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Abstract. This paper aims at developing a new numerical coupled approach to compute solutions of a compressible
immiscible three-phase flow model with stiff source terms. The targeted applications involve flows with fast transient
and shock waves. Thus, a well-posed model with respect to the initial conditions that embarks an entropy inequality
is considered. A preliminary work on the underlying relaxation process of the model is conducted. Then the new
numerical scheme is presented and numerically tested.
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Introduction

This work tackles the simulation of steam explosions, which involve unsteady patterns including sudden
heat and mass exchanges between phases, and also shock waves. In our applications, steam explosion
occurs when a very high temperature liquid metal, called corium, meets liquid water (see [5]). The
contact between liquid water and corium vaporizes the liquid water into water vapour, and leads to the
fragmentation of the corium droplets into smaller ones, which accelerates the energy exchange between
the liquid metal and the water, and thus leads to an explosion. The fragmentation of droplets is driven
by relative velocities between liquid metal droplets and the water, see [25]. Thus, it is mandatory in
our applications that the considered model can take into account relative velocities. Therefore, we need
a compressible, three-phase flow model that includes heat and mass transfer, and relative velocities.
Hence, for our applications, the following specifications are necessary:

(C1) an entropy inequality holds for smooth solutions of the whole model,

(C2) shock relations are uniquely defined,

(C3) the model is at least hyperbolic or even symmetrisable so that the problem becomes well posed
with respect to initial conditions [43].

The model chosen for this work is the one introduced in [30]. This model can be seen as an extension to
the three-phase flow framework of the more classical Baer–Nunziato model [3] used in the two-phase
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flow framework (see [37] for a formal derivation). It must be emphasized that an extension of this
model to an undetermined number of phases has been proposed in [47].

Different numerical strategies exist in the literature for tackling hyperbolic models with stiff source
terms (see the review presented in [7]). Focusing on the two-phase flow framework, and more precisely
the Baer–Nunziato model, the literature regarding the simulation of this model mainly focuses on the
numerical treatment of the convective part of the model (which corresponds to zero source terms)
see for example [16, 56, 57, 58]. When the full model is considered (with non-zero source terms),
the numerical strategy mainly used up to now consists in computing first solutions of the convective
part of the model with an explicit solver, and then accounting for the ODE part of the model (source
terms) using an implicit method. In practice, the source terms are mainly treated with a fractional step
method, that treats successively the four relaxation processes (see among others [1, 17, 22, 33, 48, 49]).
However, as exhibited in [35], this method can have some stability issues when dealing with the full
model, including heat and mass transfer and velocity and pressure relaxation. Indeed, the full Baer–
Nunziato model embarks a complex set of source terms which creates a stiff non-linear system that can
be uneasy to solve. In [35], a more coupled strategy for treating the source terms, based on a better
understanding of the underlying ODE system is presented. It actually gives better results on coarse
grids and it enables to compute some cases where the fractional step approach fails. A somewhat
similar strategy has also been presented in [14], for the Baer–Nunziato model without heat and mass
transfer.

Coming back to the three-phase flow framework, a first attempt to tackle steam explosion with the
model [30] has been carried out in [9]. However, the numerical schemes proposed in [9] occurred not
to be stable enough to compute numerical approximation of solutions of the full model. For steam
explosions, some assumptions on instantaneous equilibrium between phases were indeed mandatory
to compute numerical solutions. However, those assumptions (and especially the velocity equilibrium)
were too strong and inhibited the fragmentation of liquid metal droplets. As a consequence, the
maximum pressure values were two times smaller than the ones measured in [39].

Hence, as in the two-phase flow framework, taking into account the immiscible three-phase flow
model [30] is challenging, since twelve relaxation time scales associated with pressure, velocity, tem-
perature, Gibbs relaxation are introduced in model [30], and drive the solutions.

Going further on into details, each of those relaxation time scales spans a large interval. Moreover,
there is no systematic ordering of those time scales, and their values change drastically with respect
to time and space, mainly due to their conditioning by the statistical fractions and thermodynamic
coefficients (see Appendix B). Those time scales, associated with the source terms of the model,
generate a stiff non-linear coupled ODE’s system. In this paper we want to extend the method proposed
in [35] for the treatment of source terms of a two-phase flow model [3] to the considered three-phase
flow model [30].

The paper is organized as follows. The full model, including all closure laws, is first recalled in
Section 1, together with its main properties. Then, focus is given in Section 2 on the effective relaxation
process associated with source terms. Afterwards, Section 3 will detail the numerical approach which
relies on a two-step explicit/implicit method, where the convective part of the model is estimated first,
using an explicit scheme, while the second step takes all source terms into account in a linear-implicit
way. The explicit strategy in Step 1 enables to define a time step which in some sense guarantees an
optimal accuracy of fast waves. The linear-implicit algorithm proposed in Step 2 is derived from the
analysis conducted in Section 2, and its properties are given. This linear-implicit strategy is therefore
specific to model [30]. The last Section provides results of some numerical experiments, including a
numerical study of convergence with respect to the mesh size.
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A coupled scheme for a three-phase flow model

1. The immiscible three-phase flow model [30]

We consider an immiscible, compressible, non-equilibrium, three-phase flow model. In the application
Section 4, phase 1 will correspond to a liquid metal, phase 2 to liquid water and phase 3 to water
vapour. First, as the model is assumed to be immiscible, we have the structural constraint:

α1 + α2 + α3 = 1 . (1.1)

where ∀ k ∈ [[1, 3]], αk ∈ ]0, 1[ denote the statistical fractions of each phase. Moreover, since the model
is in full disequilibrium, each phase k ∈ [[1, 3]] is given a velocity Uk, a density ρk, a partial density
mk = αkρk, a pressure Pk and a specific entropy sk. The total energies are then defined as:

Ek = ρk(ϵk(Pk, ρk) + U2
k /2), (1.2)

where ϵk(Pk, ρk) denotes the internal energy of each phase k. The internal energy of phase k is related
to the pressure Pk and density ρk through an Equation of State (EoS). The vector of state variables
W reads:

W = (α2, α3, m1, m1U1, α1E1, m2, m2U2, α2E2, m3, m3U3, α3E3)⊺ . (1.3)
Then, the model reads (see [30]):

∂αk

∂t
+ VI(W ) · ∇αk = Sα

k (W ) ,

∂mk

∂t
+ ∇ · (mkUk) = Sm

k (W ) ,

∂mkUk

∂t
+ ∇ · (mkUk ⊗ Uk + αkPkI) +

3∑
l=1,l ̸=k

Πkl(W )∇αl = SU
k (W ) ,

∂αkEk

∂t
+ ∇ · (αkUk(Ek + Pk)) −

3∑
l=1,l ̸=k

Πkl(W )∂αl

∂t
= SE

k (W ) ,

(1.4)

where I is the identity matrix. Moreover, VI and Πkl respectively stand for the interfacial velocity
and the interfacial pressures. Those interfacial terms, alongside source terms Sα

k (W ), Sm
k (W ), SU

k (W )
and SE

k (W ), have to be specified in order to close the model. To do so, the total entropy η(W ) paired
with its entropy-flux Fη(W ), are introduced:{

η = m1s1(P1, ρ1) + m2s2(P2, ρ2) + m3s3(P3, ρ3) ,

Fη = m1U1s1(P1, ρ1) + m2U2s2(P2, ρ2) + m3U3s3(P3, ρ3) .
(1.5)

Definitions of the phasic temperature Tk, the phasic Gibbs free energy µk, the phasic enthalpy hk and
the phasic speed of sound ck are also recalled:

1
Tk

=
∂Pk

(sk(Pk, ρk))|ρk

∂Pk
(ϵk(Pk, ρk))|ρk

(1.6)

µk = hk − TkSk (1.7)

hk = ϵk(Pk, ρk) + Pk

ρk
(1.8)

c2
k ∂Pk

(sk(Pk, ρk))|ρk
+ ∂ρk

(sk(Pk, ρk))|Pk
= 0 (1.9)

The strategy for closing the model is to ensure that it respects the following mathematical properties:
hyperbolicity of the convective part (i.e. supposing Sα

k = Sm
k = SU

k = SE
k = 0.) (C3), uniqueness of

jump relations (C2), and compliance with an entropy inequality for the mixture for smooth solutions
of the model (C1).
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We briefly recall now the modeling strategy introduced in [30], which is grounded on the one
introduced for the two-phase flow framework in [15]. First of all, the following form of the interfacial
velocity VI is assumed, as a convex combination of phasic velocities Uk:

VI(W ) =
∑

k

βk(W )Uk (1.10)

(where W stands for the state variable and the βk(W ) are positive functions that remain to be
prescribed), which is a priori meaningful since it is Galilean invariant when:

∑
k βk(W ) = 1. This form

is also expected from a phenomenological point of view.
Then, the entropy inequality for the mixture (C1) enables to exhibit a unique set of interfacial

pressures Πk,l, which only depend on the βk(W ) (see Appendix G in [30]).
Enforcing the entropy inequality (C1) allows to propose a class of admissible source terms S(W ) (de-

pending on the local state variable W ). The latter source terms require physically relevant relaxation
time scales, to be found in the two-phase flow literature.

