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Abstract. Recent advances in the literature show promising potential of deep learning methods, particularly neural
operators, in obtaining numerical solutions to partial differential equations (PDEs) beyond the reach of current
numerical solvers. However, existing data-driven approaches often rely on training data produced by numerical
PDE solvers (e.g., finite difference or finite element methods). We introduce a “backward” data generation method
that avoids solving the PDE numerically: by randomly sampling candidate solutions u; from the appropriate solution
space (e.g., H} (), we compute the corresponding right-hand side f; directly from the equation by differentiation.
This produces training pairs (f;,u;) by computing derivatives rather than solving a PDE numerically for each data
point, enabling fast, large-scale data generation consisting of exact solutions. Experiments indicate that models
trained on this synthetic data generalize well when tested on data produced by standard solvers. While the idea is
simple, we hope this method will expand the potential of neural PDE solvers that do not rely on classical numerical
solvers for data generation.

2020 Mathematics Subject Classification. 65N35, 15A15.
Keywords. synthetic data, numerical PDEs, neural operators.

1. Introduction

The use of deep learning to obtain numerical solutions to PDE problems beyond the reach of classical
solvers shows promise in revolutionizing science and technology. Deep learning-based methods have
overcome many challenges that classical numerical methods suffer from, among which are the curse of
dimensionality and grid dependence.

Methods that attempt to solve PDE problems using deep learning can be split into two main
classes: those that solve an instance of a PDE problem by directly approximating the solution (e.g. [3,
24, 29, 37, 38, 39]), and those that consider solutions to a family of PDE problems, also known in
the literature as parametric PDEs, through operator learning. In the operator learning approach,
the goal is to approximate the solution operator that maps input functions to the unknown solution
(e.g. [2, 12, 15, 19, 21, 25]). In this paper, we focus on the second class, where we seek solutions to
a class of PDE problems instead of an instance. Although the approach we describe is general, we
focus on the Fourier Neural Operator (FNO) [12], which is a state-of-the-art neural operator learning
method at the time that this paper is being written. We stress that our method is independent of
the particular neural operator learning architecture and should remain applicable as a synthetic data
generation plug-in as the state-of-the-art architecture evolves.

To the best of our knowledge, classical numerical methods, such as finite differences, finite el-
ement [32], pseudo-spectral methods, or other variants, have been used to obtain data for train-
ing purposes in operator learning. In particular, some works have used finite difference schemes
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(e.g. [2, 11, 16, 19, 20, 23, 25, 31]). In other works, data has been generated either from examples
with closed-form explicit solutions, for example via Green’s functions, or through numerical schemes
such as finite element methods, pseudo-spectral approaches, fourth-order Runge—Kutta, forward Eu-
ler, and others. (e.g. [4, 18] [5, 8, 14, 17, 22, 27, 28, 33, 34, 35, 36]). While these works are a strong
proof-of-concept for neural operators, it is critical to not rely completely on using classical numerical
solvers to generate training data for neural operator learning if we want to develop neural operators
as general-purpose PDE solvers beyond the reach of classical numerical solvers.

Our approach. Our approach is conceptually simple: suppose we want to train a neural network to
learn solutions to a parameterized class of PDE problems of the form (2.1). If we know that the solution
for any value of the parameter belongs to a Sobolev space which has an explicit orthonormal basis
of eigenfunctions and associated eigenvalues, we can generate a large number of synthetic training
functions {u’;] }jk in the space as random linear combinations of the first so many eigenfunctions,
scaled by the corresponding eigenvalues (see Section 3 for more details). We can efficiently generate
corresponding right-hand side functions ffj by computing derivatives, — L, uf;j = ffj. We then use

training data ( ij,aj, u’éy_ )5\7:1 to train a neural operator to learn the class of PDEs.

The general concept of first generating the “unknown” function and then substituting it into an
equation is not new, it is known in the literature as the method of manufactured solutions [26], which
is widely used for code verification when developing numerical solvers. By constructing an exact
solution, one can compare a numerical approximation against this exact solution. The novelty of our
work is that we explore the use of this general concept in a completely different setting: for generating
training data for neural PDE solvers, in order to obtain solutions to a family of PDE problems without
ever solving the PDE. We do this by coupling manufactured solutions with classical PDE theory to
randomly draw unknown functions from the solution space, creating a training dataset that generalizes
effectively for operator learning. In particular, our experiments demonstrate that models trained solely
on data produced by our “backwards” method still achieve strong performance when tested on data
generated by conventional numerical solvers, highlighting generalizations offered by our approach. For
more details see Section 4.

Recall the standard supervised learning setting where the training data are input-output pairs
(x,y;), where the input vectors x; are independent and identical draws from an underlying distribution
D, and y; = G(z;), and the goal is to derive an approximation G with minimal test error E,p|G(x) —
G(z)|. In our setting, the function to learn is the operator G : (a, f) — w. Our method of generating
(aj, f(]f]) and our overall approach can be viewed as a best attempt within the operator learning
framework to replicate training data within the classical supervised learning setting.

