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Abstract. Front propagation is a challenge in numerical modeling, particularly for multi-fluid or multi-material sys-
tems requiring clear material separation. The GRU (Glimm Random Update) scheme, inspired by Glimm’s method,
has been developed to handle sharp fronts on unstructured 2D/3D meshes. It achieves convergence rates numerically
measured between 0.8 and 0.9, which are higher than those of classical first-order schemes, typically limited to 0.5 in
the presence of contact discontinuities. Previous work established convergence in probability for planar fronts with
uniform velocity but relied on random sequences, whereas practical implementations use low-discrepancy sequences.
This study aims to establish new theoretical convergence results for the GRU scheme for 1D non-uniform meshes
and uniform front velocity conditions, extending beyond uniform meshes considered previously. More precisely, we
prove convergence in probability of order close to one-half when using random sequences on non-uniform meshes,
and exact first-order convergence in probability when using low-discrepancy sequences (deterministic) on uniform
meshes. Partial results are also obtained for non-uniform meshes, which are of significant practical interest. These
findings provide insights into the scheme’s behavior with both random and low-discrepancy sequences. Numerical
tests are presented to illustrate the theoretical results, with applications to non-uniform meshes, highlighting the
scheme’s practical relevance.

2020 Mathematics Subject Classification. 65M08, 65M12, 65M75, 65C99.
Keywords. Front propagation, convergence, stochastic, low-discrepancy sequences.

1. Introduction

There are numerous numerical strategies for dealing with front propagation in the literature. This is
indeed a cornerstone for multi-fluid or multi-material models, for which a clear separation between
different materials is mandatory. If the fronts are sharp in the systems of equations of the models, it
is known that, from a numerical point of view, approximating sharp fronts is a very tricky problem.
Helpful reviews on the subject of sharpening methods and front tracking have recently been proposed
in [5, 15]. We restrict ourselves here to methods that are based on Glimm’s method, originally proposed
in [10], and on front tracking methods as proposed, for instance, in [1] or [6]. An important point to
quote is that Glimm’s method and its deterministic version [14] are restricted to uniform meshes.
These methods have been widely used in the literature for proving the existence of solutions for
systems arising from conservation laws. They make the assumption that the approximate solution
is piecewise uniform. Then, the key element of these methods is to avoid updating the approximate
solution in one cell by using numerical flux balances.

In Glimm’s scheme, new values are randomly chosen into the local solutions of each Riemann
problem arising at each interface between two neighboring cells. It is thus shown in [10] that such
approximate solutions converge towards the exact one with order 1. The schemes derived from the
one proposed in [6] do not rely on a random choice. The local Riemann problems are solved until the
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first wave interaction. Then, wave interaction is solved in order to continue the computation of the
approximate solution at later times. The interaction between two shocks and the interaction between
a contact wave and a shock can be solved exactly, whereas this is not possible for the interaction
between a rarefaction wave and a shock or contact. Hence, rarefaction waves are approximated by a
set of uniform values, which introduces non-physical fronts into the rarefaction fan [1, 12].

These two classes of methods are very efficient for computing approximate solutions of systems of
conservation laws since they offer a convergence rate of 1 even for linearly degenerate waves. Moreover,
fronts are maintained perfectly sharp since no numerical diffusion is introduced. Unfortunately, they
are only suitable for 1D problems. Recently, the idea proposed in Glimm’s scheme [10] has been taken
up and modified in order to handle more complex geometrical settings such as non-uniform 1D meshes
and 2D/3D unstructured meshes. This new scheme, nicknamed GRU (Glimm Random Update), was
introduced in [13] for dealing with front propagation by using a transport equation of Heaviside
functions. It was then extended to the advection of any scalar quantity in [9], and the underlying idea
of the scheme can even be applied to the two-phase Euler model (work in progress). As in [10], the
GRU scheme is a first-order scheme that relies on a random choice. This strategy allows for perfectly
sharp fronts, and effective convergence rates between 0.8 and 0.9 have been measured on both 1D
and 2D test cases. It should be recalled that classical first-order schemes based on numerical fluxes
offer a convergence rate of 1/2 as soon as a contact discontinuity occurs in the solution. Figure 1.1,
taken from [13], is reproduced here in order to illustrate the capability of the scheme in simulating
the rotation of a non-convex shape in a 2D domain.

In [8], first convergence results were proposed: convergence in probability with order 1 was proved
for the propagation of planar fronts in 2D or 3D with uniform velocity. The proof of convergence
proposed in [8] relies on the use of a random sequence, while in practice, the random choice in the
GRU scheme is performed using low-discrepancy sequences. The latter do not have the same properties
as mathematical random sequences. The question, therefore, arises as to how the scheme works with
non-random sequences and whether proof of convergence could be obtained for the practical use of
the scheme. The question of the use of low-discrepancy sequences was also studied in [14] for Glimm’s
scheme, and this previous study provided clues to understand the behavior of the GRU scheme.

