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Abstract. The goal of this paper is to show that evanescent plane waves are much better at numerically approx-
imating Helmholtz solutions than classical propagative plane waves. By generalizing the Jacobi–Anger identity to
complex-valued directions, we first prove that any solution of the Helmholtz equation on a three dimensional ball
can be written as a continuous superposition of evanescent plane waves in a stable way. We then propose a prac-
tical numerical recipe to select discrete approximation sets of evanescent plane waves, which exhibits considerable
improvements over standard propagative plane wave schemes in numerical experiments. We show that all this is not
possible for propagative plane waves: they cannot stably represent general Helmholtz solutions, and any approxima-
tion based on discrete sets of propagative plane waves is doomed to have exponentially large coefficients and thus
to be numerically unstable. This paper is motivated by applications to Trefftz-type Galerkin schemes and extends
the recent results in [33] from two to three space dimensions.
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Keywords. Helmholtz equation, Plane wave, Evanescent plane wave, Trefftz method, Stable approximation,
Sampling, Herglotz representation, Jacobi–Anger identity.

1. Introduction

The homogeneous Helmholtz equation
−∆u− κ2u = 0, (1.1)

where κ > 0 is a real parameter called wavenumber, finds extensive application in diverse scientific and
engineering fields, including acoustics, electromagnetics, elasticity, and quantum mechanics. Linked to
the scalar wave equation, it characterizes the spatial dependence of time-harmonic solutions.

In high-frequency settings where the wavelength λ = 2π/κ is much smaller than the domain scale,
approximating Helmholtz solutions is complex and computationally expensive, as their oscillatory
nature demands numerous degrees of freedom (DOFs) for accuracy and leads to dispersion errors.
Trefftz methods [24] tackle these issues by using particular solutions of the PDE as spanning elements,
thereby reducing both the number of DOFs required and dispersion compared to polynomial-based
schemes [15, 20]. These properties make Trefftz methods effective for a wide range of real-world
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problems, such as inverse scattering [12], invisibility cloaking [22], large-scale electromagnetic simula-
tions [39], and sound field reconstruction from sparse acoustic measurements [9]. Examples of Trefftz
formulations include the Wave-Based Method (WBM) [16, 14], the Variational Theory of Complex
Rays (VTCR) [37], the Discontinuous Enrichment Method (DEM) [29], the Trefftz Discontinuous
Galerkin (TDG) methods [21, 20], and the Ultra Weak Variational Formulation (UWVF) [7]; these
and others are systematically reviewed and compared in [24].

Propagative plane waves (PPWs) x 7→ eiκd·x, where d ∈ Rn with d ·d = 1, form an appealing family
of Trefftz basis functions as they offer efficient implementation due to the possibility for closed-form
integration on flat sub-manifolds [24, §4.1]. However, ill-conditioning emerges in linear systems for
high-resolution Trefftz spaces, leading to strong numerical instability and stalled convergence when
using floating-point arithmetic [5, 25, 27]. As a result, the convergence predicted by the approximation
theory [24, §4.3] cannot be achieved in practice.

Recent results in 2D. The study in [33] makes advances in the analysis of PPW instability.
Using recent progress in frame approximation theory [3, 4], this work argues that, in floating-point
arithmetic and in presence of ill-conditioning, to obtain accurate approximations it is not enough to
prove the existence of a discrete function with small approximation error, but a representation with
bounded coefficients is needed. It turns out that large coefficients are unavoidable when considering
approximations in the form of linear combinations of PPWs if the Helmholtz solution contains high-
frequency Fourier modes [33, Th. 4.3]. This highlights a key trade-off: while PPWs are highly effective
in low-accuracy regimes – where a limited number of directions already yields useful results in practice –
their performance deteriorates as one targets higher precision. In such settings, numerical instabilities
arising from ill-conditioning and large coefficient norms can lead to convergence stagnation, even
when regularization techniques are employed. These insights motivate alternative strategies to achieve
accurate and stable numerical representations.

The work [33] then proposes a remedy. For accurate, bounded-coefficient approximations, the key
idea is to enrich the approximation sets with evanescent plane waves (EPWs). These Helmholtz so-
lutions allow for simple and cost-effective implementations, maintaining the form x 7→ eiκd·x with
a complex-valued direction d ∈ Cn satisfying d · d = 1. Such a wave oscillates with period shorter
than the Helmholtz wavelength λ in the propagation direction ℜ(d), and decays exponentially in the
orthogonal evanescent direction ℑ(d). Modal analysis reveals that EPWs effectively approximate high
Fourier modes, filling the gap left by PPWs.

This is backed by [33, Th. 6.7], which establishes that any Helmholtz solution on the unit disk can
be uniquely expressed as a continuous superposition of EPWs. The operator that maps the associated
density to the Helmholtz solution is called Herglotz transform [33, Def. 6.6] and admits a continuous
inverse, so that the density is bounded in a weighted L2 norm, indicating a form of stability at
the continuous level. For applications, the difficulty then lies in identifying effective EPW sets with
moderate size that retain both accuracy and stability. The construction in [33, §7], based on [11, 23, 30],
proposes a simple recipe that exhibits a significant improvement over conventional PPW methods in
numerical experiments.

EPWs also feature in the Wave Based Method [14] and have shown particular effectiveness for
interface problems in Trefftz schemes [27, 29]. They have further been employed in [8] to approximate
particular 3D Helmholtz solutions, written in cylindrical and spherical coordinates, in selected regions
of space – using locally a single EPW.

Extension to 3D. This paper presents the challenging extension of [33] to the 3D setting and is
mainly based on the Master thesis of the first author [19]. It focuses on spherical domains in order to
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yield explicit theoretical results via modal analysis. Up to rescaling the wavenumber κ, we consider
the Helmholtz equation posed on the open unit ball B1 := {x ∈ R3 : |x| < 1}.

In Section 2, we define and study 3D EPWs. A first non-trivial challenge is the parametrization of the
complex direction set {d ∈ C3 : d ·d = 1}. Our approach involves defining a complex-valued reference
direction and then consider its rigid-body rotations via Euler angles. We then prove a new generalized
Jacobi–Anger identity for complex-valued directions in Theorem 2.10, i.e. the Fourier expansion of
EPWs on the spherical wave basis. This requires extending the Ferrers functions (appearing in the
definition of spherical harmonics) to arguments outside the usual domain [−1, 1], and the use of Wigner
D-matrices. We discuss EPW modal analysis revealing that EPWs effectively encompass high Fourier
regimes, unlike the propagative case.

Section 3 introduces a notion of “stable continuous approximation”, which essentially entails ap-
proximating Helmholtz solutions by continuous superpositions of the elements of a given Bessel family
(indexed by a continuous parameter); stability follows from the boundedness of the associated density.
Analogously to what was done in 2D, we then prove in Theorem 3.9 that the EPW family provides
such a stable continuous approximation. We call “Herglotz transform” the isomorphism mapping den-
sities to Helmholtz solutions. In fact, in the parlance of frame theory, EPWs are shown to form a
continuous frame for the Helmholtz solution space. In contrast, PPWs cannot provide such stable
continuous approximations, as proved in Theorem 3.14.

Section 4 presents the corresponding notion of “stable discrete approximation” with finite expansions
associated to bounded coefficients. A sampling-based scheme relying on regularized Singular Value
Decomposition and oversampling is then presented. We prove in Corollary 4.3 that this scheme yields
accurate numerical solutions in finite-precision arithmetic, provided the approximation set enjoys the
stable discrete approximation property and suitable sampling points are chosen. Theorem 4.5 shows
that PPWs are unstable: some Helmholtz solutions can be approximated by linear combinations of
PPWs only if exponentially large coefficients are present.

Section 5 presents a numerical recipe that mirrors [33, §7], drawing inspiration from optimal sam-
pling techniques [11]. In practice, it selects an EPW basis by sampling the parametric domain according
to an explicit probability density function. While such a construction exhibits experimentally the de-
sired properties, a full proof that it satisfies the stable discrete approximation requirements is yet to
be established.

Section 6 showcases several numerical experiments supporting the choice of using EPWs for approx-
imating Helmholtz solution in 3D1. Our EPW sets significantly outperform standard PPW schemes,
and also behave well on different geometries, despite being grounded in unit ball analysis. Addition-
ally, they appear to maintain near-optimality: the DOF budget required to approximate the first N
modes scales linearly with N , for a fixed level of accuracy. These results provide strong evidence of
the potential of the proposed numerical approach for EPW approximations and Trefftz methods.

Table 1.1 summarizes the symbols used throughout the paper.

2. Evanescent plane waves

We start by introducing and studying evanescent plane waves (EPWs) in 3D. These waves satisfy
the Helmholtz equation (1.1) and generalize the well-known propagative plane waves (PPWs) while
preserving their simple exponential form. This section also presents the modal analysis tools that are
later used to analyse approximation properties of both types of plane waves. In particular, we extend
the classical Jacobi–Anger expansion to complex propagation directions, and use this to compute the
coefficients of the spherical-wave expansion of any EPW.

1The MATLAB code used to generate the numerical results of this paper is available at
https://github.com/Nicola-Galante/evanescent-plane-wave-approximation.
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Table 1.1. List of the symbols used in the paper.

κ, λ wavenumber and wavelength §1
B1, S2 unit ball and sphere in R3 §1, (2.5)
Θ, Y parameter domains Def. 2.1
θ, ψ, ζ, z,y EPW parameters Def. 2.1
Rθ,ψ, Ry(θ), Rz(θ) rotation matrices Def. 2.1
EWy evanescent plane wave (2.2)
d↑(z),d(y) EPW direction vectors (2.3)
PWθ,d(θ) propagative plane wave and direction (2.4), (2.5)
I spherical wave index set §2.2
Pmℓ Ferrers functions, Legendre polynomials (2.7)
Y m
ℓ , γmℓ spherical harmonics (2.8)
Jℓ, jℓ Bessel and spherical Bessel functions §2.2
b̃mℓ , b

m
ℓ , β

m
ℓ spherical waves and normalization (2.10)

B, ∥ · ∥B, (·, ·)B Helmholtz solution space (2.3)
Pmℓ associated Legendre functions (2.20)
Dℓ(θ, ψ), dℓ(θ) Wigner D- and d-matrices (2.27), (2.28)
Dm
ℓ (θ, ψ),Pℓ(ζ) Wigner matrix columns, Jacobi–Anger coefficients §2.4

ÊW
m

ℓ , bℓ[y], b̃ℓ[y], ÊWℓ modal expansion coefficients §2.4
(X,µ),ΦX ,TX measure space, Bessel family, synthesis operator §3.1
Ccs, η stable continuous approx. bound and tolerance Def. 3.1
σ, ν, w measures and density on S2 and Y (3.2)
amℓ , ã

m
ℓ , αℓ,A, ∥ · ∥A Herglotz densities, normalization and space Def. 3.2

τℓ, τ± Jacobi–Anger coefficients and bounds (3.4), (3.10)
TEW
Y Herglotz transform (3.11)

TPW
Θ PPW continuous synthesis operator (3.14)

ΦP ,TP discrete approximation set, synthesis operator (4.1)
Cds, η, sds stable discrete approx. bound, tolerance, exponent Def. 4.1
γ,xs, ws, S Dirichlet trace, sampling nodes, weights, number §4.2
A,b, ξ sampling matrix, load and solution vectors §4.2
Σ, σp, σmax sampling matrix singular values §4.2
ϵ regularization parameter §4.2
Σϵ, AS,ϵ, ξS,ϵ,

† regularized matrices and vector, pseudoinverse §4.2
E relative residual (4.7)
TPW
P PPW discrete synthesis operator (4.8)
K,Ky reproducing kernel, sampling functionals Prop. 5.1
L,AL,BL, N(L) truncation parameter, truncated spaces, dimension Def. 5.3
µN , ρN , ρ̂N ,ΥN Christoffel, probability density, cumulative funct.s (5.1–5.2–5.3)
zp,yp, (θ̂p,1, θ̂p,2) sampling point in hypercube, in Y , in Θ §5.3
P cardinality of the approximation set (5.6)
ΨL,P ,ΦL,P sampling-functional and EPW approximating sets (5.6)
Υ̃N approximated cumulative function (5.8)
Q,Γ(·, ·) (normalized) upper incomplete Gamma function (5.8),(5.9)
ûmℓ , Q1 random Fourier coefficients, unit cube §6.2–6.3
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Figure 2.1. Geometrical representation of the constraints in (2.1). The black dot-
ted line (which originates on the boundary of the unit ball) and the blue hyper-
boloid depict respectively the real and imaginary parts of elements in the set {d =
Rθ,ψ d↑ (1 + ζ/2κ) , (ψ, ζ) ∈ [0, 2π)× [0,+∞)} for fixed θ ∈ Θ, see (2.3).

2.1. Definition

A plane wave x 7→ eiκd·x satisfies the homogeneous Helmholtz equation (1.1) if and only if the direction
vector d = (d1,d2,d3) ∈ C3 fulfills the constraint d · d =

∑3
i=1 d2

i = 1, or equivalently

|ℜ (d)|2 − |ℑ (d)|2 = 1, (a) ℜ (d) · ℑ (d) = 0. (b) (2.1)

Hence, ℜ (d) is required only to have a modulus larger than 1, and ℑ (d) must lie on the circle of
radius of (|ℜ (d)|2 − 1)1/2 in the plane orthogonal to ℜ (d), see Figure 2.1. We parametrize the set
{d ∈ C3 : d ·d = 1} by fixing a reference complex direction vector d↑ that meets conditions (2.1), and
then considering all its possible rigid-body rotations in space. For instance, if we let ℜ (d↑) be aligned
with the z-axis, we can pick ℑ (d↑) aligned with the x-axis so that (2.1b) is satisfied, and then (2.1a)
simplifies to ℜ (d↑,3)2 − ℑ (d↑,1)2 = 1. Assuming d↑,1 ≥ 0 and d↑,3 ≥ 0, and setting z := ℜ (d↑,3) ≥ 1,
we get ℑ (d↑,1) = (z2− 1)1/2. This prompts us to propose the following definition and parametrization
of an evanescent plane wave.