Organization of the paper. This paper is organized as follows: in Section 2 we introduce the main
idea in more detail, in Section 3 we discuss how to determine a space for the unknown functions de-
pending on the problem, and in Section 4 we present numerical experiments using our data in a known
network architecture such as the Fourier Neural Operator (FNO) [12]. The types of PDE problems
we consider are elliptic linear and semi-linear second-order equations with Dirichlet and Neumann
boundary conditions, starting with the Poisson equation as a first example and then considering more
complicated equations. In Subsection 4.3, we present experiments comparing our method to a more
classical approach, where the right-hand side is first generated and the corresponding problem is solved
numerically to obtain input-output pairs for training. At the end of this paper, we include an appendix
section with a description of the mathematical symbols used in this paper. Our data generation code
can be found on GitHub under the repository name synthetic-data-for-neural-operators.
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2. Set-up and Main Approach

Consider a class of PDE problems of the form

{—Lau =f inQ

B(u) =0 on 09, (2.1)

where L = L, denotes a differential operator parameterized by a € A, where a here denotes some
abstract parametrization which depends on the type of PDE, see for example subsection 4.4. Q C R" is
a given bounded domain, and B(u) denotes a given boundary condition. The goal is to find a solution
u that solves (2.1) given L, and f. So in a general setting, we wish to learn an operator of the form

G- AxF—U
(a7f)Hu’

where A, F and U are function spaces that depend on the specifics of the PDE problem.

For example, if we take Lu = Au, and B(u) = u then (2.1) becomes the Poisson equation with zero
Dirichlet boundary condition. In this case, we can take F = L?(2) and U = H{ () and the operator
we wish to learn is of the form

G:L*(Q) — H(Q)
fr—u.

So instead of first fixing a function f and then solving (2.1) to obtain u to be used as input-output
pairs (f,u), we instead generate u first, plug it into (2.1), and compute f by the specified rule.

The main innovation of our work is in determining the appropriate class of functions for the unknown
function v in (2.1). While from the PDE theory we know that u lives in some Sobolev space (see
e.g. [7]) in the case of elliptic PDEs, such space is infinite-dimensional and it is unclear at first how to
generate functions that serve as good representatives of the full infinite-dimensional space. We propose
to generate functions as random linear combinations of basis functions of the corresponding Sobolev
space. In the case where we know from theory that the underlying Sobolev space is H}(2) or H(Q),
then we can obtain explicit basis elements that can be obtained by the eigenfunctions of the Laplace
operator with Dirichlet and Neumann boundary conditions, respectively.

3. Drawing synthetic representative functions from a Sobolev space

In this section, we discuss how to draw representative functions from the solution space in the case of
elliptic problems so that they generalize well when used in numerical experiments. See the appendix
for the definitions of the function spaces used in this section.

Let 2 C R™ be a bounded open set. Consider the following eigenvalue problem

{—Au =Au inQ

B(u) =0 on 99, (3:-1)

which is called the Laplace-Dirichlet operator when B(u) = u. We say that A € R is an eigenvalue to
the Laplace-Dirichlet operator if there exists u € H}(Q) with u # 0 such that

/ Vu(z)Ve(z)de = /\/ u(z)p(z)dz, for all ¢ € HY(Q).
Q Q

If such u # 0, we say that it is an eigenfunction associated to the eigenvalue A. The following theorem
is well known in the analysis of PDEs and spectral theory (see Chapter 8 of [1]).
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Theorem 3.1. The Laplace—Dirichlet operator has countably many eigenvalues 0 < A1 < Ay <
...AN < .... There exists an orthonormal basis (e;)22, of L*(Q)) such that e; is an eigenfunction
of the Laplace—Dirichlet operator, i.e. of problem (3.1), corresponding to the eigenvalue \; for each
i € N. Moreover, (ei/\/Xi)2 is an orthonormal basis of Hg(Q) equipped with the scalar product

<u7 90> = fQ Vu - VQ,O.

This theory extends to more general Hilbert spaces, including different elliptic linear operators or
different types of boundary value conditions such as Neumann or mixed (e.g. see Theorem 6.6.1 in [1]).

For Neumann boundary conditions, we have B(u) = Ou-v where v denotes the exterior unit normal
vector to the boundary 92 in problem (3.1), then we have a similar theorem for the Hilbert space
V ={ve HYQ): [v(z)dz = 0}, where we can obtain an orthogonal basis for the functional space V.
Notice that V here is essentially H'(£2) but functions that differ by adding or subtracting a constant
are considered the same.

3.1. Representative functions in rectangular domains

FEigenfunctions of the Laplace operator are known for the Dirichlet, Neumann, and Robin boundary
conditions on rectangular domains of the form (a1,b1) X (ag,b2) X -+ X (an,by) C R™. They are also
known for some non-rectangular domains, see Figure 4.9 for an example on a triangular domain. To
keep the presentation simple, we will mainly consider Dirichlet (B(u) := 0) and Neumann (B(u) :=
Vu - v) boundary conditions on € := (0,1)2.

