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Abstract. This work aims at introducing model methodology and numerical studies related to a Lagrangian
stochastic approach applied to the computation of the wind circulation around mills. We adapt the Lagrangian
stochastic downscaling method that we have introduced in [3] and [4] to the atmospheric boundary layer and
we introduce here a Lagrangian version of the actuator disc methods to take account of the mills. We
present our numerical method and numerical experiments in the case of non rotating and rotating actuator
disc models. First, for validation purpose we compare some numerical experiments against wind tunnel
measurements. Second we perform some numerical experiments at the atmospheric scale and present some
features of our numerical method, in particular the computation of the probability distribution of the wind
in the wake zone, as a byproduct of the fluid particle model and the associated PDF method.

Keywords. Lagrangian stochastic model, PDF method, atmospheric boundary layer, actuator disc model.

1. Introduction

Modeling the flow through wind turbines and wind farms is a research area of growing importance with
the fast and worldwide development of installed wind farms. Therefore there exists a wide variety of
approaches that combine atmospheric computational fluid dynamics methods (CFD) with wake models
(from actuator disc models to full rotor computations, see eg. Sørensen and Myken [30], Hallanger
and Sand [13], Bergmann and Iollo [2]).

Most popular atmospheric boundary layer computations are based on Reynolds averaged Navier-
Stokes (RANS) turbulence models and large eddy simulation (LES) approaches. PDF methods, based
on stochastic Lagrangian models, constitutes an interesting alternative (see the discussions in Pope [25])
that have been not yet fully developed in the case of atmospheric boundary layer modeling but are
mostly used for reactive flows because this approach does not necessitate to approximate the reaction
terms (Haworth [15], Minier and Peirano [21]). Among the reasons that can explain this phenomena,
we can first rise the fact that such kinds of models handle nonlinear stochastic differential equations
that necessitate a background on stochastic calculus, rather than classical PDE analysis. Second, the
development of numerical solvers, based on stochastic particles approximation, requires the design of
a hybrid Lagrangian/Eulerian algorithm from scratch. However, it is worth mentioning PDF methods
are computationally inexpensive and allow to refine the space scale without any numerical constraints.
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In recent works, some of the authors developed modeling numerical frameworks for the downscaling
problem in meteorology (see [3],[4]). An algorithm called Stochastic Downscaling Method (SDM) is
currently under validation when coupled with a coarse resolution wind prediction, provided thanks to
classical numerical weather prediction (NWP) solvers. Quite a few widely used predictive numerical
solvers (such as the weather research & forecasting model (WRF)) are based on a LES approach. To
this purpose, we have developed a branch of SDM that includes atmospheric boundary layer modeling
and ground interaction (log law).

In this paper, we present our methodology to introduce wake models (typically actuator disc models)
in the SDM solver. We also present the related numerical experiments on wake computation, in a
classical log law context.

We emphasize the fact that the basis of stochastic Lagrangian models consists in describing the
stochastic dynamics of a fluid particle’s state variables (Xt,Ut), under an appropriated probabilistic
space (Ω,F ,P) equipped with the expectation operator E. The Lagrangian approach allows to define
the Eulerian average of the velocity, classically represented by the bracket operator 〈U〉 in the RANS
approach or Ũ in the LES approach, as the mathematical conditional expectation1 of the particle
velocity Ut knowing its position x ∈ R3

〈U〉(t, x) := E [Ut|Xt = x] , (1.1)

and more generally, for any function f ,

〈f(U)〉(t, x) := E [f(Ut)|Xt = x] . (1.2)

Equivalently, in term of PDF2 modeling approach (see [25] for further details) the Eulerian density
at time t and at a given x is identified with the conditioned Lagrangian density, knowing the event
{Xt = x}.

The connections between RANS/LES models and stochastic Lagrangian models are realized via
a specific design of the stochastic equation coefficients for (Xt,Ut) allowing to reproduce k − ε and
Reynolds-stress models (see the review on Lagrangian modeling in Pope [24] and the discussion in [4]).
In particular such PDF models can be used to reconstitute subgrid information of fluctuations in LES
modeling.

After a short description of the SDM modeling, mathematical framework, and numerical method
in Section 2, we introduce our Lagrangian version of the actuator disc modeling in Section 3. For
validation purpose, in Section 4 we compare some numerical experiments against wind tunnel mea-
surements. Section 5 is devoted to some numerical experiments at the atmospheric scale. To assess the
mill impact in the flow, SDM simulations are run in both experiments with the two turbine models
presented in Section 3, namely: the non-rotating actuator disc model, and the rotating actuator disc
model.

2. Stochastic downscaling methodology

This section is devoted to the description of the Stochastic Downscaling Method, in the framework of
turbulence modeling of an incompressible flow in the neutral case (constant mass density).

Consider the computational domain D as an open bounded subset of R3. In order to model the flow
in D, we consider a couple of stochastic processes (Xt,Ut) that respectively describe the location and
the velocity of a generic fluid-particle. The evolution of (Xt,Ut) is governed by the following generic

1We consider here only the case of constant mass density, for the sake of clarity. In other cases a scalar state variable
is introduced such as temperature, that weights the conditional expectation operator.

2Probability Density Function
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system of stochastic differential equations (SDEs):

dXt =Utdt, (2.1a)

dUt =
(
−1
%
∇x〈P〉(t,Xt)

)
dt−G(t,Xt)

(
Ut − 〈U〉(t,Xt)

)
dt+ C(t,Xt)dWt. (2.1b)

Here W is a standard 3-dimensional Brownian motion, G, C and Uext are functions to be defined
in accordance with the turbulence underlying model (see Section 2.3 below), and X(t = 0) = X0,
U(t = 0) = U0 where (X0,U0) are random variables whose probability law µ0 is given. The parameter
% is the mass density of the fluid (which is assumed to be constant).

We supplement the dynamics (2.1), with generic (Dirichlet) boundary conditions on the mean
velocity:

〈U〉(t, x) := E [Ut|Xt = x] = Uext(t, x), (2.2)
when x = (x, y, z) belongs to the lateral-boundary part or top-boundary part of ∂D. The bottom-
boundary condition that should account for the surface roughness is described in Section 2.4.

2.1. Mathematical framewrok

According to (1.1), the term 〈U〉(t,Xt) = E [Ut|Xt] denotes the expected velocity of the particle
conditioned by its position Xt, making the equation (2.1) a nonlinear SDEs in the sense of McKean.
This means that a Markovian solution to (1.1) must be a process ((Xt, Ut); 0 ≤ t ≤ T ) complemented
with the set of its time-marginal laws ρ(t) of (Xt, Ut) at any time 0 ≤ t ≤ T , which allows to define
(assuming the existence of densities for the marginal laws ρ(t)):

E [f(Ut)|Xt = x]

for any measurable function f , as the conditional Lagrangian mean∫
R3 f(u)ρ(t, x, u)du∫

R3 ρ(t, x, u)du

whenever the marginal mas
∫
R3 ρ(t, x, u)du is positive. In the framework of turbulent modeling this

conditional Lagrangian mean is then identified to the Eulerian mean (see Pope [25] and the references
therein).

In a series of papers, (see in particular Bossy and Jabir [6], Bossy, Jabin, Jabir and Fontbona [5], and
references therein), the wellposedness of toy-models version of stochastic Lagrangian models, typically
with drift coefficients of the velocity equation expressed as conditional expectation with respect to
position, was initiated.

The wellposedness of the stochastic process ((Xt, Ut); 0 ≤ t ≤ T ), for any arbitrary finite time
T > 0, whose time-evolution is given by the McKean-nonlinear SDE:

Xt = X0 +
∫ t

0
Us ds,

Ut = U0 +
∫ t

0
B[Xs; ρ(s)]ds+ σWt, where ρ(t) is the density law of (Xt, Ut) for all t ∈ (0, T ],

(2.3)
can by found in [6], whereW is a standard Rd-Brownian motion, the diffusion σ is a positive constant,
and the drift coefficient (x, ψ) 7→ B(x, ψ) is the mapping from D × L1(D × Rd) to Rd defined by:

B[x;ψ] =
∫
Rd b(v)ψ(t, x, v)dv∫

Rd ψ(t, x, v)dv 1{
∫
Rd ψ(t,x,v)dv 6=0}, (2.4)
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where b : Rd → Rd is a given bounded measurable function. This definition of the drift B makes the
mapping (t, x) 7→ B[x; ρ(t)] coincides with (t, x) 7→ E[b(Ut)|Xt = x] and the velocity equation rewrites

Ut = U0 +
∫ t

0
E[b(Us)|Xs]ds+ σWt

or equivalently, using the notation in (1.1)

dUt = 〈b(U)〉(t,Xt)dt+ σdWt.

Moreover a particle system, based on kernel regression estimator of the conditional expectation B is
shown to converge weakly to the model (2.3). The construction of the particle approximation is based
on local averaging estimate on a N -particle set (Xi

t , U
i
t , i = 1, . . . , N, t ∈ [0, T ]) of

E[b(Ut)|Xt = x] by
N∑
i=1
WN,i(x)b(U it ).

Well-known propositions for the weights WN,i(x) are Nadaraya-Watson estimator

WN,i(x) = Kε(x−Xi)∑N
j=1Kε(x−Xj)

,

for a well chosen kernel Kε(x) = K(xε ), and partitioning estimator

WN,i(x) =
1{Xi∈BM,j}∑N
k=1 1{Xk∈BM,j}

, for x ∈ BM,j

given a M -partition PM = {BM,1,BM,2, . . . ,BM,M} of the domain. It is worth to notice that the
algorithm complexity of a particle system based on kernel estimator is up to O(N2) whereas the
partitioning estimator version is up to O(N). We retained this last solution for SDM together with
some refinement of Particle-in-cell (PIC) technics (see further details in [3, 4]).