Definition 2.1 (Evanescent plane wave). Let θ := (θ1, θ2) ∈ Θ := [0, π] × [0, 2π), ψ ∈ [0, 2π) be the
Euler angles and Rθ,ψ := Rz(θ2)Ry(θ1)Rz(ψ) the associated rotation matrix, where

Ry(θ) :=

 cos (θ) 0 sin (θ)
0 1 0

− sin (θ) 0 cos (θ)

 , Rz(θ) :=

cos (θ) − sin (θ) 0
sin (θ) cos (θ) 0

0 0 1

 .
For any y := (θ, ψ, ζ) ∈ Y := Θ× [0, 2π)× [0,+∞), we let

EWy(x) := eiκd(y)·x ∀ x ∈ R3, (2.2)

where the wave complex direction is given by

d(y) := Rθ,ψ d↑ (1 + ζ/2κ) ∈ C3, and d↑(z) :=
(
i
√
z2 − 1, 0, z

)
∈ C3 ∀ z ≥ 1. (2.3)
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ψ = · , ζ = 0 ψ = π, ζ = 2 ψ = 0, ζ = 2 ψ = π, ζ = 20

Figure 2.2. Real part of some EPWs in (2.2) restricted to ∂B1. The blue arrow
denotes ℜ (d(y)) direction, i.e. d(θ) in (2.5), while the red arrow represents ℑ (d(y))
direction, i.e. d⊥(θ, ψ), that is the first column of the rotation matrix Rθ,ψ. We set
θ1 = θ2 = π/4 and wavenumber κ = 16.

Remark 2.2. We parametrize d(y) in (2.3) with three angles θ1, θ2, ψ and with ζ ≥ 0, while d↑ is
parametrized by z ≥ 1, related to ζ by z = 1 + ζ/2κ. This choice, although not immediately apparent,
leads to simpler results in the subsequent analysis.

Assuming ζ = 0 in (2.2), for any (θ, ψ) ∈ Θ × [0, 2π), we recover the standard definition of a
propagative plane wave. For any θ ∈ Θ, we let

PWθ(x) := EW(θ,0,0)(x) = eiκd(θ)·x ∀ x ∈ R3, (2.4)

where the wave propagation direction is given by

d(θ) := (sin θ1 cos θ2, sin θ1 sin θ2, cos θ1) ∈ S2 := {x ∈ R3 : |x| = 1} ⊂ R3. (2.5)

Here, d(θ) does not depend on ψ, as d↑(1) = (0, 0, 1) is invariant under the rotation Rz(ψ).
Since the direction vector d(y) in (2.3) is complex valued, the wave behavior can become unclear.

A more explicit expression of the EPW (2.2) is

EWy(x) = eiκℜ(d(y))·xe−κℑ(d(y))·x = ei(
ζ
2 +κ)d(θ)·xe−(ζ( ζ

4 +κ))1/2
d⊥(θ,ψ)·x, (2.6)

where d(θ) is defined in (2.5) and we denote with d⊥(θ, ψ) the first column of the matrix Rθ,ψ. The
wave oscillates with apparent wavenumber ζ/2 + κ ≥ κ in the propagation direction d(θ), parallel to
ℜ (d(y)). Additionally, the wave decays exponentially in the direction d⊥(θ, ψ), which is orthogonal
to d(θ) and parallel to ℑ (d(y)). This justifies naming the new parameters (ψ, ζ) ∈ [0, 2π)× [0,+∞),
which control the imaginary part of the complex direction d(y) in (2.3), evanescence parameters. Some
EPWs are represented in Figure 2.2.

2.2. Spherical waves

For spherical domains, an explicit orthonormal basis for the Helmholtz solution space is given by
acoustic Fourier modes, the so-called spherical waves. To define them, we briefly review some special
functions.

For conciseness, we introduce the index set I := {(ℓ,m) ∈ Z2 : 0 ≤ |m| ≤ ℓ}. Following [1,
eqs. (14.7.10) and (14.9.3)], the Ferrers functions are defined, for all (ℓ,m) ∈ I and |x| ≤ 1, as

Pmℓ (x) := (−1)m

2ℓℓ! (1− x2)
m
2

dℓ+m

dxℓ+m (x2 − 1)ℓ, so that P−m
ℓ (x) = (−1)m (ℓ−m)!

(ℓ+m)!P
m
ℓ (x). (2.7)
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Propagative: ℓ = 2m = κ/2 = 8 Grazing: ℓ = 2m = κ = 16 Evanescent: ℓ = 2m = 3κ = 48

Figure 2.3. Real part of some spherical waves bmℓ on ∂{B1 \ {x ∈ R3 : x > 0}}. With
increasing order ℓ, these functions concentrates progressively closer to the boundary
∂B1.

In particular, Pℓ := P0
ℓ are simply called Legendre polynomials of degree ℓ. Following [1, eq. (14.30.1)],

for every (θ, φ) ∈ Θ and (ℓ,m) ∈ I, the spherical harmonics are defined as

Y m
ℓ (θ, φ) := γmℓ e

imφPmℓ (cos θ), where γmℓ :=
[2ℓ+ 1

4π
(ℓ−m)!
(ℓ+m)!

]1/2
(2.8)

is a normalization constant, such that ∥Y m
ℓ ∥L2(S2) = 1. With a little abuse of notation, we also write

Y m
ℓ (x) in place of Y m

ℓ (θ, φ), for x = (sin θ cosφ, sin θ sinφ, cos θ) ∈ S2. These functions constitute
an orthonormal basis of L2(S2). The Condon–Shortley convention is used, i.e. the phase factor of
(−1)m is included in (2.7) rather than in γmℓ . Finally, for every r > 0, we denote with jℓ(r) :=√
π/2rJℓ+1/2(r) the spherical Bessel functions [1, eq. (10.47.3)], where Jℓ(r) are the usual Bessel

functions [1, eq. (10.2.2)].
We are now ready to define the spherical waves. For normalization purposes, let us introduce the

following κ-dependent Hermitian product and associated norm:
(u, v)B := (u, v)L2(B1) + κ−2(∇u,∇v)L2(B1)3 , ∥u∥2B := (u, u)B ∀ u, v ∈ H1(B1). (2.9)

Definition 2.3 (Spherical waves). We define, for any (ℓ,m) ∈ I

bmℓ := βℓb̃
m
ℓ , where b̃mℓ (x) := jℓ(κ|x|)Y m

ℓ (x/|x|) ∀ x ∈ B1, βℓ := ∥b̃mℓ ∥−1
B . (2.10)

Furthermore, we introduce the space B := span{bmℓ }(ℓ,m)∈I
∥·∥B ⊊ H1(B1).

Thanks to [32, eq. (2.4.23)] and [1, eq. (10.47.1)] it is clear that the spherical waves satisfy the
Helmholtz equation (1.1). Although bmℓ depends on the two indices (ℓ,m) ∈ I, the normalization
factor βℓ is independent of m, as shown later in Lemma 2.5.

Following common terminology, we refer to spherical waves with mode number ℓ < κ (resp. ℓ≫ κ)
as propagative (resp. evanescent) modes; their ‘energy’ is distributed throughout the unit ball (resp.
concentrated near the unit sphere). Lastly, waves with ℓ ≈ κ are called grazing modes. Figure 2.3
illustrates the behavior of several functions bmℓ on the boundary of the unit ball without the first
octant. We recall below a standard result on spherical waves, derived via separation of variables;
see [19, Lem. 1.2 and 1.3] for a proof.

Lemma 2.4. The space (B,∥ · ∥B) is a Hilbert space and the family {bmℓ }(ℓ,m)∈I is a Hilbert basis:

(bmℓ , bnq )B = δℓ,qδm,n ∀ (ℓ,m), (q, n) ∈ I, and u =
∑

(ℓ,m)∈I
(u, bmℓ )B b

m
ℓ ∀ u ∈ B.

Moreover, u ∈ H1(B1) satisfies the Helmholtz equation (1.1) if and only if u ∈ B.
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The upcoming analysis uses the asymptotics of the normalization coefficient βℓ, which grows super-
exponentially with ℓ after a pre-asymptotic regime up to ℓ ≈ κ.

Lemma 2.5. We have for all ℓ ≥ 0

βℓ =
√

2κ
π

[
(1 + ℓ/κ2)J2

ℓ+ 1
2
(κ)− (Jℓ− 1

2
(κ) + Jℓ+ 1

2
(κ)/κ)Jℓ+ 3

2
(κ)
]− 1

2
∼

ℓ→∞
2

3
2κ

( 2
eκ

)ℓ
ℓℓ+

1
2 . (2.11)

Proof. Since bmℓ solves the Helmholtz equation (1.1), the expansion in (2.11) stems from
β−2
ℓ = ∥b̃mℓ ∥2B = 2∥b̃mℓ ∥2L2(B1) + κ−2(∂nb̃

m
ℓ , b̃

m
ℓ )L2(∂B1), (2.12)

and, using [1, eqs. (10.22.5) and (10.51.2)],

∥b̃mℓ ∥2L2(B1) =
∫ 1

0
j2
ℓ (κr)r2dr = π

2κ

∫ 1

0
J2
ℓ+ 1

2
(κr)rdr = π

4κ

(
J2
ℓ+ 1

2
(κ)− Jℓ− 1

2
(κ)Jℓ+ 3

2
(κ)
)
, (2.13)

(∂nb̃
m
ℓ , b̃

m
ℓ )L2(∂B1) = κj′

ℓ(κ)jℓ(κ) = ℓj2
ℓ (κ)− κjℓ(κ)jℓ+1(κ) = π

2κ

(
ℓJ2
ℓ+ 1

2
(κ)− κJℓ+ 1

2
(κ)Jℓ+ 3

2
(κ)
)
.

(2.14)
The proof of the asymptotic behavior consists in showing that we have as ℓ→∞

∥b̃mℓ ∥2L2(B1) ∼
1
16

(
eκ

2

)2ℓ
ℓ−2(ℓ+ 3

2 ), and (∂nb̃
m
ℓ , b̃

m
ℓ )L2(∂B1) ∼

1
8

(
eκ

2

)2ℓ
ℓ−2(ℓ+ 1

2 ).

Hence, thanks to (2.12), the dominant term in ∥b̃mℓ ∥B in the limit ℓ→∞ is the boundary one.
Let us consider the L2(B1) norm. From (2.13) and since [1, eq. (10.19.1)] holds, namely

Jℓ(r) ∼
1√
2πℓ

(
er

2ℓ

)ℓ
as ℓ→∞, (2.15)

we get as ℓ→∞

∥b̃mℓ ∥2L2(B1) ∼
1

8κ

(
eκ

2

)2ℓ+1 (
ℓ+ 1

2

)−2(ℓ+1)
[
1−

(
ℓ+ 1

2

)2(ℓ+1)

(
ℓ− 1

2

)ℓ (
ℓ+ 3

2

)ℓ+2

]
. (2.16)

Moreover, since for every x, y, z ∈ R

(ℓ+ x)yℓ+z ∼ ℓyℓ+z exp
{
xy + x(2z − xy)

2ℓ

}
∼ ℓyℓ+zexy as ℓ→∞, (2.17)

the term inside the square brackets in (2.16) is equivalent to ℓ−1 at infinity.
Consider now the term (∂nb̃

m
ℓ , b̃

m
ℓ )L2(∂B1) in (2.12). From (2.14) and (2.15), we get as ℓ→∞

(∂nb̃
m
ℓ , b̃

m
ℓ )L2(∂B1) ∼

1
4κ

(
eκ

2

)2ℓ+1 (
ℓ+ 1

2

)−2(ℓ+1)
ℓ− eκ2

2

(
ℓ+ 1

2

)ℓ+1

(
ℓ+ 3

2

)ℓ+2

 ,
and, thanks to (2.17), it is readily checked that the second term inside the square brackets is dominated
by the first one, since it is equivalent to κ2/2ℓ at infinity.

2.3. Complex-direction Jacobi–Anger identity

The explicit series expansion of PPWs in the spherical wave basis is given by the Jacobi–Anger
identity [31, eq. (14)], namely

PWθ(x) = 4π
∞∑
ℓ=0

iℓ
ℓ∑

m=−ℓ
Y m
ℓ (θ)jℓ(κ|x|)Y m

ℓ (x/|x|) ∀ x ∈ B1, ∀ θ ∈ Θ. (2.18)
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The goal of this section is to obtain a similar expansion for EPWs, i.e. for complex-valued directions
d(y), which to the best of our knowledge is not available in the literature. This generalization is not
trivial and requires additional definitions and lemmas.

Associated Legendre functions. Following [17, §3.2, eq. (6)], we adopt the convention

(w2 − 1)m/2 := P
[
(w + 1)m/2

]
P
[
(w − 1)m/2

]
∀ m ∈ Z, ∀ w ∈ C, (2.19)

where P[ · ] indicates the standard principal branch. For odd m, (2.19) allows to eliminate the branch
cut along the imaginary axis simply by mirroring the function values from the right-half of the complex
plane to the left-half (see [19, §4.2]). Following [1, eqs. (14.7.14) and (14.9.13)], the associated Legendre
functions are defined, for every (ℓ,m) ∈ I and w ∈ C, as

Pmℓ (w) := 1
2ℓℓ! (w

2 − 1)
m
2

dℓ+m

dwℓ+m (w2 − 1)ℓ, so that P−m
ℓ (w) = (ℓ−m)!