Eventually, it only remains to propose a suitable form of functions βk(W ) in order to comply with
condition (C2).

In the general case, jump conditions are not uniquely defined when some non-conservative products
occur (see for instance [18] for an introduction to hyperbolic systems without conservative form). It is
for example the case for turbulent compressible models using second-moment closures see [2] and [4].
However, in certain cases, field by field jump conditions may be uniquely defined when non-conservative
products are not active in Genuinely Non Linear (GNL) fields.

Focusing first on the two-phase flow framework and Baer–Nunziato like models, the interfacial
velocity VI remains to be defined. Enforcing the Linearly Degenerate (LD) structure for the field
associated with the eigenvalue λ = VI ensures that the non-conservative products are well defined
through each field. This was discussed in [15] and later on in [29] (for the barotropic case). Moreover,
if the choice of VI does not comply with the LD structure for λ = VI , jump conditions may be no
longer unique (see [28, Figure 8.3 p. 136] for numerical drawbacks). Suitable forms for βk(W ) are:

βk(W ) = dkαkρk∑2
l=1 dlαlρl

(1.11)

with
∑2

k=1 dk = 1 and d1 ∈ {0, 1/2, 1}, see [15]. [28] extends this to d1 ∈ [0, 1], with d1 constant. More
complex possibilities are given in [31].

This extends to the three-phase flow framework. For model [30], the corresponding suitable forms
are [34]:

VI = Uk (1.12)
for k ∈ {1, 2, 3}, or:

VI =
∑3

k=1 mkUk∑3
k=1 mk

(1.13)

In the sequel we choose:
VI = U1 (1.14)

in order to compare results with [9]. This choice of interfacial velocity is also motivated by the fact
that, in our applications, phase 1 corresponds to the dispersed phase, following the former idea of [3].

The choice (1.14) leads to the following unique interfacial pressure definition, owing to the entropy
inequality (see Appendix G in [30]): {

Π12 = Π21 = Π23 = P2 ,

Π13 = Π31 = Π32 = P3.
(1.15)

Before closing the source terms, let us recall some properties of the convective part of the model in
a one dimensional framework.
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Reminding that system (1.4) is invariant under frame rotation, we introduce a unit vector n⃗ in R3

and define xn = x · n n for k ∈ [[1, 3]]:
wk = Uk · n (1.16)
fη = Fη · n (1.17)

Getting rid of transverse variations and considering zero source terms, we end up with the following
system in the one dimensional framework:

∂αk

∂t
+ w1∂xnαk = 0 ,

∂mk

∂t
+ ∂xn(mkwk) = 0 ,

∂mkwk

∂t
+ ∂xn(mk w2

k + αkPk) +
3∑

l=1,l ̸=k

Πkl(W )∂xnαl = 0 ,

∂αkEk

∂t
+ ∂xn (αkwk(Ek + Pk)) −

3∑
l=1,l ̸=k

Πkl(W )∂αl

∂t
= 0 .

(1.18)

Then, according to [30, 32], this sub-system has the following property:

Property 1 (Convective part of the three-phase flow model in a 1D framework). If ∀ k ∈ [[1, 3]], αk

stay in ]0, 1[ and |wk − w1| ≠ ck, then:

• System (1.18) is symmetrizable and its associated eigenvalues are:
λ1,2,3(W, n) = w1, λ4(W, n) = w2, λ5(W, n) = w3,

λ6,7(W, n) = w1 ± c1, λ8,9(W, n) = w2 ± c2, λ10,11(W, n) = w3 ± c3 .
(1.19)

• Fields associated with λk (k = 6 − 11) are GNL. Other fields are LD. Riemann invariants
within each wave can be found in [30, Appendices B and E].

• Jump relations associated with system (1.18) are unique (see [30, Appendix C]).

• Smooth solutions of (1.18) satisfy:
∂tη + ∂xnfη = 0 (1.20)

Property 1 can be extended to a three-dimensional framework, see [30] and [9].

Remark 1.1. In our nuclear applications, condition |wk − w1| ̸= ck is always checked in each cell
and at each time step, and it has never been violated yet. However, there is no theoretical proof that
ensures that it could never happen, even in the one-dimensional two-phase flow framework.

Then, coming back to the three-dimensional framework and therefore system (1.4), source terms
have to be closed. The strategy for closing those terms is to select a form so that smooth solutions of
system (1.4) comply with the entropy inequality:

∂tη + ∇ · Fη ≥ 0. (1.21)
We define Vkl and Hkl as:

Vkl = Uk + Ul

2 , (1.22)

Hkl = Uk · Ul

2 . (1.23)
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It may be checked that the following closure laws for drag effects, mass transfer, heat transfer and
pressure relaxation:

∀ k ∈ [[1, 3]] :

Sα
k =

3∑
l=1,l ̸=k

Kkl(W )(Pk − Pl) , (1.24)

Sm
k =

3∑
l=1,l ̸=k

Λkl(W )
(

µl

Tl
− µk

Tk

)
, (1.25)

SU
k =

3∑
l=1,l ̸=k

dkl(W )(Ul − Uk) +
3∑

l=1,l ̸=k

VklΛkl(W )
(

µl

Tl
− µk

Tk

)
, (1.26)

SE
k =

3∑
l=1,l ̸=k

qkl(W )(Tl − Tk) +
3∑

l=1,l ̸=k

Vkl · (Ul − Uk)dkl(W ) +
3∑

l=1,l ̸=k

HklΛkl(W )
(

µl

Tl
− µk

Tk

)
, (1.27)

comply with inequality (1.21). These closures are the straightforward counterpart of two-phase closure
laws.

Considering strictly positive αk values, the strictly positive functions Kkl(W ), Λkl(W ), dkl(W ) and
qkl(W ) are defined as:

Kkl(W ) = αkαl

P0τP
kl(W )

, (1.28)

Λkl(W ) = mkml

(mk + ml)Γ0τm
kl (W ) , (1.29)

dkl(W ) = mkml

(mk + ml)τU
kl(W )

, (1.30)

qkl(W ) = mkmlCvk
Cvl

(mkCvk
+ mlCvl

)τT
kl(W )

. (1.31)

Quantities CVk
denote the specific heat capacities at constant volume. P0 is a positive reference

pressure, Γ0 is a positive reference fraction of µ
T .

For each phasic connection k − l, τP
kl(W ), τm

kl (W ), τT
kl(W ) and τU

kl(W ) are the symmetric strictly
positive relaxation time scales related to the return to equilibrium of the associated thermodynamic
quantity between phase k and l. Closure laws for the relaxation time scales can be found in the two-
phase flow literature, see among others [10, 23] for the pressure, [40] for the velocity, [54] for the
temperature and [6] for mass transfer.

No assumption about these strictly positive time scales is imposed, either when studying the overall
relaxation process, or when constructing the numerical scheme for processing the source terms.

The previous closing strategy is detailed in [30] and has been used for other multiphase flow models,
see among others [15, 34, 38, 53] for two-phase and three-phase flow models. Other closure strategies
for the two-phase flow framework exist in the literature, see among others : [19, 24, 26, 42, 47, 50].