Also a confined version of (2.3) by mean of specular reflection is shown to produce Dirichlet bound-
ary condition, as mean no-permeability boundary condition:

E[(Ut · nD(Xt))|Xt = x] = 〈U · nD〉(t, x) = 0, for dt⊗ dσ∂D-a.e. (t, x) ∈ (0, T )× ∂D.

In [5], for D equal to the torus R/Z (and with (x)mod 1 := x − bxc), a step is made in the
wellposedness of Lagrangian equation with pressure term:

Xt =
⌊
X0 +

∫ t

0
Us ds

⌋
, Ut = U0 + σWt −

∫ t

0
∇xP (s,Xs)ds− β

∫ t

0
(Us − αE(Us|Xs))ds (2.5a)

law(X0, U0) = ρ0(x, u)dx du, (2.5b)
P(Xt ∈ dx) = dx, for all t ∈ [0, T ]. (2.5c)

For now on, and under drastic hypotheses on the initial condition law, only analytical solutions of
the Fokker Planck equation associated to (2.5) is established. This first step contributes to analyze
the role of the gradient pressure term to guarantee the incompressibility constraint on the Eulerian
velocity and constant mass density. In the modeling of turbulent flow, the constraint (2.5c) is indeed
formulated heuristically (see e.g. [24]) by rather imposing some divergence free property on the flow,
which in the case of system (2.5) would correspond to a divergence free condition on the bulk velocity
field:

∇x · E[Ut|Xt = x] = 0.
By taking the divergence of a formal equation for the bulk velocity derived from the Fokker-Planck
equation, and a classical projection argument on the space of divergence free fields, it is then assumed
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that the field P verifies an elliptic PDE, which in our notation is written as:

4xP = −
d∑

i,j=1
∂xixjE

[
U

(i)
t U

(j)
t |Xt = x

]
(2.6)

(see [25] for a precise formulation).

2.2. Generic numerical scheme

We present hereafter the numerical discretization of equations (2.1). It consists in one main time loop
in which we identified three main steps: see Algorithm 1. The interested reader may refer to [3, 4]
for additional details. In particular, the link between Lagrangian and Eulerian fields (i.e. between
particles and mesh) is established thanks to classical particle-in-cell (PIC) methods (see Raviart [27]),
which are thus used to compute conditional expectations (1.1) and (1.2). The domain D is divided in
partitioning cells defined from a Cartesian regular mesh. We denote Np the total number of particles
in the computation, Npc is the number of particles per cell, that is maintained constant in the time
step procedure, by the effect of the mass conservation constraint.

In the case where the nearest grid point method (spline of order 0) is used, any conditional expec-
tation such as (1.2) is computed in each cell C(i, j, k) thanks to an average value over the Npc particles
located in the cell:

〈〈f(U)〉〉(t, xi,j,k) = 1
Npc

∑
p∈C(i,j,k)

f(Up(t)). (2.7)

This approach coincides with the partitioning estimator described at Section 2.1.

Algorithm 1 – Time-Step in SDM
while t0 + n∆t < Tfinal do
(1) Prediction step: move particles thanks to a partial exponential scheme.
(2) Account for boundary conditions
(3) Correction step: conservation constraints ensuring constant density and free
divergence.

end while

For robustness considerations (see Appendix A), we consider an exponential version of the explicit
Euler scheme for the prediction Step (1). We propose in Step (2) an original method to confine
particles in D according to the following downscaling principle: the inferred Eulerian velocity field
satisfies the Dirichlet condition (2.2).
At time tn−1 = t0+(n−1)∆t, the Np Lagrangian variables

(
Xp
n−1,U

p
n−1

)
:=
(
Xp,Np
n−1 ,U

p,Np
n−1

)
are known,

as well as the statistics kn−1 and 〈Un−1〉 in each cell C of the partition of

D =
Nc⋃
i=1
Ci.

At time tn, for each particle p:

Step 1.: Prediction: we compute the following quantities
• The particle position X̃p

n = Xp
n−1 + ∆tUp

n−1.
• The velocity Ũp

n is calculated applying an exponential Euler scheme to the SDE (see
Appendix A)

dŨp
t = −G(tn−1,Xp

n−1)
(
Ũp
t − 〈Un−1〉

)
dt+ C(tn−1,Xp

n−1)dWt, t ∈ [tn−1, tn], (2.8)
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where 〈Un−1〉, kn−1 and εn−1 are evaluated in the cell containing Xp
n−1.

If X̃p
n ∈ D, then set Xp

n = X̃p
n and Up

n = Ũp
n.

Step 2.: Boundary condition: When X̃p
n /∈ D; let tout be the boundary hitting time after tn−1,

and Xp
out = Xp

n−1 + (tout − tn−1)Up
n−1 be the hitting position, then the reflected position is set

to
Xp
n = Xp

out − (tn − tout)Up
n−1. (2.9)

In concern of the velocity, we simulate Equation (2.8) between tn−1 and tout with an exponential
scheme to obtain the velocity Up

t−out
. Then, in order to match the boundary conditions, we

impose a jump on the velocity at t = tout:
Up

t+out
= 2Uext(tn−1,Xp

out)−Up

t−out
. (2.10)

We finally compute Up
n thanks to the numerical computation of Equation (2.8) between tout

and tn.

Remark 2.1. In a three-dimensional domain, it may happen that Xp
n written in (2.9) remains

outside the computational domain after the reflection, for instance in the neighborhood of the
corners. In this case, the particle is replaced near the outward boundary and the new particle
position is set to

Xp
n = Xp

out + γ,

where γ is a small vector pushing Xp
out back into D. The new velocity Up

n is unchanged.

Step 3.: Conservation constraints: Once the Np particles are advanced at time tn,
• move the particles such that there is exactly the same number Npc of particles per cell to
fulfill the mass density constraint. To this aim, we use the so-called triangular transport
(see [3]) which consists in sequentially sorting the particle in each of the three space
directions. This sequential 1D rearrangement corresponds to the solution of an optimal
transport problem according to the uniform distribution).
• compute the new Eulerian quantities 〈Ũn〉, and project the new Eulerian velocity field on
the divergence free space. This may be done thanks to the classical resolution of a Poisson
equation for the pressure, with homogeneous Neumann boundary conditions.

2.3. A specific Lagrangian model for the atmospheric boundary layer

We consider our computational domain D in the neutral atmospheric boundary layer such as drawn
in Figure 2.1. From floor to top, the height of D is at most the approximate size of the atmospheric
boundary layer, namely 600 to 1000 m (in Section 5, we shall perform our numerical simulations for
a domain D of height 300 m and 750 m).

We now detail the generic terms G, C in (2.1)–(2.2), and boundary conditions Uext in order to
model the atmospheric boundary layer. In what follows, all the Eulerian averages 〈 〉 are in the sense
of (1.2).

Turbulence modeling

We use the classical notation for the velocity components (with numbering or with letters, depending
on how it is convenient in the equations)

Ut = (u(1)
t , u

(2)
t , u

(3)
t ) = (ut, vt, wt).
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Figure 2.1. Schematic view of the atmosperic boundary layer. Courtesy of P. Drobinski [9].

Also for the components of the instantaneous turbulent velocity

Ut − 〈U〉(t,Xt) = (u′(1)
t , u

′(2)
t , u

′(3)
t ) = (u′t, v′t, w′t),

for the turbulent kinetic energy (tke)

k(t, x) = 1
2
(
〈u′tu′t〉+ 〈v′tv′t〉+ 〈w′tw′t〉

)
,

and for P = 1
2(P11 + P22 + P33), the rate of turbulent energy production, with

Pij := −
3∑

k=1

(
〈u′(i)u′(k)〉∂〈u

(j)〉
∂xk

+ 〈u′(j)u′(k)〉∂〈u
(i)〉

∂xk

)
.

Turbulence models roughly consist in linking the turbulent kinetic energy k and the turbulent energy
dissipation ε. In order to account for turbulence effects in the Lagrangian velocity equation (2.1b), we
define its coefficients as:

C(t, x) =
√
C0 ε(t, x), (2.11a)

Gi,j(t, x) = −CR2
ε(t, x)
k(t, x)δij + C2

∂〈u(i)〉
∂xj

(t, x). (2.11b)

The tensorGi,j is related to the isotropization of turbulence production model (IP model) that accounts
to the Reynolds-stress anisotropies (see Durbin and Speziale [11] and [25] ) and C0 is given by:

C0 = 2
3

(
CR + C2

P
ε
− 1

)
. (2.12)

The turbulent energy dissipation ε(t, x) is recovered via the turbulent kinetic energy as a parametri-
zation (see Drobinski et al. [10])

ε(t, x) = Cε
k3/2(t, x)
`m(x) . (2.13)

It is worth to notice that the term ε(t, x)/k(t, x) in the Gi,j tensor is Cε
k1/2(t, x)
`m(x) . Thus when

the turbulent kinetic energy k vanishes, all the terms in the particles dynamics (2.5, 2.11) stay well
defined. As a local model, possibly forced by dynamical boundary condition as in [3] or by a log law
wind profile as in the following Sections 4 and 5, SDM is mainly pertinent in the turbulent part of the
atmosphere. However, it can be observed that SDM well reproduces the decay of the turbulent kinetic
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energy in the boundary layer, and up to the geostrophic height, making vanished the tke k at the top,
where the flow becomes laminar (see Figure 5.1).

The mixing length `m can be considered as constant away from the floor (above the surface layer).
However, as can be seen in Carlotti [7], it should be proportional to the vertical coordinate z within
the surface layer. A classical choice consists in a piecewise linear function for `m proportional to von
Karman constant κ:

`m(z) = κ(z − z`m)1[0,z`m ](z) + κz`m . (2.14)

Putting together (1.2),(2.11) with the generic Eulerian average approximation formula (2.7), we
obtain the following expression for the turbulent characteristics computed by SDM:

k(t, x) ' 1
2
(
〈〈u′u′〉〉(t, x) + 〈〈v′v′〉〉(t, x) + 〈〈w′w′〉〉(t, x)

)
,

Pij ' −
3∑

k=1

(
〈〈u′(i)u′(k)〉〉∂〈〈u

(j)〉〉
∂xk

+ 〈〈u′(j)u′(k)〉〉∂〈〈u
(i)〉〉

∂xk

)
,

Gi,j(t, x) ' −CR2 Cε
k1/2(t, x)
`m(x) δij + C2

∂〈〈u(i)〉〉
∂xj

(t, x).