The aim of the present study is to propose new theoretical convergence results for the GRU scheme
when considering 1D meshes and uniform front velocity. Even if these configurations could seem
restrictive, the results are very useful for understanding the behavior of the scheme when using either
random sequences or low-discrepancy sequences. Moreover, the present study is not restricted to
uniform meshes, as in [8]. Therefor, different numerical tools have been used in the proofs. Several
classes of non-uniform meshes are considered, which is of prime importance for practical applications.
Among the results obtained in this work, it appears that dealing with 1D non-uniform meshes requires
careful attention to the choice of random sequences. Pseudo-random sequences are more robust, as
they can be applied regardless of mesh quality, even if they yield relatively low accuracy. In contrast,
quasi-random sequences (such as low-discrepancy sequences) require caution on certain meshes, where
consistency issues may arise. These theoretical results are illustrated by several numerical tests.

The manuscript is organized as follows. The GRU scheme and the previous results are briefly
presented in Section 2. It should be noted that the GRU scheme is very simple, so this first section
is short. Section 3 is devoted to the new theoretical convergence results, while numerical tests are
described in Section 4.
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Convergence results for a Glimm-like scheme

Figure 1.1. One complete rotation of a non-convex shape on structured meshes. First
row: exact initial and final shape, second row: upwind scheme and third row: upwind-
GRU scheme. First column: 20×20 cells, second column: 100×100 cells, third column:
400 × 400 cells and forth column: 1500 × 1500 cells.

2. Presentation of the GRU projection step

2.1. The GRU projection step.

Let us first present the GRU scheme that as been introduced in [9] and [13] respectively for Heaviside
functions and for any scalar function. We assume here a simplified setting with respect to those studied
in the previous references [9] and [13]. In the following, attention will be restricted to the 1D case.

We assume here that the quantity ϕ(t, x) is advected with velocity V , which is positive (V > 0)
and which does not depend on space and time:

∂t (ϕ) + V ∂x (ϕ) = 0, ϕ(t = 0, x) = ϕ0(x), (2.1)
where x 7→ ϕ0(x) is the initial condition. For computing approximate solutions of this equation, a
fractional step approach based on finite volumes is used. The first step is a convection step, which
can be seen as a prediction step. It is assumed that the approximate solutions are computed thanks
to the upwind scheme. Let us assume that the approximated values of the solution in all cells i (with
a natural increasing numbering of the cells) at iteration n, i.e. at time tn, are known and denoted by
(ϕn

i )i. The length of cell i is denoted by ∆xi and the time-step at iteration n is ∆tn. Then a first
approximated value ϕn,∗

i of the solution in cell i at time tn+1 = tn + ∆tn is obtained thanks to the
mere upwind scheme:

ϕn,∗
i = (1 − βn

i )ϕn
i + βn

i ϕn
i−1, βn

i = V ∆tn/∆xi. (2.2)
Obviously, the parameter βn

i has to be smaller than 1 for all cells i in order to ensure the stability of
the upwind scheme (2.2). Thus, for any mesh (∆xi)i the time step ∆tn at iteration n is chosen in the
following according to a CFL (Courant–Friedrichs–Lewy) number α ∈ ]0, 1] such that:

∆tn = α

V
min

i
(∆xi). (2.3)

Then the GRU projection step is applied in each cell on the basis of the predicted value ϕn,∗
i defined

by (2.2) and (2.3). For that purpose, we consider a random number ωn that follows a uniform distri-
bution in ]0, 1[. Let us define respectively ϕn

i,m and ϕn
i,M as the local minimum and the local maximum

of the cell values at time tn when considering the set composed of: cell i plus the upwind cells with
respect to the mass fluxes, see [9] for a more general definition. Since we have here V > 0, we get:
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ϕn
i,m = min

(
ϕn

i−1, ϕn
i

)
and ϕn

i,M = max
(
ϕn

i−1, ϕn
i

)
. The number ωn

i is introduced as a renormalization
of the number ωn over (ϕn

i,m, ϕn
i,M ):

ωn
i = ϕn

i,m + ωn(ϕn
i,M − ϕn

i,m), (2.4)
so that ωn

i follows the uniform distribution on (ϕn
i,m, ϕn

i,M ). The GRU step simply gives for the ap-
proximate solution ϕn+1

i in cell i and at iteration n + 1:

ϕn+1
i =

{
ϕn

i,m, if ϕn,∗
i < ωn

i ,

ϕn
i,M , otherwise;

(2.5)

An important point to be quoted here is that the same ωn is used for all the cells. This is a cornerstone
of such algorithms, as noticed in [2, 3] for the Glimm’s scheme. In a practical point of view, ωn is
generally chosen in low-discrepancy sequences with values in [0, 1]. They are well-suited for the Glimm’s
scheme [2, 4, 14] as well as for the GRU step [9, 13], at least on uniform meshes or meshes of industrial
interest.