(ℓ+m)!P
m
ℓ (w). (2.20)

For every odd m, Pmℓ is a single-valued function on the complex plane with a branch cut along the
interval (−1, 1), where it is continuous from above; otherwise, if m is even, Pmℓ is a polynomial of
degree ℓ. Notably, Pℓ(w) := P 0

ℓ (w) = Pℓ(w) for all w ∈ C. Moreover, [1, eq. (14.23.1)] explicitly
provides:

lim
ϵ↘0

Pmℓ (x± iϵ) = i∓mPmℓ (x) ∀ x ∈ (−1, 1). (2.21)

The next lemma extends the identity [12, eq. (2.46)] to complex values of t:

eirt =
∞∑
ℓ=0

iℓ(2ℓ+ 1)jℓ(r)Pℓ(t) ∀ r ≥ 0, ∀ t ∈ [−1, 1]. (2.22)

Lemma 2.6. Let ℓ ≥ 0. We have for every 0 ≤ m ≤ ℓ and w ∈ C

Pmℓ (w) = (ℓ+m)!
2ℓℓ!

ℓ−m∑
k=0

(
ℓ

k

)(
ℓ

m+ k

)
(w − 1)ℓ−(m/2+k) (w + 1)m/2+k . (2.23)

In particular, due to (2.20), Pmℓ (z) ≥ 0 for every real z ≥ 1 and (ℓ,m) ∈ I. Moreover,

eirw =
∞∑
ℓ=0

iℓ(2ℓ+ 1)jℓ(r)Pℓ(w) ∀ r ≥ 0, ∀ w ∈ C. (2.24)

Proof. It can be readily seen that
dℓ+m

dwℓ+m (w2 − 1)ℓ =
ℓ+m∑
k=0

(
ℓ+m

k

)(
dk

dwk (w − 1)ℓ
)(

dℓ+m−k

dwℓ+m−k (w + 1)ℓ
)

=
ℓ∑

k=m

(
ℓ+m

k

)(
ℓ!

(ℓ− k)! (w − 1)ℓ−k
)(

ℓ!
(k −m)! (w + 1)k−m

)

= (w − 1)ℓ

(w + 1)m
ℓ∑

k=m

(ℓ+m)!
k!(ℓ+m− k)!

ℓ!
(ℓ− k)!

ℓ!
(k −m)!

(
w + 1
w − 1

)k

= (ℓ+m)!(w − 1)ℓ−m
ℓ−m∑
k=0

(
ℓ

k

)(
ℓ

m+ k

)(
w + 1
w − 1

)k
.

Therefore, thanks to the definitions (2.19) and (2.20), the expansion (2.23) follows.
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Let R > 1 and BR := {w ∈ C : |w| < R}. We want to check that the right-hand side in (2.24) is
well-defined for every r ≥ 0 and w ∈ BR. Due to (2.15) and (2.17), it is enough to prove

∞∑
ℓ=0

(
er

2ℓ+ 1

)ℓ
|Pℓ(w)| <∞ ∀ r ≥ 0, ∀ w ∈ BR. (2.25)

Thanks to (2.23), Pℓ = P 0
ℓ , and the Vandermonde identity [41, eq. (1)], it follows

|Pℓ(w)| ≤ 1
2ℓ

ℓ∑
k=0

(
ℓ

k

)2

|w − 1|ℓ−k|w + 1|k ≤
ℓ∑

k=0

(
ℓ

k

)2 (
R+ 1

2

)ℓ
=
(

2ℓ
ℓ

)(
R+ 1

2

)ℓ
,

and therefore, for every r ≥ 0 and w ∈ BR, the series (2.25) is dominated by
∞∑
ℓ=0

cℓ, where cℓ :=
(

2ℓ
ℓ

)[
er(R+ 1)

4ℓ+ 2

]ℓ
. (2.26)

The series (2.26) is convergent, as confirmed by the ratio test: in fact, from (2.17), we have
cℓ+1
cℓ
∼
(
ℓ+ 1/2
ℓ+ 3/2

)ℓ+1 er(R+ 1)
ℓ+ 1 ∼ r(R+ 1)

ℓ
as ℓ→∞.

Thus, the right-hand side of (2.24) is well-defined for every r ≥ 0 and w ∈ BR. The functions w 7→ eirw

and w 7→ Pℓ(w) are analytic on BR and, since identity (2.22) holds, that is (2.24) with w ∈ [−1, 1], it
follows that (2.24) also holds for every r ≥ 0 and w ∈ BR due to [2, Th. 3.2.6]. As R > 1 is arbitrary,
(2.24) is valid for every w ∈ C.

Wigner matrices, rotations of spherical harmonics and addition theorem. The next defi-
nition aligns with [35, eq. (34)] and [18, eq. (1)], albeit with a distinction: we invert the angle signs to
ensure consistency with the notation of PPW directions in (2.5).

Definition 2.7 (Wigner matrices). Let (θ, ψ) ∈ Θ×[0, 2π) be the Euler angles and ℓ ≥ 0. The Wigner
D-matrix is the unitary matrix Dℓ(θ, ψ) = (Dm,m′

ℓ (θ, ψ))m,m′ ∈ C(2ℓ+1)×(2ℓ+1), where

Dm,m′

ℓ (θ, ψ) := eim
′θ2dm,m

′

ℓ (θ1)eimψ ∀ |m|, |m′| ≤ ℓ. (2.27)

In turn, dℓ(θ) := (dm,m
′

ℓ (θ))m,m′ ∈ R(2ℓ+1)×(2ℓ+1) is called Wigner d-matrix and its entries are:

dm,m
′

ℓ (θ) :=
kmax∑
k=kmin

wm,m
′

ℓ,k

(
cos θ2

)2(ℓ−k)+m′−m (
sin θ2

)2k+m−m′

∀ |m|, |m′| ≤ ℓ, (2.28)

where

wm,m
′

ℓ,k := (−1)k [(ℓ+m)!(ℓ−m)!(ℓ+m′)!(ℓ−m′)!]1/2

(ℓ−m− k)!(ℓ+m′ − k)!(k +m−m′)! k! ,

with kmin := max{0,m′ −m} and kmax := max{ℓ−m, ℓ+m′}.

The Wigner D-matrix Dℓ(θ, ψ) is used to express the image of any spherical harmonic of degree ℓ
under the rotation Rθ,ψ as a linear combination of spherical harmonics of the same degree. In fact the
expansion formula [42, §4.1, eq. (5)] holds, namely

Y m
ℓ (x) =

ℓ∑
m′=−ℓ

Dm,m′

ℓ (θ, ψ)Y m′
ℓ (Rθ,ψx) ∀ x ∈ S2, ∀ (ℓ,m) ∈ I. (2.29)

We finally establish a generalized Legendre addition theorem, extending e.g. [12, eq. (2.30)].
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Lemma 2.8. For any ℓ ≥ 0, x ∈ S2 and y = (θ, ψ, ζ) ∈ Y we have

ℓ∑
m=−ℓ

ℓ∑
m′=−ℓ

Dm′,m
ℓ (θ, ψ)γm′

ℓ i−m
′
Pm

′
ℓ (1 + ζ/2κ)Y m

ℓ (x) = 2ℓ+ 1
4π Pℓ(d(y) · x), (2.30)

Proof. Let x = (sin θ cosφ, sin θ sinφ, cos θ) ∈ S2 with (θ, φ) ∈ Θ and let y = (θ, ψ, ζ) ∈ Y with
z = 1 + ζ/2κ. We need to establish that

ℓ∑
m=−ℓ

γmℓ i
−mPmℓ (z)Y m

ℓ (x) = 2ℓ+ 1
4π Pℓ(d↑(z) · x), (2.31)

from which the result follows using (2.29) and d(y) = Rθ,ψd↑(z) from (2.3). On the one hand,
Pℓ
(
z cos θ + i

√
z2 − 1 sin θ cosφ

)
= Pℓ (d↑(z) · x) .

On the other hand, thanks to (2.7), (2.8), and (2.20),
4π

2ℓ+ 1

ℓ∑
m=−ℓ

(γmℓ )2i−mPmℓ (z)Pmℓ (cos θ)eimφ =
ℓ∑

m=−ℓ

(ℓ−m)!
(ℓ+m)! i

−mPmℓ (z)Pmℓ (cos θ)eimφ

=
ℓ∑

m=0

(ℓ−m)!
(ℓ+m)! i

−mPmℓ (z)Pmℓ (cos θ)eimφ +
ℓ∑

m=1

(ℓ−m)!
(ℓ+m)! i

−mPmℓ (z)Pmℓ (cos θ)e−imφ

= Pℓ(z)Pℓ(cos θ) + 2
ℓ∑

m=1

(ℓ−m)!
(ℓ+m)! i

−mPmℓ (z)Pmℓ (cos θ) cos(mφ).

From (2.21) and the branch cut convention (2.19) we get

lim
ϵ↘0

[
Pℓ(z)Pℓ(cos θ − iϵ) + 2

ℓ∑
m=1

(ℓ−m)!
(ℓ+m)! (−1)mPmℓ (z)Pmℓ (cos θ − iϵ) cos(mφ)

]

= Pℓ(z)Pℓ(cos θ) + 2
ℓ∑

m=1

(ℓ−m)!
(ℓ+m)! i

−mPmℓ (z)Pmℓ (cos θ) cos(mφ),

lim
ϵ↘0

[
Pℓ

(
z(cos θ − iϵ)−

√
z2 − 1

√
(cos θ − iϵ)2 − 1 cosφ

)]
=Pℓ

(
z cos θ + i

√
z2 − 1 sin θ cosφ

)
.

The arguments of the two limits coincide according to [1, eq. (14.28.1)], with z1 = z and z2 = cos θ− iϵ
in the notation of the reference. Thanks to the previous computations made in this proof, the equality
of the limits leads to (2.31).

Remark 2.9. To clarify, [1, eq. (14.28.1)] only states that the equality between the limit arguments
holds when θ ∈ [0, π/2). Consequently, identities (2.30) are established solely in this case. The limita-
tion likely arises because [1] does not adopt the convention (2.19) in the definition of the associated
Legendre functions. Thus, [1, eq. (14.28.1)] is applicable only to values with positive real part. Never-
theless, since all terms in (2.30) are analytic in (0, π) as functions of θ (making explicit the dependence
of x on θ), these identities can be easily extended to this interval due to [2, Th. 3.2.6]. Furthermore,
they hold if x = (0, 0, 1), namely θ = π: in fact Pmℓ (−1) = (−1)ℓδ0,m and, due to [1, eq. (14.7.17)],
Pℓ(−z) = (−1)ℓPℓ(z) for every z ≥ 1.
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Generalized Jacobi–Anger identity.

Theorem 2.10. EPWs admit the following modal expansion: for any x ∈ B1, y = (θ, ψ, ζ) ∈ Y ,

EWy(x) = 4π
∞∑
ℓ=0

iℓ
ℓ∑

m=−ℓ

 ℓ∑
m′=−ℓ

Dm′,m
ℓ (θ, ψ)γm′

ℓ i−m
′
Pm

′
ℓ

(
1 + ζ

2κ

) jℓ(κ|x|)Y m
ℓ (x/|x|). (2.32)

Proof. The result follows from applying (2.30) after using (2.24) to obtain

EWy(x) := eiκd(y)·x =
∞∑
ℓ=0

iℓ(2ℓ+ 1)jℓ(κ|x|)Pℓ
(
d(y) · x/|x|

)
∀ x ∈ B1, ∀ y ∈ Y.

Remark 2.11. Thanks to [35, eq. (35)] and (2.8), for any (θ, ψ) ∈ Θ× [0, 2π) and (ℓ,m) ∈ I it holds

D0,m
ℓ (θ, ψ) =

√
4π

2ℓ+ 1Y
m
ℓ (θ) =

√
(ℓ−m)!
(ℓ+m)! e

imθ2Pmℓ (cos θ1), (2.33)

and moreover Pmℓ (1) = δ0,m due to (2.20). Hence, assuming ζ = 0 in (2.32), we recover the Jacobi–
Anger expansion (2.18) for PPWs for any (θ, ψ) ∈ Θ× [0, 2π).

2.4. Modal analysis of plane waves

The Jacobi–Anger identity (2.32) plays a crucial role in the upcoming analysis. As we develop below,
this modal expansion with respect to the bmℓ basis also offers direct insights on the approximation prop-
erties of EPWs, hinting at why such waves are better suited for approximating less regular Helmholtz
solutions compared to PPWs.

