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Abstract. The generalized optimised Schwarz method proposed in [Claeys & Parolin, 2022] is a variant of the
Després algorithm for solving harmonic wave problems where transmission condition are enforced by means of a
non-local exchange operator. We introduce and analyse an acceleration technique that significantly reduces the cost
of applying this exchange operator without deteriorating the precision and convergence speed of the overall domain
decomposition algorithm.
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1. Introduction

The present article is concerned with the efficient numerical solution of time harmonic scalar wave
equation by means of a non-overlapping domain decomposition method. The Després algorithm [7]
also dubbed Optimized Schwarz Method (OSM) is among the most popular algorithms for this type
of computation [9]. In a recent series of contributions [2, 3, 4, 5], we introduced variants of OSM able
to treat the presence of cross points in a systematic manner while maintaining geometric convergence
of the overall DDM algorithms. This approach was proved a generalization of classical OSM in the
sense that it coincides with it under appropriate circumstances. A full convergence framework was
also provided for this new approach, including a precise quantification of convergence rates.

In classical OSM, wave equations are solved locally in each subdomain. The local solves are then
coupled by means of a swapping operator Πloc that exchanges ingoing/outgoing traces through each
interface. In the generalized variant of OSM introduced in [5], a key innovation lies in a more sophis-
ticated exchange operator Π that replaces the swapping operator. While Πloc is local by nature, the
new exchange operator Π is non-local because it a priori couples distant non-neighbouring subdomains
(although Π = Πloc in well identified circumstances).

Compared to the standard OSM, the generalized OSM leads to rapidly converging DDM algorithms,
but requires dealing with a potentially non-local exchange operator instead of the initial swapping
operator, which represents an extra non-negligible computational cost. To be more precise, while the
operation x → Πloc(x) is trivial and simply consists in a permutation of unknowns, the operation
x → Π(x) requires the solution to a global problem that has nevertheless the favorable property
of being hermitian positive definite. The goal of the present article is to exhibit one strategy that
allows to perform the exchange operation x → Π(x) approximately but much faster. We will prove in
addition that this approximation does not induce any error in the overall DDM algorithm.

The exchange operation x → Π(x) requires solving a self-adjoint positive definite (SPD) linear
system, for which we rely on a preconditioned conjugate gradient (PCG) solver. At each iteration n
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of the DDM algorithm, such a linear system L(x(n)) = b(n) has to be solved. Two remarks can be
made that allow to substantially accelerate these linear solves. First of all, the linear operator L is
independent of n. Besides, the right hand sides b(n) vary from one step n to another, but they form
a converging sequence because of the convergence of the overall DDM algorithm. In this context,
our acceleration strategy consists in a simple recycling strategy combined with a brutal truncation of
PCG (only a few iterations are needed). Here, by recycling, we mean a procedure that takes account
of previous iterates x(n−1), x(n−2), . . . to speed up the solution of the linear system L(x(n)) = b(n).
The recycling procedure we consider is called “warm restarting” in [13, §3.1]: it is a simple reuse of
the solution x(n−1) as an initial guess at the next iterate n. Although more complex iterative recycling
strategies can be found in the literature (see [13] for an overview), in the present contribution, we
stick to the warm restarting because it is elementary enough to allow a convergence analysis. We shall
examine how to take advantage of more sophisticated recycling procedures in a future work.

After a description of our method, we shall give numerical evidence of the performance of this
approach. In the second part of this contribution, we give a theoretical justification of the efficiency
through derivation of an explicit convergence estimate.

2. Scattering problem under study

We start by describing a typical wave propagation boundary value problem. The aim of the domain
decomposition method we are discussing here is to solve this problem as efficiently as possible. In
the sequel Ω ⊂ Rd will refer to a polygonal/polyhedral bounded domain, and Ωe will refer to the
unbounded connected component of Rd \ Ω. We wish to solve the boundary value problem

Find u ∈ H1(Ω) such that
∆u + κ2u = 0 in Ω,

∂nu − iκu = f on ∂Ωe,

∂nu = 0 on ∂Ω \ ∂Ωe.

(2.1)

where f ∈ L2(∂Ω) := {v : Ω → C, ∥v∥2
L2(∂Ω) :=

∫
∂Ω |v|2dσ < +∞} is any square integrable function

and ∂nu := n · ∇u with n the vector field normal to the boundary ∂Ω directed toward the exterior.
The wave number is modelled as a real constant κ > 0. Following widespread notations, we have
considered the Sobolev space H1(Ω) := {v ∈ L2(Ω), ∇v ∈ L2(Ω)d} equipped with ∥v∥2

H1(Ω) :=
∥∇v∥2

L2(Ω) + κ2∥v∥2
L2(Ω). Problem (2.1) can be put in the variational form: find u ∈ H1(Ω) such that

a(u, v) = ℓ(v) ∀ v ∈ H1(Ω) where

a(u, v) :=
∫

Ω
∇u∇v − κ2uv dx − iκ

∫
∂Ωe

uv dσ

ℓ(v) :=
∫

∂Ωe

fv dσ.

(2.2)

Next we consider a regular triangulation Th(Ω) of the computational domain Ω = ∪τ∈Th(Ω)τ and we
denote Vh(Ω) := {v ∈ C 0(Ω) : v|τ ∈ Pk(τ) ∀ τ ∈ Th(Ω)} ⊂ H1(Ω) a space of Pk-Lagrange finite
element functions constructed on this mesh, where Pk(τ) := {polynomials of order ≤ k on τ}. The
associated discrete variational formulation then writes

Find uh ∈ Vh(Ω) such that
a(uh, vh) = ℓ(vh) ∀ vh ∈ Vh(Ω). (2.3)
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Problem (2.3) shall be assumed to admit a unique solution, which is simply equivalent to assum-
ing that the corresponding matrix (for a given choice of shape functions) is invertible. The domain
decomposition strategy that we subsequently discuss aims at computing this solution.

