figure 3.3a shows the convergence for
polynomial degrees k ∈ {1, 2, 3, 4} and sQ = sΠ = k. Again, we observe optimal convergence rate τk+1.
Figure 3.3b uses the same parameters, but displays the errors Eτ at the time grid points t0, . . . , tm

only. As before, our method exhibits nodal superconvergence with convergence rate τ2k.
Again, we visualize the energy consistency of our scheme by considering (1.13) for Q, B and u as

above and z0 = (0, 0.5, 1)T. In Figure 3.3c the quantity E(zτ ; ti) as defined in (3.4) is plotted over ti, for
τ = 10−2 and several polynomial degrees k ∈ {1, 2, 3, 4}, sQ = k and sΠ = k Gauß quadrature nodes
in the projection Πη(zτ ). The experiment shows that the energy balance is satisfied up to machine
precision as expected.

Note that since J is quadratic in η(z), cf. (1.14), it is possible to choose the quadrature Qi in a way
that the integration is exact. For this purpose it suffices to choose sQ ≥ 3

2k − 1.

3.4. Space discretization

Even though the discretization in space is not the primary focus of this work let us present a simple
approach that yields a discrete Hamiltonian structure and that is closely linked to our approach for
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Figure 3.3. Convergence (3.3a), nodal superconvergence (3.3b) in τ and relative error
in the energy balance (3.3c) for the rigid spinning body (1.13) for several polynomial
degrees k and sQ = sΠ = k.

the time discretization, see also [27, 28]. We start from a port-Hamiltonian system of the form (1.2)
for z : I → X with X a Banach space on a domain Ω. We assume that Xh ⊂ X is a finite dimensional
subspace with a fixed basis with suitable approximation properties. This means that each zh ∈ Xh

is determined by its coefficient vector wh ∈ Rdim Xh in this basis and by Ih we denote the canonical
interpolation operator with Ih(wh) = zh. Furthermore, by ch we denote the mapping zh 7→ ch(zh) := wh

of a function in Xh to its coefficients in the chosen basis.

Space-discrete port-Hamiltonian structure

To introduce the (space)-discrete Hamiltonian structure an orthogonal projection is instrumental
again. Recalling that Xh ⊂ X ↪→ Z for a Hilbert space Z, let Πh : Z → Xh be the Z-orthogonal
projection. Now, let us define the discrete Hamiltonian Hh : Rdim Xh → R by

Hh(wh) := H(Ihwh).

Then, by linearity of Ih and the projection property of Πh the corresponding ηh with ηh = H′
h can be

computed for vh, wh ∈ Rdim Xh , as
d
ds

Hh(wh + svh)
∣∣
s=0 = d

ds
H(Ih(wh) + sIh(vh))|s=0 = ⟨H′(Ih(wh)), Ih(vh)⟩

= ⟨η(Ih(wh)), Ih(vh)⟩ = ⟨Πhη(Ih(wh)), Ih(vh)⟩
= ⟨Mhch(Πhη(Ih(wh))), vh⟩ =: ⟨ηh(wh), vh⟩.

Here Mh is the corresponding mass matrix of the basis of Xh with respect to the inner product of
Z. Note that this fully determines ηh : Rdim Xh → Rdim Xh . This motivates the following space-discrete
scheme

⟨∂tzh, ϕh⟩ = j(Πhη(zh), ϕh) − r(Πhη(zh), ϕh) + b(·, Πhη(zh), ϕh) for all ϕh ∈ Xh, (3.5a)
zh(0) = Πh(z0). (3.5b)

This still has the form (1.2) replacing j(η(zh), ϕh) by j(Πhη(zh), ϕh) = j(Πhη(zh), Πhϕh), and hence
the property (A2i) is preserved. For this reason, by the arguments above or by direct calculation
energy consistency is available for any space-discrete solution zh as

H(zh)(t) − H(zh)(t0) =
∫ t

t0
−r(Πhη(zh), Πhη(zh)) + b(·, Πhη(zh), Πhη(zh)) ds

≤
∫ t

t0
b(·, Πhη(zh), Πhη(zh)) ds for any t, t0 ∈ I,

(3.6)
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compare with Proposition 2.5. This concludes the discussion on the level of discrete function spaces.
Below we also detail the structure on the level of coefficient vectors, since this is crucial for the
implementation of our method.