For conciseness, we use the notation Dm
ℓ (θ, ψ), for 0 ≤ |m| ≤ ℓ, to represent the columns of the

Wigner D-matrix Dℓ(θ, ψ) in (2.27) and we let

Pℓ(ζ) :=
(
γmℓ i

mPmℓ (1 + ζ/2κ)
)ℓ
m=−ℓ ∈ C2ℓ+1 ∀ ℓ ≥ 0. (2.34)

Recalling (2.10), the Jacobi–Anger expansion (2.32) can be written as

EWy(x) =
∞∑
ℓ=0

ℓ∑
m=−ℓ

[
4πiℓβ−1

ℓ Dm
ℓ (θ, ψ) ·Pℓ(ζ)

]
bmℓ (x) ∀ x ∈ B1, ∀ y ∈ Y. (2.35)

The moduli of the coefficients in the above modal expansion, namely

ÊW
m

ℓ (θ1, ψ, ζ) :=
∣∣(EWy, b

m
ℓ )B

∣∣= 4π
βℓ

∣∣∣∣∣∣
ℓ∑

m′=−ℓ
γm

′
ℓ i−m

′
dm

′,m
ℓ (θ1)e−im′ψPm

′
ℓ

(
1 + ζ

2κ

)∣∣∣∣∣∣ , (2.36)

are depicted in Figure 2.4. We also define, for any ℓ ≥ 0 and y = (θ, ψ, ζ) ∈ Y ,

bℓ[y] := ÊW
−1
ℓ (ζ) b̃ℓ[y], where b̃ℓ[y] :=

ℓ∑
m=−ℓ

(EWy, b
m
ℓ )B b

m
ℓ , ÊWℓ(ζ) :=

∥∥b̃ℓ[y]
∥∥

B. (2.37)

In fact, thanks to (2.37), we can expand the EPWs as

EWy =
∞∑
ℓ=0

ℓ∑
m=−ℓ

(EWy, b
m
ℓ )B b

m
ℓ =

∞∑
ℓ=0

b̃ℓ[y] =
∞∑
ℓ=0

ÊWℓ(ζ) bℓ[y],
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Figure 2.4. Modal analysis of EPWs. For each wave: (top) representations of both
real and imaginary components of direction vectors d(y) with fixed angle θ2 = 0;
(bottom) related distributions of the coefficients ÊW

m

ℓ (θ1, ψ, ζ) in (2.36). To mitigate
the numerical cancellation issue of Wigner’s formula (2.28), we rely on [18] using [19,
eq. (4.26)]. The index ℓ varies on the abscissa within the range 0 ≤ ℓ ≤ 80, while the
index m varies on the ordinate within the range 0 ≤ |m| ≤ ℓ, forming a triangle. The
coefficients have been suitably normalized using a normalization factor described in the
subsequent sections, see (5.6), which depends solely on ζ. Wavenumber κ = 6. More
plots of this kind can be seen in [19, §4.4].

where bℓ[y] ∈ span{bmℓ }ℓm=−ℓ are orthonormal and

ÊWℓ(ζ) =

 ℓ∑
m=−ℓ

∣∣(EWy, b
m
ℓ )B

∣∣21/2

=

 ℓ∑
m=−ℓ

[
ÊW

m

ℓ (θ1, ψ, ζ)
]21/2

= 4π
βℓ
|Pℓ(ζ)| . (2.38)

The last equality in (2.38) holds due to (2.36) and the unitarity condition [42, §4.1, eq. (6)]. Figure 2.5
shows the coefficient distribution (2.38) for various values of ζ.

Remark 2.12. Assuming ζ = 0, the functions bℓ [y] coincide, up to the multiplicative constant iℓ,
with the spherical waves b0

ℓ rotated according to the PPW angles θ ∈ Θ. This is readily checked thanks
to (2.8) and (2.10), along with the identities (2.29) and (2.33).

If we consider PPWs and thus assume ζ = 0, the coefficients (2.36) are independent of ψ. For
any θ ∈ Θ, the PPW coefficients decay super-exponentially fast in the evanescent-mode regime ℓ ≫
κ. This is visible in the leftmost triangle of Figure 2.4 and in the continuous line in Figure 2.5.
Consequently, any PPW approximation of Helmholtz solutions with a high-ℓ Fourier modal content will
require exponentially large coefficients and cancellation to capture these modes, resulting in numerical
instability. This assertion is made precise later in Lemma 3.13 and Lemma 4.4.

On the contrary, by tuning the evanescence parameters ψ and ζ, the Fourier modal content of the
EPWs can be shifted to higher Fourier regimes. Specifically, raising ζ enables us to reach higher degrees
(larger values of ℓ), while varying ψ allows us to cover different orders m. As a consequence we expect
EPWs with large ζ to be able to approximate high Fourier modes with relatively small coefficients,
curing the numerical instability experienced with PPWs. However, accurately selecting the evanescence

447



N. Galante, A. Moiola, et al.

Figure 2.5. Modal analysis of EPWs: distributions of the coefficients (2.38) for various
values of the evanescence parameter ζ. For each ζ, this involves computing the ℓ2-norms
along the vertical segments of the coefficient distribution triangles, such as those in
Figure 2.4. As ζ increases, higher-ℓ Fourier modes can be encompassed, transitioning
away from the propagative case represented by ζ = 0. The coefficients have been
suitably normalized using a normalization factor described in the subsequent sections,
see (5.6). Wavenumber κ = 6.

parameters ψ and ζ to build reasonably sized approximation spaces remains a significant challenge.
We will tackle this issue in the following sections.

3. Stable continuous approximation

PPWs and EPWs families are naturally indexed by continuous sets, the parametric domains Θ and Y in
Definition 2.1. Although in applications a finite discrete subset is selected, it is fruitful to first analyse
the properties of the continuous set of plane waves. This is the purpose of this section which first
introduces the notion of stable continuous approximation. We then present the Herglotz density space,
showing its close link with the Helmholtz solution space through the Jacobi–Anger identity (2.35).
This connection leads to the definition of the Herglotz transform, an integral operator enabling the
representation of any Helmholtz solution in the unit ball as a continuous superposition of EPWs. This
continuous representation is proven to be stable, as opposed to PPWs, which fail to produce such a
result due to their inability to stably represent evanescent spherical modes, i.e. solutions dominated
by high-order Fourier modes.

3.1. The concept of stable continuous approximation

Let (X,µ) be a σ-finite measure space and denote by L2
µ(X) the corresponding Lebesgue space.

Following [10, §5.6], we define a Bessel family in the Hilbert space B as a set

ΦX := {ϕx}x∈X ⊂ B, such that
∫
X
| (u, ϕx)B |

2dµ(x) ≤ B∥u∥2B ∀ u ∈ B,

for some B > 0. For any such ΦX , the synthesis operator can be defined as:

TX : L2
µ(X)→ B, v 7→

∫
X
v(x)ϕxdµ(x).

Definition 3.1 (Stable continuous approximation). The Bessel family ΦX is said to be a stable
continuous approximation for B if, for any tolerance η > 0, there exists a stability constant Ccs ≥ 0
such that

∀ u ∈ B, ∃ v ∈ L2
µ(X) : ∥u−TXv∥B ≤ η∥u∥B, and ∥v∥L2

µ(X) ≤ Ccs∥u∥B. (3.1)
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ζ = 10-3 ζ = 10-2 ζ = 10-1 ζ = 100 ζ = 101 ζ = 102

m = 0

m = 10

max 3 × 10-6 7.1 × 10-6 3 × 10-5 3.6 × 10-4 4.1 × 10-2 5 × 10-14

Figure 3.1. Plots of |w1/2amℓ |, with ℓ = 10, two values of m, and varying ζ. The
function depends on (θ1, θ3, ζ) and is evaluated on a sphere. Each column shares a
color scale; maxima are shown in the last row. Wavenumber κ = 6.

A stable continuous approximation allows approximating any Helmholtz solution to a given accuracy
as an expansion TXv, where the density v has a bounded norm in L2

µ(X).

3.2. Herglotz density space

We consider the space L2
ν(Y ) on the EPW parametric domain Y , with the positive measure ν given by

dν(y) := dσ(θ) dψw(ζ)dζ, where w(ζ) := ζ1/2e−ζ ∀ ζ ∈ [0,+∞), (3.2)
and σ is the standard measure on S2. The L2

ν Hermitian product and the associated norm are

(v, u)A :=
∫
Y
v(y)u(y)dν(y), ∥v∥2A := (v, v)A ∀ v, u ∈ L2

ν(Y ).

Let us define a proper subspace of L2
ν(Y ), denoted by A and named space of Herglotz densities.

Definition 3.2 (Herglotz densities). We define, for any (ℓ,m) ∈ I

amℓ := αℓã
m
ℓ , where ãmℓ (y) := Dm

ℓ (θ, ψ) ·Pℓ(ζ) ∀ y = (θ, ψ, ζ) ∈ Y, αℓ := ∥ãmℓ ∥−1
A , (3.3)

where Dm
ℓ (θ, ψ) and Pℓ(ζ) are defined in (2.34), and A := span{amℓ }(ℓ,m)∈I

∥·∥A ⊊ L2
ν(Y ).

Just like the spherical waves (2.10), the Herglotz densities also depend on (ℓ,m) ∈ I, while the
normalization coefficient αℓ is independent of m, as will be clarified later (see Lemma 3.6). The
wavenumber κ appears explicitly in the definition (2.34) of Pℓ(ζ), hence each amℓ depends on it. Some
densities amℓ , weighted by w1/2, are shown in Figure 3.1; additional plots are available in [19, Fig. 5.1].

Lemma 3.3. The space (A,∥ · ∥A) is a Hilbert space and the family {amℓ }(ℓ,m)∈I is a Hilbert basis:

(amℓ , anq )A = δℓ,qδm,n ∀ (ℓ,m), (q, n) ∈ I, and v =
∑

(ℓ,m)∈I
(v, amℓ )A a

m
ℓ ∀ v ∈ A.

Using Definition 3.2, the Jacobi–Anger expansion (2.35) takes the simple form

EWy(x) =
∑

(ℓ,m)∈I
τℓ a

m
ℓ (y) bmℓ (x), where τℓ := 4πiℓ(αℓβℓ)−1 ∀ ℓ ≥ 0. (3.4)

The formula (3.4) holds a crucial role as it establishes a link between the spherical wave basis (2.10)
of the space B and the Herglotz-density basis (3.3) of the space A through EPWs in (2.2).
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The behavior of τℓ for large ℓ will intervene in the upcoming analysis. To study this, we start with
a lemma useful to analyze the asymptotic behavior of the normalization coefficients αℓ.
Lemma 3.4. We have for all (ℓ,m) ∈ I and z ≥ 1

(z − 1)ℓ ≤
√
π(ℓ−m)!Pmℓ (z)
2ℓΓ (ℓ+ 1/2) ≤ (z + 1)ℓ. (3.5)

Proof. Due to (2.20), (ℓ+m)!P−m
ℓ (z) = (ℓ−m)!Pmℓ (z) for every (ℓ,m) ∈ I, allowing us to assume

m ≥ 0 from here on. From [1, eq. (5.5.5)], we have

Γ
(
ℓ+ 1

2

)
=
√
π(2ℓ)!
22ℓℓ! ∀ ℓ ≥ 0.

Using this identity together with equation (2.23), it follows

Amℓ (z) :=
√
π(ℓ−m)!Pmℓ (z)
2ℓΓ (ℓ+ 1/2) = 2ℓℓ!(ℓ−m)!Pmℓ (z)

(2ℓ)!

=
(

2ℓ
ℓ+m

)−1

(z − 1)ℓ
ℓ−m∑
k=0

(
ℓ

k

)(
ℓ

m+ k

)(
z + 1
z − 1

)m/2+k
.

Thanks to the Vandermonde identity [41, eq. (1)] and
(a
b

)
=
( a
a−b
)
, we derive:

Amℓ (z) ≤
(

2ℓ
ℓ+m

)−1(
z + 1
z − 1

)ℓ−m/2
(z − 1)ℓ

ℓ−m∑
k=0

(
ℓ

k

)(
ℓ

m+ k

)
=
(
z − 1
z + 1

)m/2
(z + 1)ℓ ≤ (z + 1)ℓ,

Amℓ (z) ≥
(

2ℓ
ℓ+m

)−1

(z − 1)ℓ
ℓ−m∑
k=0

(
ℓ

k

)(
ℓ

m+ k

)
= (z − 1)ℓ.

Remark 3.5. Numerical evidence suggests that a sharper upper bound in (3.5) is zℓ.
After a pre-asymptotic regime up to ℓ ≈ κ, the coefficients αℓ exhibit super-exponential decay with

respect to ℓ. The specific asymptotic behavior is detailed in the next lemma.
Lemma 3.6. For a constant c(κ) only depending on κ, we have

αℓ ∼ c(κ)
(
eκ

2

)ℓ
ℓ−(ℓ+ 1

2 ) as ℓ→∞. (3.6)

Proof. We have that
∥ãmℓ ∥2A =

∫
Y
|Dm

ℓ (θ, ψ) ·Pℓ(ζ)|2dν(y)

=
ℓ∑

m′=−ℓ

∫
Θ

∫ 2π

0

∣∣∣Dm′,m
ℓ (θ, ψ)

∣∣∣2 dσ(θ)dψ
∫ +∞

0

[
γm

′
ℓ Pm

′
ℓ (1 + ζ/2κ)

]2
w(ζ)dζ

= 8π2

2ℓ+ 1

ℓ∑
m′=−ℓ

∫ +∞

0

[
γm

′
ℓ Pm

′
ℓ (1 + ζ/2κ)

]2
ζ1/2e−ζdζ. (3.7)

In what follows, we study the integral in (3.7), henceforth denoted by Bm′
ℓ . Thanks to (3.5):

Bm′
ℓ ≥

(
2ℓγm′

ℓ Γ(ℓ+ 1/2)√
π(ℓ−m′)!

)2 ∫ +∞

0

(
ζ

2κ

)2ℓ
ζ1/2e−ζdζ

= 1
4π2κ2ℓ

(2ℓ+ 1)Γ 2(ℓ+ 1/2)
(ℓ+m′)!(ℓ−m′)! Γ

(
2ℓ+ 3

2

)
=: Cm′

ℓ , (3.8)
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and analogously

Bm′
ℓ ≤

(
2ℓγm′

ℓ Γ(ℓ+ 1/2)√
π(ℓ−m′)!