Despite its simplicity, this scheme has very interesting properties for approximating weak solutions
of (2.1) [9, 13]. Discontinuities are maintained perfectly sharp and no intermediate values are created
by the scheme. The scheme is not conservative and the approximated discontinuities may not be
located at the exact position. Nevertheless, for a simple configuration, it has been proved that the
approximate solutions computed with the upwind scheme and the GRU step converge with order 1 in
probability [8]. Moreover, in the scalar case with the upwind scheme, the CPU overhead is about 30%,
since the upwind scheme has a very low computational cost. For more complex systems (such as the
Euler system with a passive scalar, see [13]), the overhead of the GRU step becomes almost negligible
compared to the computation of the fluxes.

2.2. Previous convergence results.

First theoretical results for the convergence of the GRU projection step associated with the upwind
scheme were presented in [8]. These results were obtained under a very simple setting:

• meshes are Cartesian with the same space-step h in each direction (i.e., 1D meshes are uniform);

• advection velocity is uniform and constant, as in Section 2.1;

• a single planar front is considered by choosing:

ϕ0(x) =
{

1 if x · n > a,

0 otherwise,

where n is a normal vector and a is a real number. Within this scope, two results were obtained:

(i) The approximate solutions obtained with the upwind-GRU scheme converge at order 1 with
probability 1 to the exact solution.

(ii) The approximate solutions obtained with the upwind-GRU scheme converge almost surely to
the exact solution.

These results were derived by considering a uniform distribution on ]0, 1[ for the random threshold
ωn, whereas all the numerical experiments presented in previous studies [9, 13] rely on deterministic
sequences. From a practical perspective, these random numbers are replaced by two types of sequences:
low-discrepancy sequences and pseudo-random sequences (in particular the rand() sequences of the
C++ library are used here). These sequences are deterministic and only exhibit some of the properties
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of a mathematically uniform distribution. When using low-discrepancy sequences instead of pseudo-
random generators, effective convergence rates between 0.8 and 0.9 have been obtained for a wide
range of problems involving discontinuities in 1D and 2D with unstructured meshes. For all these test
cases, the GRU step significantly improved the accuracy of the upwind scheme. The use of a pseudo-
random generator results in an effective convergence rate of 1/2, which corresponds to the convergence
rate of the upwind scheme alone. Even if no improvement is observed with pseudo-random generators
in terms of convergence rate, the fronts are maintained sharp.

3. New theoretical convergence results in 1D

The aim of the present section is to present some extensions of the convergence results of [8] by
considering the “deterministic” upwind-GRU scheme (using low-discrepancy sequences for ωn) and
non-uniform meshes. In [8], simple mathematical tools were used considering only random sequences
ωn and uniform meshes. This made it possible to compute the probability density function of the
approximated front position. The resulting proof was therefore rather computational in nature but
allowed for a more optimal convergence result. Unfortunately, this early proof seems very difficult to
extend to non-uniform meshes and to low-discrepancy sequences. To obtain convergence results for
these situations, it was necessary, at least as a first step, to rely on other mathematical tools, which
sometimes leads to slightly less optimal results.

3.1. Notations and preliminary results

Without loss of generality, and for the sake of simplicity, we assume in this section that V = 1. The
initial condition is an Heaviside function:

ϕ0(x) =
{

0 if x ≥ 0,

1 otherwise,

defining an initial front located a x = 0. At time t = Tend, the exact solution of system (2.1) is easily
obtained: ϕ(Tend, x) = ϕ0(x − Tend). This means that the front is now located at x = Tend:

ϕ(Tend, x) =
{

0 if x ≥ Tend,

1 otherwise,
(3.1)

The cell i of the mesh corresponds to the segment ]xi−1/2, xi+1/2[, with ∆xi = xi+1/2 − xi−1/2 its
length. Let us also denote by h the largest cell length for the mesh:

h = sup
j∈Z

(∆xj), (3.2)

and by r the ratio:

r = inf j ∈ Z(∆xj/h). (3.3)

We assume in the following that r > 0. The time step defined according to (2.3) is the same for all
time steps. It reads here:

∆t = α r h, (3.4)

where α ∈ ]0, 1] is the CFL number. With these choices, the number of iterations Nend of the scheme
needed to reach Tend is such that: Tend −∆t < ∆tNend ≤ Tend. For the sake of simplicity, let us assume
that Tend is such that Tend = ∆tNend. It should be noted here that this simplification only involves
an error in O(∆t) or O(h) thanks to the CFL condition. These Nend iterations with the GRU scheme
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described in Section 2 are associated with a sequence (ωn)1≤n≤Nend
of Nend values belonging to ]0, 1[.