Restricting to our application framework -steam explosion-, where phase 1 is supposed to be a liquid
metal, no phase change between phase 1 and phase 2 (liquid water) or 3 (water vapour) can occur
physically, which implies:

Λ12(W ) = Λ13(W ) = 0 . (1.32)
Moreover, we define:

∀ k ∈ [[1, 3]], gk = µk

Tk
. (1.33)
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Then, we suppose in Section 2 the following:
∀ k ∈ [[1, 3]] , ∀ Ψ ∈ {αk, Pk, Uk, mkUk, αkEk} , ∇Ψ = 0 , (1.34)

and we set:
∀ (k, l) ∈ [[1, 3]]2 , ∀ Φk ∈ {Uk, Pk, Tk, gk} , ∆Φkl = Φk − Φl. (1.35)

2. Relaxation process in the model

In the sequel, the emphasis will be on the notion of effective relaxation defined as follows.
Consider a system of ODEs:

dY

dt
= −RY, (2.1)

where Y is in Rn and R an invertible matrix in Mn(R). If the real parts of all eigenvalues of matrix
R remain positive, then the relaxation of system (2.1) will be said to be effective.

The aim of this Section is to give conditions that stand true when the relaxation is effective.
Owing to (1.34) and (1.32) system (1.4) reduces to an ODE system:

∂αk

∂t
=

3∑
l=1,l ̸=k

Kkl(W )∆Pkl ,

∂mk

∂t
= −

3∑
l=1,l ̸=k

Λkl(W )∆gkl ,

∂mkUk

∂t
= −

3∑
l=1,l ̸=k

dkl(W )∆Ukl −
3∑

l=1,l ̸=k

VklΛkl(W )∆gkl ,

∂αkEk

∂t
−

3∑
l=1,l ̸=k

Πkl(W )∂αl

∂t

= −
3∑

l=1,l ̸=k

qkl(W )∆Tkl −
3∑

l=1,l ̸=k

Vkldkl(W )∆Ukl −
3∑

l=1,l ̸=k

HklΛkl(W )∆gkl .

(2.2)

Considering hypothesis (1.32), and using the definition of Vkl, of Hkl, of the sound speed ck and
of the Gibbs free energy µk, then, for each phase k ∈ [[1, 3]], equations of evolution of velocity Uk,
pressure Pk, temperature Tk and fraction gk can be derived from system (2.2). Therefore, governing
equations of the gaps: ∆U12, ∆U13, ∆P12, ∆P13, ∆T12, ∆T13, ∆g23 can be obtained. Those equations
can be rewritten as one equation of evolution of the quantity:

∆r = (∆U12, ∆U13, ∆P12, ∆P13, ∆T12, ∆T13, ∆g23)⊺ ∈ R7 . (2.3)
The equation of evolution associated with ∆r reads as:

∂t (∆r) = −Rrelax(W )∆r , (2.4)
where the non symmetric matrix Rrelax in M7(R) takes the form:

Rrelax =
(

RUU 0
RU Rthermo

)
, (2.5)

where RUU ∈ M2(R), Rthermo ∈ M5(R) and RU ∈ M5,2(R).
All coefficients of Rrelax can be found in Appendix B.
The velocity relaxation process has a peculiar role in the global relaxation process. A similar result

has been found in the framework of a two-phase flow model, see [35].
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Alongside equation (2.4), when considering hypothesis (1.32) and (1.34), the following conservation
laws can be deduced from system (2.2):

∂t (m1) = 0 (2.6)
∂t (m2 + m3) = 0 (2.7)
∂t (m1U1 + m2U2 + m3U3) = 0 (2.8)
∂t (α1E1 + α2E2 + α3E3) = 0 (2.9)

Hence, we have four stationary constraints (2.6), (2.7), (2.8), (2.9), plus seven unsteady equations
embedded in (2.4).

From equation (2.4), effective relaxation conditions can be obtained for model (1.4).

Property 2 (Necessary conditions for effective relaxation of the three-phase flow model).

• The velocity relaxation process occurs when and only when the non-symmetric velocity relax-
ation matrix is positive definite:

tr(RUU ) > 0 , (2.10)
det(RUU ) > 0 . (2.11)

• We note, for i ∈ [[1, 5]], λi the real or complex conjugate eigenvalues of Rthermo. If the thermo-
dynamic relaxation process is effective, then we have:

Σ1 = tr(Rthermo) > 0 , (2.12)

Σ2 =
∑
i<j

λiλj > 0 , (2.13)

Σ3 =
∑

i<j<k

λiλjλk > 0 , (2.14)

Σ4 =
∑

i<j<k<l

λiλjλkλl > 0 , (2.15)

Σ5 = det(Rthermo) > 0 , (2.16)

Proof. The proof reads as follows:
First item of Property 2:

(i) if the velocity relaxation occurs, then the real parts of the two eigenvalues l1 and l2 of matrix
RUU are strictly positive. Then, the two conditions (2.10) and (2.11) are easily verified.

(ii) Moreover, if conditions (2.10) and (2.11) are verified, it is trivial that both real parts of l1 and
l2 are positive.

Besides, if mass transfer between phase 2 and 3 is neglected, i.e. Λ23 = 0, conditions (2.10) and (2.11)
always stand true, since dkl > 0 and tr(RUU ) and det(RUU ) read:

tr(RUU ) = 1
m1

(d12 + d13) + 1
m2

(d12 + d23) + 1
m3

(d13 + d23) > 0

det(RUU ) =
[ 1

m1m2
+ 1

m1m3
+ 1

m2m3

]
(d12d13 + d12d23 + d13d23) > 0
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If the thermodynamic relaxation process is effective, then the real part of the five eigenvalues of
Rthermo, λi, i ∈ [[1, 5]] is positive. The five coefficients Σ1, Σ2, Σ3, Σ4 and Σ5 write:

Σ1 = λ1 + λ2 + λ3 + λ4 + λ5 ,

Σ2 = λ1λ2 + λ1λ3 + λ1λ4 + λ1λ5 + λ2λ3 + λ2λ4 + λ2λ5 + λ3λ4 + λ3λ5 + λ4λ5 ,

Σ3 = λ1λ2λ3 + λ1λ2λ4 + λ1λ2λ5 + λ1λ3λ4 + λ1λ3λ5 + λ1λ4λ5 + λ2λ3λ4 + λ2λ3λ5

+ λ2λ4λ5 + λ3λ4λ5 ,

Σ4 = λ2λ3λ4λ5 + λ1λ3λ4λ5 + λ1λ2λ4λ5 + λ1λ2λ3λ5 + λ1λ2λ3λ4 ,

Σ5 = λ1λ2λ3λ4λ5 .

As Rthermo lies in M5(R), three cases can occur:

Case 1. All of the eigenvalues of Rthermo are real. Then, if all eigenvalues of Rthermo are positive, all
coefficients Σn, n ∈ [[1, 5]] are trivially positive.