)2 ∫ +∞

0

(
ζ

2κ + 2
)2ℓ

ζ1/2e−ζdζ

=
(

2ℓγm′
ℓ Γ(ℓ+ 1/2)√
π(ℓ−m′)!

)2 ∫ +∞

4κ

(
η

2κ

)2ℓ
(η − 4κ)1/2e−(η−4κ)dη

<
2ℓ+ 1
4π2

22ℓΓ 2(ℓ+ 1/2)
(ℓ+m′)!(ℓ−m′)!

∫ +∞

0

(
η

2κ

)2ℓ
η1/2e−ηe4κdη

= e4κ

4π2κ2ℓ
(2ℓ+ 1)Γ 2(ℓ+ 1/2)
(ℓ+m′)!(ℓ−m′)! Γ

(
2ℓ+ 3

2

)
= e4κCm

′
ℓ , (3.9)

where we used [1, eq. (5.2.1)] and η = ζ + 4κ. Thanks to the Stirling’s formula [1, eq. (5.11.7)], it is
easily checked that as ℓ→ +∞

Γ (2ℓ+ 3/2) ∼
√

2πe−2ℓ (2ℓ)2ℓ+1 , Γ 2 (ℓ+ 1/2) ∼ 2πe−2ℓℓ2ℓ, (ℓ+m′)!(ℓ−m′)! ∼ 2πe−2ℓℓ2ℓ+1,

where |m′| ≤ ℓ is fixed, and hence
(2ℓ+ 1)Γ 2(ℓ+ 1/2)
(ℓ+m′)!(ℓ−m′)! Γ

(
2ℓ+ 3

2

)
∼ 2
√

2πe−2ℓ(2ℓ)2ℓ+1 as ℓ→ +∞.

By combining (3.8) and (3.9), it follows that, as ℓ→ +∞, there exists a constant c1(κ), only dependent
on the wavenumber κ, such that

Cm
′

ℓ ∼
√

2
π
√
π

( 2
eκ

)2ℓ
ℓ2ℓ+1 ⇒ Bm′

ℓ ∼ c1(κ)
( 2
eκ

)2ℓ
ℓ2ℓ+1.

Moreover, also ∥ãmℓ ∥2A has the same behavior as Bm′
ℓ at infinity: in fact, thanks to (3.7), we have

∥ãmℓ ∥2A ∼
4π2

ℓ

ℓ∑
m′=−ℓ

c1(κ)
( 2
eκ

)2ℓ
ℓ2ℓ+1 ∼ c2(κ)

( 2
eκ

)2ℓ
ℓ2ℓ+1,

for some constant c2(κ) only dependent on κ; the claimed result (3.6) follows from (3.3).

From the asymptotics provided in Lemma 2.5 and Lemma 3.6, we can deduce the next result.

Corollary 3.7. The coefficients τℓ in (3.4) are uniformly bounded in ℓ, namely
τ− := inf

ℓ≥0
|τℓ| > 0 and τ+ := sup

ℓ≥0
|τℓ| <∞. (3.10)

The behavior of |τℓ| is shown in Figure 3.2 for different wavenumbers κ. This plot aligns with the
results in (3.10), displaying a flat asymptotic behavior for larger values of ℓ. Moreover, the values τ±
depend on the wavenumber κ, as shown in Figure 3.3.

3.3. Herglotz integral representation

Introducing the Herglotz transform TEW
Y , we can represent any Helmholtz solution in B as a linear

combination of EPWs, each weighted by an element of A. This integral operator is well-defined on A
thanks to the following result.

Lemma 3.8. {EWy}y∈Y is a Bessel family for B, where the optimal Bessel bound is B = τ2
+.

Proof. This can be seen directly from Lemma 3.3 and the Jacobi–Anger identity (3.4):∫
Y
|(u,EWy)B|2dν(y) =

∑
(ℓ,m)∈I

|τℓ|2|(u, bmℓ )B|2 ≤ τ2
+∥u∥2B ∀ u ∈ B.
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Figure 3.2. Dependence of
|τℓ| on the mode number ℓ for
various wavenumber κ.

Figure 3.3. Dependence of
τ± defined in (3.10) on the
wavenumber κ.

The synthesis operator TEW
Y associated to the EPW family is defined, for any v ∈ L2

ν(Y ), by

(TEW
Y v) (x) :=

∫
Y
v(y)EWy(x)dν(y) ∀ x ∈ B1. (3.11)

The following theorem, extension to 3D of [33, Th. 6.7], shows that for any Helmholtz solution u ∈ B
there exists a unique corresponding Herglotz density v ∈ A such that u = TEW

Y v and justifies the use
of the term ‘transform’ associated to TEW

Y .

Theorem 3.9. The operator TEW
Y is bounded and invertible from A to B:

TEW
Y : A → B, v 7→

∑
(ℓ,m)∈I

τℓ(v, amℓ )Ab
m
ℓ , and τ−∥v∥A ≤ ∥TEW

Y v∥B ≤ τ+∥v∥A ∀ v ∈ A. (3.12)

In particular, TEW
Y is diagonal on the space bases, namely TEW

Y a
m
ℓ = τℓ b

m
ℓ for all (ℓ,m) ∈ I.

Proof. Thanks to the Jacobi–Anger identity (3.4), for any v ∈ A and x ∈ B1 we have

(TEW
Y v)(x) =

∑
(ℓ,m)∈I

τℓ

∫
Y
bmℓ (x)amℓ (y)v(y)w(y)dy =

∑
(ℓ,m)∈I

τℓ(v, amℓ )A b
m
ℓ (x),

and so (3.12) follows from (3.10). Moreover, it can be readily checked that the inverse is
(TEW

Y )−1
u =

∑
(ℓ,m)∈I

τ−1
ℓ (u, bmℓ )B a

m
ℓ ∀ u ∈ B.

As a direct consequence of the isomorphism property of TY , EPWs allow stable continuous ap-
proximation of Helmholtz solutions. In fact, a stronger property holds: all Helmholtz solutions in B
are continuous superpositions of EPW, and the bounding constant Ccs in (3.1) is independent of the
tolerance η. Although stated at the continuous level, such a property lays the foundation for stable
discrete expansions, as we will see in more detail in Section 5.

Corollary 3.10. The Bessel family {EWy}y∈Y is a stable continuous approximation for B.
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Adopting the point of view of Frame Theory (for a reference, see [10]), another consequence of
Theorem 3.9 is that EPWs form a continuous frame for the Helmholtz solution space B. For more
details on these aspects, see [19, §5.2] (see also [33, §6.2]). In particular for the proof of the next
theorem, see [19, Th. 5.13].

Theorem 3.11. The Bessel family {EWy}y∈Y is a continuous frame for B, namely: for any u ∈ B,
y 7→ (u,EWy)B is measurable in Y , and

τ2
−∥u∥2B ≤

∫
Y
|(u,EWy)B|2dν(y) ≤ τ2

+∥u∥2B. (3.13)

3.4. Propagative plane waves are not a stable continuous approximation

We show that PPWs are not a stable continuous approximation for the Helmholtz solution space.

Lemma 3.12. {PWθ}θ∈Θ is a Bessel family for B.

Proof. From (2.4) and (2.9), it can be easily seen that ∥PWθ∥2B = 2|B1| = 8π/3. Hence, we have∫
Θ
|(u,PWθ)B|2dσ(θ) ≤

∫
Θ
∥u∥2B∥PWθ∥2B dσ(θ) = |S2|8π3 ∥u∥

2
B = 32π2

3 ∥u∥2B ∀ u ∈ B.

We can therefore define the synthesis operator associated with PPWs: for any v ∈ L2(S2),

(TPW
Θ v) (x) :=

∫
Θ
v(θ)PWθ(x)dσ(θ) ∀ x ∈ B1. (3.14)

Such continuous superpositions of PPWs TPW
Θ v ∈ C∞(R3) for some v ∈ L2(S2) are Helmholtz solutions

and known as Herglotz functions in the literature [12, eq. (3.43)]. However, not all u ∈ B can be
expressed in the form (3.14) for some v ∈ L2(S2), for instance PPWs themselves.

The next result shows that the two requirements in (3.1), i.e. accurate approximation and bounded
density norm, are mutually exclusive. As soon as the spherical wave bmℓ is accurately represented by
PPWs, the density norm must increase super-exponentially fast in ℓ in virtue of Lemma 2.5. Hence,
the Bessel family {PWθ}θ∈Θ is not a stable continuous approximation for B.

Lemma 3.13. Let (ℓ,m) ∈ I and 0 < η ≤ 1 be given. For a given v ∈ L2(S2),

if ∥bmℓ −TPW
Θ v∥B ≤ η∥b

m
ℓ ∥B then ∥v∥L2(S2) ≥ (1− η) βℓ4π∥b

m
ℓ ∥B. (3.15)

Proof. Let v ∈ L2(S2). Using the classical Jacobi–Anger identity (2.18), we obtain

(TPW
Θ v) (x) = 4π

∫
Θ
v(θ)

∞∑
q=0

iq
q∑

n=−q
Y n
q (θ) b̃nq (x)dσ(θ) =

∑
(q,n)∈I

cnq b̃
n
q (x), (3.16)

where, since ∥Y n
q ∥L2(S2) = 1 for any (q, n) ∈ I, the coefficients

cnq := 4πiq
(
v, Y n

q

)
L2(S2)

satisfy |cnq | ≤ 4π∥v∥L2(S2) ∀ (q, n) ∈ I. (3.17)

From (3.16), it follows:

∥bmℓ −TPW
Θ v∥2B =

∑
(q,n)∈I

∣∣∣δℓ,qδm,n− cnq β−1
q

∣∣∣2 ≤ η2 ⇒
∣∣∣δℓ,qδm,n− cnq β−1

ℓ

∣∣∣ ≤ η ∀ (q, n) ∈ I.

Due to (3.17), for (q, n) = (ℓ,m), this reads
η ≥

∣∣∣1− cmℓ β−1
ℓ

∣∣∣ ≥ 1− |cmℓ |β−1
ℓ ≥ 1− 4πβ−1

ℓ ∥v∥L2(S2),

which can be written as (3.15), recalling that ∥bmℓ ∥B = 1.
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Theorem 3.14. The Bessel family {PWθ}θ∈Θ is not a stable continuous approximation for B.

4. Stable discrete approximation

After having considered integral, or continuous, approximations, this section introduces the comple-
mentary notion of stable discrete approximation. A practical numerical scheme based on sampled
Dirichlet data for the approximation of Helmholtz solutions in the ball is analysed. Already intro-
duced in [19, §2.2] (see also [33, §3.2]), it relies on regularized SVD and oversampling following the
recommendations of [3, 4]. This procedure is proved to yield accurate solutions in finite-precision arith-
metic, provided the approximation set has the stable discrete approximation property and appropriate
sampling points have been chosen. We show that PPWs are inherently unstable also in the discrete
setting. The EPW sets constructed later in Section 5 are empirically shown in Section 6 to satisfy the
discrete stability notion presented here.

4.1. The concept of stable discrete approximation

Let us first review the definition of stable discrete approximation proposed in [19, Def. 2.1] and [33,
Def. 3.1]. We consider a sequence {ΦP }P∈N of finite approximation set ΦP := {ϕp}p ⊂ B. For each
P ∈ N, we define the synthesis operator associated with ΦP by

TP : C|ΦP | → B, µ = (µp)p 7→
∑
p

µpϕp. (4.1)

In Sections 4.2 and 4.3, we consider general finite approximation sets ΦP , while Sections 4.4 and 5 are
specifically devoted to PPW and EPW approximation sets, respectively.

Definition 4.1 (Stable discrete approximation). The sequence of approximation sets {ΦP }P∈N is said
to be a stable discrete approximation for B if, for any tolerance η > 0, there exist a stability exponent
sds ≥ 0, a stability constant Cds ≥ 0 such that
∀ u ∈ B, ∃ P ∈ N, µ ∈ C|ΦP | : ∥u− TP µ∥B ≤ η∥u∥B, and ∥µ∥ℓ2 ≤ Cds|ΦP |sds∥u∥B. (4.2)

This definition serves as the discrete counterpart to the concept of stable continuous approximation
in (3.1). With a sequence of stable discrete approximation sets, we can accurately approximate any
Helmholtz solution in the form of a finite expansion TP µ, where the coefficients µ have a bounded
ℓ2-norm, except for some algebraic growth. Due to the Hölder inequality, the ℓ2-norm in (4.2) can be
replaced by any discrete ℓp-norm, possibly changing the exponent sds.

4.2. Regularized boundary sampling method

We now outline a practical approach for computing the expansion coefficients using a sampling-type
strategy, following [3, 4] and in line with [25]. Let us consider the Helmholtz problem with Dirichlet
boundary conditions: find u ∈ H1(B1) such that

∆u+ κ2u = 0, in B1, and γu = g, on ∂B1,

where g ∈ H1/2(∂B1) and γ is the Dirichlet trace operator; this problem is known to be well-posed if κ2

is not an eigenvalue of the Dirichlet Laplacian. In all our numerical experiments, we aim to reconstruct
a solution u ∈ B using its boundary trace γu. Hence, for simplicity, we assume u ∈ B∩C0(B1), allowing
us to consider point evaluations of the Dirichlet trace.