(2.15)

Boundary conditions

As can be seen in Figure 2.1, our computational domain is bounded from above by the free troposhere
where a geostrophic balance can be considered. As a consequence, we shall use Dirichlet boundary
conditions at the top of the domain,

〈U〉(t, x) = UG(t, x), (2.16)

where UG is given, corresponding to the output of a geostrophic model.
The bottom boundary condition should account for the surface roughness and corresponding layer:

we incorporate a log law in our model, such as described in the forthcoming section.
Finally, since we want to model one or several mills we propose to use inflow (log law profile) and

outflow (free output) boundary conditions for the (x, y) lateral frontiers, as described in Section 5
below.

2.4. Wall-boundary condition

For the modeling effect of the ground, we borrow and adapt the particle boundary condition proposed
by Minier and Pozorski [23] that aims to reproduce the momentum exchange between the ground
and the bulk of the flow. This method is equivalent to wall functions approach in classical turbulence
models.

Here, we just resume the main idea in [23] which consists in imposing a reflection to the particle
trajectories, when it arrive to a given height zmirror, where zmirror is chosen in the logarithmic layer.

In order to define the reflection of the particles on this mirror face {z = zmirror}, we denote with a
‘in’ the inward velocities in the region {z ∈ [zmirror, H]} and with a ‘out’ the outward velocities in the
region {z ∈ [0, zmirror]}.

The velocity Uin is oriented to the top whereas Uout is oriented to the bottom. A symmetry principle
allows to replace any outward particle to its mirror inward particle.

The vertical component is simply reflected at zmirror:

win = −wout (2.17)
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•
Cell center Cells

{z = zc}

Outward particle•

Uout

Uin

•Mirror particle

{z = zmirror}

{z = z0}
{z = 0}

Ground

Figure 2.2. The mirror reflection scheme for the velocity near the ground.

whereas the horizontal velocity are lifted in a way that preserves the covariances 〈u′w′〉 and 〈v′w′〉 in
this reflection process:

uin = uout − 2〈u
′w′〉
〈w′2〉

wout, (2.18)

vin = vout − 2〈v
′w′〉
〈w′2〉

wout. (2.19)

It remains to impose the covariances at the ground.
In [7], Carlotti describes the method used in the Meso-NH model [17] for the account of the log law.

This method is inspired from the one of Schmid and Schumann [29]: the boundary condition for the
subgrid covariances 〈u′w′〉 and 〈v′w′〉 are fixed to:

〈u′w′〉(t, x, y) = −

 〈u〉√
〈u〉2 + 〈v〉2

u2
∗

 (t, x, y), (2.20)

〈v′w′〉(t, x, y) = −

 〈v〉√
〈u〉2 + 〈v〉2

u2
∗

 , (t, x, y) (2.21)

where the friction velocity u∗3 is computed in each cell at the bottom of the domain using the log law

u∗(t, xc, yc) = κ

√
〈u〉2(t, xc, yc, zc) + 〈v〉2(t, xc, yc, zc)

log
(
zc
z0

) (2.22)

3u∗ =
(

〈u′w′〉2 + 〈v′w′〉2
)1/4

.
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where κ is the von Karmann constant, z0 is the roughness length parameter, and (xc, yc, zc) is the
position of a cell’s center, for the cells on the floor.

We adapt this idea in SDM with the following steps.

Step 1.: Given 〈u〉(tn) and 〈v〉(tn), for any of the cells on the floor,
- we compute u∗(tn, xc, yc) with (2.22),
- we compute 〈u′w′〉(tn, xc, yc) and 〈v′w′〉(tn, xc, yc) using (2.20) and (2.21).

Step 2.: For the particle boundary condition at zmirror, we localize the particle crossing the in-
terface in the cell of center (xc, yc, zc); we use 〈u′w′〉(tn, xc, yc) and 〈v′w′〉(tn, xc, yc) to compute
the reflected velocity of the mirror particle at the interface, using (2.17), (2.18) and (2.19).

In [23], the authors propose to fix zmirror to 3
5zc. In our simulations in the following sections, we used

zmirror = 1
2zc.

3. Actuator disc methods in the Lagrangian setting

The presence of wind mills is taken into account thanks to additional force terms in the stochastic
differential equations that govern the movement of the particles. To this end, equation (2.1b) (which
governs the time evolution of the velocity Ut = (ut, vt, wt) of a particle) is modified as follows:

dUt =
(
−1
ρ
∇x〈P〉(t,Xt)

)
dt

−G(t,Xt)
(
Ut − 〈U〉(t,Xt)

)
dt+ C(t,Xt)dWt

+ f (t,Xt,Ut) dt+ fnacelle (t,Xt,Ut) dt+ fmast (t,Xt,Ut) dt.

(3.1)

The term f (t,Xt,Ut) represents the body forces that the blades exert on the flow. The supplemen-
tary terms fnacelle (t,Xt,Ut) and fmast (t,Xt,Ut) represent the impact of the mill nacelle and mast. In
the present work, only the blade and nacelle forces are considered.

In this section, we discuss how those force terms should be implemented in the Lagrangian setting
considered here, in order to recover consistency with classical Eulerian formulations.

Considering the full geometrical description of the blades (that requires a very fine mesh), the force
f is a very complex function which encodes the geometry of the blades; however, in this study we are
interested in the overall impact of the mills in the flow, and not in the fine geometrical details of the
reciprocal interactions. For this reason, and to avoid costly computations, an actuator disc approach
is used to provide approximations of f , with two different levels of complexity:

(a) Non-rotating actuator disc with uniform loading.

(b) Rotating actuator disc.

In the Actuator Disc approach, each mill is represented as an immersed surface which concentrates
all forces exerted by the mill on the flow. A thorough description of this methodology can be found
in Mikkelsen [20], and in the books by Hansen [14] and Manwell, McGowan and Rogers [18]. With
different degrees of complexity, it has been applied to wind turbine simulations in Porté-Agel, Lub
and Wu [26], Master et al. [19], El Kasmi and Masson [12]. It has also been used to simulate arrays of
turbines in Wu and Porté-Agel [33].

It is assumed that the flow moves along the positive direction of the x axis, and that the turbine’s
main axis is aligned with the x axis, so that it faces the wind directly. It is convenient to define
local reference frame of cylindrical coordinates centered at the hub of the turbine, with basis vectors
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(a) Local coordinates (b) The
cylinder
C

Figure 3.1. (a) The local reference frame at the actuator disc of the turbine, using
cylindrical coordinates.
(b) The cylinder C that extends the actuator disc. Mill forces are applied to particles
that lie inside.

ex, er and eθ as shown in Figure 3.1a. In order to apply the forces to the particles, the actuator
disc is expanded to a cylinder C of depth ∆x, and the forces per unit mass are used to correct the
velocities of all particles lying inside C. This cylinder is divided in two regions: C = Cblades ∪ Cnacelle,
as depicted in Figure 3.2, where Cblades represents the region occupied by the blades, and Cnacelle
represents the region occupied by the nacelle. For the two models considered here (non-rotating and
rotating actuator disc), the force term f is computed for and applied to particles lying inside region
Cblades; and correspondingly, the term fnacelle is computed for and applied to particles lying inside
region Cnacelle. The following sections describe the way in which this is done.

Figure 3.2. Left: cylinder C representing the turbine. Right: sub-regions correspond-
ing to the nacelle and blades, viewed by particles.
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In the rest of this section we discuss successively on the force f in the non rotating actuator disc
model, and in the rotating actuator disc model. We end by considering the fnacelle.

3.1. Non rotating, uniformly loaded actuator disc model

In this model, the turbine force corresponding to the blades is distributed uniformly over the region
Cblades, and rotational effects are ignored. In the simplest formulation of the model, for a turbine facing
a uniform laminar steady state flow, and ignoring the influence of the nacelle, the total thrust force
exerted by the turbine is given by an expression of the form

Fx = −1
2ρACTU

2
∞ex,

where U∞ is the unperturbed velocity far upstream from the turbine’s location, U∞ is its norm, A is
the surface area of the turbine’s disc, ρ is the density of air, and CT is a dimensionless, flow dependent
parameter called the thrust coefficient.

An elementary deduction of this expression can be found in [14] or [18]. This deduction, which is
essentially one-dimensional, is based on conservation of linear momentum for a stream tube passing
through the turbine’s disc (see Figure 3.3). The analysis assumes that the turbine faces uniform,
inviscid, steady-state flow, and hence there is radial symmetry with respect to the hub of the turbine.
Further, a constant loading is assumed at the disc, and thus the velocity field is constant and uniform
there. The thrust coefficient CT is specified in terms of the axial induction factor a,

a = U∞ − UD
U∞

, (3.2)

which measures the relative decrease in speed from the far upstream region and the disc region, where
the local velocity has magnitude UD < U∞ (see Figure 3.3).

Figure 3.3. A stream tube passing through the actuator disc of the turbine. Uniform
flow is assumed at the far upstream region.