For the Dirichlet case, the eigenfunctions e;; corresponding to the eigenvalues \;; of problem (3.1)
are given by

eij(z,y) = sin(imz) sin(jry), Nij = (iﬂ')2 + (j7r)2, (x,y) € (0, 1)2,i,j € N. (3.2)
For the Neumann case, they are given by
eij(x,y) = cos(inzx) cos(jmy), Nij = (z'7r)2 + (jﬂ')2, (z,y) € (0, 1)2,i,j e N. (3.3)

Further, normalizing appropriately, we define the following basis elements for Hg () and V, respec-
tively
__ sin(irx) sin(j7ry) _ cos(imx) cos(jmy)

Ugj x? T g g ) Vij w? - 3 - *
R Y/ A A/ o B o
Remark 3.2. Notice that since the u;; are basis elements of H{(Q), for any w € H{(Q), there exist
coefficients ¢;; such that w can be written precisely as

oo
w(l‘ay) = z ngu’tj(l'ay)a
4,j=1

(3.4)

where ¢;; = (w,ui,j)Hé.

Keeping the above remark in mind, we generate the unknown functions u (which we assume are
from H}(Q) or V) as truncated sums of random linear combinations basis functions with prescribed
decay in the coefficients. More precisely, let M, K denote positive truncation numbers and let a;;, b;; ~

N(0,1/+/i% + j2) generate u € H}(Q) and v € V as follows

M K M K
i=1j=1

i=1j=1
Notice that by construction, functions of the form (3.5) satisfy zero Dirichlet and zero Neumann

boundary conditions, respectively. In experiments, we draw M and K randomly in {1,2,...,20}, that
is to say we use up to the first 20 basis functions. While these spaces are infinite-dimensional and thus
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require an infinite number of basis functions, we observe that truncating to the first 20 is sufficient to
achieve good generalizations to unseen non-trigonometric f functions.

Remark 3.3. While in the eigenvalue problem (3.1) we are seeking eigenfunctions and eigenvalues of
the Laplace—Dirichlet operator, as we can see in experiments later (see e.g. Section 4.2), these functions
can be used for nonlinear elliptic PDEs as well. This is because Theorem 3.1 asserts that (e;/v/A;)32, is
an orthonormal basis for H{ (), which means that as long as we know apriori that a solution belongs
to H(Q2), the same eigenfunctions are “good” representative.

3.2. Representative functions in non-rectangular domains

Our experiments mainly focus on square domains; however, the eigenfunctions and eigenvalues of the
Laplacian are also known explicitly for certain specific non-rectangular domains. In particular, the
Laplacian eigenfunctions are known for disks, circular annuli, spheres and spherical shells which can
generally be described as Q = {x € R" : r < |z| < R}, with n = 2,3, as well as for ellipses and
elliptical annuli. In addition, they are known for equilateral triangles, that is when Q = {(z,y) € R?:
0<z<1,0<y<+3z,y<+3(1—x)}. For more details on eigenfunctions of the Laplacian, see [9].

As for domains that are not of the above type, there could be ways to obtain the eigenfunctions
of the Laplacian numerically; however, in this case, we cannot easily take derivatives symbolically —
the main reason our method is computationally efficient. A potential way to generalize to any domain
shape could be by passing the boundary values as an input during the training phase and asking for
the right boundary condition after training is finished to get a prediction; this is an interesting future
direction to explore.

4. Numerical Experiments using the Fourier Neural Operator

In this section, we perform several numerical experiments to demonstrate the capabilities of our
method. Through some linear and non-linear PDE examples, we show how our method generalizes for
f € L%(Q), see subsections 4.1 and 4.2. Namely, after training FNO with our data, we pick an f that is
not of trigonometric form, use a numerical solver to obtain a solution u (at high resolution for better
accuracy, which is then down-sample to 85 x 85) and then see how this (“exact”) solution u compares
to the solution predicted by FNO when trained only with our data. In subsection 4.3 we compare our
method to a more classical approach of first generating f, then solving numerically for w.

The architecture we use for numerical experiments is the Fourier Neural Operator (FNO) introduced
in [12], which can learn mappings between function spaces of infinite-dimensions. The advantage of
FNO is that it aims to approximate an operator that learns to solve a family of PDEs by mapping
known parameters to the solution of that PDE, instead of only approximating one instance of a PDE
problem. Due to the nature of FNO, this enables us to use our synthetic data in order to approximate
an entire class of problems at once. The novelty of FNO is that the kernel function, which is learned
from the data, is parameterized directly in Fourier space, leveraging the Fast Fourier Transform when
computing the kernel function. We train FNO using Adam optimizer on batches of size 100, with a
learning rate of 0.001, modes set to 12, and of width 64. We also use relative Lo error to measure
performance for both training and testing.