So let u ∈ B ∩ C0(B1) be our approximation target. Given a finite approximation set ΦP ⊂ B, we
seek a coefficient vector ξ ∈ C|ΦP | such that TP ξ ≈ u. The solution u is supposed to be known at
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S ≥ |ΦP | sampling points {xs}Ss=1 ⊂ ∂B1. We assume that, as the number of such sampling points
increases, there is convergence of a cubature rule, namely that

lim
S→∞

S∑
s=1

wsv(xs) =
∫
∂B1

v(x)dx ∀ v ∈ C0(∂B1), (4.3)

where wS = (ws)s ∈ RS is a vector of positive weights associated with the point set {xs}Ss=1. Introduc-
ing non-uniform weights is a slight modification from [33, §3.2] that provides more generality. Unlike
the two-dimensional case [33, eq. (3.6)], there is no obvious way to determine such a set. In the follow-
ing numerical experiments, we use extremal systems of points and associated weights [28, 36, 40, 44],
which satisfy the identity (4.3).

Defining the matrix A = (As,p)s,p ∈ CS×|ΦP | and the vector b = (bs)s ∈ CS as follows

As,p := w1/2
s ϕp(xs), bs := w1/2

s (γu)(xs), 1 ≤ p ≤ |ΦP |, 1 ≤ s ≤ S, (4.4)

the sampling method consists in approximately solving the possibly overdetermined linear system

Aξ = b. (4.5)

The matrix A may often be ill-conditioned [24] as a result of the redundancy of the approximating
functions, potentially leading to inaccurate numerical solutions. A corollary of ill-conditioning is non-
uniqueness of the solution of the linear system in computer arithmetic. If all solutions may approximate
u with comparable accuracy, only those with small coefficient norm can be computed accurately in
finite precision arithmetic in practice. To achieve this, we rely on the combination of oversampling
and regularization techniques developed in [3, 4]. The regularized solution procedure is divided into
the following steps:

• Firstly, the Singular Value Decomposition (SVD) A = UΣV ∗ of the matrix A is performed. Let
σp denote the singular values of A for p = 1, . . . , |ΦP |, assuming they are sorted in descending
order. For clarity, we relabel the largest singular value as σmax := σ1.

• Then, the regularization involves discarding the relatively small singular values by setting them
to zero. A threshold parameter ϵ ∈ (0, 1] is selected, and the diagonal matrix Σ is replaced by
Σϵ by zeroing all σp such that σp < ϵσmax. This results in an approximate factorization of A,
that is AS,ϵ := UΣϵV

∗.

• Lastly, an approximate solution for the linear system in (4.5) is obtained by

ξS,ϵ := A†
S,ϵb = V Σ†

ϵU
∗b. (4.6)

Here Σ†
ϵ ∈ R|ΦP |×S denotes the pseudo-inverse of the matrix Σϵ, i.e. the diagonal matrix defined

by (Σ†
ϵ)j,j = (Σj,j)−1 if Σj,j ≥ ϵσmax and (Σ†

ϵ)j,j = 0 otherwise. To robustly compute ξS,ϵ, the
products at the right-hand side of (4.6) should be evaluated from right to left to avoid mixing
small and large values on the diagonal of Σ†

ϵ.

We chose to use a regularized SVD for its stability and robustness, despite its relatively high compu-
tational cost. Other alternatives are possible. For instance, [5] proposes an element-wise regularization
strategy based on SVD or QR decompositions, effectively addressing ill-conditioning and reducing the
size of the resulting linear systems. Further investigation into such scalable and effective strategies is
deferred to future research.
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4.3. Error estimates

Using regularization and oversampling (S ≥ |ΦP |), accurate approximations can be achieved if the set
sequence is a stable discrete approximation according to Definition 4.2, and (4.3) holds for the chosen
sampling points and weights. This result is the main conclusion of [3, Th. 5.3] and [4, Th. 1.3 and 3.7],
forming the basis of the investigation into stable discrete approximation sets for the solutions of the
Helmholtz equation. We have the following results from [19, Prop. 2.4 and Cor. 2.5] (to which we refer
for the proofs), which build on [33, Prop. 3.2 and Cor. 3.3] respectively.

Proposition 4.2. Let u ∈ B∩C0(B1) and P ∈ N. Given some approximation set ΦP = {ϕp}p such that
ϕp ∈ B ∩ C0(B1) for any p, sampling point sets {xs}Ss=1 ⊂ ∂B1 along with positive weights wS ∈ RS
satisfying (4.3), and some regularization parameter ϵ ∈ (0, 1], let ξS,ϵ ∈ C|ΦP | be the approximate
solution of the linear system (4.5), as defined in (4.6). Then ∀ µ ∈ C|ΦP |, ∃ S0 ∈ N such that ∀ S ≥ S0∥∥∥γ(u− TP ξS,ϵ)

∥∥∥
L2(∂B1)

≤ 3 ∥γ(u− TP µ)∥L2(∂B1) +
√

2ϵσmax∥wS∥1/2
ℓ∞ ∥µ∥ℓ2 .

Assume moreover that κ2 is not an eigenvalue of the Dirichlet Laplacian in B1. Then there exists a
constant Cerr > 0 independent of u and ΦP such that ∀ µ ∈ C|ΦP |, ∃ S0 ∈ N such that ∀ S ≥ S0∥∥∥u− TP ξS,ϵ

∥∥∥
L2(B1)

≤ Cerr
(
∥u− TP µ∥B + ϵσmax∥wS∥1/2

ℓ∞ ∥µ∥ℓ2
)
.

Corollary 4.3. Let δ > 0. Assume that the sequence of approximation sets {ΦP }P∈N is stable in the
sense of Definition 4.2 and that the sets {xs}Ss=1 ⊂ ∂B1 of sampling points and the positive weight
vectors wS ∈ RS, defined for any S ∈ N, satisfy the cubature-convergence condition (4.3). Assume also
that κ2 is not a Dirichlet eigenvalue in B1. Then, ∀ u ∈ B ∩ C0(B1), ∃ P ∈ N, S0 ∈ N and ϵ0 ∈ (0, 1]
such that ∀ S ≥ S0 and ϵ ∈ (0, ϵ0]

∥u− TP ξS,ϵ∥L2(B1) ≤ δ∥u∥B,

where ξS,ϵ ∈ C|ΦP | is defined in (4.6). The regularization parameter ϵ can be taken as large as

ϵ0 = δ
(
2CerrCdsσmax|ΦP |sds∥wS∥1/2

ℓ∞

)−1
.

The previous error bounds on u − TP ξS,ϵ apply to the solution obtained by the sampling method
using finite precision arithmetic. In particular, Corollary 4.3 shows that the vector ξS,ϵ, which is
stably computable in floating-point arithmetic using the regularized SVD (4.6), yields an accurate
approximation TP ξS,ϵ of u. In contrast, rigorous best-approximation error bounds from the classical
theory of approximation by PPWs, e.g. [31], are often not achievable numerically due to the need for
large coefficients and cancellation which leads to numerical instability.

Lastly, to measure the approximation error, we introduce the following relative residual

E = E(u,ΦP , S, ϵ) :=
∥AξS,ϵ − b∥ℓ2
∥b∥ℓ2

, (4.7)

where ξS,ϵ is the solution (4.6) of the regularized system. Following the argument of the proof of [19,
Prop. 2.4], it can be shown that for sufficiently large S, the residual E in (4.7) satisfies, for a constant
C̃ independent of u, ΦP and S,

∥u− TP ξS,ϵ∥L2(B1) ≤ C̃∥u∥B E .
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4.4. Propagative plane wave discrete instability

We consider any PPW approximation set of P ∈ N elements

ΦP :=
{
P−1/2 PWθp

}P
p=1, with {θp}Pp=1 ⊂ Θ (4.8)

and denote by TPW
P the corresponding synthesis operator (4.1). In practice, isotropic approximations

are attained by using nearly-uniform directions, and in our numerical experiments we use the extremal
systems [28, 36, 40, 44] due to their well-distributed nature. However, the next results are valid for
any set.

Analogously to Section 3.4, let us consider the problem of approximating a spherical wave bmℓ for
some (ℓ,m) ∈ I using the PPW approximation sets (4.8). Likewise, the two conditions in (4.2), namely
low error and small coefficients, are incompatible.

Lemma 4.4. Let (ℓ,m) ∈ I, 0 < η ≤ 1 and P ∈ N be given. For any PPW approximation set ΦP as
in (4.8), and every coefficient vector µ ∈ CP ,

if ∥bmℓ − TPW
P µ∥B ≤ η∥b

m
ℓ ∥B then ∥µ∥ℓ2 ≥ (1− η) βℓ

2
√
π(2ℓ+ 1)

∥bmℓ ∥B. (4.9)

Proof. Let µ ∈ CP . Using the standard Jacobi–Anger identity (2.18), we obtain

(TPW
P µ) (x) = 4π√

P

P∑
p=1

µp

∞∑
q=0

iq
q∑

n=−q
Y n
q (dp) b̃nq (x) =

∑
(q,n)∈I

cnq b̃
n
q (x), (4.10)

where, thanks to [32, eq. (2.4.106)], the coefficients

cnq := 4πiq√
P

P∑
p=1

µpY n
q (dp) satisfy |cnq | ≤ 2

√
π(2q + 1)∥µ∥ℓ2 ∀ (q, n) ∈ I. (4.11)

From (4.10), it follows:

∥bmℓ − TPW
P µ∥2B =

∑
(q,n)∈I

∣∣∣δℓ,qδm,n− cnq β−1
q

∣∣∣2 ≤ η2 ⇒
∣∣∣δℓ,qδm,n− cnq β−1

ℓ

∣∣∣ ≤ η ∀ (q, n) ∈ I.

Due to (4.11), for (q, n) = (ℓ,m), this reads

η ≥
∣∣∣1− cmℓ β−1

ℓ

∣∣∣ ≥ 1− |cmℓ |β−1
ℓ ≥ 1− 2β−1

ℓ

√
π(2ℓ+ 1)∥µ∥ℓ2 ,

which can be written as (4.9), recalling that ∥bmℓ ∥B = 1.

Bound (4.9) states that in order to accurately approximate spherical waves bmℓ using PPW expan-
sions TPW

P µ with a specified accuracy η > 0, the coefficient norms must increase super-exponentially
fast in ℓ (recall that βℓ ∼ ( 2ℓ

eκ)ℓ by Lemma 2.5). In this context, it is not possible to achieve both
accuracy and stability. Similarly to [33, §4.3], we condense this result in the following theorem.

Theorem 4.5. There is no sequence of approximation sets made of PPWs that is a stable discrete
approximation for the space of Helmholtz solutions in the ball.

5. Numerical recipe for EPW selection

We describe a method for the construction of EPW sets in practice. The core idea is to link the
Helmholtz approximation problem to that of the corresponding Herglotz density. Following the ap-
proach in [33, §7], we adapt the sampling technique from [11, 23] (referred to as coherence-optimal
sampling) to our setting, generating sampling nodes in Y to reconstruct the Herglotz density. Such
a technique can also be interpreted as discretizing the integral representation (3.11), by constructing
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a cubature rule valid for finite-dimensional subspaces (see [30]). Section 6 shows numerically the ef-
fectiveness of the method, suggesting that our construction satisfies the stable discrete approximation
property presented in the previous section.

5.1. Reproducing kernel property

A significant consequence of the continuous frame result from Theorem 3.11 is highlighted in the next
proposition, sourced from [33, Prop. 6.12]; the proof can be found there. For a general reference on
Reproducing Kernel Hilbert Spaces (RKHS), consult [34].

Proposition 5.1. The space A has the reproducing kernel property. The reproducing kernel is

K(z,y) = Ky(z) = (Ky,Kz)A =
∑

(ℓ,m)∈I
amℓ (y)amℓ (z) ∀ y, z ∈ Y,

with pointwise convergence of the series and where Ky ∈ A is the (unique) Riesz representation of the
evaluation functional at y ∈ Y , satisfying v(y) = (v,Ky)A for any v ∈ A.

The reproducing kernel property ensures that the linear evaluation functional at any point in Y is
a continuous operator on A [34, Def. 1.2]. The interest of this property in our setting is clear in the
following result, which is borrowed from [19, Cor. 5.15] and [33, Cor. 6.13], and stems directly from
Proposition 5.1, Theorem 3.9, and the Jacobi–Anger identity (3.4).

Corollary 5.2. The EPWs are the images under the Herglotz transform TEW
Y of the Riesz representa-

tion of the evaluation functionals:

EWy = TEW
Y Ky ∀ y ∈ Y.

Hence, approximating a Helmholtz solution u ∈ B using EPWs is equivalent to approximating its
Herglotz density v = (TEW

Y )−1
u ∈ A by an expansion of evaluation functionals:

v ≈
P∑
p=1

µpKyp

TEW
Y−−−−−−→←−−−−−−

(TEW
Y )−1

u ≈
P∑
p=1

µpEWyp

for some coefficient vector µ = {µp}Pp=1. Section 6 provides numerical evidence that the procedure
outlined in Sections 5.2–5.3 allows to build such approximations (up to some normalization of the
families {Kyp}p and {EWyp}p).

5.2. Probability densities

Given a target solution u ∈ B and its corresponding Herglotz density v := (TEW
Y )−1

u ∈ A, the strat-
egy for constructing finite-dimensional approximation sets involves the hierarchy of finite-dimensional
subspaces formed by truncating the Hilbert bases {amℓ }(ℓ,m)∈I and {bmℓ }(ℓ,m)∈I .