Details of the implementation

Both the system (3.5) as well as the energy consistency can be formulated in the coefficient vectors
wh with zh = Ih(wh), or ch(zh) = wh. Provided that j, r and b are linear in the last argument, the
resulting system has the form (1.4). Indeed, under these conditions we may identify the operators J ,
R : Rdim Xh → Rdim Xh and B : I × Rdim Xh × Rdim Xh → Rdim Xh by

⟨J(vh), φh⟩ := j(Ih(vh), Ih(φh)), ⟨R(vh), φh⟩ := r(Ih(vh), Ih(φh)), and
⟨B(t, vh), φh⟩ := b(t, Ih(vh), Ih(φh)),

for all vh, φh ∈ Rdim Xh . With Mh the mass matrix of the basis of Xh in the inner product of Z the
system reduces to

Mh∂twh = J(ch(Πhη(Ih(wh)))) − R(ch(Πhη(Ih(wh)))) + B(·, ch(Πhη(Ih(wh)))), (3.7a)
wh(0) = ch(Πhz0). (3.7b)

Noting that Mh is regular, symmetric and positive definite, and setting J(wh) = M−1
h J(M−1

h wh), and
similarly for the other operators, and choosing ηh(wh) = Mhch(Πhη(Ihwh)) as above, system (3.7) has
the form (1.4) with Hamiltonian Hh(wh) = H(Ihwh). In particular, Assumption 1.5 is satisfied, and
the discretization preserves the Hamiltonian structure.

In all examples discussed below the Hilbert space Z is L2(Ω) or a vector-valued version thereof,
and the forms j, r, b are linear in the last argument. Note that we do not address well-posedness of the
fully discrete problem here, since this would require more structure.

Similarly as before, we approximate the L∞(I;Rδ)-norm of the error wh − whτ with weighted
Euclidean norm on Rδ (this is equivalent to the L∞(I; L2(Ω))-norm of zh − zhτ ), by evaluation on a
time grid Tfine := {iτfine : i ∈ {0, . . . , 38913}} with time step size τfine ≈ 1.29 · 10−4, and additionally
we consider the error at the time grid points. This means that we work with the relative errors

E := maxt∈Tfine ∥whτ (t) − wh(t)∥
maxt∈Tfine ∥wh(t)∥ and Eτ :=

maxt∈{t0,t1,...,tm} ∥whτ (t) − wh(t)∥
maxt∈{t0,t1,...,tm} ∥wh(t)∥ . (3.8)

3.5. Quasilinear wave equation

We consider Example 1.11 on Q = I × Ω for the one dimensional domain Ω = [0, ℓ] = [0, 10] and for
the time interval I = [0, T ] = [0, 5], for constants ν, γ ≥ 0, the pressure law p(ρ) = ρ + ρ3, and the
friction term

F (v) = sign(v)
√

|v| = |v|−1/2v. (3.9)

This corresponds to (1.16) with s = 3/2, and |v|−1/2 is singular. System (1.15) is supplemented with
the boundary conditions

p(ρ(t, 0)) − ν∂xv(t, 0) = g0(t) and p(ρ(t, ℓ)) − ν∂xv(t, ℓ) = gℓ(t),
for some g0, gℓ ∈ C(I), cf. (1.21), (1.29) with Γ = ∅. Recall also, that

η(z) =
(

p(ρ)
v

)
for z =

(
ρ
v

)
.

We employ the space discretization as described in Section 3.4 with piecewise constant functions for
ρ and continuous piecewise linear functions for v to obtain a semi-discretization of (1.15) in space.
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We choose the Lagrange basis functions and the corresponding Lagrange interpolation. When using
N equidistant inner grid points in Ω = [0, ℓ] with h = ℓ/(N + 1) the numerical approximation
zh = (ρh, vh)T is represented by the coefficient vector wh = (wh,1, wh,2)T : I → R2N+3. Then, the
method has the form (3.5) with operators j, r as specified in (1.24), (1.25) and with u = (g0, gℓ)

T

defining b as in (1.26) or (1.34), respectively. Note that we solve for the coefficients wh and hence we
use the corresponding formulation of the method, cf. (3.7). In the following we use N = 9 interior
discretization points, i.e., the space discretization is based on 10 subintervals of equidistant length
h = 1, and hence the system of form (3.5) has dimension δ = 21.

For the time discretization for some m ∈ N we consider the time grid points t0, . . . , tm with τ = T/m
and ti = iτ for any i ∈ {0, . . . , m}. As parameters we choose γ = 0.1 and ν ∈ {0, 1}. The approximate
solutions zhτ are obtained by applying Scheme 2.2 to the semi-discrete system of form (3.5), and
analogously whτ results from applying Scheme 2.2 to (3.7).