We focus on second-order semi-linear elliptic PDE equations in divergence form defined on 2 :=
(0,1)2, with zero boundary conditions, given by

{— div(A(z) - Vu) +b-Vu+cu+g(u) = f in (1)

B(u) =0 on 09,
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where A(z) € R?*2,b € R?, ¢ € R and g(u) is some nonlinear function in u and B(u) is either B(u) = u
or B(u) = Vu - v, where v is the exterior unit normal vector to the boundary 92 that correspond to
zero Dirichlet or Neumann condition, respectively. Here we also assume that A is uniformly elliptic
and each a;; € L*>(Q2) with ¢,j € {1,2}.

For the rest of the paper, we will denote by H(2) the corresponding Sobolev space depending on
B(u), which is H(Q) = H}(Q) when B(u) = u and H(Q2) = H*(Q) when B(u) = Vu - v.

4.1. The Poisson Equation

We first consider a simple example of problem (4.1), the Poisson equation, by taking A(x) = I (the

),
2 x 2 identity matrix), b = (0,0), ¢ =0 and g(u) =0

{—Au =f inQ

B(u) =0 on 09. (42)

Our goal is to learn an operator of the form:
G:L*Q) — H(Q)
f—u

Notice that the Poisson equation can be easily solved when fixing f, however, here we would like
to demonstrate our method of generating data on this easy problem first. Later we will consider more
complicated examples.

We generate data points of the form (f,u) where u is defined as in (3.5), depending on B(u), and
f is computed by taking derivatives of u so that (4.2) holds. This way, we can generate a lot of data.
We let M and K in (3.5) range between 1 and 20, so that we can get a variety of such functions
and various oscillations. We perform experiments by training with 1000, 10000, and 100000 functional
data points and testing with 100 data points for the Poisson problem with Dirichlet and then with
Neumann boundary conditions. We report the relative Lo errors in the following Table 4.1.

TABLE 4.1. FNO performance on the Poisson equation using our synthetic data gen-
erated as in (3.5).

Dirichlet Neumann
Training points H 1,000 10,000 100,000 | 1,000 10,000 100,000
Training loss 0.01359 | 0.00322 | 0.00078 | 0.00818 | 0.00232 | 0.00065
Testing loss 0.02266 | 0.00346 | 0.00072 | 0.01877 | 0.00298 | 0.00066

Testing on f beyond finite trigonometric sums. Notice that if u is represented as a finite linear
sum of sines and cosines, as in (3.5), then f generated according to (4.2) also consists of a finite linear
sum of sines or cosines depending on B. So it is important to test on f’s that are not sums of sines or
cosines to demonstrate that our method of generating data generalizes well.

Restricting our attention to the Dirichlet case, let us generate f so that it does not consist of
sine or cosine functions. This is akin to out-of-distribution testing in the machine learning literature.
We consider the following two example functions: fi(z,y) = x — y, which is smooth, and fa(z,y) =
|x —0.5||y — 0.5|, which is a not everywhere differentiable function. However, in each case, fi, f2 are in
L?(€2), and approximation of L? functions by trigonometric functions is well studied, and error bounds
are available (see [6]). So we expect to obtain approximate solutions to the Poisson equation (4.2) for
any f function that is in L2((Q).
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In Figures 4.1 and 4.2, we summarize the predicted solutions using FNO, when trained with 1, 000,
10,000 and 100,000 synthetic data functions that consist of sine functions given by (3.5). We also
record the relative L? errors for each example. The following demonstrates that the choice of functions
constructed as in (3.5) generalizes well.

Ground Truth 1k Training 10k Training 100k Training

1k Pointwis Error 10k Pointwise Error 100k Pointwise Error

0.010

0.005

0.000

—0.005

—-0.010

0.0016
0.0014
0.0012
0.0010
0.0008
0.0006
0.0004

0.0002

0.0000

FIGURE 4.1. Predicted solutions of the Poisson equation (4.2) with fi(z,y) = x—y as
the right-hand side using FNO with 1,000, 10,000 and 100,000 training data points.
Their relative L? errors are 0.097, 0.096 and 0.094, respectively, while their relative [*
errors are 0.145,0.123 and 0.118, respectively.

Note that FNO performs better when predicting a solution to the Poisson equation when the
right-hand side is given by a smooth function, and has a harder time when the right-hand side is
not smooth in €. This behavior is expected from classical Fourier analysis. Smooth functions can be
well-approximated by trigonometric polynomials, with the error decaying like O(1/n*) if the function
is C*, where n denotes the truncation number and k denotes the number of continuous derivatives.
For non-smooth functions, although pointwise convergence still holds, uniform convergence may fail
and the approximation error decays much more slowly, explaining the drop in FNO performance from
Figure 4.1 to Figure 4.2.