As in Réthoré et al. [28], the local velocity magnitude UD (whose exact formula is yet to be specified)
is used instead of U∞ by combining (3.2) with the thrust force expression that becomes

Fx = −2ρ a

(1− a)AU
2
Dex, (3.3)

and
CT = 4a(1− a). (3.4)

In order to adapt this thrust force model to particles, the disc is extended to a cylinder C of length
∆x and mass ρA∆x (see Figure 3.1b), which is subdivided in the two regions Cblades and Cnacelle,
as depicted in Figure 3.2. In both cases, the force is assumed to be uniformly distributed along the
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additional dimension. In the present section, we restrict ourselves to the adaptation of the model to
the region Cblades. The force per unit mass inside region Cblades is then given by:

fx = − 1
∆x

2a
1− aU

2
D1{x∈Cblades}ex. (3.5)

As soon as we have specified how UD is computed for each individual particle, from (3.5) follows
Algorithm 2, for a given time step of length ∆t beginning at time tn, and a given particle with position
Xtn and velocity Utn at time tn.

Algorithm 2 – Update the Lagrangian velocity with thrust force in the non rotating actuator disc
model.
PRESTEP Compute the mean local speed at the disc U

(Lagrangian)
D

if Xtn ∈ Cblades then

Utn+1 7→ Utn+1 − 1
∆x

2a
1−a

(
U

(Lagrangian)
D

)2
ex ∆t.

end if

Since (3.5) is derived from a laminar one-dimensional analysis, its generalization to turbulent shear
flow requires U (Lagrangian)

D to be carefully specified. For a particle with position Xtn in Cblades and velocity
Utn at time tn, at least three possibilities exist (all equivalent for uniform, laminar, steady-state flows):

(a) define U (Lagrangian)
D = |utn |;

(b) define U (Lagrangian)
D = |〈u〉| (tn,Xtn);

(c) compute U (Lagrangian)
D as the magnitude of average velocity of particles inside cylinder Cblades:

U
(Lagrangian)
D = |E [utn |Xtn ∈ Cblades]| . (3.6)

If one selects options (a), Equation (3.5) describes the instantaneous force, and not the mean one.
Given the flow-dependent nature of the axial induction factor a, and the fact that it pertains to
the whole disc of the turbine, option (c) is adopted, preferably to option (b); the force density then
becomes:

fx = − 1
∆x

2a
1− a

∣∣E [ut|Xt ∈ Cblades]
∣∣21{Xt∈Cblades}ex. (3.7)

3.2. Rotating actuator disc model

This model is based on a blade element analysis, which gives a description of the blade forces in terms
of a set of simple geometrical parameters. The model assumes that each blade is comprised of tiny
pieces (blade elements), each encompassing an infinitesimal length dr, which concentrate the relevant
forces that the turbine exerts on the flow. It is assumed that these blade elements are independent of
one another, in the sense that they do not induce any radial movement on the flow.

To be precise, consider the reference frame depicted in Figure 3.1a, with basis vectors ex, er, eθ
along the axial (stream wise), radial and tangential directions, respectively. The corresponding flow
velocity components in this frame will be denoted (Ux,Ur,Uθ). We assume that the turbine rotates
with angular speed ω, oriented along −eθ. Consider a blade element located at radius r from the
center of the turbine, and a portion of fluid near this blade element. By the model hypotheses, it is
assumed that Ur = 0, and thus the flow velocity at this blade element is U = Uxex + Uθeθ. Under
these conditions, the local relative velocity of the flow with respect to the blade, Urelat, is given by:

Urelat = Uxex + (Uθ + ω r) eθ. (3.8)
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To introduce the blade forces, consider the blade depicted in Figure 3.4. In this model, the ac-
tual blade geometry is considered indirectly. The blades themselves are not meshed, but instead are
represented by the following information:

• the lift and drag curves corresponding to a given airfoil model of each blade element;

• the local chord length c(r) of the blade at radius r, which is the length of the blade element
located there (see Figure 3.4);

• the local pitch angle γ(r) of the blade at radius r; γ(r) is the angle between the chord line of
the blade element located at radius r, and the rotational plane of the turbine (see Figure 3.5).

From this data and Urelat, two important angles are defined for each blade element (see Figure 3.5):

• the flow angle φ, which is the angle between Urelat and the rotational plane of the turbine,
and is given by

φ = arctan
( Ux

Uθ + ω r

)
, (3.9)

• the angle of attack α, which is the angle between Urelat and the main chord line of the blade
element, and is given by

α = φ− γ(r). (3.10)

Figure 3.4. A blade, with chord length c and local pitch angle γ varying along its
radius. Orange (solid) lines lie in the rotational plane of the turbine.

For the i-th blade, blade element theory tells us that the total force exerted on the flow by each
blade element – spanning an infinitesimal portion dr of the blade – is proportional to the square of
the norm of Urelat and to the surficial area of the element, which is approximated as c(r)dr. The force
is divided in two orthogonal components:

1) A lift force dL(i), which is parallel to Urelat

2) A drag force dD(i), which is orthogonal to Urelat
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Figure 3.5. Visualisation in the (ex, eθ) plane of a blade element located at radius r
from the center of the turbine: relative velocity Urelat, rotational velocity −ωreθ, local
pitch angle γ(r) and angle of attack α.

The expressions for the magnitudes of these forces, dL and dD, read as follows (Urelat being the
magnitudes of Urelat):

dL(i) = 1
2ρ U

2
relat c(r) CL dr,

dD(i) = 1
2ρ U

2
relat c(r) CD dr.

(3.11)

The terms CL and CD are called the lift coefficient and drag coefficient respectively, and are functions
of the angle of attack α, as well as the local Reynolds number at the blade. These functions are
determined either empirically or via numerical simulations, and are often found in the form of tabulated
data. In the present work, two approaches are used to determine CL and CD for a given value of the
angle of attack α, depending on the mill data we have:

- numerical interpolation using tabulated data giving the values of both coefficients for a range
of possible values of α, corresponding to a given airfoil design at a given Reynolds number.
This approach is used in Section 4.

- direct computation using analytical expressions for the dependence on the angle of attack α,
corresponding to a given airfoil design at a given Reynolds number. This approach is used in
Section 5.

Expressions in (3.11) depend on i as Urelat, CL and CD are computed locally at each different blade
position using one of the methods described above.

In the local reference frame of the turbine (see Figure 3.1a), the components of the differential force
along ex and eθ corresponding to the i-th blade are, respectively:

dF (i)
x = −

(
dL(i) cos(φ) + dD(i) sin(φ)

)
= −1

2ρ U
2
relat c(r) (CL cos(φ) + CD sin(φ)) dr,

dF
(i)
θ = dL(i) sin(φ)− dD(i) cos(φ) = 1

2ρ U
2
relat c(r) (CL sin(φ)− CD cos(φ)) dr.

(3.12)
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Now consider a turbine with Nblades blades. The aim is to use (3.12) to obtain expressions for the
components of the force per unit mass along ex and eθ, corresponding to each blade. To do this, the
blade in question is expanded a distance ∆x along the axial direction, and smeared over an angular
distance ∆θ, resulting in the three dimensional region shown in Figure 3.6. To a blade element located
at radius r there corresponds an infinitesimal sector of volume r∆x∆θdr and mass ρr∆x∆θdr. Dividing
the expressions in (3.12) by the element sector mass, one obtains the forces per unit mass at radius r
from the center of the wind turbine:

f (i)
x = 1

ρr∆θ∆x
dF

(i)
x

dr
= − 1

2r∆θ∆xU
2
relatc(r) (CL cos(φ) + CD sin(φ)) ,

f
(i)
θ = 1

ρr∆θ∆x
dF

(i)
θ

dr
= 1

2r∆θ∆xU
2
relatc(r) (CL sin(φ)− CD cos(φ)) .

(3.13)

Figure 3.6. A three dimensional sector corresponding to one blade.

Note that expressions in (3.13) correspond to the force per unit mass of one single blade. In principle,
each particle of the simulation will receive at most the force of one blade (the one corresponding to the
sector where the particle is), and thus it is necessary to keep track of the positions of each blade (and
the corresponding blade sector). However, if one is only interested in the global impact of the blades,
it is possible to simplify the computations by selecting ∆θ = 2π

Nblades
, where Nblades is the number of

blades of the turbine. In this case, the union of all blade sectors results in the same region Cblades used
in section 3.1 (see Figure 3.7), and the blade positions become irrelevant. Expressions (3.13) then read
as follows:

fx = 1
ρ2πr∆x

dFx
dr

= −Nblades
4πr∆xU

2
relatc(r) (CL cos(φ) + CD sin(φ)) ,

fθ = 1
ρ2πr∆x

dFθ
dr

= Nblades
4πr∆xU

2
relatc(r) (CL sin(φ)− CD cos(φ)) .

(3.14)

Note that this is equivalent to summing the contributions of (3.12) for all blades, and distributing the
resulting force in an annulus of mass 2πρr∆xdr (or equivalently, to choosing ∆θ = 2π and summing the
contributions of (3.13) for the Nblades blades). In this case, since the blades are essentially delocalised
within the mill region, their contributions may be considered equal to one another, and the total force
at radius r will be given by:

dFx =
Nblades∑
i=1

dF (i)
x = −Nblades (dL cos(φ) + dD sin(φ)) ,

dFθ =
Nblades∑
i=1

dF
(i)
θ = Nblades (dL sin(φ)− dD cos(φ)) .

(3.15)
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Under these assumptions, since the blade characteristics (local pitch, local chord length, lift and
drag coefficients) are defined locally, and since the blade positions within Cblades are indeterminate, we
may use the particle positions and Lagrangian velocities (Xt,Ut) to compute the angle of attack α, the
local pitch angle γ and deduce all the needed information Urelat, c(r), CL(α) and CD(α). From (3.8),
we derive the relative velocity Urelat from the instantaneous particle position and Lagrangian velocity
(Xt,Ut) by

Urelat(Xt,Ut) = (Ut · ex)ex + ((Ut · eθ) + ω r(Xt)) eθ. (3.16)

We also compute the flow angle φ using (3.9):

φ(Xt,Ut) = arctan
( (Ut · ex)

(Ut · eθ) + ω r(Xt)

)
,

α(Xt,Ut) = φ(Xt,Ut)− γ(r(Xt)).
(3.17)

Then the force added in the Lagrangian velocity Equation (3.1) is

fx(t,Xt,Ut) = −1{Xt∈Cblades}
Nblades
4πr∆x (Urelat(Xt,Ut))2 c(r(Xt)) (CL(α) cos(φ) + CD(α) sin(φ)) (Xt,Ut),

fθ(t,Xt,Ut) = 1{Xt∈Cblades}
Nblades
4πr∆x (Urelat(Xt,Ut))2 c(r(Xt)) (CL(α) sin(φ)− CD(α) cos(φ)) (Xt,Ut).