Definition 5.3 (Truncated spaces). For any L ≥ 0, we define, respectively, the truncated Herglotz
density space and the truncated Helmholtz solution space as

AL := span{amℓ }(ℓ,m)∈I : ℓ≤L ⊊ A, BL := span{bmℓ }(ℓ,m)∈I : ℓ≤L ⊊ B.

Moreover, we denote their dimension with N = N(L) := dimAL = dimBL = (L+ 1)2 ∈ N.

Let us fix a truncation parameter L ≥ 0. Our goal is to approximate with EPWs the projection
uL ∈ BL (or equivalently vL = (TEW

Y )−1
uL ∈ AL). The key idea involves approximating AL elements

by constructing a set of P sampling nodes {yp}Pp=1 ⊂ Y , following the distribution in [23, §2.1], [11,
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Figure 5.1. Sampling density functions ρ̂N in (5.2) (top) and Υ̃N in (5.8) (bottom)
with respect to the κ-scaled evanescence parameter ζ.

§2.2], and [30, §2]. The probability density ρN [11, eq. (2.6)] is defined (up to normalization) as the
reciprocal of the N-term Christoffel function µN , that is

ρN (y) := w(ζ)
NµN (y) , where µ−1

N (y) :=
L∑
ℓ=0

ℓ∑
m=−ℓ

|amℓ (y)|2 =
L∑
ℓ=0

α2
ℓ |Pℓ(ζ)|2 ∀ y ∈ Y. (5.1)

Due to the Wigner D-matrix unitarity condition [42, §4.1, eq. (6)], µN is independent of θ and ψ.
Hence, ρN as a function of y = (θ, ψ, ζ) ∈ Y only depends on ζ, and the sampling problem is one-
dimensional, with ζ as the key parameter. The top row of Figure 5.1 illustrates the probability density
functions

ρ̂N (ζ) :=
∫

Θ

∫ 2π

0
ρN (θ, ψ, ζ) dψdσ(θ) ∀ ζ ∈ [0,+∞), (5.2)

with respect to the ratio ζ/κ. The main mode of the densities ρ̂N is centered at ζ = 0, representing
pure PPWs. As κ grows, the peak at ζ = 0 gets higher, reflecting the increasing number of propagative
modes, and the numerical support of the density gets larger (note the abscissas scaling). Eventually,
the probability approaches zero exponentially as ζ → ∞. For L ≤ κ, the densities form unimodal
distributions, while they exhibit multimodal behavior for L ≫ κ, introducing an extra mode for
relatively large values of ζ (see the wide peak around ζ = 5κ in the black curve). The associated
cumulative distribution functions (bottom row of Figure 5.1) are defined as

ΥN (ζ) :=
∫ ζ

0
ρ̂N (η) dη ∀ ζ ∈ [0,+∞). (5.3)
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L = κ L = 4κ

Figure 5.2. P = N(L) samples for L equal to κ (left) and 4κ (right). For each
value of L, on the left side we plot {(|ℜ(d(yp))|, θ̂p,2)}Pp=1, and on the right one
{(|ℑ(d(yp))|, 2πzp,ψ)}Pp=1; see (2.6). The points are colored according to the square
root of µN in (5.1). Wavenumber κ = 16.

5.3. Inversion transform sampling

Similar to [33, §8.1], P ∝ N(L) samples in Y are generated via the Inversion Transform Sampling
(ITS) technique suggested by [11, §5.2]. We propose two alternative versions:

• The first one involves generating sampling sets in [0, 1]4 converging (in a suitable sense) to the
uniform distribution U[0,1]4 as P goes to infinity, namely

{zp}Pp=1, with zp = (zp,θ1 , zp,θ2 , zp,ψ, zp,ζ) ∈ [0, 1]4, p = 1, . . . , P,

and mapping them back to Y , to obtain sampling sets that converge to ρN as P →∞, i.e.

{yp}Pp=1, with yp =
(
arccos (1− 2zp,θ1), 2πzp,θ2 , 2πzp,ψ,Υ−1

N (zp,ζ)
)
∈ Y.

• The second one exploits the fact that the parameters θ = (θ1, θ2) should be distributed in such
a way that the resulting points on the sphere converge to the uniform distribution US2 as P
goes to infinity. This enables us to employ the spherical coordinates {(θ̂p,1, θ̂p,2)}Pp=1 of nearly-
uniform point sets on S2 (e.g. extremal systems [28, 36, 40, 44] in our numerical experiments)
to determine the wave propagation directions, restricting the ITS technique to the evanescence
parameters (ψ, ζ). Thus, we only need to generate sampling sets in [0, 1]2 that converge to the
uniform distribution U[0,1]2 as P →∞, i.e.

{zp}Pp=1, with zp = (zp,ψ, zp,ζ) ∈ [0, 1]2, p = 1, . . . , P. (5.4)

Then, we map them back to the evanescence domain [0, 2π)× [0,+∞), obtaining

{yp}Pp=1, with yp =
(
θ̂p,1, θ̂p,2, 2πzp,ψ,Υ−1

N (zp,ζ)
)
∈ Y. (5.5)

Computing the inverse Υ−1
N can be achieved through elementary root-finding methods. In our numerical

experiments, we use the bisection method due to its simplicity and reliability.

Sampling strategies. In analogy with [33, §8.1], here we briefly review some sampling methods,
which differ by how we generate the distribution {zp}Pp=1 in [0, 1]n, for n ∈ {2, 4}:

• Deterministic sampling: the samples are a Cartesian product of n sets of equispaced points
with equal number of points in each directions.
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• Quasi-random sampling: the samples correspond to quasi-random low-discrepancy sequences,
such as Sobol sequences [6, 26], for instance.

• Random sampling: the samples are generated randomly according to the product of n uniform
distributions U[0,1].

In the following numerical experiments, we use a sampling strategy that combines quasi-random Sobol
sequences [6, 26] and extremal point systems [28, 36, 40, 44], according to (5.4) and (5.5). Examples
of EPW approximation sets constructed in this way are depicted in Figure 5.2. As anticipated, for
smaller values of L, which correspond to the regime where PPWs provide a sufficient approximation,
propagation vectors ℜ(d) group around S2 and evanescent vectors ℑ(d) cluster near the origin. When
L > κ, the target space BL includes Fourier modes with finer oscillations along ∂B1 and strong radial
decay away from ∂B1, whose approximation requires EPWs with comparable properties so both |ℜ(d)|
and |ℑ(d)| increase. This aligns with Figure 5.1 results.

Approximation sets. Two approximation sets can now be constructed, one consisting of sampling
functionals in A and the other of EPWs in B, namely

ΨL,P :=
{√

µN (yp)
P

Kyp

}P
p=1

⊂ A
TEW

Y−−−−−−→←−−−−−−
(TEW

Y )−1
ΦL,P :=

{√
µN (yp)
P

EWyp

}P
p=1

⊂ B. (5.6)

Similarly to [33, Conj. 7.1], we conjecture that the evaluation functional sequence {ΨL,P }L≥0,P∈N
is a stable discrete approximation for the space of Herglotz densities A, hence the EPW sequence
{ΦL,P }L≥0,P∈N is a stable discrete approximation for the space of Helmholtz solutions in the ball B.
This assertion is supported by the numerical results in Section 6.

Cumulative density function approximation. The ITS technique requires to invert the cumu-
lative density function ΥN . Although this can be easily done for every (θ, ψ), the numerical evaluation
of the cumulative probability distribution (5.3) is cumbersome to implement, costly to run and nu-
merically unstable. In fact, due to (2.34), (3.2), (3.7), and (5.1), we should compute:

ΥN (ζ) =
∫ ζ

0

∫
Θ

∫ 2π

0

w(η)
NµN (θ, ψ, η) dψdσ(θ)dη = 2π|S2| 1

N

L∑
ℓ=0

α2
ℓ

∫ ζ

0
|Pℓ(η)|2w(η) dη

= 1
N

L∑
ℓ=0

(2ℓ+ 1)
∑
m

∫ ζ
0 [γmℓ Pmℓ (η/2κ+ 1)]2 η1/2e−η dη∑

m

∫∞
0
[
γmℓ P

m
ℓ (η/2κ+ 1)

]2
η1/2e−η dη

. (5.7)

Our proposal is thus to rely on the following approximation:

Υ̃N (ζ) := 1− 1
N

L∑
ℓ=0

(2ℓ+ 1)Q (2ℓ+ 3/2, 2κ+ ζ)
Q (2ℓ+ 3/2, 2κ) ∀ ζ ∈ [0,+∞), (5.8)

where Q is the normalized upper incomplete Gamma function [1, eq. (8.2.4)]. The approximation Υ̃N

is obtained from (5.7) by reasoning similarly to (3.8)–(3.9): approximating Pmℓ with a monomial and
controlling η1/2 with (η + 2κ)1/2; the details are expounded in [19, §6.3]. Compared to (5.7), this
concise explicit expression is better suited for numerical evaluation. The function Υ̃N maintains the
following essential properties: 0 ≤ Υ̃N (ζ) ≤ 1, Υ̃N (0) = 0 and limζ→∞ Υ̃N (ζ) = 1. Some cumulative
density functions Υ̃N are shown in the bottom row of Figure 5.1. When AL only consists of elements
related to the propagative regime (L ≤ κ), the cumulative distributions Υ̃N resemble step functions,
especially for large wavenumbers. However, for L > κ, these functions become more complex. Thus,
while it is safe to choose only PPWs for L ≤ κ, selecting EPWs becomes a non-trivial task for L > κ.
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Normalization coefficient approximation. The normalization of the EPWs in ΦL,P involves
computing the N-term Christoffel function µN , which, according to (5.1), depends on both the nor-
malization coefficients αℓ in (3.3) and Pℓ(ζ) in (2.34). While the latter can be computed through
recurrence relations [1, eqs. (14.7.15) and (14.10.3)], the former presents numerical challenges due to
the integral in (3.7). Once again, we can address this issue by relying on [19, eq. (6.19)] and employing
the approximation:

αℓ ≈
κℓ

eκ

[
2
√
π

ℓ! Γ
(
ℓ+ 1

2

)
Γ
(

2ℓ+ 3
2 , 2κ

)]−1/2

∀ ℓ ≥ 0, (5.9)

where we introduced the upper incomplete Gamma function [1, eq. (8.2.2)]. Alternatively, simpler
normalization options are possible, such as using the L∞-norm on the unit ball.

Parameter tuning. The construction of the sets ΦL,P requires choosing just two parameters, L
and P :

• L is the Fourier truncation level. As L increases, the accuracy of the approximation of u by
uL, or similarly of v = (TEW

Y )−1
u by vL, improves.

• P is the EPW approximation space dimension. When L is fixed, increasing P allows to enhance
the accuracy of the approximation of uL (or vL) by elements of ΦL,P (or ΨL,P ). The empirical
evidence detailed in Section 6 validates this conjecture, showing experimentally that P should
scale linearly with N(L), with a moderate proportionality constant.

Regarding the additional parameters discussed in Section 4.2, namely the number S of sampling points
on ∂B1 and the SVD regularization parameter ϵ, in our numerical experiments we choose S = ⌈

√
2P ⌉2

and ϵ = 10−14 respectively, in accordance with [19, §6.1].

6. Numerical results

The numerical experiments presented in this section (see [19, Ch. 7] for more results) show the stability
and accuracy achieved by the EPW sets constructed in the previous section. First, we consider the
problem of the approximation of a spherical wave by either PPWs or EPWs, confirming in particular
the instability result of Lemma 4.4 and showing the radical improvement offered by EPWs. Then,
we explore the near-optimality of the EPW set by reconstructing random-expansion solutions and
analyzing the error convergence. Further numerical results show that our recipe is very effective also
for non-spherical domains. For the sake of simplicity, we opted for the boundary sampling strategy
described above to investigate numerically the EPW approximation properties. However, alternative
numerical methods (TDG, UWVF, . . . ) can be employed together with EPWs.

6.1. Plane wave stability

Let us examine the approximation of spherical waves by the PPW and EPW approximation sets
introduced in (4.8) and (5.6), respectively. We will focus only on the case m = 0, since the numerical
results do not differ significantly varying the order |m| ≤ ℓ, as shown in [19, Fig. 3.4 and Fig. 7.1]. Once
the approximation set is fixed, the same sampling matrix A, defined in (4.4), is used to approximate
all the b0

ℓ for 0 ≤ ℓ ≤ 5κ.
The matrix A is known to be ill-conditioned: its condition number increases exponentially with the

number of plane waves, a trend that can be inferred from Figure 6.1. This phenomenon is not unique
to the sampling method and is observed in other experiments, see [24, §4.3].
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Figure 6.1. Singular values {σp}p of A using PPWs (left) and EPWs (right).
Wavenumber κ = 6. Raising the number P of waves, the ϵ-rank of the matrix in-
creases for EPWs but not for PPWs.

Figure 6.2. Accuracy E (4.7) (left) and stability ∥ξS,ϵ∥ℓ2 (right) of the approximation
of spherical waves b0

ℓ by both PPWs (top) and EPWs (bottom). Truncation at L = 4κ
and wavenumber κ = 6.

In this setting, more useful than the condition number is the concept of ϵ-rank, i.e. the number
of singular values of A larger than ϵσmax, which corresponds to the dimension of the numerically
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achievable approximation space:
ϵ-rank of A : = #{σp ≥ ϵσmax} = dim

{
b ∈ CS | ∃ µ ∈ C|ΦP |, b = Aµ, ∥µ∥ℓ2 ≤ 1

ϵσmax
∥b∥ℓ2

}
= dim

{
u ∈ span ΦP | ∃ µ ∈ C|ΦP |, u = TPW

P µ, ∥µ∥ℓ2 ≤ 1
ϵσmax

∥b(u)∥ℓ2
}
,

where b(u) ∈ CS is the boundary sampling vector of u, as in (4.4).
The approximation results are shown in Figure 6.2. The left panels show the relative residual E

in (4.7) as a measure of the approximation accuracy. On the right panels, the coefficient size ∥ξS,ϵ∥ℓ2
indicates the stability of the approximations.