3. Decomposition of the computational domain

In the perspective of domain decomposition, we need to introduce a geometric decompositon of the
computational domain. The strategy we wish to consider belongs to the class of substructuring methods
and thus requires a non-overlapping partition

Ω = Ω1 ∪ · · · ∪ ΩJ with Ωj ∩ Ωk = ∅ for j ̸= k,

Σ = Γ1 ∪ · · · ∪ ΓJ where Γj := ∂Ωj .
(3.1)

Each Ωj ⊂ Ω will be a polyhedral set assumed to be exactly resolved by the triangulation i.e. Ωj =
∪τ∈Th(Ωj)τ where Th(Ωj) := {τ ∈ Th(Ω) : τ ⊂ Ωj}. Following usual parlance, we shall call Σ the
skeleton of the partition.

In practice the geometric decomposition above is obtained by means of a graph partitioner. Such
a decomposition a priori involves cross-points i.e. points of adjacency of either three sub-domains or
two sub-domains meeting and the exterior boundary. The set of cross-points is also refered to as wire
basket in DDM related literature. A major advantage of the DDM strategy we will consider is its
ability to handle cross-points properly.

We consider finite element spaces local to each subdomain Vh(Ωj) := {vh|Ωj : vh ∈ Vh(Ω)}, as well
as finite element spaces on local boundaries Vh(Γj) := {vh|Γj : vh ∈ Vh(Ω)}. We shall also refer to
finite element functions defined on the skeleton

Vh(Σ) := {vh|Σ : vh ∈ Vh(Ω)}. (3.2)

We also need to consider volume based finite element functions that are only piecewise continuous,
with possible jumps through interfaces. Such a space is naturally identified with a cartesian product.
This leads to setting

Vh(Ω) := Vh(Ω1) × · · · × Vh(ΩJ). (3.3)

Remark 3.1. We draw the attention of our reader on the fact that Vh(Ω) differs from Vh(Ω). The
elements of Vh(Ω) may be understood as functions defined in each subdomain separately, that are
continuous within each subdomain, and that may jump across interfaces. On the other hand, elements
of Vh(Ω) are functions defined and continuous all over the computational domain Ω that admit no
jump through interfaces.

We are interested in domain decomposition where behaviour of functions at interfaces play a crucial
role, so we also need to introduce a space of traces at local boundaries Vh(Σ) and the corresponding
trace map B : Vh(Ω) → Vh(Σ) defined by

Vh(Σ) := Vh(Γ1) × · · · × Vh(ΓJ)
B(v) := (v1|Γ1 , . . . , vJ|ΓJ).

(3.4)

Finally we need to embbed the space of trace on the skeleton into the space of traces on local boundaries
by means of a restriction operator R : Vh(Σ) → Vh(Σ) defined subdomain-wise through

R(v) := (v|Γ1 , . . . , v|ΓJ). (3.5)

The geometric decomposition that we have introduced above induces a decomposition of the sesquilin-
ear form (2.2) and leads to an elementary reformulation of the discrete problem (2.3).
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Define A : Vh(Ω) → Vh(Ω)∗ and l ∈ Vh(Ω)∗ by

⟨A(u), v⟩ :=
∑

j=1,...,J

∫
Ωj

∇uj∇vj − κ2ujvj dx − iκ

∫
∂Ωe∩∂Ωj

ujvjdσ

⟨l, v⟩ :=
∑

j=1,...,J

∫
∂Ωe∩∂Ωj

f vj dx
(3.6)

for any u = (u1, . . . , uJ), v = (v1, . . . , vJ) ∈ Vh(Ω). The operator A is block diagonal, with each block
associated with a different subdomain. The initial discrete variational formulation can be rewritten as
follows: a function uh ∈ Vh(Ω) solves (2.3) if and only if u = (uh|Ω1 , . . . , uh|ΩJ) solves

u ∈ Xh(Ω) := {(v|Ω1 , . . . , v|ΩJ), v ∈ Vh(Ω)}
and ⟨A(u), v⟩ = ⟨l, v⟩ ∀ v ∈ Xh(Ω).

(3.7)

4. Exchange operator

To obtain a domain decomposition method, we need to further transform (3.7). Our final formulation
will be posed in the function space Vh(Σ) attached to the skeleton, and we need to introduce a scalar
product for this space i.e. an hermitian positive definite operator

T : Vh(Σ) → Vh(Σ)∗ such that
T = T∗ and ⟨T(v), v⟩ > 0 ∀ v ∈ Vh(Σ) \ {0}.

(4.1)

The operator T−1 : Vh(Σ)∗ → Vh(Σ) induces a scalar product on Vh(Σ)∗. This scalar product will be
used to quantify convergence of our domain decomposition algorithm. In the subsequent analysis, the
space Vh(Σ) (resp. Vh(Σ)∗) will be equipped with the norm

∥v∥2
T := ⟨T(v), v⟩

∥q∥2
T−1 := ⟨T−1(q), q⟩

(4.2)

Based on the scalar products above, we are going to consider so-called exchange operators that are
responsible for enforcing transmission conditions through interfaces and hence coupling between sub-
domains. We define the exchange operator Π : Vh(Σ)∗ → Vh(Σ)∗ by the identity

Π := 2TR(R∗TR)−1R∗ − Id. (4.3)
Because TR(R∗TR)−1R∗ is a T−1-orthogonal projector, it is clear that Π is unitary by construction
i.e. ∥Π(p)∥T−1 = ∥p∥T−1 ∀ p ∈ Vh(Σ)∗. Besides it is a priori non-local in the sense that it may couple
trace functions attached to distant subdomains.