(3.18)
This results in the numerical Algorithm 3.

Figure 3.7. Left: cylinder C representing the turbine viewed by a particle. Right:
decomposition of C in three blade sectors. In these figures the nacelle sector Cnacelle is
omitted for simplicity.

3.3. Nacelle model

In all the simulation results presented in Sections 4 and 5, we use a simple model for the turbine
nacelle. As in Wu and Porté-Agel [32], the nacelle force fnacelle is modeled as a permeable actuator
disc, but here we adapt the model to the Lagrangian setting. The nacelle is assumed to occupy a
cylinder Cnacelle, with frontal area Anacelle and depth ∆x (see Figure 3.2).

A particle (Xt, Ut) lying within the nacelle region is applied a force per unit mass of:

fnacelle = − 1
∆x

2anacelle
1− anacelle

1{Xt∈Cnacelle}(Ut · ex)2ex. (3.19)
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Algorithm 3 – Update the Lagrangian velocity with thrust force in the rotating actuator disc model.
PRESTEP Compute the relevant geometrical information of the particle at time tn,
relative to the turbine:

• the radial position r (Xtn) of the particle (component of Xtn along er)

• the distance to the rotational plane of the turbine.

With this information, determine if Xtn lies inside Cblades or not.
if Xtn ∈ Cblades then

(1) compute the tangent vector eθ corresponding to the projection of Xtn on the
rotational plane of the turbine;
(2) compute the tangential velocity of the particle, U(tan)

tn ; that is, its component along
eθ;
(3) compute the relative velocity Urelat using (3.16) and the particle velocity components
at time tn:

Urelat = utnex +
(

U(tan)
tn + ω r (Xtn)

)
eθ;

(4) compute the flow angle φ using (3.17) and the particle velocity components at time
tn:

φ = arctan
(

utn

U(tan)
tn + ω r (Xtn)

)
;

(5) compute the angle of attack α using (3.17), with the local pitch computed at the
radial position of the particle:

α = φ− γ (r (Xtn)) ;
(6) obtain the lift and drag coefficients CL(α) and CD(α) using the airfoil data;
(7) apply the axial and tangential forces per unit mass (3.18) respectively to the
particle velocity:

utn+1 7−→ utn+1 −
Nblades

4πr∆xU2
relatc (CL cos(φ) + CD sin(φ)) ∆t,

U(tan)
tn+1

7−→ U(tan)
tn+1

+ Nblades

4πr∆xU2
relatc (CL sin(φ)− CD cos(φ)) ∆t.

end if

At the same time, the actuator disc models presented in Section 3.2 are modified to account for
the nacelle’s presence: the relevant region for the mill forces will not be C, but instead the subregion
Cblades defined as (see Figure 3.2):

Cblades = C \ Cnacelle. (3.20)
In this manner, only particles belonging to Cblades (and not C) are applied the mill forces. Also, for
the Non-Rotating Actuator Disc, the local velocity is estimated considering only particles lying inside
Cblades.

4. Comparison with high-resolution windtunnel measurements

In this section, the method presented above is tested against wind tunnel measurements performed
at the Saint Anthony Falls Wind Tunnel, University of Minnesotta, by Chamorro and Porté-Agel [8].
The data consists of high resolution, hot-wire anemometry wind speed measurements at different
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downstream positions and heights. We particularly focus on three key turbulence statistics that are
commonly used to characterize wind-turbine wakes: the mean and turbulence intensity profiles of the
streamwise velocity, and the kinematic shear stress profile (see e.g. Wu and Porté-Agel [32]).

4.1. Experimental setup

The Saint Anthony Falls Laboratory wind tunnel consists of two main sections. The air recirculates
among these main sections. Turbulence is created using a picket fence, and an adjustable ceiling height
allows a zero-pressure gradient boundary layer flow to be created in the main sections. A miniature
wind turbine is located in the tunnel, and sensors are placed at different upstream and downstream
positions relative to the wind turbine (see [8] for details).

For the comparison between Lagrangian simulations and measurements, we used the neutrally-
stratified boundary layer experiment. The main characteristics of the neutral boundary layer flow
produced in the wind tunnel are summarized in Table 4.0a.

To test the implementation of mills in the stochastic Lagrangian settings presented before, a one-
mill configuration reproducing the Saint Anthony Falls experiment has been used. A single mill has
been placed in a rectangular domain spanning 4.32× 0.72× 0.46 meters in the x, y and z directions,
respectively (Figure 4.1). The mill faces atmospheric flow with a log-law profile at the inlet section,
that develops moving along the x direction. The main physical and computational parameters of
the simulations are detailed in Table 4.0c. The miniature three-blade wind turbine is chosen so as
to represent the typical dimensions and tip speed ratios of commercial wind turbines. The main
parameters of the wind turbine used in the simulations are listed in Table 4.0d.

(a) Main characteristics of the boundary layer flow

Boundary layer characteristics in the wind tunnel
Boundary layer depth 0.46 m
Wind speed at the top 2.8 m s−1

Velocity friction u∗ 0.11 m s−1

Roughness length z0 0.04 mm

(b) Main model physi-
cal constants

Model constants
Rotta constant CR 1.8
von Karman constant κ 0.4
C2 0.60
Cε 0.068
z`m 0.1 m

(c) configuration of the simulations

Simulation parameters
Domain size x 2.16 m
Domain size y 0.726 m
Domain size z 0.42 m
96 cells in x ∆x = 0.0225 m
33 cells in y ∆y = 0.022 m
84 cells in z ∆z = 0.005 m
Particles per cell 150
Final time is 30 s Time step is 0.03 s

(d) parameters of the mill

Mill configuration
Coordinates of the hub: (0.5 0.36 0.125) m
Hub height 0.125 m
Radius 0.075 m
Nacelle radius 0.01 m
Rotational speed 112.0 rad.s−1

Inflow factor of the nacelle anacelle = 0.4

Table 4.1. Main parameters of the wind tunnel simulations.

To assess the impact of the mill in the flow, Lagrangian simulations are run with the rotating
actuator disc turbine model. The mill’s position is such that the x and y coordinates of the hub lie at
the center of one of the computational cells.
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Figure 4.1. Domain for the wind tunnel scale simulations.

To initialize the simulations, a warm-up simulation is run first, without mill. For this warmup
simulation, an inflow-outflow condition is used in the x axis (the main direction of the wind): particles
exiting the domain at the outflow boundary are reinserted at the inflow boundary with a mean velocity
given by the targeted log-law4 plus a random velocity vector normally distributed, that renders the
covariance structure taken from the cell where the particle was in the previous time step. A similar
boundary condition is used in the y axis. The results of the warmup simulation are averaged along
the x and y axes to produce empirical profiles of all relevant statistics of the velocity field.

For the mill simulations, an inflow-outflow boundary condition is applied in the x axis, using the
empirical profile from the warmup simulation to force the inflow condition: particles exiting the domain
at the outflow boundary are reinserted at the inflow one with velocities following a trivariate Gaussian
distribution computed with the information of these empirical profiles. A similar strategy is used in
the y axis boundaries: particles exiting the domain through one of these boundaries are reinserted
in the opposite boundary, with a new velocity following a trivariate Gaussian distribution computed
with the empirical profiles.

In all simulations, the boundary conditions for the z axis are as described in Section 2.
As in [32], we use the lift and drag data CL(α) and CD(α) provided by Blade data taken from Sunada

Sakaguchi and Kawachi [31]. The chord length and twist angle of the turbine are taken from [32].

4.2. Comparison with experimental data

The results of SDM with the more complex Rotating Actuator Disc mill model is compared against
experimental data obtained from Wu and Porté-Agel [32]. Three quantities are of particular interest:
the streamwise component of the mean velocity field, the streamwise turbulent intensity, and the shear
stress between streamwise and vertical components. As underlined in [32], du to the non-uniform
(logarithmic) mean velocity profile of the incomming boundary-layer flow, the profiles of those three
quantities yield non-axisymmetric distribution.

SDM simulations are showed without any time average on the SDM output produced after a total
of 1000 time iterations after the warm-up phase. We show 〈u〉, I and −〈uw〉 as they are computed at
the final time step, using the second order CIC-estimator for the computation of Eulerian fields on
the last 20 time steps only, to not burden the computation time.

4u(z) = u∗
κ

log z
z0
.
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First, we examine the streamwise component of the mean velocity. A profile comparison against
experimental data at several downstream locations is shown in Figure 4.2. For the Rotating ADM a
good agreement is seen for distances equal and higher than 5 turbine diameters, while a reasonable
agreement is seen near the turbine;

Figure 4.2. Comparison of vertical profiles of 〈u〉 at different downstream positions x
from the turbine (-1, 2, 5, 7 and 10 diameters respectively). The profiles are centred to
the hub y position. The blue curve represents the wind tunnel measures, the red curve
represents SDM simulation with the Rotating Actuator Disc mill model.

Secondly, the turbulence intensity I of the stream-wise component of velocity is analyzed. Figure 4.3
shows the vertical turbulence intensity profiles, which are plotted at the same downstream positions
as was done for 〈u〉. We compute the turbulence intensity with SDM, using the same inflow mean
velocity Uhub at the hub height than in [32]:

I =

√
2
3 k

Uhub
, with Uhub = 2.2 m s−1.