With pressure law p(ρ) = ρ + ρ3 it follows that p(zhτ ) ∈ Vc
3k(Iτ ;Rδ) for zhτ ∈ Vc

k(Iτ ;Rδ). Thus, the
integrals in the computation of Πη(z) are exact if sΠ = 2k nodes are used in the Gauß quadrature,
which is used in the following. Furthermore, as before Gauß quadrature with sQ = k nodes is used for
the quadrature Qi in (2.4).

For the convergence analysis we use a manufactured solution. We choose the space interval midpoint
values, and the space grid point values, respectively, of the functions

ρ(t, x) := v(t, x) := sin(t) sin(x),

as wh = (wh,1, wh,2)T. As defined in (3.8) we consider the error terms comparing wh and whτ . I.e.,
we only investigate the error due to the time discretization, and not the one arising by the space
discretization. Figures 3.4a and 3.4b show convergence of E in τ for fixed space discretization with
h = 1 for polynomial degrees k ∈ {2, 4, 6}, for sQ = k, for ν = 0 and for ν = 1, respectively. We
observe optimal convergence rate τk+1 independently of the viscosity ν = 0 and ν = 1. Also in the
subsequent numerical experiments there is no difference between ν = 0 and ν = 1, which is why we
omit the case ν = 0 in the following. Note that the manufactured solution satisfies that v(t, ·) = 0
for any t ∈ {π, 2π, . . .}. Seemingly this does not cause any difficulties with the friction term, which
exemplifies that indeed our method can handle such situations, cf. Remark 2.4. In Figure 3.4c the
same parameters and settings are used, to investigate nodal superconvergence. As before, we observe
that the convergence rate is τ2k in this case.

In Figure 3.5a convergence in τ is shown for k = 4 = sQ, and sΠ = 2k and several spatial mesh
sizes h ∈ {10

9 , 10
17 , 10

33 , 10
65} for ν = 1. We observe that the convergence order in τ and also the error is

independent of the spatial mesh size.
To verify the energy consistency, we move away from the manufactured solutions. As boundary data

we use

g0(t) = gℓ(t) = 2 − sin(t)

and as initial data for wh = (wh,1, wh,2)T we use the corresponding point evaluations of the functions

ρ(0, x) = 1 + 1
2 sin

(
πx

ℓ

)
and v(0, x) =

(4x

ℓ
− 2

)3
.

In Figure 3.5b the relative errors in the energy balance E as defined in (3.4) for the space discrete
Hamiltonian Hh with h = 1 is depicted for ν = 1 and τ = 10−2.

As before, we compare several polynomial degrees k ∈ {1, 2, 3, 4}, with sQ = k and sΠ = 2k and
observe that our method satisfies the energy balance up to machine precision. This is expected because
the integration to compute Π is exact.
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(a) convergence (ν = 0)
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(b) convergence (ν = 1)
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(c) nodal superconvergence (ν = 1)

Figure 3.4. Convergence (3.4a) (3.4b) and nodal superconvergence (3.4c) in τ for
several polynomial degrees k, sQ = k and sΠ = 2k for the space-discrete quasilinear
wave equation with fixed mesh size h = 1 and ν ∈ {0, 1}.

10−3 10−2 10−1
τ

10−13

10−8

10−3

E

8 spatial grid points
16 spatial grid points
32 spatial grid points
64 spatial grid points
τ 5

(a) convergence for k = 4 = sQ,
sΠ = 2k, for several fixed h

0 2 4
time

10−14

10−10

10−6

E(
w

h
τ
;t

i)

k = 1, sΠ = 2
k = 2, sΠ = 4
k = 3, sΠ = 6
k = 4, sΠ = 8

(b) relative energy error (3.4) for
τ = 10−2, h = 1 for several k = sQ

and sΠ = 2k

Figure 3.5. Convergence in τ for several space-discretization parameters h (3.5a) and
relative error in the energy balance with Hamiltonian Hh (3.5b) for the space-discrete
quasilinear wave equation for ν = 1.