In the domain decomposition method considered here, many choices are possible for the operator
T. Any choice fullfilling (4.1) is valid. A discussion about these multiple possibilities is available in [5,
§5]. Below we examine two extreme cases (a) and (b).

(a) Purely local exchange
Denote dof(Γj) (resp. dof(Σ)) those geometrical points that can be identified with degrees
of freedom of the space Vh(Γj) (resp. Vh(Σ)). Local to each subdomain boundary, define
Tj : Vh(Γj) → Vh(Γj)∗ by the expression

⟨Tj(u), v⟩ :=
∑

x∈dof(Γj)
u(x)v(x)

In the standard basis of shape functions of Vh(Γj), this operator Tj is represented by the
identity matrix. The most simple choice of operator T is then to take ⟨T(u), v⟩ := ⟨T1(u1), v1⟩+
· · · + ⟨TJ(uJ), vJ⟩ for u = (u1, . . . , uJ), v = (v1, . . . , vJ) ∈ Vh(Σ). It was established in [3,

520



Fast exchange in generalized OSM

§9.1] that, with this particular choice of T, the operator Π becomes purely local i.e. it only
couples unknowns that are geometrically close to each other and, if we denote I(x) := {j ∈
{1, . . . , J}, x ∈ Γj}, we have the explicit formula

⟨ΠT(u), v⟩ = −⟨T(u), v⟩ +
∑

x∈dof(Σ)

1
card I(x)

( ∑
j∈I(x)

uj(x)
)( ∑

k∈I(x)
vk(x)

)
. (4.4)

A close inspection of this formula reveals that, except at cross-points where it computes some
kind of average, this operator Π simply swaps unknowns from both sides of each interface
(see [3, §9.1]) so that performing u 7→ Π(u) is costless and fast. In fact, the exchange operator
given by (4.4) is the local swapping operator Πloc mentionned in the introduction of the present
article.

(b) Fully non-local exchange
Another possible choice of operator T discussed in [5, Example 5.5] consists in taking
⟨T(u), v⟩ := ⟨T1(u1), v1⟩ + · · · + ⟨TJ(uJ), vJ⟩ for u = (u1, . . . , uJ), v = (v1, . . . , vJ) ∈ Vh(Σ),
where each Tj : Vh(Γj) → Vh(Γj)∗ is defined so as to minimize the functional

⟨Tj(v), v⟩ := min
{

∥∇ṽ∥2
L2(Ωj) + κ2∥ṽ∥2

L2(Ωj), ṽ ∈ Vh(Ωj), ṽ|Γj = v
}

With this particular choice of T, the operator Π becomes fully non-local, and computing
q 7→ Π(q) requires to solve a symmetric positive definite problem over the whole computational
domain Ω. With this choice, performing the operation u 7→ Π(u) appears a priori costly.

In our domain decomposition method, the impedance T plays the role of a tuning parameter. Here,
optimization of interface conditions takes place through the choice of T and this is why we dub this
approach Generalized Optimized Schwarz Method. We have just described two extreme cases with
Choice (a) that leads to an easy and fast implementation of Π, while Choice (b) leads to an operator
Π that is non-local and a priori costly. Naively, it may be tempting to systematically opt for Choice (a).
However we will see in the next section that Choice (a) is in fact not the most favorable from a domain
decomposition stand point.

5. Skeleton formulation

Now we describe a formulation equivalent to (3.7) that serves as the master equation of our domain
decomposition algorithm. It will be posed on the skeleton of the decomposition. In this skeleton
equation, wave problems local to each subdomain are written by means of a so-called scattering
operator S : Vh(Σ)∗ → Vh(Σ)∗ defined by

S := Id + 2iTB(A − iB∗TB)−1B∗

g := 2iTB(A − iB∗TB)−1l
(5.1)

with g ∈ Vh(Σ)∗ = Range(T). Since A and B are both subdomain-wise block-diagonal, when T is
subdomain-wise block-diagonal, so is the scattering operator S. This makes such an operator adapted
to parallelism. The following Proposition was established in [3, §6].

Proposition 5.1. The function u ∈ Xh(Ω) solves (3.7) if and only if there exists q ∈ Vh(Σ)∗ satisfying
B∗q = (A − iB∗TB)u − l and the skeleton formulation

(Id + ΠS)q = g (5.2)
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From the proposition above, we see that if the skeleton formulation (5.2) is solved, then the complete
solution u = (A−iB∗TB)−1(B∗q+l) can be reconstructed, and this reconstruction step is fully parallel
if the impedance operator T is block-diagonal.

A key feature of the skeleton formulation above is its strong coercivity with respect to the scalar
product induced by T−1, in spite of the a priori sign indefiniteness of (3.7). The following result was
established in [3, Cor. 6.2].

Proposition 5.2. The operator Id + ΠS : Vh(Σ)∗ → Vh(Σ)∗ is a bijection that fulfills a coercivity
bound in the scalar product induced by T−1. For all q ∈ Vh(Σ)∗ we have

ℜe
{
⟨(Id + ΠS)q, T−1q⟩

}
≥ (γ2

h/2)∥q∥2
T−1

where γh := inf
q∈Vh(Σ)∗\{0}

∥(Id + ΠS)q∥T−1/∥q∥T−1

This result garantees a good behaviour of classical iterative solvers such as Richardson or GMRes
when applied to the skeleton formulation (5.2). The coercivity estimate above leads to convergence
bounds for such solvers, see e.g. [1].