4.2. Second-order semi-linear elliptic PDE
We take A =1, b= (0,0), c=0 and g(u) = u? in (4.1), in which case the problem becomes
{—Au+u2 =f inQ

B(u) =0 on 09. (4.3)

In this problem we have a nonlinear term g(u) = u? added. It turns out that despite the nonlinear
term, we get decent approximations of solutions when using our data generation with FNO.

As before, we generate u as specified in (3.5) and compute f by plugging into (4.3). From the theory,
we know that the space of solutions is H (€2). Numerical experiments show that despite the non-linearity
in that term, FNO achieves low Ls relative errors, as indicated in Table 4.2. We summarize the relative
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Ground Truth

N

FiGURE 4.2.

1k Training

10k Training

100k Training

x

0.00175

0.00150

0.00125

0.00100

0.00075

0.00050

0.00025

0.00000

100k Pointwise Error

Predicted solutions of the Poisson equation (4.2) with fa(z,y) = |z —
0.5]|y — 0.5| as the right-hand side using FNO with 1,000, 10,000 and 100, 000 training
data points. Their relative L? errors are 0.102, 0.114 and 0.108, respectively, while their
relative [*° errors are 0.326,0.188 and 0.131, respectively.

1k Pointwise Error 10k Pointwise Error

Lo errors of training and testing loss in Table 4.2 when we train on 1,000, 10,000 and 100,000 data
points and test on 100 data points.

TABLE 4.2. FNO performance on the problem (4.3) using (3.5) functions.

Dirichlet Neumann
‘ Training points H 1,000 ‘ 10,000 \ 100,000 \ 1,000 \ 10,000 \ 100,000 \
Training loss 0.01679 | 0.01763 | 0.00184 | 0.01017 | 0.00800 | 0.00237
Testing loss 0.03391 | 0.02693 | 0.00562 | 0.02992 | 0.01472 | 0.00295

Testing on f beyond finite trigonometric sums. When we generate the unknown « to be of sums
of sines or cosines, when plugging in equation (4.3), the computed f still consists of sines and cosines,
but with some terms squared. As before, after only training FNO with such w’s, we are interested
in seeing how well it generalizes when testing non-trigonometric L?(f2) functions. We demonstrate
generalization through the following two examples: fi(x,y) = zy and fao(z,y) = (x —0.5)2+ (y — 0.5)2.

The error plateaus after a certain amount of training data and stops decreasing further, even though
the predicted solution becomes smoother. We notice similar behavior across several right-hand sides
in equation (4.3) that smooth, albeit not finite sums of sines or cosines.

4.3. Comparison to a more classical approach

In this subsection, we compare our backward generation method for producing training data with
a more classical forward approach based on solving the PDE numerically for randomly generated
right-hand sides. Consider the same example as above, equation (4.3). We compare our method of
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Ground Truth 1k Training 10k Training

1k Pointwise Error 10k Pointwise Error 100k Pointwise Error

100k Training

0.00175

0.00150
0.00125
4 0.00100
0.00075

0.00050

|

*
= =

0.00025

0.00000

FIGURE 4.3. Predicted solutions of the semi-linear equation (4.3) with fi(x,y) = zy
as the right-hand side using FNO with 1,000, 10,000 and 100, 000 training data points.
Their relative L? errors are 0.058, 0.058 and 0.059, respectively, while their relative [*
errors are 0.089,0.084 and 0.083, respectively.

Ground Truth 1k Training 10k Training 100k Training

0.005

0.004

0.003

! 0.002
- 0.001
0.000

1k Pointwise Error 10k Pointwise Error 100k Pointwise Error

0.0008
0.0006
0.0004
0.0002
0.0000

FIGURE 4.4. Predicted solutions of the semi-linear equation (4.3) with fo(x,y) =
(x—0.5)2+ (y—0.5)? as the right-hand side using FNO with 1, 000, 10,000 and 100, 000
training data points. Their relative L? errors are 0.107, 0.115 and 0.118, respectively,
while their relative [*° errors are 0.326,0.113 and 0.106, respectively.
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generating data to using classical numerical solvers instead. In the forward generation method, we
first draw f € L?(f2) and then use a numerical solver to obtain a solution for the corresponding u.

We highlight a few difficulties with this approach: it is computationally more expensive to solve the
PDE for each new f; it introduces additional error into the training data due to reliance on approxi-
mate numerical solutions; and in problems involving nonlinearity, like in example (4.3), uniqueness of
solutions is not guaranteed.

To the best of our effort to provide a fair comparison, we draw f’s from L?(2) by considering
truncated series of orthonormal eigenvectors of L?(£2) with random coefficients. Recall the first part
of Theorem 3.1, where eigenfunctions of the Laplace—Dirichlet operator form an orthonormal basis for
L?(£2). Since we aim to solve (4.3) for every f € L?(£2), it is natural to generate f’s as truncated linear
combinations of such basis elements. Specifically, for any f € L?(Q), we can write

o0
fla,y) = Y {freijleig,
i,j=1
with e; ; defined as in (3.2) or (3.3).