3.6. Porous medium equation

We consider the porous medium equation (1.37) in Example 1.12 with β(s) = s (corresponding to
p = 2) and

η(z) = α−1(z) = |z|q−1z + εz (3.10)
for some q > 1 and regularization parameter ε > 0. This results in the regularized porous medium
equation

∂tz − ∆(α−1(z)) = ∂tz − div
(
(q|z|q−1 + ε)∇z

)
= 0. (3.11)

We consider a one dimensional domain Ω = [0, ℓ] = [0, 15] and the time interval I = [0, T ] = [0, 5].
We employ the space discretization scheme as described in Section 3.4 with continuous piecewise

linear functions for z. When using N equidistant inner grid points in Ω = [0, ℓ] with h = ℓ/(N +1) the
numerical approximation zh is represented by the coefficient vector wh : I → RN+2. In the following
we use N = 14 interior discretization points, i.e., we have 15 subintervals of equidistant length h = 1.
This results in a system of form (3.5) of dimension δ = 16.

For the time discretization of I = [0, T ] with time step size τ > 0 we consider the time grid points
ti = iτ for i ∈ {0, . . . , m} with τ = T/m for m ∈ N.

As parameters we choose q ∈ {1.5, 2, 3} and ε ∈ {10−10, 10−8}. The approximate solutions are
obtained by applying Scheme 2.2 to the semi-discrete system of form (3.5), or rather the corresponding
system for whτ .
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Table 3.1. Convergence in τ for several polynomial degrees k, for sQ = k, and
sΠ = 2k, for the space-discrete (fixed mesh size h = 1) regularized (ε = 10−10) porous
medium equation for q = 1.5.

(a) Comparison of space-interpolant of zB (ε = 0)
and ε-dependent fully discrete solution

τ
k = 2 k = 4

error E EOC error E EOC
2.50 · 10−01 3.70 · 10−04 - 1.19 · 10−04 -
1.28 · 10−01 1.72 · 10−04 1.15 3.70 · 10−05 1.75
6.49 · 10−02 1.22 · 10−05 3.89 6.90 · 10−06 2.47
3.27 · 10−02 6.29 · 10−06 0.97 1.67 · 10−06 2.06
1.64 · 10−02 2.45 · 10−06 1.37 1.17 · 10−06 0.52
8.21 · 10−03 4.71 · 10−07 2.38 2.04 · 10−07 2.53
4.11 · 10−03 1.27 · 10−07 1.89 4.55 · 10−08 2.16
2.06 · 10−03 3.77 · 10−08 1.76 6.80 · 10−09 2.74
1.03 · 10−03 8.71 · 10−09 2.11 1.19 · 10−09 2.51

� 1.94 � 2.09

(b) Comparison of space-interpolant of zs and fully
discrete solution (both ε-dependent)

τ
k = 2 k = 4

error E EOC error E EOC
2.50 · 10−01 3.36 · 10−04 - 8.51 · 10−05 -
1.28 · 10−01 6.23 · 10−05 2.52 1.63 · 10−05 2.47
6.49 · 10−02 2.40 · 10−05 1.41 1.09 · 10−05 0.59
3.27 · 10−02 7.27 · 10−06 1.74 1.54 · 10−06 2.85
1.64 · 10−02 7.06 · 10−07 3.38 1.16 · 10−07 3.75
8.21 · 10−03 3.22 · 10−08 4.47 3.41 · 10−09 5.10
4.11 · 10−03 7.92 · 10−09 2.02 5.98 · 10−10 2.52
2.06 · 10−03 2.03 · 10−09 1.96 4.78 · 10−10 0.32
1.03 · 10−03 7.31 · 10−10 1.48 1.30 · 10−10 1.88

� 2.37 � 2.44

For q = 3 the integrals in the computation of Πη(z) are exact if sΠ = 2k nodes are used in the Gauß
quadrature, which is usedin all experiments. Furthermore, as before Gauß quadrature with sQ = k
nodes is used for the quadrature Qi in (2.4).

For the convergence analysis, we work with a smooth manufactured solution zs. Additionally we test
our method for the Barenblatt solution zB, which is an explicit non-smooth solution to equation (3.11)
without regularization, i.e., for ε = 0. For the first test case we consider zh to be the continuous,
piecewise affine interpolant of the smooth function

zs(t, x) = cos(t) sin(x)
at the space grid points and we determine the corresponding right-hand side such that zh is the exact
solution to the space-discrete regularized porous medium equation (3.11) with ε > 0. This means that
for fixed regularization parameter ε > 0 we compare the space-discrete solution to the fully discrete
solution, or rather we compare their coefficient vectors. For the latter test case, we consider the 1D
Barenblatt solution, see, e.g., [40, Sec. 1.2.2], which reads

zB(t, x) = (t + 1)− 1
q+1 max

0, 1 − q − 1
2q(q + 1)

(x − ℓ
2)2

(t + 1)
2

q+1

 1
q−1

.