Case 2. One eigenvalue of Rthermo is real (let’s call it λ1) and the other four are complex and form
two pairs of complex conjugate (λ3 = λ2 and λ5 = λ4). Thus, coefficients Σn, n ∈ [[1, 5]] write as:

Σ1 = λ1 + 2Re(λ2) + 2Re(λ4) , (2.17)
Σ2 = 2λ1Re(λ2) + 2λ1Re(λ4) + 4Re(λ2)Re(λ4) + |λ2|2 + |λ4|2 , (2.18)

Σ3 = λ1
(
|λ2|2 + |λ4|2

)
+ 4λ1Re(λ2)Re(λ4) + 2|λ2|2Re(λ4) + 2|λ4|2Re(λ2) , (2.19)

Σ4 = 2λ1
(
Re(λ4)|λ2|2 + Re(λ2)|λ4|2

)
+ |λ2|2|λ4|2 , (2.20)

Σ5 = λ1|λ2|2|λ4|2 . (2.21)
If all the real parts of the eigenvalues of Rthermo are strictly positive, one can easily check from the
previous notations that:

∀ n ∈ [[1, 5]], Σn > 0 (2.22)

Case 3. Three eigenvalues of Rthermo are real: λ1, λ2 and λ3. The remaining two are complex conjugate
λ5 = λ4. Thus, coefficients Σn, n ∈ [[1, 5]] write:

Σ1 = λ1 + λ2 + λ3 + 2Re(λ4) , (2.23)
Σ2 = (λ1λ2 + λ1λ3 + λ2λ3) + 2 (λ1 + λ2 + λ3)Re(λ4) + |λ4|2 , (2.24)
Σ3 = λ1λ2λ3 + 2 (λ1λ2 + λ1λ3 + λ2λ3)Re(λ4) + (λ1 + λ2 + λ3) |λ4|2 , (2.25)
Σ4 = 2λ1λ2λ3Re(λ4) + (λ1λ2 + λ1λ3 + λ2λ3) |λ4|2 , (2.26)
Σ5 = λ1λ2λ3|λ4|2 . (2.27)

If all the real parts of the eigenvalues of Rthermo are strictly positive, we can once again easily check
from the previous notations that:

∀ n ∈ [[1, 5]], Σn > 0 (2.28)

Remark 2.1.

(i) Necessary conditions of effective relaxation (2.12), (2.13), (2.14), (2.15), (2.16) cannot be
proved to always stand true for any EoS. They have therefore to be numerically tested. The
counterpart of Property 2 has been exhibited in the framework of an immiscible two-phase
flow model in [35]. In the latter reference, a detailed analysis of relaxation conditions is added
when restricting to stiffened gases EoS for each phase.
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(ii) The inner relaxation process has also been studied in [36], considering the hybrid two-phase
flow model [38].

3. Numerical scheme

This parts aims at building a numerical strategy for computing approximate solutions of system (1.4).
The overall strategy is close to the one detailed in [9]. However, the scheme proposed in the sequel
differs in its treatment of the source terms.

First, let’s recall the global numerical approach presented in [9] for the current model, but also used
in [17, 33], among others, for a two-phase flow framework. This strategy consists in two steps:

• Compute an approximate solution of the following subsystem associated with the convective
part of the model:

∂αk

∂t
+ VI(W ) · ∇αk = 0 ,

∂mk

∂t
+ ∇ · (mkUk) = 0 ,

∂mkUk

∂t
+ ∇ · (mkUk ⊗ Uk + αkPkI) +

3∑
l=1,l ̸=k

Πkl(W )∇αl = 0 ,

∂αkEk

∂t
+ ∇ · (αkEkUk + αkPkUk) −

3∑
l=1,l ̸=k

Πkl(W )∂αl

∂t
= 0 ,

(3.1)

using an explicit Riemman solver adapted for non-conservative products. This first step fully
determines the time step ∆t. Details of this step can be found in [9].

• Then, solve with a linear-implicit scheme (on a time step ∆t) the stiff system (2.2). It is the
counterpart of (1.4) without the convective terms. In [9], this step is conducted with a fractional
step approach, which decouples all relaxation effects for velocity, pressure, temperature, Gibbs
free energy. The new approach proposed here follows the same strategy as the one in [35] in
the framework of an immiscible two-phase flow model [3].

To begin with, as in [35], we take advantage of the block triangular structure of Rrelax. Indeed, as the
velocity relaxation is less coupled with the other relaxation effects, we choose to treat it beforehand
with the same method as the one presented in [9] and recalled in Appendix C.

In the sequel, in order to ease notations, the instant right after the velocity relaxation will be
referred as tn.

Then, (2.2) becomes:

∂αk

∂t
=

3∑
l=1,l ̸=k

Kkl(W )∆Pkl ,

∂mk

∂t
= −

3∑
l=1,l ̸=k

Λkl(W )∆gkl ,

∂mkUk

∂t
= −

3∑
l=1,l ̸=k

VklΛkl(W )∆gkl ,

∂αkEk

∂t
−

3∑
l=1,l ̸=k

Πkl(W )∂αl

∂t
= −

3∑
l=1,l ̸=k

qkl(W )∆Tkl −
3∑

l=1,l ̸=k

HklΛkl(W )∆gkl .

(3.2)
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We also have the conservation law of the sum of the total energies (2.9).
From system (3.2), one can obtain:

mk∂t

(
U2

k

2

)
= −Uk

∑
l ̸=k

(Vkl − Uk) Λkl(W )∆gkl . (3.3)

Thus, using (1.22), we have:

∂t

(1
2mkU2

k

)
= −

∑
l ̸=k

HklΛkl(W )∆gkl . (3.4)

Therefore, from (3.2), we get:

∂t (mkϵk) −
3∑

l=1,l ̸=k

Πkl(W )∂αl

∂t
= −

3∑
l=1,l ̸=k

qkl(W )∆Tkl . (3.5)

Then, a conservation law for the sum of the internal energies ϵk weighted by the partial densities
mk can be deduced and reads:

∂t

( 3∑
k=1

mkϵk

)
= 0 . (3.6)

We also recall that the immiscible constraint (1.1) always stands true and can be seen as a stationary
constraint:

∂t (α1 + α2 + α3) = 0 . (3.7)
Next, as in the previous part, an evolution equation of the quantity:

∆thermo = (∆P12, ∆P13, ∆T12, ∆T13, ∆g23)⊺ , (3.8)
is constructed from (3.2):

∂t (∆thermo) = −Rthermo∆thermo , (3.9)
where Rthermo is the sub-matrix of Rrelax ∈ M5(R) arising in (2.5). We recall that coefficients of
matrix Rrelax are given in Appendix B. Alongside (3.9) and still considering (3.6), (2.6), (2.7) and (1.1),
the following can also be obtained from (3.2):

∂t (m1U1) = 0 (3.10)
∂t (m2U2 + m3U3) = 0 (3.11)

To summarize, we end up with eleven unknowns, six steady constraints (2.9), (3.6), (2.6), (2.7), (3.10),
(3.11) and the set of ODEs (3.9) Eventually, the new algorithm writes as:

Algorithm: (Coupled P-T-g algorithm)

Step 1: Estimate the evolution of ∆thermo through (3.9) by using an Euler implicit scheme with
Rthermo frozen at time tn:

∆n+1
thermo = (I + ∆tRn

thermo)−1 ∆n
thermo. (3.12)

Step 2: Setting: M̃n = mn
2 + mn

3 , compute the partial densities at time tn+1:

mn+1
1 = mn

1

mn+1
2 = M̃n

1 + (M̃n−mn
2 )

mn
2

exp
(∆gn+1

23
τmn

23 Γ0
∆t
) > 0

mn+1
3 = M̃n − mn+1

2

(3.13)

Thus complying with the steady constraints (2.6), (2.7).
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Step 3: Write:
P n+1

2 = P n+1
1 − ∆P n+1

12 , (3.14)
P n+1

3 = P n+1
1 − ∆P n+1

13 , (3.15)
T n+1

2 = T n+1
1 − ∆T n+1

12 , (3.16)
T n+1

3 = T n+1
1 − ∆T n+1

13 , (3.17)
(3.18)

and note, with help of (3.6):

ξn :=
3∑

k=1
(mkϵk)n =

3∑
k=1

(mkϵk)n+1. (3.19)

Then, find P n+1
1 and T n+1

1 in the admissible range, solutions of the implicit non-linear system
composed of the discrete counterpart of (3.6):

mn+1
1 ϵ1(P n+1

1 , T n+1
1 ) + mn+1

2 ϵ2(P n+1
2 , T n+1

2 ) + mn+1
3 ϵ3(P n+1

3 , T n+1
3 ) = ξn , (3.20)

and the discrete counterpart of (1.1):
mn+1

1
ρ1(P n+1

1 , T n+1
1 )

+ mn+1
2

ρ2(P n+1
2 , T n+1

2 )
+ mn+1

3
ρ3(P n+1

3 , T n+1
3 )

= 1 . (3.21)

Step 4: Update local variables P n+1
2 , P n+1

3 , T n+1
2 , T n+1

3 , αn+1
1 , αn+1

2 , αn+1
3 :