In [5, Prop. 10.4], an explicit lower bound was provided for γh. This bound involves the inf-sup
constant of the bilinear form a( · , · ) from (2.3) (which is h-uniformly lower bounded), and also the
extremal eigenvalues of the impedance T with respect to the scalar product corresponding to Choice (b)
of Section 4 above, see Proposition 10.4 in [5]. Here is what this implies for the two extreme cases of
Section 4.

(a) If T is defined according to Choice (a), the constant γh deteriorates like O(h) as h → 0 and the
coercivity constant deteriorates like O(h2), so the convergence of classical iterative solvers such
as Richardson or GMRes follows this deterioration. This was discussed in detail in Example 11.4
and Section 14 of [5, Prop. 10.4]. Because of this phenomenon, in many cases, Choice (a) is
simply not a viable option because iterative solvers do not converge in a reasonnable amount
of time. For this reason, although it induces an explicit and fast exchange operator, Choice (a)
is not satisfactory.

(b) If T is defined according to Choice (b), the constant γh is h-uniformly lower bounded and the
convergence of classical iterative solvers is robust with respect to h. This was also discussed
in Example 11.7 and Section 14 of [5, Prop. 10.4]. This motivates focusing on choices like (b)
where applying the exchange operator is costly, but this is compensated by a good behaviour
of linear solvers.

In a Krylov solver, the matrix-vector operation v 7→ (Id + ΠS)v is a crucial step that has enormous
impact on the computational cost of the overall solution procedure. In a situation where the impedance
operator T is block-diagonal, the matrix-vector product v 7→ Sv is embarrassingly parallel as the
scattering operator is itself block-diagonal.

As a consequence, the cost of the operation v 7→ Π(v) is critical. This reduces to performing
v 7→ (R∗TR)−1v which, if performed in a naive way (like with a direct Cholesky solver), might be
costly. Indeed solving a linear system attached to R∗TR is required each time a matrix-vector product
is required inside the global Krylov solver.

The main goal of the present article is to show how this core step, that is at the center of our
DDM strategy, can be optimized. We wish to exhibit how each such linear solve can benefit from the
previous solves by means of a simple recycling strategy in such a way that the convergence speed of
the overall DDM algorithm is not deteriorated.

For the sake of concreteness, we consider a Richardson solver, see e.g. Example 4.1 in [12], as a
model iterative solver for the skeleton formulation (5.2). Starting from a trivial initial guess q(0) = 0
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and choosing α ∈ (0, 1) as relaxation parameter, Richardson’s iteration takes the form

q(n+1) = (1 − α)q(n) − αΠSq(n) + αg. (5.3)

Taking account of the expression of the exchange operator given by (4.3), this iteration can be decom-
posed as follows

Exact Richardson iteration

p(n+1) = (R∗TR)−1R∗Sq(n)

q(n+1) = ((1 − α)Id + αS)q(n) − 2αTR(p(n+1)) + αg

(5.4)

We dub this algorithm “exact” because all steps in this procedure are assumed to be conducted without
any error. In particular, it is assumed that no approximation is made when evaluating the action of
(R∗TR)−1 in the first line above.

6. Approximation of the exchange operator

In a large distributed memory environment, the linear solve of q 7→ (R∗TR)−1q cannot be achieved
exactly but should rely instead on an approximate PCG solve that consists in Galerkin projections
onto a Krylov space that depends itself on the right hand side, see e.g. [10, §2.3].

Consider a linear map P : Vh(Σ)∗ → Vh(Σ) that, in the subsequent analysis, shall play the role
of a preconditioner. For a given integer k ≥ 1 and an initial guess x0 ∈ Vh(Σ), define the k-th order
Krylov space

Kk(x0, b) := vect
{
r0, (PR∗TR)r0, . . . , (PR∗TR)k−1r0

}
where r0 := Pb − (PR∗TR)x0. (6.1)

Define PCGk : Vh(Σ) × Vh(Σ)∗ → Vh(Σ) as the map that takes a right-hand side b ∈ Vh(Σ)∗ and
an initial guess x0 ∈ Vh(Σ), and returns the result of k steps of a PCG algorithm preconditionned
with P, see [12, §9.2]. Following the interpretation of Krylov methods in terms of projections, see [12,
Chap. 5 & 6] and [10, Chap. 2], it is characterised as the unique solution to the following minimization
problem

PCGk(x0, b) ∈ x0 + Kk(x0, b) and
∥(R∗TR)−1b − PCGk(x0, b)∥R∗TR = min

η∈x0+Kk(x0,b)
∥(R∗TR)−1b − η∥R∗TR. (6.2)

Let us see how the preconditioned conjugate gradient map PCGk can be inserted into Richardson’s
iteration (5.4). A naive approach would systematically take x0 = 0 as initial guess which leads to
considering the relation p(n+1) = PCGk(0, R∗Sq(n)) for the first equation in (5.4). However, because
the overall DDM algorithm is supposed to converge, the right-hand sides R∗Sq(n) should themselve
form a converging sequence. As a consequence R∗Sq(n−1) should remain close to R∗Sq(n), so that
taking x0 = p(n) appears as a natural recycling strategy. The modified DDM strategy then takes the
form

Approximate Richardson iteration

p̃(n+1) = PCGk(p̃(n), R∗Sq̃(n))
q̃(n+1) = ((1 − α)Id + αS)q̃(n) − 2αTR(p̃(n+1)) + αg

(6.3)

The parameter k that represents the dimension of the Krylov space is assumed fixed and independent
of n. Because the map PCGk is not linear, we underline that the iterative procedure above is itself
non-linear.
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Figure 7.1. Left: Computational domain. Right: Real part of the reference solution.