In this case zh is the continuous piecewise affine interpolant of zB, and wh is the corresponding
coefficient vector. We compare this interpolation of the Barenblatt solution (which can be expected
to be close to the solution to the space-discrete equation for ε = 0) and the numerical solution to the
fully-discrete method for the regularized porous medium equation depending on ε. Hence, both the
time-discretization and the regularization as well as the (fixed) space discretization affect the error.
As before, we compute the errors E and Eτ , as in (3.8).

To investigate the convergence order in τ for fixed space discretization, we compute the estimated
order of convergence (eoc) of the errors. For a sequence of (τj)j and errors (ej)j it is defined by

eocj :=
log

(
ej

ej−1

)
log

(
τj

τj−1

) , for j ∈ N. (3.12)

We compute the eoc for errors above the threshold 10−14 and of all those we also compute the
arithmetic mean, see Tables 3.1–3.7.

361



J. Giesselmann, A. Karsai & T. Tscherpel

Table 3.2. Convergence in τ for several polynomial degrees k, for sQ = k, and
sΠ = 2k, for the space-discrete (fixed mesh size h = 1) regularized (ε = 10−8) porous
medium equation for q = 1.5.

(a) zB

τ
k = 2 k = 4

error E EOC error E EOC
2.50 · 10−01 3.70 · 10−04 - 1.19 · 10−04 -
1.28 · 10−01 1.72 · 10−04 1.15 3.70 · 10−05 1.75
6.49 · 10−02 1.22 · 10−05 3.89 6.90 · 10−06 2.47
3.27 · 10−02 6.29 · 10−06 0.97 1.67 · 10−06 2.06
1.64 · 10−02 2.45 · 10−06 1.37 1.17 · 10−06 0.52
8.21 · 10−03 4.71 · 10−07 2.38 2.04 · 10−07 2.53
4.11 · 10−03 1.27 · 10−07 1.89 4.55 · 10−08 2.16
2.06 · 10−03 3.77 · 10−08 1.76 6.80 · 10−09 2.74
1.03 · 10−03 8.71 · 10−09 2.11 1.19 · 10−09 2.51

� 1.94 � 2.09

(b) zs

τ
k = 2 k = 4

error E EOC error E EOC
2.50 · 10−01 3.36 · 10−04 - 8.51 · 10−05 -
1.28 · 10−01 6.23 · 10−05 2.52 1.63 · 10−05 2.47
6.49 · 10−02 2.40 · 10−05 1.41 1.09 · 10−05 0.59
3.27 · 10−02 7.27 · 10−06 1.74 1.54 · 10−06 2.85
1.64 · 10−02 7.06 · 10−07 3.38 1.16 · 10−07 3.75
8.21 · 10−03 3.22 · 10−08 4.47 3.41 · 10−09 5.10
4.11 · 10−03 7.92 · 10−09 2.02 5.98 · 10−10 2.52
2.06 · 10−03 2.03 · 10−09 1.96 4.78 · 10−10 0.32
1.03 · 10−03 7.31 · 10−10 1.48 1.30 · 10−10 1.88

� 2.37 � 2.44

Table 3.3. Convergence in τ for several polynomial degrees k, for sQ = k, and
sΠ = 2k, for the space-discrete (fixed mesh size h = 1) regularized (ε = 10−10) porous
medium equation for q = 2.

(a) zB

τ
k = 2 k = 4

error E EOC error E EOC
2.50 · 10−01 1.48 · 10−02 - 8.52 · 10−03 -
1.28 · 10−01 1.79 · 10−02 - 4.35 · 10−03 1.01
6.49 · 10−02 2.00 · 10−03 3.22 1.37 · 10−03 1.69
3.27 · 10−02 2.17 · 10−03 - 6.96 · 10−04 0.99
1.64 · 10−02 6.96 · 10−04 1.65 6.48 · 10−04 0.10
8.21 · 10−03 6.96 · 10−04 - 1.14 · 10−04 2.52
4.11 · 10−03 2.70 · 10−04 1.37 2.87 · 10−04 -
2.06 · 10−03 2.51 · 10−04 0.10 1.08 · 10−04 1.41
1.03 · 10−03 5.63 · 10−05 2.16 3.04 · 10−05 1.83