P n+1
2 = P n+1

1 − ∆P n+1
12 , (3.22)

P n+1
3 = P n+1

1 − ∆P n+1
13 , (3.23)

T n+1
2 = T n+1

1 − ∆T n+1
12 , (3.24)

T n+1
3 = T n+1

1 − ∆T n+1
13 , (3.25)

αn+1
1 = mn+1

1
ρ1(P n+1

1 , T n+1
1 )

, (3.26)

αn+1
2 = mn+1

2
ρ2(P n+1

2 , T n+1
2 )

, (3.27)

αn+1
3 = 1 − αn+1

1 − αn+1
2 = mn+1

3
ρ3(P n+1

3 , T n+1
3 )

. (3.28)

Step 5: Then, setting: Γ23 = Λ23∆g23, compute Un+1
2 and Un+1

3 as solutions of:
(m2U2)n+1 − (m2U2)n = ∆t

Γn+1
23
2 (Un+1

2 + Un+1
3 ) ,

(m3U3)n+1 − (m3U3)n = −∆t
Γn+1

23
2 (Un+1

2 + Un+1
3 ) ,

(3.29)

Step 6: Update the total energies as (using conservation law (2.9)):
(α2E2)n+1 = mn+1

2 ϵ2(P n+1
2 , T n+1

2 ) + 1
2mn+1

2 (Un+1
2 )2 ,

(α3E3)n+1 = mn+1
3 ϵ3(P n+1

3 , T n+1
3 ) + 1

2mn+1
3 (Un+1

3 )2 ,

(α1E1)n+1 = (α1E1)n + (α2E2)n + (α3E3)n − (α2E2)n+1 − (α3E3)n+1 .

(3.30)
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Property 3 (The Coupled P-T-g algorithm).

• If the discrete relaxation process is effective over time, then the principal minors Σi , i ∈ [[1, 5]]
of matrix Rthermo are positive at each instant and at every point.

• For a mixture of three perfect gases (EoS), solutions of (3.20) and (3.21) exist and are unique
inside their definition domain. Moreover, (3.21) ensures that, for k ∈ [[1, 3]], αk stays in ]0, 1[.

The proof is similar to the one given in [35]. We briefly recall the main guidelines:

Proof.

• The first item is the discrete counterpart of Property 2. Indeed, if the thermodynamic relaxation
is effective at time tn, then the real parts of the eigenvalues of Rn

thermo are positive and
therefore, (3.12) ensures a contraction of ∆thermo.

• Consider a mixture of three perfect gases, k ∈ {1, 3}:
Pk = ρk(γk − 1)ϵk , (3.31)

Cvk
Tk = ϵk . (3.32)

Thus equation (3.20) degenerates into:
mn+1

1 Cv1T n+1
1 + mn+1

2 Cv2(T n+1
1 − ∆T n+1

12 ) + mn+1
3 Cv2(T n+1

1 − ∆T n+1
13 ) = ξn , (3.33)

which can be solved directly and gives a positive T n+1
1 .

Then, a classical function analysis of (3.21) shows that there exists a unique solution of P n+1
1

which lays inside its definition domain.

Remark 3.1. The first item of Property 3 can be seen as a way to numerically check if the relaxation
process is effective or not in a test case at any time and everywhere. Indeed, coefficients Σi, for i ∈ [[1, 5]]
correspond to the coefficients of the characteristic polynomial of Rthermo:

P5(λ) = λ5 − Σ1λ4 + Σ2λ3 − Σ3λ2 + Σ4λ − Σ5 , (3.34)
and thus can be identified to the principal minors of Rthermo. Those quantities Σi i ∈ [[1, 5]] can
be calculated directly from Rthermo. In practice, we use Maxima [45], a computer algebra system to
compute Σi , i ∈ [[1, 5]].

4. Numerical Results

This part can be broken down into two main subsections. The first one aims at testing only the
new algorithm presented above for treating the thermodynamic part of the source terms. The second
part seeks to evaluate the new algorithm (coupled with the velocity relaxation algorithm described in
Appendix C and the convective solver from [9]) against an experimental test case of a vapour explosion
referred as KROTOS 44 [39]. Numerical results of this test case will also be compared to [9], where a
similar numerical simulation is conducted.

4.1. The homogeneous case

In this subsection, we consider a flow, such that:
∀ k ∈ [[1, 3]], Uk = 0 , (4.1)
∀ k ∈ [[1, 3]], ∀ Ψk ∈ {αk, Pk, Tk, αkEk}, ∇Ψ = 0. (4.2)
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It corresponds to a zero-dimensional flow where only the thermodynamic relaxation process takes
place.

Then we choose:
P0 = α0

1α0
2

(
ρ0

1(c0
1)2

α0
1

+ ρ0
2(c0

2)2

α0
2

)
+ α0

1α0
3

(
ρ0

1(c0
1)2

α0
1

+ ρ0
3(c0

3)2

α0
3

)
+ α0

2α0
3

(
ρ0

2(c0
2)2

α0
2

+ ρ0
3(c0

3)2

α0
3

)

Γ0 =
∣∣∣∣m0

3

(
γ2Cv2 + ϵ20

T 0
2

(
2 + ϵ20

Cv2T 0
2

))
+ m0

2

(
γ3Cv3 + ϵ30

T 0
3

(
2 + ϵ30

Cv3T 0
3

))∣∣∣∣
(4.3)

All relaxation time scales are supposed to be constant in this sub-section. Moreover, they are taken
to be equal on each phasic link:

∀ Ψ ∈ P, T : τΨ
12 = τΨ

13 = τΨ
23 = τΨ , (4.4)

and

τm
23 = τm. (4.5)

The values of the relaxation time scales which will be used in the numerical simulation are given in
Appendix A.

For all numerical simulations we will use stiffened gas EoS within each phase:

Pk + γkΠk = ρk(γk − 1)(ϵk − ϵ0,k) , (4.6)

The EoS coefficients are also given in Appendix A.
Eventually, we refer the reader to Appendix A regarding the initial conditions of the numerical test

cases. Two test cases are computed. The only difference between case A and case B is the value of the
pressure relaxation time scale.

Figures 4.1, 4.2, 4.3 and 4.4 show that the effective relaxation time scale of the global system is
significantly larger than the biggest relaxation time scale among τP , τT , τm, which is 10−2s here.
A similar behaviour has already been pointed out for a two-phase flow model in [35] and a detailed
analysis is proposed in Appendix A of [41] for a two-phase flow model without mass transfer. Moreover,
even for a coarse time step, the method captures rather well the behaviour of the solution for both
cases. Figures 4.1 and 4.3 show the impact of the choice of the pressure relaxation time scale on the
behaviour of the solution. Indeed, in case A, the pressure relaxation time scale is 1000 times larger
than the one used in case B, therefore, bigger discrepancies between phasic pressure profiles in case A
than in case B are expected. However the magnitude of this change cannot be a priori estimated. Up
to the authors, it advocates to avoid making strong assumptions on the relaxation time scales, when
aiming at a fair representation of the transient regime.

We emphasize that the fractional step algorithm presented in [9] is not stable enough to compute
solutions of test case A.

Eventually, a convergence test is presented in Figure 4.5. As no analytical solution of system (3.2)
can be exhibited, the solution is compared to a refined computation, with a time step dtcv = 10−10s
for a simulation of 10s. The error of a quantity κ, Eκ(dt, t = ttransient) is thus defined as:

Eκ(dt, t = ttransient) = |κdt(t = ttransient) − κdtcv (t = ttransient)|
κdtcv (t = ttransient)

, (4.7)

with κdt(t = ttransient) the value of κ at time t = ttransient computed with the numerical scheme
presented in Section 3 using a time step dt. Figure 4.5 shows that a convergence rate close to 1 is
retrieved.
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Figure 4.1. Pressure evolution for case A (τP = 10−5s, τT = 10−3s and τm = 10−2s)
computed with two different time step sizes: ∆t = 10−8s and ∆t = 10−3s (dashed
lines).
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Figure 4.2. Temperature evolution for case A (τP = 10−5s, τT = 10−3s and τm =
10−2s) computed with two different time step sizes: ∆t = 10−8s and ∆t = 10−3s
(dashed lines).
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Figure 4.3. Pressure evolution for case B (τP = 10−8s, τT = 10−3s and τm = 10−2s)
computed with two different time step sizes: ∆t = 10−8s and ∆t = 10−3s (dashed
lines).
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Figure 4.4. Temperature evolution for case B (τP = 10−8s, τT = 10−3s and τm =
10−2s) computed with two different time step sizes: ∆t = 10−8s and ∆t = 10−3s
(dashed lines).
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Figure 4.5. Convergence curve on the pressure P1 in case A.