Intuitively, we are comparing two strategies: (1) approximating the H{ space by generating repre-
sentative u’s and directly computing the corresponding f (our backward method), versus (2) approxi-
mating the L? space by drawing representative f’s and solving the PDE numerically to obtain u (the
forward method), which introduces additional numerical errors.

Our experiments indicate that our backward method is not only faster but also provides better
accuracy when tested on non-trigonometric f’s. For the experiments, both training and testing data
have resolution 85 x 85, and we maintain the same resolution when generating training data via
truncated series of basis functions in the forward method. It is important to note that discretization
introduces error into the training set, and reducing this error requires increasing the grid resolution,
which significantly slows down data generation. By contrast, our backward method does not introduce
discretization error because the solutions are computed symbolically and exactly.

We trained the Fourier Neural Operator (FNO) model with 10,000 training samples generated by
each method. Data generation using our backward method took approximately 12 minutes, leveraging
the SymEngine library for symbolic differentiation. In contrast, data generation using the forward
method required about 20 minutes, relying on the FiPy Python library to numerically solve each
instance on grids of size 85 x 85.

After training on each dataset separately, we generate a set of 10 functions f used for testing. In
order to obtain solutions as precise as possible, we solve for each f on a 1700 x 1700 grid and then
downsample the results to 85 x 85. The f’s are given by:

(0) 22(1 — =) +2y(1 —y)

(1) zy

(2) 1

(3) (x =05+ (y—1)?

(4) Step function: 1 if 2 > 0.5, 0 otherwise
(5) -y

(6) |z — 0.5y — 0.5]

(7) (z—05)* = (y— 1)
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We summarize our findings in Figure 4.5.

Relative L? errors of 10 examples

B Backward method
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FiGURE 4.5. Comparison of our backward generation method with the classical for-
ward generation method, as described in Subsection 4.3, on the semi-linear prob-
lem (4.3). Relative L? errors of predicted solutions are shown: blue corresponds to
our backward method and orange corresponds to the forward method. Our method
consistently achieves lower errors across all test cases.

4.4. Second-order linear elliptic PDE

In problem (4.1), take g(u) = 0 and allow the matrix A and the lower-order terms to be of any form,

possibly depending on (z,y). Then (4.1) becomes
—div(A-Vu)+b-Vu+cu=f inQ i
B(u) =0 on 0. (4.4)

In general, since we use derivatives in our computations, we assume that the entries of A are once
differentiable in the corresponding variables.

A as a fixed matrix. First, we look at the case where we fix a matrix A. Then we compute the
derivatives involved for the components of A and save those as well. We generate a function u according
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to (3.5), plug it in to (4.4), and then compute f. As before, the goal is to learn the operator
G:L*9) — HY(N)
f—u

For a numerical experiment, let A be as follows

2 sin(zy)
4= (56 +ty oy )

In this case, FNO is learning a family of solutions for a fixed A defined above of the problem (4.4)
for varying pairs of f and u functions. This choice of A is not particularly special, and the same
process can be repeated for any positive definite A (so that (4.4) is elliptic). For the most accurate
results, we can re-generate data points of the form (f,u) for each new matrix A and train different
A-dependent neural networks. The following Table 4.3 summarizes the relative Ly errors when using
FNO to solve (4.4) when A is given by (4.5) and when training with 1,000, 10,000 and 100,000 data
points and testing with 100 data points.

(4.5)

TABLE 4.3. FNO performance on the problem (4.4) with A given by (4.5), using (3.5) functions.

Dirichlet Neumann
Training points [| 1,000 10,000 [ 100,000 [ 1,000 [ 10,000 | 100,000 |
Training loss 0.01992 [0.01147 [0.00262 [0.03452 [0.00621 [ 0.00229
Testing loss 0.04780 [ 0.01523 [0.00274 | 0.08926 | 0.00848 | 0.00215

A as a parametric matrix. As a more general-purpose approach to solving elliptic PDEs using
FNO and synthetic data, we can also attempt to train a single neural network for an entire param-
eterized family of matrices A, by passing A as an input in the training data pair. That is, instead
of fixing the matrix A in our synthetic data, we vary A within a parameterized class and pass it as
input data together with f. In other words, the learning operator is of the form G : (f, A) ~ u. For
simplicity, we assume here that A is a diagonal matrix of the form

o= (5 o2)

Here, we vary a(x,y) and d(x,y). In other words, the operator we are trying to learn is given by
G : L*() x L™®(Q) x L®(Q) — H(Q)
(f,a,0) — u