� 1.01 � 1.03

(b) zs

τ
k = 2 k = 4

error E EOC error E EOC
2.50 · 10−01 1.51 · 10−04 - 2.03 · 10−05 -
1.28 · 10−01 3.94 · 10−05 2.01 4.94 · 10−06 2.12
6.49 · 10−02 7.25 · 10−06 2.49 1.85 · 10−06 1.44
3.27 · 10−02 1.44 · 10−06 2.36 1.74 · 10−07 3.45
1.64 · 10−02 1.48 · 10−07 3.29 1.40 · 10−08 3.65
8.21 · 10−03 4.46 · 10−09 5.07 1.02 · 10−11 10.45
4.11 · 10−03 5.57 · 10−10 3.00 3.16 · 10−11 -
2.06 · 10−03 7.33 · 10−11 2.93 1.39 · 10−11 1.19
1.03 · 10−03 2.95 · 10−11 1.31 3.40 · 10−12 2.03

� 2.81 � 2.84

Tables 3.1 and 3.2 show the error E for q = 1.5, for polynomial degrees k ∈ {2, 4} and for sQ = k,
sΠ = 2k, for the solutions zB and zs, each, and for regularization parameters ε = 10−10 and ε = 10−8,
respectively. Evidently, the choice of the regularization parameter does not have any effect, since both
tables show the same results. For this reason we shall refrain from presenting the results for both
choices in the following, and we only include the results for ε = 10−10. The same parameters and
settings (ε = 10−10) are used for q = 2 in Table 3.3 and for q = 3 in Table 3.4. We observe for the
Barenblatt solution zB that the convergence order in τ is reduced for both k = 2 and k = 4, and it is
the smaller, the larger q is, see the average values in Tables 3.1a, 3.3a and 3.4a. This can indeed be
expected due to the lack of higher regularity of the Barenblatt solution. More precisely, solutions to
the porous medium equation have less regularity in time the larger q is, see [19]. On the other hand,
for the smooth solution zs higher convergence order can be observed, see Tables 3.1b, 3.3b and 3.4b.
However, the optimal rate τk+1 is only obtained for q = 3. This can be expected since η is smooth for
q = 3, but only C1 for q ∈ {1.5, 2}.
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Table 3.4. Convergence in τ for several polynomial degrees k, for sQ = k, and
sΠ = 2k, for the space-discrete (fixed mesh size h = 1) regularized (ε = 10−10) porous
medium equation for q = 3.

(a) zB

τ
k = 2 k = 4

error E EOC error E EOC
2.50 · 10−01 1.17 · 10−01 - 5.37 · 10−02 -
1.28 · 10−01 8.66 · 10−02 0.44 2.09 · 10−01 -
6.49 · 10−02 1.78 · 10−02 2.33 6.50 · 10−02 1.72
3.27 · 10−02 4.42 · 10−02 - 2.37 · 10−02 1.47
1.64 · 10−02 2.14 · 10−02 1.05 1.38 · 10−02 0.78
8.21 · 10−03 1.19 · 10−02 0.84 1.89 · 10−02 -
4.11 · 10−03 2.20 · 10−02 - 5.36 · 10−03 1.82
2.06 · 10−03 6.86 · 10−03 1.68 8.24 · 10−03 -
1.03 · 10−03 6.51 · 10−03 0.08 5.62 · 10−03 0.55

� 0.53 � 0.40

(b) zs

τ
k = 2 k = 4

error E EOC error E EOC
2.50 · 10−01 1.89 · 10−04 - 1.26 · 10−07 -
1.28 · 10−01 2.01 · 10−05 3.36 2.06 · 10−09 6.16
6.49 · 10−02 2.37 · 10−06 3.14 3.72 · 10−11 5.90
3.27 · 10−02 2.90 · 10−07 3.06 1.00 · 10−12 5.27
1.64 · 10−02 3.60 · 10−08 3.03 3.06 · 10−14 5.06
8.21 · 10−03 4.47 · 10−09 3.01 2.62 · 10−15 3.55
4.11 · 10−03 5.58 · 10−10 3.01 2.49 · 10−15 -
2.06 · 10−03 6.90 · 10−11 3.02 2.91 · 10−15 -
1.03 · 10−03 8.49 · 10−12 3.02 5.10 · 10−15 -

� 3.08 � 5.19

In Tables 3.5–3.7 we investigate nodal superconvergence for q ∈ {1.5, 2, 3} and ε = 10−10. As before,
we observe that the convergence rate is τ2k only for q = 3 for the smooth solution zs and that the
convergence order is smaller for all other cases.