We observe a good fit with the measures far and close to the mill, even if the turbulent intensity
seems to be overestimated in the area of the nacelle (in light red) at 2 and 3 diameters of the hub.

Also of interest is the shear stress (i.e−〈uw〉 the covariance between x and z components of velocity).
As before, vertical profiles are plotted for different downstream positions from the turbine. Figure 4.4
shows the results. Again, the fit is good but SDM seems to overestimate a little the shear stress. It is
it is worth noting that the SDM computation locates the maximum of the shear stress at the top tip
of the blades area (top limit of the light blue area) as expected. The same effect can be observed for
the turbulent intensity.
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Figure 4.3. Comparison of vertical profiles of the turbulence intensity at different
downstream positions x from the turbine (-1, 2, 5, 7 and 10 diameters respectively).
The profiles are centred to the hub y position. The blue curve represents the wind
tunnel measures, the red curve represents SDM simulation with the Rotating Actuator
Disc mill model.

We complement the comparison between the 2D xz-profiles in Figures 4.2, 4.3, 4.4, with some other
directional views in Figure 4.5 showing in particular the winding of the streamlines passing through
the turbine.

It is worth to notice that in this first Lagrangian approach for Rotating-ADM, we did not dissociate
the ∆x corresponding to the thickness of the Cblades cylinder with the ∆x of the cell mesh. Thus, in
these simulations the Cblades thickness is about 66

Furthermore, the model of permeable disk for the nacelle can be improved (without counting the
mast model that we have not put yet in our simulation). In these simulations, we introduce the
corresponding force term in the velocity computation without any correction terms for the second
order moments, as we did for the wall law model at the ground. There is therefore some margin of
improvement for the Rotating-ADM model with SDM.

Computation time. To produce all the results shown in this paper, we have used one 32-cores
Intel Xeon CPU E5-2665 0 @ 2.40GHz computer node. The elapsed time for the 1000 iterations with
96×33×84×150 Lagrangian particles (about 40 millions of particles) is about 8 hours and 10 minutes.
A new version of our code for multi-nodes computer architecture is under development.
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Figure 4.4. Comparison of vertical profiles of the shear stress −〈u′w′〉 at different
downstream positions x from the turbine (-1, 2, 5, 7 and 10 diameters respectively).
The profiles are centred to the hub y position. The blue curve represents the wind
tunnel measures, the red curve represents SDM simulation with the Rotating Actuator
Disc mill model.

Figure 4.5. Streamlines visualization (Rotating ADM simulation), with a yz-contour
plot of the turbulent kinetic energy circles at one diameters of the hub (left); with a
yz-contour plot of the 〈u′w′〉 covariance at 3.5 diameters of the hub (right).

5. Some numerical experiments at the atmospheric scale

We reproduce atmospheric turbulent condition approaching a real-size neutrally-stratified boundary
layer condition, by parametrizing our simulation inspired by the numerical experiments performed in
Drobinski et al. in [10] for an atmospheric neutral case. The corresponding boundary layer character-
istics are summarized in Table 5.0b Figure 5.1 shows how SDM reproduces turbulence characteristics
of the same order than in [10] as well as log-law profile for the velocity. In particular the anisotropic
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variance profiles, computed here in the whole boundary layer depth converge to zero at the top of the
boundary layer. The turbulent kinetic energy goes naturally to zero at the boundary layer top and
SDM fits the prescribed laminar geostrophic flow.

Figure 5.1. Profiles of main turbulence charateristics computed by SDM in the whole
boundary layer (averaged in the x and y-directions). The numerical parameters are the
same than in Tables 5.1 exept that the computational domain height is 750 m.

5.1. Simulation setup

To test the implementation of mills in the stochastic Lagrangian settings presented before, a one-
mill configuration has been used. A single mill has been placed in a rectangular domain spanning
1500×400×300 meters in the x, y and z directions, respectively (Figure 5.2). The mill faces atmospheric
flow with a log-law profile at the inlet section, that develops moving along the x direction. The main
physical and computational parameters of the simulations are detailed in Table 5.1.

To assess the impact of the mill in the flow, simulations are run with the two turbine models
presented in Section 3, namely: the non-rotating actuator disc mode (NR-ADM), and the rotating
actuator disc model (R-ADM). The mill’s position is such that the x and y coordinates of the hub lie
at the center of one of the computational cells.

To initialize the simulations, a warm-up simulation is run first, according to the same process
described to initialize the wind tunnel simulation in Section 4.

For the mill simulations, an inflow-outflow boundary condition is applied in the x axis, as described
again in Section 4.

For the rotating case, a realistic wind turbine has been designed using blade data of a NTK 500/41
wind turbine (as found in [14]), together with lift and drag coefficients corresponding to a NACA
23012 airfoil at Reynolds numbers of the order of 106 (as found in Abbott and von Doenhoff [1]).
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(a) Main characteristics of
the boundary layer flow

Boundary layer characteristics
Boundary layer depth 750 m
Wind speed at the top 10.63 m s−1

Velocity friction u∗ 0.42 m s−1

Roughness length z0 0.03 m

(b) Main model physical
constants

Model constants
Rotta constant CR 1.8
von Karman constant κ 0.4
C2 0.60
Cε 0.08
z`m 150 m

(c) configuration of the simulations

Simulation parameters
Domain size x 1488 m
Domain size y 403 m
Domain size z 300 m
90 cells in x ∆x = 16 m
31 cells in y ∆y =13 m
80 cells in z ∆z = 3.75 m
Particles per cell 128
Final time is 1000 s Time step is 1.0 s

(d) parametrers of the mill

Mill configuration
Coordinates of the hub: (496.875,200,50) m
Hub height 50 m
Radius 20.5 m
Nacelle radius 4.5 m
Rotational speed 2.83 rad.s−1

anacelle for the Rotation ADM 0.38
anacelle for the Non Rotation ADM 0.45

Table 5.1. Main parameters of the simulations at the atmospheric scale.

5.2. Computation of the non-rotating equivalent

For the non-rotating case, we need to specify the values of a, CT and U∞ (as used in Equations (3.2),
(3.4), and (3.3)) so that the simulation is equivalent to the rotating actuator disc. Again, we define
this equivalence by requiring the total thrust force in both cases to be the same. However, in this
section we introduce an additional method to compute the required quantities, which also serves as
a consistency validation of our simulations in the atmospheric case: the Blade Element Momentum
method (BEM).

Compute thrust from the SDM particles

For the non-rotating (NR) actuator disc model, we compute the total thrust excluding the area Anacelle
occupied by the nacelle:

FNR
x = −1

2ρ(A−Anacelle)CTU2
∞, (5.1)
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Figure 5.2. Domain for the atmospheric scale simulations.

whereas for the rotating (R) model, the total thrust can be computed by integrating Equation (3.15)
from the nacelle radius rnacelle to the turbine radius R:

FR
x = −Nblades

R∫
rnacelle

(
dL

dr
cos (φ) + dD

dr
sin (φ)

)
dr. (5.2)

The idea is then to compute U∞ and FR
x , and substitute them in (5.1) to obtain CT . The magnitude

U∞ can be easily estimated as the z-averaged value of the mean velocity 〈U〉 at the inlet section of
the domain, over the diameter of the turbine:

U∞ = 1
2R

h+R∫
h−R

u∗
κ

log
(
z

z0

)
dz, (5.3)

To compute FR
x in (5.2) from the particle information, the integrand is estimated for all particles

within region C, using equations (3.18):

1
ρ

dFR
x

dr
= 1
ρ

(
dL

dr
cos (φ) + dD

dr
sin (φ)

)
' −2πr (Xt) ∆xfx (Xt,Ut) . (5.4)

The total thrust over ρ, FR
x /ρ, is then computing by an estimation of the integral:

FR
x

ρ
= R

Np∑
p=1

2π r (Xp
t ) ∆xfx (Xp

t ,U
p
t )1C (Xp

t )

Np∑
p=1

1C (Xp
t )

. (5.5)

Compute thrust with BEM

A complete description of BEM theory can be found in [14] or [18]. It stems from the combination of
two different analyses of the turbine performance facing a steady-state, uniform, radially symmetric
flow:
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(1) a linear and angular momentum balance in thin, radially distributed, annular stream tubes
passing through the turbine swept area at different radii;

(2) a blade element analysis of the turbine.

The first of these analyses assumes that the relative velocity decrease from the far upstream region to
the disc region depends on the radial position, so that a now varies with r:

a(r) = U∞ − UD(r)
U∞

. (5.6)

It is also assumed that the flow gains angular momentum, related to the rotational speed of the
turbine. The angular speed Uθ at radius r at the disc is controlled by an additional function a′(r):

Uθ(r) = a′(r)ωr, (5.7)
where ω is the angular speed of the turbine. The following expressions are then found for the differential
forces in directions ex and eθ, at an annulus located at radius r from the turbine’s center (see [18]
or [14] for details):

dFx(r) = −4πρra(r)(1− a(r))U2
∞dr, (5.8)

dFθ(r) = 4πρωa′(r)(1− a(r))U∞r2dr. (5.9)
Given the assumption of radially symmetric flow made by BEM, in this analysis Urelat and the

angle φ are functions of r only. In terms of a(r) and a′(r), expressions (3.8) and (3.9) are simplified
to:

Urelat(r) = (1− a(r))U∞ex + (1 + a′(r))ωreθ, (5.10)

φ(r) = arctan
((1− a(r))U∞

(1 + a′(r))ωr

)
. (5.11)

On the other hand, a pure blade element analysis like the one presented in Section 3.2 yields the
following expressions for the same quantities:

dFx(r) = −1
2Nbladescρ U

2
relat(r)(CL cos(φ(r)) + CD sin(φ(r)))dr, (5.12)

dFθ(r) = 1
2Nbladescρ U

2
relat(r)(CL sin(φ(r))− CD cos(φ(r)))dr. (5.13)

In BEM, the rotor is discretized in a finite number of blade elements. For a set of radial positions
and given values of U∞ and ω, the values of a and a′, the flow angle φ and the relative velocity mag-
nitude Urelat are computed for each blade element separately, by equating (5.8) with (5.12) and (5.9)
with (5.13) and using an iterative procedure (see [14] for a detailed description of the algorithm). The
procedure delivers the values of Urelat(r), φ(r), a(r) and a′(r).