To further simplify, we assume the components of A are linear functions in z,y, that is

mi1T + moy 0
Alw,y) = ( 0 max + m4y>

where m;’s are uniformly distributed in [0.1,5] and u is generated according to (3.5) with M, K €
{1,2,...,10}. For each generated data point, we generate a matrix of the above form and a function
u according to (3.5), then plug them both in equation (4.4) to compute f. Finally, the input data
forms a triple (f, a, d), while the target is to predict u. This way, FNO learns how to solve a family of
functions satisfying (4.4). We summarize the relative Ly errors in Table 4.4 using FNO when training
with 1,000, 5,000 and 10,000 data points. As we can see below and as expected, the performance of
the FNO with more degrees of freedom in the input data is worse compared to the case where the
matrix A is considered fixed and held constant across all the input data.
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Dirichlet Neumann
Training points || 1,000 | 5,000 | 10,000 | 1,000 | 5,000 | 10,000 |
Training loss 0.12266 | 0.07352 | 0.03134 | 0.14295 | 0.04639 | 0.01107
Testing loss 0.27257 | 0.10641 | 0.04885 | 0.25906 | 0.07611 | 0.05508

0.030 A

0.025 -

0.020 A

0.015 A

L2 relative error

0.010 -

0.005 -

0.000 -

10k training

1k training 1k testing 10k testing

FIGURE 4.6. Relative Lo errors with standard errors, over 10 experiments with fixed
diagonal matrices linear in x and y.

4.5. Further examples

Second-order linear elliptic. We show an example of a linear second-order where we also include

lower-order terms. For example take A =1, b= (3,4), c=1 and g(u) = 0. Then (4.1) becomes
—Au+3uy +4uy +u=f inQ L6
B(u) =0 on 9. (46)

Once again, we would like to learn the operator
G:L*Q) — HY(Q)
f—u

Additional semi-linear examples. Here, we consider problem (4.1) with A =1,b=(0,0), c=0,

g(u) = ee* and B(u) = u, that is

{—Au—i—ee =f inQ (47)

v =0 on 0f.

Notice that when e = 0, (4.7) becomes the Poisson equation. In this experiment, we let ¢ € [0, 1]
take values in increments of 0.1 starting from 0. The purpose of this is to demonstrate the performance
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Ground Truth 1k Training 10k Training 100k Training

- > - -

1k Pointwise Error 10k Pointwise Error 100k Pointwise Error

FIGURE 4.7. Predicted solutions of the linear equation (4.6) with f(x,y) = (r—0.5)?—
(y — 0.5)? as the right-hand side using FNO with 1,000, 10,000 and 100,000 training
data points. Their relative L? errors are 0.287, 0.156 and 0.141, respectively, while their
relative [*° errors are 0.440,0.251 and 0.225, respectively.

of our method as we go from a linear to a more non-linear problem by rescaling the nonlinear term
in (4.7).

For each ¢ = 0,0.1,...,0.9,1.0 we generate 10k training data and test on 100, from which five
examples are testing data where the right-hand side is first picked and we use a numerical solver to get
the solution so we can test on whether we have good generalizations. We record the relative L? errors
of the predicted solution to problem (4.7) by fixing the right-hand side f and a ¢ = 0,0.1,...,0.9,1.0.
We summarize the testing performance in the following plot and see that as we go from linear to
non-linear, the performance improves, which at first seems surprising.

The Poisson equation on a triangular domain. Figenvalues and eigenfunctions of the Laplacian
are also known in equilateral triangular domains given by Q = {(z,9) € R2 : 0 < 2 < 1,0 < y <
V3z,y < V/3(1 — 2)}, first discovered by Lamé [13] using reflection and symmetry arguments. We
use the first 10 eigenvalues (some are with multiplicity two) and their corresponding eigenfunctions in
order to generate training data.

5. Limitations, conclusion and future work

Limitations. Through experiments, we have observed that for certain “smooth” problems, our
method generalizes well. However, as shown in the Darcy flow example (see Section 6.2), where the
coefficients are non-smooth, our method did not generalize as effectively. While second-order elliptic
PDEs represent a sizable class of problems, there are many other types of PDEs that fall outside this
class, such as parabolic and hyperbolic. We have not yet tested the performance of our method on these
other types of PDEs. We believe our method could apply to these other cases, but this requires further
investigation. Finally, it is worth noting that the selected basis functions are not the only option, and
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Plots of means of relative L2 errors with respect to different € in [0,1]

—e— 20 trig testing points
—e— 5 non-trig testing points

0.011 A

0.010 A

0.009 A

mean of relative L2 errors

0.008 -

0.007

0.0 0.2 0.4 0.6 0.8
e-values

FIGURE 4.8. Plots of means of relative L? errors of 20 testing data for problem (4.7)
generated using our method and 5 testing data with non-trig right-hand sides for which
we invoked numerical solvers to obtain u. The five examples of non-trig f’s used on the
above plot are given by: z — y, zy, 22 + y — zy, 2%, 20z — 10y.