The approximated initial condition is:

ϕ0
i =

{
0 if i ≥ 0,

1 otherwise,
(3.5)

and the mesh is adapted to this initial condition by setting x−1/2 = 0 so that the initial approximated
front coincide with the exact front defined by x 7→ ϕ0(x).

With the settings and assumptions of the present section, the scheme defined in Section 2 can be
further simplified. For all cell i it then yields:

ϕn,∗
i = (1 − βi)ϕn

i + βiϕ
n
i−1, βi = ∆t/∆xi (upwind/prediction step) (3.6)

ϕn+1
i =

{
0 if ωn > ϕn,∗

i ,

1 otherwise.
(GRU/projection step) (3.7)

Proposition 3.1. If we assume that at iteration n there exists an index in such that ϕn
i = 1 for all

i < in, and ϕn
i = 0 otherwise, then there also exists an index in+1 such that ϕn+1

i = 1 for all i < in+1,
and ϕn+1

i = 0 otherwise. Moreover, we have in+1 = in or in+1 = in + 1.

Proof. Let us assume that there exists a unique cell number in such that: ϕn
i = 1 if i < in, and

ϕn
i = 0 otherwise. Due to our previous choices, we simply get from (3.6) that: ϕn,∗

i = 1 for all i < in,
ϕn,∗

i = 0 for all i > in, and ϕn,∗
in

= ∆t/∆xin which belongs to [0, 1] thanks to (3.4). Hence we have
ϕn,∗

i = ϕn
i for all i ̸= in. As a consequence, following the GRU step (3.7), and since ωn belongs to ]0, 1[,

we obtain easily that ϕn+1
i = ϕn

i for all i ̸= in. As we also have ϕn+1
in

∈ {0, 1}, we get that at iteration
n + 1 the approximate solution is such that there exists ϕn

i = 1 if i < in, and ϕn
i = 0 otherwise. In

fact, the sole cell value that is likely to change from 0 to 1 between iterations n and n + 1 is that in
cell i = in. We can then conclude that at iteration n + 1, a unique cell number in+1 can be defined so
that: ϕn+1

i = 1 if i < in+1, and ϕn+1
i = 0 otherwise. This ends the proof of the proposition.

An additional result can also be obtained from (3.6)–(3.7) for the update of the cell number in.
Indeed, the following relations hold:

in+1 =
{

in if ωn > ϕn,∗
in

= βin ;
in + 1 otherwise.

(3.8)

Since the initial approximate solution (3.5) is a projection of an Heaviside function on the mesh, the
result of the proposition 1 holds. An approximated front position can be defined from in. The location
of the approximated front is now denoted by Fn. The cell number in clearly gives that Fn = xin−1/2 ,
with F0 = 0 (since x−1/2 = 0 and thanks to (3.5)). Relation (3.8) leads to Fn+1 = Fn + Xn∆xin ,
where:

Xn =
{

0 if ωn > βin ;
Xn = 1 otherwise.

(3.9)

With our settings, we have seen that the approximate solutions are projection of Heaviside functions
on the mesh. Then, the distance in terms of the L1-norm between the exact solution and the approxi-
mate solution can be reduced to the distance between the exact front location and the approximated
front location. The quantity Fn is thus the quantity that is retained in the following for measuring the
error between the exact solution and the approximate solutions.

It should be noted that the results presented in Section 3.1 do not depend on the nature of the
sequence (ωn)n, up to now the only requirement is to have ωn ∈ ]0, 1[ for all n. The consistency and
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convergence properties of scheme (3.6)–(3.7) strongly rely on the properties of the sequences (ωn)n.
Some results are proposed in the following sections.

3.2. Results for uniform meshes

We investigate here the case of uniform meshes: ∆xi = h for all i. This case was already studied
in [8] when considering random sequences for (ωn)n. This implies great simplifications, in particular
we have: Fn+1 = Fn + Xn h. In other words, all the sequences that correspond to permutations of 1
to Nend values of a given sequence (ωn)1≤n≤Nend

will give the same final result for FNend
. This is the

key point for proving results for uniform meshes.

3.2.1. The case of low-discrepancy sequences.

For uniform meshes we easily get that βi = α for each cell i. Let ANend
be the set defined by:

ANend
= card{n ∈ {1, . . . , Nend}; 0 < ωn < α}.