7. Numerical experiment

We now present a numerical experiment illustrating the strategy described above. We will consider
Problem (2.1) set in Rd = R2 in the computational domain Ω = (−1, +1)2\[−0.25, +0.25]2 represented
in Figure 7.1. We take λ = 1/10 hence a wavenumber κ = 2π/λ ≃ 62.83, and the source function
f(x) = exp(iκ d · x) with d = (−1/

√
2, +1/

√
2, 0). The problem is discretized with P1-Lagrange

finite elements based on a mesh generated with gmsh and partitioned with metis in 16 subdomains.
The computations were run sequentially with the C++ library ddmtool on a laptop with Intel®
Core™ i7-1185G7 processor with 62.5 Gb of RAM.

All the numerical experiments of the present section have been conducted with the same fixed mesh
that contains 175794 nodes (which is also the dimension of Vh(Ω)) and 349588 triangles. The maximum
mesh element size equals h = 0.005 so this discretization represents approximately λ/h = 20 points
per wavelength. We compute a reference solution of (5.2) by means of a direct solver using umpfpack.
This reference solution will be denoted q(∞) subsequently. Its real part is plotted in the right hand
side of Figure 7.1. We construct the impedance operator T = diag(T1, . . . , TJ) : Vh(Σ) → Vh(Σ)∗,
with each Tj : Vh(Γj) → Vh(Γj)∗ defined locally, following the strategy advocated in [11, Chap. 8],
[6], [4, §4.2]. In the present case, this boils down to selecting a subset of each subdomain Ω̃j ⊂ Ωj

consisting in 5 layers of elements neighbouring Γj = ∂Ωj (in particular Γj ⊂ ∂Ω̃j) and defining each
Tj : Vh(Γj) → Vh(Γj)∗ as the unique hermitian positive definite linear map satisfying the minimization
property

⟨Tj(v), v⟩ := min
{

∥ṽ∥2
L2(Ω̃j) + κ2∥ṽ∥2

L2(Ω̃j) + κ∥ṽ∥2
L2(∂Ω̃j\Γj), ṽ ∈ Vh(Ω̃j), ṽ|Γj = v

}
.

The actual evaluation of this impedance operator rests on a (sparse) Cholesky factorization performed
by means of umfpack locally in each Ω̃j . As for the preconditioner P for the linear solve associated to
the operation b 7→ (R∗TR)−1b, we choose the single level Neumann–Neumann preconditioner, see [8,
§7.8.1] or [14, §6.2].

In a first experiment we run a variant of Algorithm (6.3) with α = 1/2, where the initial guess of
PCG is chosen trivial i.e. we set p̃(n+1) = PCGk(0, b) where b = R∗S q̃(n), and the PCG algorithm
is executed until the relative residual error ∥b − (R∗TR) PCGk(0, b)∥P/∥b∥P ≤ 1e − 20 is reached. In
Figure 7.2, we plot the norm of the error ∥q(∞) − q̃(n)∥T−1/∥q(∞)∥T−1 of Algorithm (6.3) versus the
iteration number n. On the left picture of Figure 7.2, we take as many iterations of PCG as needed.
For this plot, as a matter of fact, 14 iterations of PCG take place at each iteration of the global
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Figure 7.2. Relative error ∥q(∞) − q̃(n)∥T−1/∥q(∞)∥T−1 versus iteration number n in
Richardson’s Algorithm. No initial guess of PCG i.e. no recycling strategy. Left: no
limitation on PCG iteration count i.e. kmax = ∞. Right: imposing in addition k ≤ kmax.

0 50 100 150 200 250 300
Iteration number n

10 10

10 8

10 6

10 4

10 2

100

q(
)

q(n
)

T
1 /

q(
)

T
1

kmax =  5
kmax =  10

Figure 7.3. Relative error ∥q(∞) − q̃(n)∥T−1/∥q(∞)∥T−1 versus iteration number n in
Richardson’s Algorithm with a recycled initial guess for PCG and k ≤ kmax = 5, 10.

Richardson algorithm. On the right hand side of Figure 7.2, we plot the same graph except that this
time the number of iterations of PCG is limited k ≤ kmax for several values of kmax. We see that
when the number of PCG iterations is limited, the error ∥q(∞) − q̃(n)∥T−1/∥q(∞)∥T−1 of the global
Richardson algorithm decays normally until it reaches a certain critical value where it stalls. This
plateau phenomenon appears here for kmax < 14.

Next we launch the same computation, again limiting the number of PCG iterations k ≤ kmax. This
time though, we choose the initial guess from the previous iterate as described before i.e. p̃(n+1) =
PCGk(x0, b) with b = R∗S q̃(n) and x0 = p̃(n). We do this for the two values kmax = 5 and kmax = 10
and plot the corresponding error ∥q(∞) − q̃(n)∥T−1/∥q(∞)∥T−1 versus n. This time the error keeps
on decaying without reaching any plateau. The plot of Figure 7.3 looks identical to the one in the
left hand side of Figure 7.2. This suggests that, when combining a truncation of PCG with the
simple recycling strategy described above, the error decay of the global Richardson algorithm does
not experience any deterioration. Keeping this strategy consisting in both recycling and truncating
PCG, in the next table, we give the number of iterations n required to reach a relative tolerance
∥q(∞) − q̃(n)∥T−1/∥q(∞)∥T−1 < 1e − 10.
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Table 7.1.

kmax 20 15 10 5 3 2 1
#iter 281 281 281 281 282 286 616

This clearly indicates that, when using a recycling strategy, only a few PCG iterations are needed
to maintain the same convergence speed for the overall Richardson algorithm. This represents a clear
computational gain since the cost of each iteration of (6.3) depends directly on kmax.