Two Non-Rotating equivalent models are obtained: one with the computation of the thrust
according to (5.5), and the other using the BEMmethod described above. The corresponding estimated
values for the thrust coefficient are reported in Table 5.2. The a values produced par the two methods
are so close that the plotting of the corresponding simulation profiles (as those in Figures 5.3 and 5.5)
are completely indistinguishable. This first comparison validates the thrust equivalence computation
with the SDM particles, but as we will see in the next section, at least with this value of a, the
NR-ADM underestimates the three main characteristic that we analyze in the flow, 〈u〉, 〈u′u′〉 and
〈u′w′〉.

In addition to the assumptions of homogeneity and symmetry of the wind fields that are not well
respected in our case, the thrust computation methods described above may be sensitive to the blade
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geometry discretization parameter (in our data dr =1m) for the BEM-based method, to the ∆x
parameter for the density estimator, in (5.5) for the SDM particles-based method.

Equivalent non rotating actuator disc parameter estimations
Method FR

x /ρ (Nbladesm3/kg) a CT

SDM Particle computation 28680.55 0.2081584 0.659314
BEM computation 27863.06 0.2034322 0.648190

Table 5.2. Estimation of the equivalent non-rotating actuator disc for our mill con-
figuration.

5.3. Numerical experiments, comparison between rotating and non-rotating actuator disc
methods

It is interesting and useful to analyze the differences between results obtained with the simple Non-
Rotating model and the more complex Rotating model, and to determine to which extent they give a
similar development of the turbine wake. In particular, as can be seen in the simulations of Wu and
Porté-Agel [32], one would expect an under-prediction of the speed deficit near the turbine for the
non-rotating case, while both models should yield similar results far downstream from the turbine.
This and other effects are studied hereafter.

To begin with, mean velocity contour plots along the stream-wise direction are shown for both
models in Figure 5.3. These plots show that rotation and non-uniform loading have a clear impact in

Figure 5.3. Comparison of xz cross sections of 〈u〉: Rotating Actuator Disc (top),
Non-Rotating Actuator Disc with a estimated from thrust equivalence (bottom).

the turbine wake. This is confirmed by the mean velocity profiles at different downstream positions,
as shown in Figure 5.4. As expected the Rotating AD model and the Non-Rotating AD model present
substantial differences, as already observed in the LES framework in [32]. The mean velocity component
〈u〉 is underestimates in the disk area (blades area corresponds to the light blue zone, and the nacelle
area corresponds to the light red zone in the plots).

Secondly, the variance of the stream-wise component of velocity 〈u′u′〉 is analyzed. Figure 5.5 shows
contour plots taken at the middle of the xz plane, for both simulations. It is noteworthy that the
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Figure 5.4. 〈u〉 profiles at different downstream positions from the turbine.

variance near the turbine is much higher for the rotating actuator disc simulation, although far from
the turbine the differences begin to fade. It is also interesting that in Rotating AMD case the highest
amount of variance is generated atop the turbine, while for the Non-Rotating AMD the variance at the
hub is uniformly strong along the turbine disc, and not just at the tip top. We can obverse the impact
of this variance anomaly that propagates in the particles environment behind the mill to the left and
top. Knowing this, a remedy may consist to impose the values of the second order moments at the left
boundary side from the warmup simulation to overcome this weird propagation of the variance.

The same behavior can be seen in the vertical variance profiles, which are plotted at the same
downstream positions as was done for 〈u〉 (see Figure 5.6). At one diameter from the turbine, we can
observe the overestimation of 〈u′u′〉 for the NR-ADM (in red), in particular in the nacelle area. A best
estimate of anacelle could therefore contribute to reduce this variance anomaly.

Also of interest is the covariance between x and z components of velocity. As before, to compare both
simulations, xz contour plots are taken at the middle of the y axis, and vertical profiles are plotted for
different downstream positions from the turbine. Again, the rotating model produces stronger values
of covariance near the turbine with respect to the non-rotating model, while both tend to equalize as
one moves to the far downstream section. Figure 5.8 shows the results.

Figure 5.7 gives some yz-cross sections of the covariance at the same x-distance to the turbine. The
spacial structures of the covariances are similar, but the level of the shear is about three times smaller
for the NR-ADM at 3.5 diameters from the turbine.

5.4. Probability distribution functions of the streamwise velocity

One of the main advantages of the stochastic downscaling method presented in Section 2 is that it
allows access to the instantaneous probability distribution functions of the wind velocity field at each
time and position. In the case of mill simulations, this information may be used for various purposes.
Contrary to deterministic methods, the stochastic methodology used here estimates the PDFs of the
velocity field in just one simulation, directly by sampling the particle properties in the same way the
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Figure 5.5. Comparison of xz cross section of variance 〈u′u′〉 along x: Rotating Actu-
ator Ddisc (top), Non-Rotating Actuator Disc with a estimated from thrust equivalence
(bottom).

Figure 5.6. 〈u′u′〉 profiles at different downstream positions from the turbine.

various statistics presented before are estimated. Plus, no time or spatial averaging is required, and it
is possible to see how the PDF varies along the wake of a turbine.

In this section, we present histograms that estimate the PDF of the streamwise velocity component
u = 〈u〉+ u′, corresponding to several points before and after the wind turbine, located at the middle
of the y axis and at hub height. To obtain each histogram, we discretise velocity space and sample the
particle information of all cells in the neighborhood of the point of interest.

As can be seen in Figure 5.9, the distribution of u is fairly non-symmetric at −1 diameter before
the turbine (where the flow has not yet felt its presence) with a peak around 8 m s−1, moving to
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Figure 5.7. 〈u′w′〉 profiles at different downstream positions from the turbine.

Figure 5.8. Comparison of the yz cross section of covariance 〈u′w′〉: Rotating Actu-
ator Disc (left), Non-Rotating Actuator Disc with a estimated from thrust equivalence
(right).

around 3 m s−1 in the near turbine wake, progressively recovering to the −1 diameter distribution as
one moves downstream from the turbine, and showing a bimodal distribution transition at 3 and 4
diameters from the turbine.

6. Conclusions

In recent years, wind energy has seen an important growth worldwide, and the construction and oper-
ation of large wind farms necessitates a better understanding of the flow inside and through them in
realistic and dynamic atmospheric conditions. In the present study, actuator disc methods have been
coupled with the SDM solver [4], which uses a probability distribution function (PDF) approach to
turbulent flow simulation based on stochastic Lagrangian models. The result is an innovative method-
ology to simulate wind turbines and wind farms operating in atmospheric boundary layer flow. It
has been shown that the particle setting of SDM is fit for mill simulations, providing qualitatively
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(a) -1 diameters
from turbine

(b) 2 diameters
from turbine

(c) 3 diameters
from turbine

(d) 4 diameters
from turbine

(e) 5 diameters
from turbine

(f) 7 diameters
from turbine

Figure 5.9. Local distribution of velocity component u = 〈u〉+u′ at different positions
of the x axis.

consistent estimations of the mill forces and wake properties. Plus, the PDF framework coupled with
actuator disc methods allows one to obtain an estimation of the wind variability in the wake of a wind
turbine, something which - to the best knowledge of the authors - has never been accomplished before.

The present work is part of a larger project, which seeks to simulate large wind farms with complex
topography using the SDM solver. Moreover as a downscaling method, SDM aims to be coupled
with dynamic boundary conditions coming typically from mesoscale meteorological solvers. Here, the
intent has been to present the methodology, as well as to give a preliminary validation analysis with
respect to measurements and a comparison of the different models available, using simple attaptation
of actuator disc models and just one turbine. Future stages of the project will produce: (1) a wind
farm simulation using dynamical downscaled boundary conditions coming from a coarse meteorological
solver; (2) simulations with complex topography; and (3) implementation of more complex models for
the blade forces in the SDM framework.

Regarding this last point, we would like to conclude showing some of our ongoing work concerning
individual blade visualizations, using the methodology presented in Section 3.2. In particular, it is
possible - by modifying the shape of the blade sectors - to obtain estimations of more involved 3D
quantities than the ones presented here, such as the vorticity structures generated behind an individual
mill. As proof of concept, Figure 6.1 shows a visualization of such structures for the same turbine
presented in Section 5, but using a finer discretization and a smaller domain. Future stages of our
project will perfect these preliminary simulations, by introducing more complex models than the
Lagrangian actuator disc models presented in this work.
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Figure 6.1. Iso-surfaces of the x component of vorticity behind a wind turbine.
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Appendix A. Appendix

On the partial exponential Euler scheme for partially linear SDEs

A part of the drift of the fluid-particle velocity equation (2.1b) is a linear term of the form
−G(t,Xt)(Ut − 〈U〉(t,Xt)).

It means that during a time step ∆t, each component of the velocity behaves like a one-dimensional
Ornstein-Uhlenbeck process of generic form: given Zt,

dZs = (α(Zs −m) + β) ds+ σdWs, for s ∈ [t, t+ ∆t], (A.1)
where here we assume that α ≤ 0, σ, m and β are constants, or coefficients values frozen at the time
t. Typically, from the tensor terms G(t,Xt), we put in α only the diagonal terms, while extra diagonal
terms are included in β.

To simplify the presentation, assume that we work coordinate by coordinate, and that Brownian
motion W and all the coefficients are valued in R. Such linear SDE (A.1) has an explicit solution Z
valued in R and given by

Zt+∆t = eα∆tZt +
(
m− β

α

)
×
(
1− eα ∆t

)
+ σeα ∆t

∫ t+∆t

t
e−αrdWr.