Propagative plane waves. Let us focus on the PPW approximation sets ΦP in (4.8).
Figure 6.1 shows that the ϵ-rank of the matrix A does not increase as P is raised: more PPWs do

not lead to the stable approximation of more Helmholtz solutions.
In Figure 6.2 (top), three distinct regimes are observed:
• For the propagative modes, i.e. for spherical waves with mode number ℓ ≤ κ, the approximation

is accurate (E < 10−13) and the size of the coefficients is moderate (∥ξS,ϵ∥ℓ2 < 10).

• For mode numbers ℓ larger than the wavenumber κ, the norm of the coefficient vector grows
exponentially in ℓ and the accuracy decreases proportionally.

• At a certain point (roughly between ℓ = 4κ and ℓ = 5κ in this numerical experiment), the
exponential growth of the coefficients completely destroys the stability of the approximation
and we are unable to approximate the target b0

ℓ with any significant accuracy.
As in [33, §4.4], increasing P does not enhance accuracy beyond a certain threshold. Despite the matrix
A being extremely ill-conditioned, accuracy for propagative modes ℓ ≤ κ reaches machine precision.
On the other hand, evanescent modes with larger mode numbers ℓ ≥ 4κ maintain an error of O(1),
thanks to the simple regularization technique outlined in Section 4.2. In line with Theorem 4.5, any
regularization technique can mitigate but not eliminate the inherent instability of Trefftz methods
employing PPWs. Even with regularization, achieving accurate approximation of evanescent modes
within a given floating-point precision remains unattainable.

Evanescent plane waves. Now, let us consider the EPW approximation sets ΦL,P in (5.6) instead.
In Figure 6.2 (bottom), we fix the truncation parameter at L = 4κ. With enough waves, i.e. P large
enough, all modes ℓ ≤ L = 4κ are approximated to near machine precision. This encompasses both
propagative modes ℓ ≤ κ, which were already well-approximated using only PPWs, and evanescent
modes κ < ℓ ≤ L = 4κ, for which purely PPWs provided poor or no approximation. Moreover, higher-
degree modes L = 4κ < ℓ ≤ 5κ are also accurately approximated. The coefficient norms ∥ξS,ϵ∥ℓ2 in
the approximate expansions are moderate, differing from the propagative case. From Figure 6.1, one
understands that if P is large enough, the condition number of the matrix A is comparable for both
PPWs and EPWs. Improved accuracy for evanescent modes does not arise from better conditioning
but from a higher ϵ-rank: from less than 103 for PPWs to around 5 × 103 for EPWs in the case
P = 16L2. Raising the truncation parameter L allows to increase the ϵ-rank of A: more solutions can
be approximated with bounded coefficients by the EPWs.

6.2. Approximation of random-expansion solutions

We test the numerical procedure presented in Section 5 by reconstructing a solution of the form

u :=
L∑
ℓ=0

ℓ∑
m=−ℓ

ûmℓ [max{1, ℓ− κ}]−1bmℓ ∈ BL, (6.1)
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Figure 6.3. Accuracy E (4.7) (left) and stability ∥ξS,ϵ∥ℓ2/∥u∥B (right) of the approx-
imation of solution u in (6.1) by P EPWs. The horizontal axis represents the ratio
P/N(L), where N(L) = (L+ 1)2 is the dimension of the space BL, to which u belongs.
Wavenumber κ = 6.

where the coefficients ûmℓ are independent, normally-distributed random numbers. This is a challenging
scenario, as the coefficients of any element in B decay in modulus as o(ℓ−1) for large ℓ.

In Figure 6.3 we display the relative residual E and the coefficient size ∥ξS,ϵ∥ℓ2/∥u∥B with respect
to the ratio P/N(L), that is the approximation set dimension divided by the dimension of the space
of the possible solutions in (6.1). The numerical results suggest that the size of the approximation
set P should vary linearly with respect to N(L): when L is large enough (e.g. L ≥ 2κ), the decays
are largely independent of L. The ΦL,P approximation sets (5.6) appear close to optimal, requiring
only O(N) DOFs with a moderate proportionality constant to approximate N spherical modes with
reasonable accuracy. Here, for L ≥ 2κ, P = 10N suffices to obtain E ≤ 10−12.

Figure 6.4 shows the absolute errors resulting from approximating a solution of the form (6.1), with
wavenumber κ = 5 and truncation parameter L = 5κ = 25, by P = 4(L + 1)2 = 2704 plane waves,
whether they are PPWs or EPWs. For other plots of this kind see [19, §7.2].

The error from PPWs is much larger than that from EPWs (around 8 orders of magnitude in L∞-
norm) and is mainly concentrated near the boundary. This happens because EPWs can effectively
capture the higher Fourier modes of Helmholtz solutions, which PPWs cannot achieve.

The number of DOFs per wavelength λ = 2π/κ employed in each direction can be estimated by
λ 3
√

3P/4π, which is approximately 11 in Figure 6.4. In low-order methods, a common rule of thumb is
around 6 ∼ 10 DOFs per wavelength for 1 ∼ 2 digits of accuracy. Remarkably, thanks to the selected
EPWs, merely a fraction above this count yields more than 8 digits of accuracy.

6.3. Other geometries

To conclude, we present some numerical results in a cubic domain, as well as in two more complex
shapes – a cow and a submarine – to show that the approximation set we developed, based on the
analysis of the unit ball B1, performs well on other geometries as well. All domains have been uniformly
scaled so that the unit sphere circumscribes them. Additional results involving tetrahedrons can be
found in [19, §7.4].

In all cases, the goal is to approximate the Helmholtz fundamental solution

x 7→ 1
4π

eiκ|x−s|

|x− s| ∀ x ∈ Ω, where s ∈ R3 \ Ω, (6.2)
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Figure 6.4. Absolute errors of the approximation of a solution u in (6.1) with κ = 5
and L = 5κ = 25, so that u is defined by N(L) = 676 random parameters. The error
corresponds to the use of P = 4(L + 1)2 = 2704 plane waves, either PPWs in ΦP

from (4.8) (left) or EPWs in ΦL,P from (5.6) (right). Note the different ranges in the
color scales. The absolute errors are plotted both on B1 ∩ {x = (x, y, z) : xyz = 0}
(top) and on the unit sphere ∂B1 (bottom).

using the recipe of Section 4.2 for the unit ball, i.e. sampling Dirichlet data points on ∂Ω and solving
an oversampled system via regularized SVD. Specifically, using evenly spaced sampling points on ∂Ω
allows us to select uniform weights in (4.4). The truncation parameter L is computed from P as
L := max{⌈κ⌉, ⌊

√
P/10⌋}, based on the numerical results of Section 6.2. Moreover, the EPWs in (5.6)

are normalized to have unit L∞-norm on ∂Ω, this being the sole deviation from the sets used for
spherical geometry.

Cube. Let Q1 denote the cube with edges aligned to the Cartesian axes and inscribed within the unit
sphere. In Figure 6.5 we report the convergence of the plane wave approximations, either PPW or EPW,
for increasing size of the approximation set P . When PPWs are employed, the residual of the linear
system initially reduces swiftly with increasing P , but eventually plateaus, well before reaching machine
precision, due to the rapid growth of the coefficients. Conversely, when using EPW approximation
sets, the residual converges to machine precision and the coefficient size remains reasonable. In fact,
by using EPWs, the truncation parameter L, and consequently the number of approximated modes,
grows concurrently with P , providing an increasingly accurate approximation. In contrast, PPWs
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Figure 6.5. Residual E (4.7) (left) and stability ∥ξS,ϵ∥ℓ2 (right) of the approximation
of the fundamental solution (6.2) in the cube Q1 with s = (1/

√
3 + 2λ/3, 0, 0), so

that dist(s, Q1) = 2λ/3. The PPW and EPW approximation sets ΦP and ΦL,P are
compared. We report the convergence for increasing size of the approximation set P .
Wavenumber κ = 5.

are only able to stably approximate propagative modes. Once this content is correctly captured,
further increasing the discrete space dimension only brings instability, due to the impossibility of
approximating high Fourier modes.

Figure 6.6 shows the absolute errors in approximating a fundamental solution (6.2) by P = 2704
plane waves, either PPWs or EPWs.

Cow. We now consider a domain Ω defined by a closed triangulated surface in the shape of a cow. The
mesh, consisting of 2930 triangular elements, was taken from [13]. Since the mesh triangles are irregular
and vary in size, particular care is needed in placing approximately equispaced sampling points on the
surface. To this end, we adopt the following strategy: each triangle is subdivided adaptively based on
its diameter, so as to enforce a roughly uniform density of points over the entire surface. Specifically, a
reference subdivision pattern is applied to each triangle after estimating how many points are required
to match a target density, which depends on the global area of ∂Ω and the desired total number of
sampling points S.

We then proceed exactly as in the cubic case: we evaluate the fundamental solution (6.2) at the
selected boundary points and compute an approximation using either EPWs or PPWs, solving the
resulting oversampled system via a regularized SVD. In this setting, with a fixed number of plane
waves P = 13× 103, the runtime is nearly identical for PPW and EPW approximations, i.e. 395s for
PPWs and 409s for EPWs, respectively. This indicates that constructing the EPW approximation set
is as fast as constructing the PPW one. Moreover, over 92% of the total runtime is spent computing
the SVD in both cases, confirming that the cost of building the approximation sets is negligible in
comparison.

In Figure 6.7, the left column shows the real part of the fundamental solution (6.2) restricted to
the boundary of the domain, along with the corresponding absolute error for both PPW and EPW
approximations in the cow geometry.

Submarine. Finally, we consider a submarine-shaped domain, discretized via a triangular surface
mesh with 44596 elements, obtained from [43]. The boundary ∂Ω exhibits fine-scale geometric features,
such as tail fin, requiring even finer sampling to ensure accurate approximation. As in the cow case,
approximately equispaced boundary sampling is obtained by subdividing each triangle adaptively,
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Figure 6.6. Absolute errors of the approximation of the fundamental solution (6.2)
with κ = 5 and s ∈ R3 \Q1, marked by the blue dot in the plots, so that dist(s, Q1) =
λ/3. The solution is approximated using P = 2704 plane waves, either PPWs in ΦP

from (4.8) (left) or EPWs in ΦL,P from (5.6) (right). The absolute errors are plotted
on both Q1 ∩ {x = (x, y, z) : xyz = 0} (top) and the boundary ∂Q1 (bottom).

according to its surface area and the desired global point density. The approximation again employs
P = 13 × 103 plane waves, and the resulting runtimes – 1037s for PPWs and 1162s for EPWs – are
comparable. This confirms that enriching the basis with evanescent waves has no appreciable impact
on the overall cost. Moreover, in both cases, the SVD-based solver dominates the total runtime,
reaffirming that the construction of the approximation sets requires only a small fraction of the overall
computational effort.

In the right column of Figure 6.7, the real part of the fundamental solution (6.2), as well as the
absolute errors of the PPW and EPW approximations, are displayed on the boundary of the submarine
geometry.

These results highlight the potential of the proposed EPW sampling algorithm for plane wave
approximations and Trefftz schemes, particularly since it is not optimized for non-spherical geometries
(except for the L∞ normalization at the boundary). We are confident that our numerical recipe could
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Figure 6.7. Real part of the fundamental solution (6.2) with κ = 10 and s ∈ R3 \ Ω,
marked by the blue dot in the plots, such that dist(s,Ω) ≈ λ, along with approximation
errors on ∂Ω using P = 13× 103 plane waves, either PPWs in ΦP from (4.8) or EPWs
in ΦL,P from (5.6). The left column shows results for the cow geometry, the right for
the submarine. In each column, the first row shows the real part of the solution on ∂Ω,
the second the PPW approximation error, and the third the EPW approximation error.

be refined by defining rules tailored to the specific underlying geometries, thereby paving the way for
even more effective approximation strategies.
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7. Conclusions

This paper extends the analysis of plane wave approximation properties from 2D to 3D. As expected,
also in 3D PPWs are not suited for stably approximating high-frequency Fourier modes, whose integral
representation as a continuous superposition of PPWs features a density function that blows up with
the mode number. This is reflected in large expansion coefficients associated with finite PPW sets
and constitutes the fundamental source of numerical instability in standard plane-wave based Trefftz
schemes. Conversely, any Helmholtz solution in the unit ball can be exactly represented as a continuous
superposition of EPWs with a unique bounded density function. We propose a numerical strategy based
on a sampling approach for the construction of finite EPW approximation sets. Given a fixed number
of plane waves, the computational effort to construct both PPW and EPW approximation sets is
similar. Nevertheless, EPW sets offer a clear advantage in terms of accuracy, yielding much more
precise approximations.

The current form of the numerical recipe is tailored to a single (spherical) cell, and should be
regarded as a preliminary step toward broader applications. While numerical experiments are encour-
aging, further developments are needed to address more general geometries and to incorporate EPWs
into full Trefftz Discontinuous Galerkin formulations. Additional evidence supporting this strategy
in 2D is provided in [38], where the EPW-recipe [33] is successfully integrated into the Ultra Weak
Variational Formulation (UWVF) [7], showing its effectiveness within a complete Trefftz framework.
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