Thanks to the definition of Fn, we then have: FNend
= ANend

h. The distance between the exact front
location Tend and the final approximated front is thus:

|FNend
− Tend| = |ANend

h − Nend∆t| = h Nend

∣∣∣∣ANend

Nend
− α

∣∣∣∣ . (3.10)

When the sequence (ωn)n is a low-discrepancy sequence, there exists a number C > 0 (that only
depends on the choice of the sequence) such that for all α ∈ ]0, 1]:∣∣∣∣ANend

Nend
− α

∣∣∣∣ ≤ C
ln(Nend)

Nend
. (3.11)

By introducing inequality (3.11) in (3.10), it yields:
|FNend

− Tend| ≤ C h ln(Nend) = C h (ln(Tend) − ln(αh)) . (3.12)
From inequality (3.12), we can conclude that for a low-discrepancy sequence the distance between the
approximated front and the exact front tends to zero as h ln(h).

3.2.2. The case of random sequences.

Let (Ω, F , P ) be a probability space. Let us consider Nend independent and identically distributed
real random variables (or IIDRRV in short) (ζi)1≤i≤Nend

following the uniform distribution on ]0, 1[.
Formally, building the sequence (ωn)1≤n≤Nend

consists in choosing ω ∈ Ω for all n and setting ωn =
ζn(ω). It can then be noticed that the variable Xn can be written: Xn = φ(ωn) = φ(ζn(ω)), where φ
is the Borelian function defined for s ∈ R by:

φ(s) =
{

0 if s > α;
1 otherwise.

Since (ζi)i is a set of IIDRRV, (Xn)n is also a set of IIDRRV. Then the random variable FNend
reads:

FNend
=

Nend∑
n=1

h Xn = h
Nend∑
n=1

Xn,

with the probabilities P ({Xn = 0}) = 1 − α and P ({Xn = 1}) = α. The random variable Xn then
follows a Bernoulli distribution with parameter α. Therefore, the expectations and the variance of Xn

are:
E(Xn) = α and Var(Xn) = E((Xn − E(Xn))2) = α(1 − α). (3.13)
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The following inequality is obtained from the proof of the weak law of large numbers (see Equa-
tion (6.38) in [7]). Since (Xn)n is a sequence of IIDRRV, the result of [7] applies, and we obtain for
all ε > 0:

P


∣∣∣∣∣∣ 1
Nend

Nend∑
n=1

Xn − α

∣∣∣∣∣∣ ≥ ε


 ≤ α(1 − α)

ε2 Nend
. (3.14)

Since Nend = Tend/(αh) we obtain from (3.14) the following estimation for FNend
:

P ({|FNend
− Tend| ≥ εTend/α}) ≤ h

α2(1 − α)
ε2 Tend

. (3.15)

Let us set η = ε Tend/α, relation (3.15) then reads:

P ({|FNend
− Tend| ≥ η}) ≤ h

(1 − α)Tend

η2 . (3.16)

If we choose η = hγ with γ > 0, (3.16) gives the estimation:

P ({|FNend
− Tend| ≥ hγ}) ≤ (h)1−2γ(1 − α)Tend, (3.17)

where the right hand side of the inequality tends to zero when h tends to zero if 1−2γ > 0 ⇔ γ < 1/2.
This proves that the probability that the distance between the approximated front location and the
exact front is greater than hγ tends to zero if γ < 1/2. It corresponds essentially to a convergence in
probability with an order 1/2 in term of h.

Remark. In fact, the random variable FNend
is the sum of IIDRRV that all follow a Bernoulli dis-

tribution with parameter α. Hence, FNend
follows a binomial distribution. The first results obtained

in [8] rely on this remark. The convergence in probability with order 1 in terms of h has been proven.
Nevertheless, these results require calculations that are more complex than the proof proposed here.
More details may be found in [8].

3.2.3. Random sequences : an estimation based on Hoeffding’s inequality.

The result of Section 3.2.2 has been obtained using an inequality arising in from the proof of the
weak law of large numbers (see Equation (6.38) in [7]). It is shown in this section that the Hoeffding’s
inequality [11] can lead to another result. We recall that we have defined FNend

= h
∑Nend

n=1 Xn and
Tend = Nend∆t. For any ε > 0, we first consider here the probability: P ({FNend

− Tend ≥ ε}). It should
be noted that it corresponds to the probability for the approximated front location to be greater than
Tend by ε. With respect to the probability considered in Section 3.2.2 (see (3.15) for instance), the
absolute value has been removed from the left hand side of the inequality. We set τ = ε/h, so we have:

P ({FNend
− Tend ≥ ε}) = P


Nend∑
n=1

Xn − Tend

h
≥ τ


 .