4.2. Application to KROTOS 44 set up [39]

This Section aims at simulating a KROTOS 44 type set up. The set up consists in a one dimension
shock tube in water where droplets of liquid corium (phase 1) interact with liquid water (phase 2) and
water vapour (phase 3), as shown in Figure 4.6.

Figure 4.6. Scheme of the KROTOS-like shock tube

First, at time t = 0, velocities are supposed to be null:

∀ x ∈ [0.0, 3.75], ∀ k ∈ [[1, 3]], Uk(x, t = 0) = 0 (4.8)

Moreover, at time t = 0, pressures are initialized in the high pressure chamber, see Figure 4.6, as:

∀ x ∈ [0.0, 2.0], ∀ k ∈ [[1, 3]], Pk(x, t = 0) = 150 bar (4.9)

whereas in the low pressure chamber, they are set as:

∀ x ∈ [2.0, 3.75], ∀ k ∈ [[1, 3]], Pk(x, t = 0) = 1 bar (4.10)

Introducing ϵlim = 10−6, the initial conditions are given in Table 4.1:

421



J-M. Hérard & G. Jomée

Table 4.1. Initial conditions of the numerical experiment

Abscissa interval (m) α1 α2 α3 T1 (K) T2 (K) T3 (K)

High pressure: x ∈ [0.0, 2.0] ϵlim 1 − 2ϵlim ϵlim 1000 1000 1000

Pure liquid: x ∈ ]2.0, 2.15] ϵlim 1 − 2ϵlim ϵlim 363 363 363

Interaction: x ∈ ]2.15, 2.85] 0.026 0.884 0.09 2500 363 1000

Plug: x ∈ ]2.85, 3.23] ϵlim 0.835 - ϵlim 0.165 363 363 363

Cover gas: x ∈ ]3.23, 3.75] ϵlim ϵlim 1 − 2ϵlim 363 363 700

Besides, four numerical probes are set up:

• S1 is placed at the beginning of the pure liquid zone: x = 2.05 m,

• S2 is located at the beginning of the interaction zone: x = 2.20 m,

• S3 is situated at one third of the interaction zone: x = 2.40 m,

• S4 is positioned at two third of the interaction zone: x = 2.60 m.

Before going further on, as in [35], we need to introduce an evolution equation of the interfacial
area A1 for liquid corium droplets:

A1 = 6α1
D1

(4.11)

where D1 stands for the diameter of the corium droplets, which is initialized along the tube at time
t = 0 as: D1 = 15 mm. Indeed, as shown physically in [25] and numerically in [9, 13, 35], taking into
account droplet atomization is crucial in order to predict well the energy transfer between phases and
therefore to have numerical solutions close to the experimental data. The equation of evolution of the
interfacial area (see Appendix D) and its numerical treatment are taken from [8].

We now need to specify for (k, l) ∈ [[1, 3]] , l > k the form of the relaxation time scales τU
kl , τP

kl , τT
kl

and τm
kl . On each phasic connection, their form is:

• Velocity relaxation time scales:
1

τU
12

= 1
τU

21
= 0.75Cd12(m1 + m2)∥U1 − U2∥

ρ1D1
; (4.12)

1
τU

13
= 1

τU
31

= 0.75Cd13(m1 + m3)∥U1 − U3∥
ρ1D1

; (4.13)

1
τU

23
= 1

τU
32

= 0.75Cd23(m2 + m3)∥U2 − U3∥
ρ3D3

. (4.14)

This expression of τU
kl is derived from the Stokes formula [40]. Cdkl

= 24/Rekl is the drag
coefficient. The Reynolds number Rekl is defined as:

Re12 = ρ2D1∥U1 − U2∥
µ2

(4.15)

Re13 = ρ3D1∥U1 − U3∥
µ3

(4.16)

Re23 = ρ2D3∥U2 − U3∥
µ2

(4.17)
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D1 and D3 are the diameter of the corium droplets and the vapour droplets respectively. The
diameter of the corium droplet is obtained through an interfacial area equation whereas the
liquid vapour one is supposed constant: D3 = 15 mm.

• Pressure relaxation time scales:
1

P0τP
12

= 1
P0τP

21
= 3

4πµ2
; (4.18)

1
P0τP

13
= 1

P0τP
31

= 3
4πµ3

; (4.19)

1
P0τP

23
= 1

P0τP
32

= 3
4πµ2

. (4.20)

where µ2 = 2.82 · 10−4 kg m−1s−1 and µ3 = 1.8 · 10−5 kg m−1s−1 are the dynamic viscosity of
respectively the liquid water and liquid vapour at 1 bar and 293 K. It is the limit of the closure
law proposed in [23] for small diameter droplets.

• Temperature relaxation time scales:

1
τT

12
= 1

τT
21

= 6α1Nu1λ1(m1Cv1 + m2Cv2)
m1Cv1m2Cv2D2

1
; (4.21)

1
τT

13
= 1

τT
31

= 6α1Nu1λ1(m1Cv1 + m3Cv3)
m1Cv1m3Cv3D2

1
; (4.22)

1
τT

23
= 1

τT
32

= 6α3Nu3λ3(m2Cv2 + m3Cv3)
m2Cv2m3Cv3D2

3
. (4.23)

where Nu1 = 10, Nu3 = 10 are the Nusselt number of the corium and the water vapour re-
spectively and λ1 = 230 (W m−1K−1) and λ2 = 0.6 (W m−1K−1) are the thermal conductivity
of the corium and liquid vapour respectively. This form is taken from [46, 51, 52, 60].

• Gibbs potential relaxation time scale τm
23 is supposed to be constant:

τm
23 = τm = 10−5s . (4.24)

Defining T I,0
k = Tk(x ∈ ]2.15, 2.85], t = 0), coefficient Γ0 is here taken as follows:

Γ0 =
∣∣∣∣∣m0

3

(
γ2Cv2 + ϵ20

T I,0
2

(
2 + ϵ20

Cv2T I,0
2

))
+ m0

2

(
γ3Cv3 + ϵ30

T I,0
3

(
2 + ϵ30

Cv3T I,0
3

))∣∣∣∣∣ . (4.25)

As we can see on Figures 4.7 and 4.8, the total pressure Pmix =
∑3

k=1 αkPk peaks at station 3 at
60.9 MPa, which is close to the measured total pressure interval in [39] (50 MPa to 60 MPa). A similar
test case has been computed in [9] but as the relaxation is supposed to be instantaneous for both
pressure and velocity, the pressure peak was far lower than the one computed here. We note that,
oscillations come up at the beginning of the simulation, especially at station 3. Those oscillations
occur as eigenvalues of the relaxation matrix Rthermo become complex conjugate. The coarse mesh
can hardly capture the structure after the shock. The difference on the total pressure plateau between
the two refined meshes (respectively 10 000 cells and 20 000 cells) is about 2% for station 3 and 1%
for station 2.
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Figure 4.7. Evolution of the pressure Pmix at the four stations of the Krotos like
experiment for a mesh including 20 000 cells.
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Figure 4.8. Evolution of the total pressure on station 2 (red lines) and 3 (black lines)
for three meshes including respectively 1000 cells, 10 000 cells and 20 000 cells.

Eventually, as shown in Figure 4.9, the droplet break-up is active throughout the simulation.
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Figure 4.9. Evolution of the difference We − Wec at station 3 with a mesh including
10 000 cells

5. Conclusion

When tackling vapour explosion applications, we may conclude that the algorithms presented in this
article, in order to account for source terms, enable us to obtain convergent approximations of solutions
of the three-phase flow model [30, 47], when the mesh is refined. We recall here that the former
algorithms detailed in reference [9] lead to a failure of the computer code, in a similar framework.