In Figure 3.6 and Figure 3.7 convergence is shown for several spatial mesh sizes h ∈ {15
9 , 15

17 , 15
33 , 15

65},
for zB and zs, respectively. Here we have chosen k = 4 = sQ, sΠ = 2k = 8, ε = 10−10 and all cases
q ∈ {1.5, 2, 3} are presented. We observe that the error does not increase when the number of inner
grid points is increased.

To verify the energy consistency, in Figure 3.8 and 3.9 the relative errors in the energy balance
as defined in (3.4) for Hh for discretization parameter h = 1, for q ∈ {1.5, 2, 3} and regularization
parameter ε = 10−10 and time step τ = 10−2 is presented. Here we use point evaluations of the
function zB and zs, respectively, as initial data for wh. As before, we compare several polynomial
degrees k ∈ {1, 2, 3, 4}, and we choose sQ = k and sΠ = 2k. We observe that for both the smooth and
the non-smooth initial datum the energy balance is satisfied up to machine precision for the case where
η is smooth (q = 3), see Figures 3.9c and 3.8c, respectively. In the case of less regular η the relative
error in the energy balance is still mostly close to machine precision, but slightly larger at certain time
points, especially for low polynomial degree k. Since the energy balance is exact for exact integration
of the L2-projection, the reason for this is the lack of exactness of the quadrature to compute Π. To
achieve a lower error in the energy balance it is inevitable to choose a larger number of quadrature
points sΠ.

Code availability
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Table 3.5. Nodal superconvergence in τ for several polynomial degrees k, for sQ = k,
and sΠ = 2k, for the space-discrete (fixed mesh size h = 1) regularized (ε = 10−10)
porous medium equation for q = 1.5.

(a) zB

τ
k = 2 k = 4

error Eτ EOC error Eτ EOC
2.50 · 10−01 1.46 · 10−04 - 1.01 · 10−04 -
1.28 · 10−01 1.25 · 10−04 0.23 3.05 · 10−05 1.79
6.49 · 10−02 5.86 · 10−06 4.50 5.92 · 10−06 2.41
3.27 · 10−02 5.87 · 10−06 - 1.33 · 10−06 2.17
1.64 · 10−02 4.65 · 10−07 3.68 9.35 · 10−07 0.52
8.21 · 10−03 2.26 · 10−07 1.04 1.66 · 10−07 2.50
4.11 · 10−03 2.70 · 10−08 3.07 3.42 · 10−08 2.28
2.06 · 10−03 2.52 · 10−08 0.10 2.96 · 10−09 3.53
1.03 · 10−03 8.70 · 10−09 1.54 1.19 · 10−09 1.31

� 1.77 � 2.06

(b) zs

τ
k = 2 k = 4

error Eτ EOC error Eτ EOC
2.50 · 10−01 3.36 · 10−04 - 8.50 · 10−05 -
1.28 · 10−01 4.59 · 10−05 2.98 7.21 · 10−06 3.70
6.49 · 10−02 2.33 · 10−05 1.00 8.62 · 10−06 -
3.27 · 10−02 6.91 · 10−06 1.77 1.13 · 10−06 2.96
1.64 · 10−02 6.80 · 10−08 6.70 2.81 · 10−08 5.35
8.21 · 10−03 1.85 · 10−08 1.88 1.54 · 10−09 4.20
4.11 · 10−03 3.06 · 10−09 2.60 3.75 · 10−10 2.04
2.06 · 10−03 9.60 · 10−10 1.68 3.67 · 10−10 0.03
1.03 · 10−03 7.31 · 10−10 0.39 8.89 · 10−11 2.05

� 2.37 � 2.51

Table 3.6. Nodal superconvergence in τ for several polynomial degrees k, for sQ = k,
and sΠ = 2k, for the space-discrete (fixed mesh size h = 1) regularized (ε = 10−10)
porous medium equation for q = 2.