Let us denote SNend
= FNend

/h =
∑Nend

n=1 Xn. Thanks to (3.13), we have:

E(SNend
) = E

Nend∑
n=1

Xn

 = Nendα = Tend/h,

and by choosing s > 0 we thus get:

P ({FNend
− Tend ≥ ε}) = P ({SNend

− E(SNend
) ≥ τ}) = P

({
es(SNend

−E(SNend
)) ≥ e(sτ)

})
. (3.18)
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We recall that the Markov’s inequality provides the estimation:

P
({

es(SNend
−E(SNend

)) ≥ e(sτ)
})

≤ e−(sτ) E
(
es(SNend

−E(SNend
))

)
,

which, together with relation (3.18) and by using the fact that the Xn are independent, gives:

P ({FNend
− Tend ≥ ε}) ≤ e−(sτ) E

(
es(SNend

−E(SNend
))

)
= e−(sτ)

Nend∏
n=1

E
(
es(Xn−E(Xn))

)
. (3.19)

Since the random variable Xn follows a Bernoulli distribution with parameter α, see (3.9), we have:

E
(
es(Xn−E(Xn))

)
= E

(
es(Xn−α)

)
= (1 − α)e−sα + αes(1−α) = e−sα (1 − α + αes) ,

and thanks to the lemma proposed in Appendix 6.1 we obtain the following inequality:

E
(
es(Xn−E(Xn))

)
= e−sα (1 − α + αes) ≤ es2/8. (3.20)

Introducing inequality (3.20) in (3.19) leads to:

P ({FNend
− Tend ≥ ε}) ≤ e−(sτ)

(
es2/8

)Nend = e(Nends2/8−sτ). (3.21)

The polynomial s 7→ Nends2/8 − sτ , for s ≥ 0, reaches its minimum for s = 4τ/Nend ≥ 0, and its value
is −2τ2/Nend. Since inequality (3.21) holds for any s ≥ 0, it holds for s = 4τ/Nend. Therefore we have:

P ({FNend
− Tend ≥ ε}) ≤ e

(
− 2τ2

Nend

)
= e

(
− 2αε2

hTend

)
. (3.22)

In the same way, one can get the inequality:

P ({Tend − FNend
≥ ε}) ≤ e

(
− 2αε2

hTend

)
, (3.23)

and, thus, by using both (3.22) and (3.23) the following inequality is obtained:

P ({|FNend
− Tend| ≥ ε}) ≤ 2 e

(
− 2αε2

hTend

)
, (3.24)

By setting ε = hγ with γ > 0, relation (3.24) gives the counterpart of inequality (3.17):

P ({|FNend
− Tend| ≥ hγ}) ≤ 2 e

(
− 2αh2γ−1

Tend

)
, (3.25)

As for the estimation of Section 3.2.2, the convergence in probability of the approximated front to the
exact front is achieved for γ < 1/2.

3.3. Results for non-uniform meshes

Non-uniform meshes are considered now. Hence, on the contrary to Section 3.2, the sequences that
correspond to permutations of 1 to Nend values of a given sequence (ωn)1≤n≤Nend

may not give the same
final result for FNend

. This also means that what happens at iteration n depends on what happened
at all iterations i < n.

In [8], simple mathematical tools were used considering only random sequences ωn and uniform
meshes. This made it possible to compute the probability density function of the approximated front
position. The resulting convergence proof was therefore rather computational in nature but allowed for
a more optimal convergence result. Unfortunately, this early proof seems not easy to extend to non-
uniform meshes and to low-discrepancy sequences. To propose convergence results for these situations,
we choose here, at least as a first step, to rely on other mathematical tools, which sometimes leads to
slightly less optimal results.
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3.3.1. The case of low-discrepancy sequences.

No result has been found so far when considering any type of non-uniform mesh. We propose to focus
in this section on some specific classes of meshes. A main difficulty lies in the fact that a subsequence
of a low-discrepancy sequence is not, a priori, a low-discrepancy sequence, in contrast to random
sequences, for which any subsequence remains random (provided the extraction is independent).

Proof of convergence for “odd-even” meshes. Let us define the meshes such that: ∆xi = h if i
is odd, and ∆xi = h/a if i is even, where a > 1. For these “odd-even” meshes, numerical experiments
exhibit a loss of consistency when using the scheme as described in Section (2). This point is developed
in Section 4 in a numerical point of view. For recovering the consistency of the GRU scheme on these
“odd-even” meshes, it has to be slightly modified. We now consider two different low-discrepancy
sequences: a sequence (ω̃n)n≥0 for odd cells and a sequence (ωn)n≥0 for even cells. The GRU step of
Section 2 is then modified.