We would like to recall that the emphasis of this work is on providing stable numerical schemes for
tackling steam explosion. Thus, for future work, investigating some more sophisticated ODE integrators
could increase the accuracy of the numerical scheme. For example, a Radau 5 method (see [59]) could
be used for solving system (36). Other implicit high-order methods for solving ODE could also be
investigated (see [12]).

Obviously, the temptation is now great to extend the relaxation schemes developed in [16] for
the convective effect of the two-phase flow model [3] (respectively for a barotropic three-phase flow
in [55]), to the immiscible three-phase flow models with energy [30]. The reader is referred to [16] for a
comparison of the capabilities of schemes introduced in [56] and [58], when focusing on the two-phase
flow model [3].

Moreover, more complex/realistic EoS might be considered in the second step on the algorithm,
instead of the simple SGG EoS considered herein. In that case, it would however remain to prove that
existence and uniqueness of the discrete solution of Step 2 (in the admissible state space) would hold
true.

Eventually, the authors emphasize again that in this work, no strong assumption on the relaxation
time scales underlies the model (such as in [20, 21, 44] for the two-phase flow framework), or the
treatment of the source terms (as in [27, 48, 49] for the two-phase flow framework). However, beyond
this, it urges the question of the accurate modeling of those relaxation time scales, and more generally
the question of the modeling of the source terms. Actually, few closure laws for the two-phase flow
framework exist in the literature, see for example [6, 10, 23, 40, 54]. Furthermore, we know that those
time scales play a key role on the transient of the flow, see Figures 4.1, 4.3 and Appendix A of [41].
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Therefore, even in the two-phase flow framework, a parametric study scanning the whole range of the
four relaxation time scales is a work that remains to be done, using very fine meshes, for a better
understanding of the impact of these time scales on the stability of solutions of these ODEs and
beyond of PDEs. This seems to be a important work in order to better understand the multiphase
flow models.

Moreover, other source terms than the ones used in this paper have been proposed in the literature,
and an attempt to compare some of them in the two-phase flow framework has been conducted in [11].
An extension of this study to the three-phase flow framework still remains to be achieved.
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Appendix A. Numerical parameters

Table A.1. EoS coefficients for all of the conducted simulations

Phase 1 Phase 2 Phase 3
Cv 1.2872948262582229e+01 1.452904592629688e+03 4.441148752333071e+03
γ 2.2838590974110350e+01 1.614924811807376e+00 1.085507894797296e+00
Π̂ 1.8847923625716622e+09 3.563521398523755e+08 0.0
ϵ0 −1.3316200000000000e+05 0.0 0.0
s0 0.0 0.0 −4.769786773517021e+04

Table A.2. Initial conditions for the homogeneous cases

P1(t = 0) 1.0 bar

P2(t = 0) 1.0 bar

P3(t = 0) 1.0 bar

T1(t = 0) 2500.0 K

T2(t = 0) 363.0 K

T3(t = 0) 1000.0 K

α1(t = 0) 0.026

α2(t = 0) 0.884

α3(t = 0) 0.09
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Table A.3. Numerical parameters for Case A and Case B in the homogeneous case.

Case A Case B

τP 1.0e-5 s 1.0e-8 s

τT 1.0e-3 s 1.0e-3 s

τm 1.0e-2 s 1.0e-2 s

Appendix B. Coefficients of the relaxation matrix

First, we define Rrelax as:

Rrelax(W ) =


RUU (W ) 0 0 0
RP U (W ) RP P (W ) RP T (W ) rP g(W )
RT U (W ) RT P (W ) RT T (W ) rT g(W )
rgU (W )⊺ rgP (W )⊺ rgT (W )⊺ rg(W )

 . (B.1)

Matrices RUU (W ), RP U (W ), RP P , RP T (W ), RT U (W ), RT P (W ), RT T (W ) are in M2(R), whereas
rP g(W ), rT g(W ), rgU (W ), rgP (W ), rgT are in R2 and rg is a scalar. Coefficients of RUU (W )(W ) write
as follows:

rUU11 = 1
m1

d12 + 1
m2

(
d12 + d23 − Λ23

2 ∆g23

)
,

rUU12 = 1
m1

d13 − 1
m2

(
d23 − Λ23

2 ∆g23

)
,

rUU21 = 1
m1

d12 − 1
m3

(
d23 + Λ23

2 ∆g23

)
,

rUU22 = 1
m1

d13 + 1
m3

(
d13 + d23 + Λ23

2 ∆g23

)
.

(B.2)

Writing θk = mk
∂ϵk
∂Tk

∣∣∣
ρk

, and:

F21 = K12ρ2
1

∂ϵ1
∂ρ1

∣∣∣∣
T1

− P2K12 + (∆P12 − ∆P13)K23 , (B.3)

F31 = K13ρ2
1

∂ϵ1
∂ρ1

∣∣∣∣
T1

− P3K13 − (∆P12 − ∆P13)K23 , (B.4)

F22 = −(K12 + K23)ρ2
2

∂ϵ2
∂ρ2

∣∣∣∣
T2

+ P2(K23 + K12) , (B.5)

F32 = K23ρ2
2

∂ϵ2
∂ρ2

∣∣∣∣
T2

− P2K23 , (B.6)

F23 = K23ρ2
3

∂ϵ3
∂ρ3

∣∣∣∣
T3

− P3K23 , (B.7)

F33 = −(K13 + K23)ρ2
3

∂ϵ3
∂ρ3

∣∣∣∣
T3

+ P3(K23 + K13) . (B.8)
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Moreover, setting σk = mk
∂ϵk
∂Pk

∣∣∣
ρk

, and:

G21 = −K12(ρ1c1)2 ∂ϵ1
∂P1

∣∣∣∣
ρ1

+ ∆P12K12 + (∆P12 − ∆P13)K23 , (B.9)

G31 = −K13(ρ1c1)2 ∂ϵ1
∂P1

∣∣∣∣
ρ1

+ ∆P13K13 − (∆P12 − ∆P13)K23 , (B.10)

G22 = (K12 + K23)(ρ2c2)2 ∂ϵ2
∂P2

∣∣∣∣
ρ2

, (B.11)

G32 = −K23(ρ2c2)2 ∂ϵ2
∂P2

∣∣∣∣
ρ2

, (B.12)

G23 = −K23(ρ3c3)2 ∂ϵ3
∂P3

∣∣∣∣
ρ3

, (B.13)

G33 = (K13 + K23)(ρ3c3)2 ∂ϵ3
∂P3

∣∣∣∣
ρ3

. (B.14)

Coefficients of the sub-matrices of Rrelax(W ) read:

• RT U (W ) =

rT U11 = ∆U12

(
d12 + d23

2θ2
− d12

2θ1

)
− d23

2θ2
∆U13 , (B.15)

rT U12 = ∆U13

(
d23
2θ2

− d13
2θ1

)
− d23

2θ2
∆U12 , (B.16)

rT U21 = ∆U12

(
d23
2θ3

− d12
2θ1

)
− d23

2θ3
∆U13 , (B.17)

rT U22 = ∆U13

(
d13 + d23

2θ3
− d13

2θ1

)
− d23

2θ3
∆U12 . (B.18)

• RT P (W ) =

rT P11 = −F21
θ1

+ F22
θ2

, (B.19)

rT P12 = −F31
θ1

+ F32
θ2

, (B.20)

rT P21 = −F21
θ1

+ F23
θ3

, (B.21)

rT P22 = −F31
θ1

+ F33
θ3

. (B.22)

• RT T (W ) =

rT T11 = q12
θ1

+ q12 + q23
θ2

, (B.23)

rT T12 = q13
θ1

− q23
θ2

, (B.24)

rT T21 = −q23
θ3

+ q12
θ1

, (B.25)

rT T22 = q13
θ1

+ q13 + q23
θ3

. (B.26)
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• rT g(W ) =

rT g1 = Λ23
θ2

(
ϵ2 + ρ2

∂ϵ2
∂ρ2

∣∣∣∣
T2

)
, (B.27)

rT g2 = −Λ23
θ3

(
ϵ3 + ρ3

∂ϵ3
∂ρ3

∣∣∣∣
T3

)
. (B.28)