The previous result shows that, although the operator Π is non-local, in practice its action may be
evaluated with a cost corresponding to a small number of matrix-vector products from the operator
T. In the next section, we provide theoretical analysis supporting this conclusion.

8. Convergence analysis

We exhibited an efficient heuristic to approximate the action of the non-local exchange operator i.e.
the first line in (5.4). It consists in combining a brutal truncation of PCG with a basic recycling
scheme. We provided numerical evidence supporting the relevance of this strategy.

We seek now to obtain a theoretical explanation for the performance of this approach. Instead of
trying to systematically derive the sharpest estimates, at certain points of our analysis we will take
upper bounds that are larger than strictly required which, hopefully, will help simplify the calculus.
To begin with, we re-arrange the approximate Richardson iteration (6.3),

p̃(n+1) − p̃(n+1)
∞ = PCGk(p̃(n), R∗Sq̃(n)) − (R∗TR)−1R∗Sq̃(n)

q̃(n+1) = ((1 − α)Id − αΠS)q̃(n) − 2αTR(p̃(n+1) − p̃(n+1)
∞ ) + αg

where p̃(n)
∞ := (R∗TR)−1R∗Sq̃(n−1).

(8.1)

Focusing on the first line of (8.1), we try to estimate the decay of the left hand side, making use of
the classical convergence estimate for the conjugate gradient, see e.g. Corollary 5.6.7 in [10] that, in
our notations, yields the following inequality

∥(R∗TR)−1b − PCGk(x0, b)∥R∗TR ≤ ϵk∥(R∗TR)−1b − x0∥R∗TR

with ϵk = 2
(√

cond(PR∗TR) − 1√
cond(PR∗TR) + 1

)k (8.2)

and cond(L) refers to the spectral condition number i.e. cond(L) = supS(L)/ inf S(L) where S(L)
is the spectrum of a linear map L : Vh(Σ) → Vh(Σ). For the moment, we assume that k is chosen
sufficiently large hence ϵk as small as required. We shall come back and discuss later on the choice of
the parameter k. Injecting Estimate (8.2) into (8.1) leads to following inequality

∥p̃(n+1)
∞ − p̃(n+1)∥R∗TR ≤ ϵk∥p̃(n+1)

∞ − p̃(n)∥R∗TR

≤ ϵk∥p̃(n)
∞ − p̃(n)∥R∗TR + ϵk∥p̃(n+1)

∞ − p̃(n)
∞ ∥R∗TR.

By the very definition of the auxiliary variable in (8.1), we have p̃
(n+1)
∞ − p̃

(n)
∞ = (R∗TR)−1R∗S(w)

where w = q̃(n)−q̃(n−1). On the other hand, since TR(R∗TR)−1R∗ is a T−1-orthogonal projection, and
S is a contraction with respect to ∥ ∥T−1 according to Lemma 5.2 in [3], we have ∥p̃

(n+1)
∞ − p̃

(n)
∞ ∥R∗TR =

∥TR(R∗TR)−1R∗S(w)∥T−1 ≤ ∥w∥T−1 = ∥q̃(n) − q̃(n−1)∥T−1 . From this we obtain

∥p̃(n+1)
∞ − p̃(n+1)∥R∗TR ≤ ϵk∥p̃(n)

∞ − p̃(n)∥R∗TR + ϵk∥q̃(n) − q̃(n−1)∥T−1 . (8.3)
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Coming back to the approximate Richardson iteration (8.1), we now focus on the second line. We take
the difference of two successive iterates, which yields

q̃(n+1) − q̃(n) = ((1 − α)Id − αΠS)(q̃(n) − q̃(n−1)) − 2αTR(p̃(n+1) − p̃(n+1)
∞ ) + 2αTR(p̃(n) − p̃(n)

∞ ) (8.4)
Next we bound the norm of the left-hand side above, taking account of Inequality (8.3), and introducing
the continuity modulus of (1 − α)Id − αΠS with respect to the norm induced by T−1. This yields

∥q̃(n+1) − q̃(n)∥T−1

≤ ρ∥q̃(n) − q̃(n−1)∥T−1 + 2α∥p̃(n+1)
∞ − p̃(n+1)∥R∗TR + 2α∥p̃(n)

∞ − p̃(n)∥R∗TR

≤ (ρ + 2αϵk)∥q̃(n) − q̃(n−1)∥T−1 + 2α(1 + ϵk)∥p̃(n)
∞ − p̃(n)∥R∗TR

where ρ := sup
q∈Vh(Σ)∗\{0}

∥((1 − α)Id − αΠS)q∥T−1

∥q∥T−1
.

(8.5)

We recall that, according to [5, Thm. 9.2], the operator (1 − α)Id − αΠS is a strict contraction with
the following estimate for its spectral radius

ρ ≤ 1 − α(1 − α)γ2
h. (8.6)

Now we can gather (8.3) and (8.5) to form a system of 2 × 2 recursive inequalities. We slightly rescale
the inequalities and apply the majorizations ϵk ≤ 2ϵk and α ≤ 1 to make the analysis more comfortable.
Set

R :=
[

ρ + 2ϵk 2
√

ϵk(1 + ϵk)
2
√

ϵk(1 + ϵk) 2ϵk

]
, e(n) :=

[
∥q̃(n) − q̃(n−1)∥T−1

∥p̃
(n)
∞ − p̃(n)∥R∗TR

√
1 + 1/ϵk

]
. (8.7)

Given two vectors of positive coefficients u, v ∈ R2
+ with u = (u1, u2) and v = (v1, v2), we shall write

u ≤ v ⇐⇒ uj ≤ vj for j = 1, 2. With this notation we obtain e(n+1) ≤ R · e(n). Iterating over n, since
all coefficients are positive, we obtain e(n) ≤ Rn ·e(0) with e(0) = (∥q̃(0)∥T−1 , 0)⊤. For x = (x1, x2) ∈ R2,
denoting |x| := (|x1|2 + |x2|2)1/2 and the associated matrix norm |R| = supx∈R2\{0} |Rx|/|x|.