Let us consider an approximate solution at iteration n such that: ϕn
i = 1 for all i < In, and ϕn

i = 0
otherwise. When the front faces an odd cell, i.e. when In is odd, the local threshold ωn

i (see (2.4)) is
computed thanks to:

ωn
i = ϕn

i,m + ω̃p(n)(ϕn
i,M − ϕn

i,m),
where p(n) counts the number of time In has been odd during the first n − 1 iterations. When the
front faces an even cell, i.e. when In is even, the local threshold ωn

i reads:

ωn
i = ϕn

i,m + ωq(n)(ϕn
i,M − ϕn

i,m),

where q(n) counts the number of time In has been even during the first n−1 iterations. Obviously, we
have p(n)+q(n) = n. Moreover, if In is odd (resp. even) we have p(n+1) = p(n)+1 and q(n+1) = q(n)
(resp. p(n + 1) = p(n) and q(n + 1) = q(n) + 1). The most important point here is to notice that p(n)
and q(n) have been introduced to desynchronize the two sequences so that all their elements are used.
We can now use the same type of proof than in Section 3.2.1.

For “odd-even” meshes, we have βi = α if i is odd and βi = α/a if i is even. For any sequence
(ω̃n)1≤n≤p(Nend), Ãp(Nend) is the number of values ω̃n less than α/a:

Ãp(Nend) = card{j ∈ {1, . . . , p(Nend)}; 0 < ω̃j < α/a}.

In a similar way, for any sequence (ωn)1≤n≤q(Nend), Ap(Nend) is the number of values ωn less than α:

Aq(Nend) = card{j ∈ {1, . . . , q(Nend)}; 0 < ωj < α}.

Now, thanks to the definition of Fn, we have: FNend
= Ãp(Nend) h + Aq(Nend) h/a. We recall here that

we have p(Nend) + q(Nend) = Nend. Therefore, the distance between the exact front location Tend and
the final approximated front is thus:

|FNend
− Tend| =

∣∣∣∣(Ãp(Nend) h − p(Nend)∆t
)

+
(

Aq(Nend)
h

a
− q(Nend)∆t

)∣∣∣∣ , (3.26)

where ∆t = αh/a according to (3.4) (i.e. the time step is chosen with respect to the smallest (even)
cells). Hence, we get the inequalities:

|FNend
− Tend| ≤

∣∣∣Ãp(Nend) h − p(Nend)∆t
∣∣∣ +

∣∣∣∣Aq(Nend)
h

a
− q(Nend)∆t

∣∣∣∣ , (3.27)

|FNend
− Tend| ≤ hp(Nend)

∣∣∣∣∣Ãp(Nend)
p(Nend) − α

a

∣∣∣∣∣ + hq(Nend)
∣∣∣∣∣Aq(Nend)
q(Nend) − α

∣∣∣∣∣ , (3.28)
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which thanks to bound (3.11) gives:
|FNend

− Tend| ≤ C ′h(ln(p(Nend)) + ln(q(Nend))) ≤ 2C ′h ln(Nend) (3.29)
where C ′ is a non-negative number which only depends on the choice of the low-discrepancy sequence.
Since Nend ≤ aTend/(αh), we finally obtain the bound:

|FNend
− Tend| ≤ 2C ′h(ln(aTend) − ln(αh)). (3.30)

We can conclude from (3.30) that using the specific algorithm involving two low-discrepancy sequences,
the distance between the approximated front and the exact front tends to zero at least as h ln(h) on
“odd-even” meshes.

Remark. When using only one low-discrepancy sequence on “odd-even” meshes, inequality (3.11)
does not hold because the regular scheme of Section 2 uses two subsequences which are no more
low-discrepancy sequences. This point will be illustrated by numerical experiments in Section 4.

Remark. One could use the same sequence for both cell types, i.e. (ω̃)n = (ω)n, the main point in
this section is to desynchronize how values are selected for small and large cells by using separate
counters p(n) and q(n).

Extension of the proof to more general “two-size meshes”. It is important to note that in the
previous proof the number of even cells, the number of odd cells and their alternation are absolutely
irrelevant. The most important point is to desynchronize the use of the sequences on the small and
big cells. As a consequence, the proof can easily be extended to a more general class of meshes which
is the following:

• Let Z1 and Z2 be two subsets of Z such that Z = Z1 ∪ Z2 and Z1 ∩ Z2 = ∅.

• Cells i ∈ Z1 have a size ∆xi = h/a with a > 1, and cells i ∈ Z2 have a size ∆xi = h.

Extension of the proof to more general block-shaped meshes. Let us now consider meshes
built using blocks of cells of the same size. It is recalled that due to the assumptions of Section 3.1,
the front can not travel back: if in is its position at iteration n (i.e. ϕn

j = 1 for all j < in) then at
iteration n + 1 we get in+1 ∈ {in, in + 1}.