• RP U (W ) =

rP U11 = ∆U12

(
d12 + d23

2σ2
− d12

2σ1

)
− d23

2σ2
∆U13 , (B.29)

rP U12 = ∆U13

(
d23
2σ2

− d13
2σ1

)
− d23

2σ2
∆U12 , (B.30)

rP U21 = ∆U12

(
d23
2σ3

− d12
2σ1

)
− d23

2σ3
∆U13 , (B.31)

rP U22 = ∆U13

(
d13 + d23

2σ3
− d13

2σ1

)
− d23

2σ3
∆U12 . (B.32)

• RP P (W ) =

rP P11 = 1
m1

(
(ρ1c1)2K12 +

(
∂ϵ1
∂P1

∣∣∣∣
ρ1

)−1
(K23∆P13 − (K12 + K23)∆P12)

)

+ 1
m2

(ρ2c2)2(K12 + K23) , (B.33)

rP P12 = 1
m1

(
K13(ρ1c1)2 +

(
∂ϵ1
∂P1

∣∣∣∣
ρ1

)−1
(K23∆P12 − (K23 + K13)∆P13)

)
− 1

m2
K23(ρ2c2)2 , (B.34)

rP P21 = 1
m1

(
(ρ1c1)2K12 +

(
∂ϵ1
∂P1

∣∣∣∣
ρ1

)−1
(K23∆P13 − (K12 + K23)∆P12)

)
− 1

m3
K23(ρ3c3)2 , (B.35)

rP P22 = 1
m1

(
K13(ρ1c1)2 +

(
∂ϵ1
∂P1

∣∣∣∣
ρ1

)−1
(K23∆P12 − (K23 + K13)∆P13)

)

+ 1
m3

(K13 + K23)(ρ3c3)2 . (B.36)

• RP T (W ) =

rP T11 = q12
σ1

+ q12 + q23
σ2

, (B.37)

rP T12 = q13
σ1

− q23
σ2

, (B.38)

rP T21 = −q23
σ3

+ q12
σ1

, (B.39)

rP T22 = q13
σ1

+ q13 + q23
σ3

. (B.40)
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• rP g(W ) =

rP g1 = Λ23
σ2

(
ϵ2 + P2

ρ2
− ρ2c2

2
∂ϵ2
∂P2

∣∣∣∣
ρ2

)
, (B.41)

rP g2 = −Λ23
σ3

(
ϵ3 + P3

ρ3
− ρ3c2

3
∂ϵ3
∂P3

∣∣∣∣
ρ3

)
. (B.42)

• rgU (W ) =

rgU1 = − 1
2ρ2T2

( 1
σ2

− ρ2h2
θ2

)
[d12∆U12 + d23(∆U12 − ∆U13)]

+ d23
2ρ3T3

( 1
σ3

− ρ3h3
θ3

)
[∆U12 − ∆U13] , (B.43)

rgU2 = − d23
2ρ2T2

( 1
σ2

− ρ2h2
θ2

)
(∆U12 − ∆U13)

+ 1
2ρ3T3

( 1
σ3

ρ3h3
θ3

)
[d13∆U13 + d23(∆U13 − ∆U12)] . (B.44)

• rgP (W ) =

rgP1 = − 1
ρ2T2

(
G22
σ2

− ρ2h2F22
θ2T2

)
+ 1

ρ3T3

(
G23
σ3

− ρ3h3F23
θ3T3

)
, (B.45)

rgP2 = − 1
ρ2T2

(
G32
σ2

− ρ2h2F32
θ2T2

)
+ 1

ρ3T3

(
G33
σ3

− ρ3h3F33
θ3T3

)
. (B.46)

• rgT (W ) =

rgT1 = − 1
ρ2T2

( 1
σ2

− ρ2h2
θ2T2

)
(q12 + q23) − q23

ρ3T3

( 1
σ3

− ρ3h3
θ3 − T3

)
, (B.47)

rgT2 = q23
ρ2T2

( 1
σ2

− ρ2h2
θ2T2

)
+ 1

ρ3T3

( 1
σ3

− ρ3h3
θ3T3

)
(q13 + q23) . (B.48)

• rg(W ) =

− Λ23

[
1

ρ2T2

(
h2
σ2

− ρ2c2
2

σ2

∂ϵ2
∂P2

∣∣∣∣
ρ2

− ρ2h2
θ2T2

(
ϵ2 + ρ2

∂ϵ2
∂ρ2

∣∣∣∣
T2

))

+ 1
ρ3T3

(
h3
σ3

− ρ3c2
3

σ3

∂ϵ3
∂P3

∣∣∣∣
ρ3

− ρ3h3
θ3T3

(
ϵ3 + ρ3

∂ϵ3
∂ρ3

∣∣∣∣
T3

))]
(B.49)

Appendix C. Velocity relaxation algorithm

The sub-system that characterizes this step can be written as follows:
∂tαk = 0
∂tmk = 0
∂t (mkUk) = −

∑3
l=1,l ̸=k dkl(W )∆Ukl

∂t (αkEk) = −
∑3

l=1,l ̸=k Vkl(W ) · dkl(W )∆Ukl

(C.1)
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From (C.1), one can obtain the following equation:

∂t∆U = −R̂UU ∆U, (C.2)

with R̂UU ∈ M2(R) that corresponds to the matrix RUU of (B.2) with ∆g23 = 0; The algorithm used
for computing approximate solutions for the velocity relaxation step is identical to Algorithm 3.3.1.2
presented in [9]. It consists, on each cell of the mesh, in five steps:

Step 1. Initialize the vector of velocity differences at time tn− (right after the convective step):
∆Un− = (∆Un−

12 , ∆Un−
13 )⊺ and matrix R̂UU at time tn−.

Step 2. Compute ∆Un such as:(
I + ∆tnR̂UU (W n−)

)
∆Un = ∆Un− , (C.3)

with I the identity matrix in M2(R).

Step 3. Compute Un
1 using the total momentum conservation:

Un
1 =

∑3
k=1 (mkUk)n− + mn−

2 ∆Un
12 + mn−

3 ∆Un
13

(m1 + m2 + m3)n− . (C.4)

Step 4. Update Un
2 and Un

3 as:
Un

2 = Un
1 − ∆Un

12 ; Un
3 = Un

1 − ∆Un
13 . (C.5)

Step 5. Update the total energy by integrating the evolution equation of the total energy of sys-
tem (C.1):

(αkEk)n = (αkEk)n− − ∆t
3∑

l=1,l ̸=k

dkl (W n−)
2

(
(Un

k )2 − (Un
l )2

)
(C.6)

Appendix D. Interfacial area

The definition of an interfacial area A1 for the phase 1 (corium) is needed in order to capture the
behaviour of the solution [5, 13, 25]:

A1 = 6α1
D1

(D.1)

Its equation of evolution is supposed to be:
∂A1
∂t

+ ∇(A1U1) = g(A1, W ); (D.2)

with, see [8, 52]:

g(A1, W ) = C0
A2

1
6α1

(
ρ1
ρ2

)1/2
∥U1 − U2∥f(We); (D.3)

where the coefficient C0 = 0.245 and We the Weber number is defined as follows:

We = ρ1∥U1 − U2∥2D1
σ1

(D.4)

with σ1 = 73 .10−3(N.m−1) a reference surface tension [51]. Moreover f(We) is defined as:
f(We) = 1 , if We > Wec ; f(We) = 0 otherwise (D.5)

where Wec = 12 is called the critical Weber number.
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Adding this new equation does not change the structure and properties of the global system (1.4)
according to [8]. Hence, it is chosen for the simulation. The numerical scheme used to simulate (D.2)
is detailed in [8]. It consists of an explicit implicit step method, splitting the convective part and the
source term part. Those two steps will respectively be inserted inside the explicit simulation step of
the convective part of system (1.4) and the implicit simulation of the source terms of the same system.
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