(a) zB

τ
k = 2 k = 4

error Eτ EOC error Eτ EOC
2.50 · 10−01 1.29 · 10−02 - 5.92 · 10−03 -
1.28 · 10−01 1.53 · 10−02 - 4.28 · 10−03 0.48
6.49 · 10−02 1.37 · 10−03 3.55 1.13 · 10−03 1.96
3.27 · 10−02 2.03 · 10−03 - 6.96 · 10−04 0.70
1.64 · 10−02 6.96 · 10−04 1.55 6.48 · 10−04 0.10
8.21 · 10−03 6.96 · 10−04 - 1.05 · 10−04 2.63
4.11 · 10−03 2.70 · 10−04 1.37 2.72 · 10−04 -
2.06 · 10−03 2.14 · 10−04 0.33 1.02 · 10−04 1.43
1.03 · 10−03 5.63 · 10−05 1.93 2.79 · 10−05 1.86

� 0.99 � 0.97

(b) zs

τ
k = 2 k = 4

error Eτ EOC error Eτ EOC
2.50 · 10−01 7.65 · 10−05 - 2.03 · 10−05 -
1.28 · 10−01 3.33 · 10−05 1.25 2.55 · 10−06 3.11
6.49 · 10−02 6.53 · 10−06 2.39 1.37 · 10−06 0.91
3.27 · 10−02 1.15 · 10−06 2.53 1.20 · 10−07 3.55
1.64 · 10−02 1.03 · 10−08 6.83 2.95 · 10−09 5.37
8.21 · 10−03 7.48 · 10−11 7.13 7.99 · 10−12 8.55
4.11 · 10−03 4.67 · 10−12 4.00 2.49 · 10−11 -
2.06 · 10−03 1.31 · 10−11 - 8.12 · 10−12 1.62
1.03 · 10−03 2.47 · 10−11 - 2.18 · 10−12 1.90

� 2.72 � 2.92

Table 3.7. Nodal superconvergence in τ for several polynomial degrees k, for sQ = k,
and sΠ = 2k, for the space-discrete (fixed mesh size h = 1) regularized (ε = 10−10)
porous medium equation for q = 3.

(a) zB

τ
k = 2 k = 4

error Eτ EOC error Eτ EOC
2.50 · 10−01 1.07 · 10−01 - 4.69 · 10−02 -
1.28 · 10−01 8.36 · 10−02 0.36 1.79 · 10−01 -
6.49 · 10−02 7.23 · 10−03 3.60 5.82 · 10−02 1.66
3.27 · 10−02 4.20 · 10−02 - 2.05 · 10−02 1.52
1.64 · 10−02 2.02 · 10−02 1.06 1.32 · 10−02 0.64
8.21 · 10−03 1.11 · 10−02 0.86 1.86 · 10−02 -
4.11 · 10−03 2.15 · 10−02 - 5.27 · 10−03 1.82
2.06 · 10−03 5.77 · 10−03 1.90 8.04 · 10−03 -
1.03 · 10−03 6.20 · 10−03 - 5.44 · 10−03 0.56

� 0.52 � 0.39

(b) zs

τ
k = 2 k = 4

error Eτ EOC error Eτ EOC
2.50 · 10−01 1.50 · 10−04 - 3.02 · 10−08 -
1.28 · 10−01 9.76 · 10−06 4.10 1.53 · 10−10 7.92
6.49 · 10−02 6.14 · 10−07 4.07 6.39 · 10−13 8.05
3.27 · 10−02 3.83 · 10−08 4.04 2.91 · 10−15 7.85
1.64 · 10−02 2.39 · 10−09 4.02 1.19 · 10−15 -
8.21 · 10−03 1.49 · 10−10 4.01 2.20 · 10−15 -
4.11 · 10−03 9.34 · 10−12 4.00 2.45 · 10−15 -
2.06 · 10−03 5.84 · 10−13 4.00 2.74 · 10−15 -
1.03 · 10−03 3.67 · 10−14 3.99 5.08 · 10−15 -

� 4.03 � 7.94
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Figure 3.6. Convergence in τ for several space-discretization parameters for the reg-
ularized (ε = 10−10) porous medium equation with q ∈ {1.5, 2, 3}, for k = sQ = 4,
sΠ = 2k = 8 and for the solution zB.
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Figure 3.7. Convergence in τ for several space-discretization parameters for the reg-
ularized (ε = 10−10) porous medium equation with q ∈ {1.5, 2, 3}, for k = sQ = 4,
sΠ = 2k = 8 and for the solution zs.
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Figure 3.8. Relative error in the energy balance with space-discrete Hamiltonian Hh

(h = 1) for the regularized (ε = 10−10) porous medium equation with τ = 10−2 and
the Barenblatt solution zB as initial datum.
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Figure 3.9. Relative error in the energy balance with space-discrete Hamiltonian Hh

(h = 1) for the regularized (ε = 10−10) porous medium equation with τ = 10−2 and
the smooth solution zs as initial datum.
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