Actual Predicted 1k Predicted 10k

0.04

0.00

—0.04

—0.08

-0.12

-0.16

-0.20

-0.24

-0.28

-0.32

FIGURE 4.9. Predicted solutions of an example on a triangular domain using FNO
with 1,000 and 10,000 training data. The relative L? errors are respectively 0.10233
and 0.01424.

different basis functions may be more suitable for certain problems. Alternative basis functions are
worth investigating further.

Conclusion. Using deep learning to solve PDEs has been very promising in recent years. Here,
we propose a method that in some settings could eliminate the need to repeatedly solve a PDE for
obtaining training data used in training neural operators by first generating the unknown solution
and then computing the right-hand side of the equation. Although we exclusively provide theoretical
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motivation and numerical experiments for second-order elliptic PDESs, this concept could be extended
to other types of PDEs where the solution space is known beforehand, enabling the construction of
representative functions for such solution spaces. This method could open up the possibility of ob-
taining good predictions for PDE problems using data-driven neural operators, for which the training
data does not require classical numerical solvers to generate. We stress that our synthetic data gen-
eration approach is computationally efficient, particularly compared to solving new PDE problems
numerically to generate training data for each new problem instance. We believe that our approach is
an important step towards reaching the ultimate goal of using deep learning to solve PDEs that are
intractable using classical numerical solvers. We also note that as a by-product, our method eliminates
sources of error coming from numerically solving PDE problems; instead, our synthetic training data
is of the form of exact solutions to a problem on a fixed-size grid.

Future work. As future work, a promising direction is to use our synthetic data for pre-training,
followed by fine-tuning on a small number of task-specific examples, in line with recent transfer learning
approaches explored for elliptic problems (e.g. [10, 30]). Additionally, we aim to extend this framework
to support PDEs defined on arbitrary geometries by embedding such geometries into a rectangular
domain. In this setting, we would generate the solution u as done in the present work, record the
corresponding boundary values, and provide those as inputs to the neural architecture. This would
introduce boundary data as an additional input variable in the learning process, which increases its
complexity. On this note, we are interested in exploring more expressive architectures capable of
handling multiple inputs, such as both boundary data and the right-hand side of the PDE, as a means
of predicting the corresponding solution v with improved accuracy and generalization. Finally, another
worthwhile direction is to investigate the trade-off involved in selecting the truncation number in the
series representation of solutions, as this choice directly influences the expressiveness and complexity
of the synthetic data.

6. Appendix

6.1. Notation

Notation and descriptions used in this paper.

Function Spaces

L?(Q) space of Lebesgue-measurable functions v : Q@ — R with
finite norm ||u||z2 = (fq |u|2dx)1/2.

L>(Q)  space of Lebesgue-measurable functions u : @ — R that are
essentially bounded.

H'(©)  Sobolev space of functions u € L?*(Q) with |Vu| € L*(Q),
equipped with the inner product (u,v) = [uv + [ VuVv

and induced norm ||u|| g1 = ||u||p2 + [|[Vul|z2.
H}(Q)  completion of C°(€) in the norm ||ul|z. If Q is bounded,
we have the equivalent norm given by ||u|| g1 = ||Vul|L2.

C°(Q)  space of smooth functions u : © — R that have compact
support in €.
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6.2. The Darcy flow equation.
Here we present a case where using our method of generating data does not work very well compared
to using the dataset provided in [12]. The Darcy flow equation is given by
—div(a(z) - Vu) = f inQ
{ B(u) =0 on 0. (6.1)
In the paper [12], they fix f = 1 and they are interested in learning the operator mapping the
coeflicients « into the solution u
G L®(Q) — HL(Q)
ar—u

In our setting, we are trying to learn the operator mapping the coefficients in o and the forcing term
f into the solution u

G:L®(Q) x L*(Q) — H} (D)
(a, f) —

Here, a ~ p where p is the pushforward of a Gaussian measure with covariance C' = (—A + 91)~2
under the map

TZR—>R+
12, >0
T —
{3, z <0

Notice that by construction the coefficients are not smooth. We make some slight modifications to the
FNO architecture so that it can take two functions («, f) as an input and train FNO with 100, 000 data
points. For testing we use functions from the FNO dataset on the Darcy flow and passing the input in
the form (a, 1). Below we summarize performance of FNO trained with our data while testing is done
with the FNO dataset. However, for examples of problems where the coefficients « are smoother, our
method generalizes better.

Coefficients Ground Truth FNO data 1k Our data 100k

0.012

0.010

0.008

0.006

0.004

0.002

FIGURE 6.1. Predicted solutions of the Darcy flow equation using FNO with 1,000
of the FNO data set and training with 100,000 of our training data. The relative L?
errors are respectively 0.012 and 0.174.
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Coefficients Ground Truth FNO data 1k Our data 100k

0.012

0.010

0.008

0.006

0.004

0.002

FIGURE 6.2. Predicted solutions of the Darcy flow equation using FNO with 1,000
of the FNO data set and training with 100,000 of our training data. The relative L?
errors are respectively 0.005 and 0.071.
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