Lemma 8.1. Under the condition that |R| < 1, the sequence q̃(n) defined by (6.3) converges toward
q(∞) := (Id+ΠS)−1g the solution to (5.2) and we have ∥q̃(n) −q(∞)∥T−1 ≤ ∥q̃(0)∥T−1 |R|n+1/(1−|R|)
for all n ≥ 0.

Proof. First of all observe that ∥q̃(n) − q̃(n−1)∥T−1 ≤ |e(n)| ≤ |R|n · |e(0)|. and |e(0)| = ∥q̃(0)∥T−1 . Now
pick arbitrary integers n, m with m > n. Under the assumption that |R| < 1, we have the following
estimate

∥q̃(m) − q̃(n)∥T−1 ≤
m∑

ν=n+1
∥q̃(ν) − q̃(ν−1)∥T−1 ≤ ∥q̃(0)∥T−1

m∑
ν=n+1

|R|ν

≤ ∥q̃(0)∥T−1 |R|n+1/(1 − |R|).
(8.8)

This proves that the sequence q̃(n) is of Cauchy type in the norm ∥ · ∥T−1 and admits a limit that we
denote q̃(∞). Letting m → ∞ in (8.8) yields ∥q̃(n) − q̃(∞)∥T−1 ≤ ∥q̃(0)∥T−1 |R|n+1/(1 − |R|), so there
only remains to prove that q̃(∞) = q(∞). Observe now that we also have

∥p̃(n)
∞ − p̃(n)∥R∗TR ≤ |e(n)|√

1 + 1/ϵk

≤ |e(0)| |R|n√
1 + 1/ϵk

which proves that ∥p̃
(n)
∞ − p̃(n)∥R∗TR → 0. Next, coming back to (6.3), recall that we have the relation

q̃(n+1) = ((1−α)Id−αΠS)q̃(n) −2αTR(p̃(n+1) − p̃
(n+1)
∞ )+αg. Taking n → ∞ in the previous relation,

we obtain that q̃(∞) satisfies the equation q̃(∞) = ((1 − α)Id − αΠS)q̃(∞) + αg. After re-arrangement,
this leads to q̃(∞) = (Id + ΠS)−1g = q(∞), which ends the proof.
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A remarkable conclusion that can be drawn from the previous lemma is that, with recycling, trun-
cation of the PCG algorithm for the computation of the exchange operator Π does not induce any
consistency error in the global DDM algorithm. Such is not the case when recycling is not used, as
was shown through numerical experiments in the previous section.

Let us quantify more precisely the convergence rate. Because R is symmetric, its norm |R| equals its
spectral radius. As a consequence, to bound the convergence rate provided by the previous lemma, we
need to estimate the largest eigenvalue of R. This can be done explicitely by examining its characteristic
polynomial,

det(λId − R) = (ρ + 2ϵk − λ)(2ϵk − λ) − 4ϵk(1 + ϵk)
= λ2 − λ(ρ + 4ϵk) − (2 − ρ)2ϵk.

(8.9)

Estimate (8.6) implies in particular that ρ < 1, so we see that (2 − ρ)2ϵk > 0 and that the roots of
the characteristic polynomial (8.9) have opposite signs. Hence |R| agrees with the positive root. With
the gross estimate

√
x + y ≤

√
x + √

y, we deduce

|R| = 1
2(ρ + 4ϵk) + 1

2

√
(ρ + 4ϵk)2 + 8(2 − ρ)ϵk,

|R| ≤ ρ + 4ϵk + 2√
ϵk.

(8.10)

To simplify the above estimate observe that, if ρ + 4√
ϵk < 1, then 2√

ϵk < 1 ⇒ 4ϵk < 2√
ϵk and in

this case |R| ≤ ρ + 4ϵk + 2√
ϵk < ρ + 4√

ϵk < 1. Let us examine what does the condition ρ + 4√
ϵk < 1

means. According to Estimate (8.6) to ensure ρ + 4√
ϵk < 1, it is sufficient that

ϵk = 2
(√

cond(PR∗TR) − 1√
cond(PR∗TR) + 1

)k

<
(
α(1 − α)γ2

h/4
)2 (8.11)

Because ϵk decays exponentially fast to 0 as k → ∞, which reflects the spectral convergence of the
(preconditioned) conjugate gradient, only a few PCG iterations are necessary for satisfying (8.11).
This is particularly true when the preconditioner P is devised appropriately. In addition, we underline
that γh is h-uniformly lower bounded provided that the operator T is properly chosen like e.g. in
Section 7, see the discussion following Proposition 5.2. The next proposition summarizes the previous
discussion on convergence criterion and convergence rate.

Proposition 8.2. Assume the number k of PCG iterations constant and chosen sufficiently large to
satisfy Condition (8.11). Then ρ + 4√

ϵk < 1, and the sequence q̃(n) defined by (6.3) converges toward
q(∞) solution to (5.2) with the error estimate

∥q̃(n) − q(∞)∥T−1 ≤
(ρ + 4√

ϵk)n

1 − (ρ + 4√
ϵk) ∥q̃(0)∥T−1 .

This result provides a theoretical justification for Figure 7.3 and Table 7.1. Truncating PCG in
the exchange operation has an effect on the convergence rate of the approximate Richardson Algo-
rithm (6.3). This effect is quantified by 4√

ϵk, so this perturbation decreases exponentially with k
according to (8.11). This is why only a few iterations of PCG suffice to maintain convergence.