It is classical to notice that σeα t
∫ t+∆t
t e−αrdWr is normally distributed with Gaussian law N (0, γ2),

where
γ2 = σ2e2α∆t

∫ ∆t

0
e−2αrdr = σ

2α
[
e2α∆t − 1

]
.

We thus have the following exact simulation formula for Ztn+1 , given Ztn

Ztn+1 = eα∆t
(
Ztn −m+ β

α

)
+
(
m− β

α

)
+ σ

√
1− exp(2α∆t)√

(−2α)
ηn,
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where (ηn) is a sequence of independent N (0, 1)-identically distributed random variables. This proce-
dure delivers a discrete time random process with the exact law of the solution of (A.1), as long as m,
α, β and σ are constant. In the situation of Equation (2.1b), all those parameters may correspond to
frozen coefficients αn, σn,mn, βn during the integration step [tn, tn + ∆t], and the exponential Euler
scheme below becomes an approximation procedure:

Ztn+1 = eαn∆t
(
Ztn −mn + βn

αn

)
+
(
mn −

βn
αn

)
+ σn

√
1− exp(2αn∆t)√

(−2αn)
ηn. (A.2)

Such exponential scheme strategy was previously considered in the context of Lagrangian two-
phase flow modeling by Minier, Peirano and Chibbaro [22], who numerically analyses the ability of
such method to be insensitive to some limit value of the time scale 1

αn
.

Here, our concern slightly differ. To be precise, the main advantage of the partial exponential Euler
scheme to the classical Euler scheme, defined as (with the same notation for coefficients)

Ztn+1 = Ztn + αn(Ztn −mn)∆t+ σn
√

∆tηn,
arises from the fact that the rate of strong convergence of the exponential scheme depends only on
the time variation of the map t 7→ α(t) withing its Lipschitz or Hölder regularity parameters, but
does not depend directly on the values of αn. This is not true for the classical Euler scheme (see the
computation below).

Concerning the time discretisation part, the convergence of our numerical scheme, described in
section 2.2, is mainly driven by the notion of the weak convergence:

|Ef(ZT )− Ef(ZT )| −→ 0,when ∆t→ 0,
given a set on test function f . But the notion of strong convergence of a p-th moment approximation:(

E[|ZT − ZT |p]
)1/p

−→ 0,when ∆t→ 0

plays also an important role when one mix a SDE time discretisation scheme with a Monte Carlo
procedure. Indeed, a particular attention should be paid to the upper-bound of the overall variance of
the error: when

Ef(ZT ) is approximated by 1
N

N∑
i=1

f(Z(i)
T ),

classical error analysis decomposes the error in the time discretisation error part (bias bound) and
the mean square Monte Carlo error part

|Ef(ZT )− Ef(ZT )|+

√√√√E
[(

Ef(ZT )− 1
N

N∑
i=1

f(Z(i)
T )
)2
]
.

It is well known that the variance of the error

Var
(
Ef(ZT )− 1

N

N∑
i=1

f(Z(i)
T )
)

can be control with the strong error (as soon as f is for instance Lipschitz, see e.g Kebaier [16]). Thus,
in our case the exponential scheme prevents the variance of the error to fluctuate too much with huge
values of |αn|. Let us now recall that in our Lagrangian stochastic model, αn is mainly the square
root of the turbulent kinetic energy k in (2.15), computed itself with the PIC estimator (2.7) for the
variance of the velocity components. It is then numerically pertinent to prefer the partial exponential
scheme in order to stabilize the variance of k estimator.

Notice that all this empirical analysis is contingent to the fact that (αn, n ∈ N) stays negative.
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For the sake of completeness, we detail below some basic computations in order to compare the
behavior of the Euler schemes and Exponential Euler schemes on the generic linear SDE

dZt = (α(t)(Zt −m(t)) + β(t)) dt+ σ(t)dWt, Z0 given. (A.3)

On the moments stability and the strong convergence of the discussed schemes for the SDE (A.3)

Assume that the coefficients α(·), m(·), β(·), σ(·) in (A.3) are continuous on [0, T ] for a finite final
time T . As an affine SDE (A.3) has a unique strong solution. Using Itô formula, it is easy to check
that the solution is given by the following closed expression

Zt =Z0e
∫ t

0 α(r)dr −
∫ t

0
e
∫ t
s
α(r)drα(s)m(s)ds+

∫ t

0
e
∫ t
s
α(r)drβ(s)ds+

∫ t

0
e
∫ t
s
α(r)drσ(s)dWs (A.4)

Freezing the coefficients on each subinterval [n∆t, (n + 1)∆t), we consider the continuous version of
the exponential scheme:

Zt = Z0e
∫ t

0 α(τ(s))dr −
∫ t

0
e
∫ t
s
α(τ(r))drα(τ(s))m((τ(s))ds

+
∫ t

0
e
∫ t
s
α((τ(r))drβ((τ(s))ds+

∫ t

0
e
∫ t
s
α((τ(r))drσ((τ(s))dWs,

(A.5)

where τ(t) = supk∈{1,...,N}{tk : tk ≤ t}, which coincide with the definition

Ztn+1 = Ztne∆tα(tn) −
∫ tn+1

tn
e(tn+1−s)α(tn)α(tn)m(tn)ds

+
∫ tn+1

tn
e(tn+1−s)α(tn)β(tn)ds+

∫ tn+1

tn
e(tn+1−s)α(tn)σ(tn)dWs

at each time step tn. Using the closed forms, it is straightforward to compute a bound of any even
2p-th moment p ≥ 1, using successively the Jensen Inequality and Itô Isometry

E[Z2p
t ] ≤ 42p−1E[(Z2p

0 e2p
∫ t

0 α(r)dr] + E
[(∫ t

0
e
∫ t
s
α(r)drα(s)m(s)ds

)2p]

+ E
[(∫ t

0
e
∫ t
s
α(r)drβ(s)ds

)2p]
+ E

[(∫ t

0
e2
∫ t
s
α(r)drσ(s)2ds

)p]
.

Assuming in addition that α is valued in (−∞, 0], we easily get that E[Z2p
t ] is bounded by a constant

uniform in α. This is also true for E[Z2p
t ] for the same reason. From a different computation, this

stability property is also true for the classical Euler scheme

Ztn+1 = Ztn +
∫ tn+1

tn
α(tn)(Ztn −m(tn))ds+

∫ tn+1

tn
β(tn)ds+

∫ tn+1

tn
σ(tn)dWs

whose continuous version is

Zt = Z0 +
∫ t

0
α(τ(s))(Zτ(s) −m(τ(s)))ds+

∫ t

0
β(τ(s))ds+

∫ t

0
σ(τ(s)dWs. (A.6)

Indeed, applying the Itô formula to Z
2p
t and classical computations

E[Z
2p
t ] = E[Z2p

0 ]e
∫ t

0 2pα(s)ds +
∫ t

0
2pe

∫ t
s

2pα(s)ds) {β(s)− α(s)m(s)}E[Z
2p−1
s ]ds,

+
∫ t

0
2p(2p− 1)e

∫ t
s

2pα(s)dsσ(s)2

2 E[Z
2p−2
s ]ds

and again, due to the sign of α, we easily conclude.

211



M. Bossy, J. Espina, et al.

To simplify the presentation, we consider now the trajectorial error t 7→
(
E[|Zt − Zt|2p]

)1/2p
when

other coefficients m, β and σ are some constants. So Zt − Zt writes

Zt − Zt = (Z0 −m)
(

e
∫ t

0 α(s)ds − e
∫ t

0 α(τ(s))ds
)

+ β

∫ t

0

(
e
∫ t
s
α((τ(r))dr − e

∫ t
s
α((τ(r))dr

)
ds

+ σ

∫ t

0

(
e
∫ t
s
α(r)dr − e

∫ t
s
α((τ(r))dr

)
dWs.

The strong error bound is then derived from the bound of terms of the form

Et :=
(

e
∫ t

0 α(s)ds − e
∫ t

0 α(τ(s))ds
)
,

that also writes

Et = e
∫ t

0 α(τ(s))ds
∫ t

0

(
α(s)− α(τ(s)

)
e
∫ s

0 α(r)dre−
∫ s

0 α(τ(r))drds.

This last expression leads to the upper bound |Et| ≤
∫ t

0 |α(s) − α(τ(s))| ≤ L∆t, when for in-
stance α is Lispschitz with constant L. Using again Jensen Inequality and Itô Isometry, we get that
supt∈[0,T ] E[|Zt − Zt|2p] ≤ C|Et|p where C does not depend on α. In particular, when α is also a con-
stant, the strong error vanishes and we recover the fact that the exponential scheme is exact in that
case.

The strong convergence for the Euler scheme differs on this last point, even when all the coefficients
are some constant. Indeed, starting with the Itô formula, we have the following

E[(Zt − Zt)2p] =
∫ t

0
2pαE[(Zs − Zs)2p−1(Zs − Zτ(s))]ds

=
∫ t

0
2pαE[(Zs − Zs)2p]ds+

∫ t

0
2pαE[(Zs − Zs)2p−1(Zs − Zτ(s))]ds.

From that point, if α is negative, the first term in the right hand side disappears, but the second
one, multiplied by α is not a signed term, so any Young or Hölder inequality to separate this second
term in what is called the local error E[(Zs − Zτ(s))2p] with the iteration term E[(Zs − Zs)2p]] will
make appear a |α| in the final bound. For instance, with Young inequality and next Grönwall lemma

E[(Zt − Zt)2p] ≤
∫ t

0
(2p− 1)|α|E[(Zs − Zs)2p]]ds+

∫ t

0
|α|E[(Zs − Zτ(s))2p]ds ≤ C∆tp

with a constant C that depends on |α|.
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