How efficient is this trick depends on the performance of the preconditioner P according to (8.11).
Pushing the analysis further in this respect requires more information on P and has to be conducted
on a case by case basis regarding the choice of this preconditioner, which is beyond the scope of the
present article.
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Appendix. further numerical experiments

In the present section we come back to the numerical setup considered in Section 7, and investigate
the sensitivity of our acceleration procedure with respect to various parameters of the domain de-
composition method. We consider the very same boundary value problem (2.1) as in Section 7 in the
same domain Ω = (−1, 1)2 \ [−0.25, 0.25]2, with a wavelength λ = 1/5 corresponding to a wavenum-
ber κ ≃ 31.41. The real part of the reference solution is represented in Figure A.1. We recall the
significance of a few parameters:

• h is the meshwidth i.e. h = max{diam(τ), τ ∈ Th(Ω)}.

• J is the number of subdomains i.e. Ω = Ω1 ∪ · · · ∪ ΩJ.

• α is the relaxation parameter involved in the Richardson solver (5.4).

• kmax is the maximum number of PCG iterations performed (for each outer iteration n) in the
first line of (6.3). It is a truncation parameter.

• #iter is the number of outer iterations n in (6.3) required for the relative error to satisfy
∥q(∞) − q̃(n)∥T−1/∥q(∞)∥T−1 < 1e − 10.

Like for Table 7.1, we systematically examine the value of #iter as kmax ranges from 1 to 20, for
different values of h, α, J. To evaluate #iter, we run Algorithm (6.3) that relies on both the recycling
strategy described in Section 6, 7 and 8, and a truncation consisting in stopping PCG so that the
dimension k of the Krylov space does not get larger than kmax. We consider a nominal configuration
corresponding to the parameters h ≃ 0.00552917, dim Vh(Ω) = 175794, α = 0.5, J = 16, and all the
results we present are variations around this nominal configuration.

Figure A.1.
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Influence of the mesh size. In Table A.1, we consider a fixed partition in J = 16 subdomains, a
fixed relaxation parameter α = 0.5, and we examine the number of outer iterations #iter as kmax and
h vary. On each line of Table A.1, #iter remains approximately constant except for kmax = 1 where it
substantially deteriorates.

Table A.1. #iter for varying h and kmax

kmax
h dim Vh(Ω) 20 15 10 5 3 2 1

0.0218929 11170 222 222 222 222 222 222 232
0.0111801 43947 216 216 216 216 216 217 297
0.00552917 175794 233 233 233 233 233 233 734
0.00282605 696832 292 292 292 292 293 296 820

Influence of Richardson’s relaxation parameter. In Table A.2, we consider a fixed partition
with J = 16 subdomains, and a fixed mesh h ≃ 0.00552917 and dim Vh(Ω) = 175794, and we examine
the number of outer iterations #iter as kmax and α vary. On each line of Table A.2, again, we see that
#iter remains approximately constant until kmax = 1 or kmax = 2 where it deteriorates. Interestingly,
although seemingly anecdotal, for α = 0.9, we see that #iter is smaller for kmax = 2 than for kmax = 5.

Table A.2. #iter for varying α and kmax

kmax
α 20 15 10 5 3 2 1
0.1 1061 1061 1061 1061 1062 1062 1264
0.25 434 434 434 434 435 435 686
0.5 233 233 233 233 233 233 734
0.75 199 199 199 199 204 239 968
0.9 304 304 304 304 259 262 1106

Influence of the number of subdomains. In Table A.3, we consider a fixed mesh h ≃ 0.00552917
and dim Vh(Ω) = 175794, and a fixed value α = 0.5 for the relaxation parameter of Richardson’s solver,
and we examine the number of outer iterations #iter as kmax and the number of subdomains J vary.
On each line of Table A.3, again, we see that #iter remains approximately constant until kmax = 1 or
kmax = 2 where it deteriorates.

Table A.3. #iter for varying J and kmax

kmax
J 20 15 10 5 3 2 1
4 197 197 197 197 198 202 425
8 210 210 210 210 211 215 439
16 233 233 233 233 233 233 734
32 278 278 278 278 278 280 535
64 342 342 342 343 343 344 948
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Importance of the preconditioner. In Table A.4, we take α = 0.5 and J = 16, and we consider
two different meshes (h ≃ 0.0055 and h ≃ 0.0028) and, depending on the value of kmax, we record
#iter. This time however, we do not use a preconditioner and apply the conjugate gradient (CG)
instead of the preconditioned conjugate gradient (PCG) on the first line of (6.3). We still use recycling
to choose the initial guess. Comparing with the last two rows of Table A.1, this shows the benefit of
preconditioning.

Table A.4. #iter for varying h and kmax, using CG instead of PCG to compute Π

kmax
h dim Vh(Ω) 20 15 10 5 3 2 1

0.00552917 175794 233 233 233 267 512 1299 >5000
0.00282605 696832 292 290 296 440 1289 3356 >5000

Conclusion. The previous tables all agree on the same trend: for a given mesh, a given value of
α, J, the number of outer iterations #iter remains independent of kmax unless kmax is below a certain
threshold value. In our numerical setup, with a single level Neumann–Neumann preconditioner used
in PCG (in first line of (6.3)), this threshold value is kmax = 1 or kmax = 2. However this threshold
is sensitive to the preconditioner used in PCG, which is indeed consistent with (8.11). It would be
desirable to provide an explicit estimate, or some automatic procedure for determining it. We shall
investigate this point in a future contribution.
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