For N cells, we define a set of M contiguous intervals Rp = [[Bp, Ep]] with: Bp < Ep, Bp+1 = Ep +1,
B1 = 0 and EM = N ; so that we have

⋃M
p=1 Rp = [[1, N ]]. We assume now that:

• for all cells i in Rp, the mesh size is the same: ∆xi = hp;

• for all p in [[1, M ]], h ≥ hp ≥ h/a with a > 1;

• the initial front is located before cell B1 which means that i0 = 0.

The time step is then chosen in agreement with cells of size h/a: ∆t = αh/a. Thus for i ∈ Rp the
parameter βi = ∆t/∆xi:

βi = αh

ahp
= ∆t

hp
= βp.

Let us define Np the number of iterations needed by the scheme to cross the block associated with Rp,
i.e. if ik = Bp at a given iteration k then ik+Np = Bp+1 = Ep + 1. Among these Np iterations from k

to k + Np, Ak
Np

iterations correspond to a jump forward of size hp of the front with:

Ak
Np

= card{n ∈ {k, . . . , k + Np}; 0 < ωn < αh/(ahp)}.
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We assume that the domain is large enough for the approximated front to remain in the domain until
Nend iterations, for instance by ensuring that M fullfils:

M∑
p=1

hp(Ep + 1 − Bp) > Nend h,

where Ep + 1 − Bp represents the number of cells in Rp. For the sake of simplicity, the final time Tend

is assumed to be such that there exists a Mend ∈ [[1, M ]] fulfilling Tend = ∆t
∑Mend

p=1 Np, which means
that all the blocks p ∈ [[1, Mend]] have been entirely crossed.

After Nend iterations, the approximated front is located at FNend
=

∑Mend
p=1 hpA

kp

Np
, where kp is the

first iteration for which ikp = Bp (i.e. the iteration at which the approximated front enters the block
Rp). Since the exact front is located at:

Tend =
Mend∑
p=1

Np∆t =
Mend∑
p=1

Npβphp

we have:

Tend − FNend
=

Mend∑
p=1

hp

(
Npβp − A

kp

Np

)
.

Therefore, we obtain the inequalities:

|Tend − FNend
| ≤

Mend∑
p=1

hp

∣∣∣Npβp − A
kp

Np

∣∣∣ ≤ h
Mend∑
p=1

Np

∣∣∣∣∣∣βp −
A

kp

Np

Np

∣∣∣∣∣∣ ,

which by using bound (3.11) leads to:

|Tend − FNend
| ≤ h

Mend∑
p=1

CNp ln(Np).

where CNp is the constant arising in bound (3.11). If we assume that there exists a constant C such
that CNp < C for all p, we finally have:

|Tend − FNend
| ≤ h C Mend ln(Nend). (3.31)

Let us make an assumption on the size of the blocks Pp: there exist b such that for all p we have
Ep + 1 − Bp ≥ bNγ

end, (3.32)
with 0 < γ ≤ 1. Thanks to the definition of the intervals Rp, we get that:

Mend∑
p=1

(Ep + 1 − Bp) =
Mend∑
p=1

(Bp+1 − Bp) = BMend+1 − B1 = EMend
,

and thus that by summing relations (3.32) over p we have:
EMend

≥ bNγ
endMend.

Now, considering the setting of our problem, there exists a number b′ depending on a and α such that:
EMend

≤ b′Nend.

Therefore we obtain the following bound for the number of blocks Mend:

Mend ≤ b′

b
N1−γ

end . (3.33)
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For the class of meshes defined by (3.32), the number of blocks Mend increases slower than the size of
the mesh Nend. Introducing bound (3.33) into inequality (3.31) then yields:

|Tend − FNend
| ≤ h C

b′

b
N1−γ

end ln(Nend).

Since Nend ≤ aTend/(αh), the previous inequality can also be written in terms of the mesh size h:

|Tend − FNend
| ≤ C ′

(
aTend

α

)1−γ

hγ
(

ln
(

aTend

α

)
− ln(h)

)
. (3.34)

We can conclude from (3.34) that using the specific algorithm involving two low-discrepancy sequences,
the distance between the approximated front and the exact front tends to zero at least as h ln(h) on
block-shaped meshes.

Some important remarks must be added. Firstly, when Mend is independent of Nend, inequality (3.31)
gives a convergence in probability in h ln(h). This is an interesting setting since it corresponds to
the classical process for mesh building in real simulations. Indeed, for real applications refinement
is classically performed while keeping fixed the space dimension of the blocks or equivalently the
number of blocks in the mesh. In the general setting described above, the size of the blocks can be
refined together with Nend. Secondly, when γ equals zero the “odd-even” case is recovered here and
inequality (3.34) no more guaranties the convergence in probability of the approximated front to the
exact one. Several numerical experiments are presented in Section 4 for illustrating these results.

3.3.2. The case of random sequences.

We use here the same probabilistic framework that the one introduced in Section 3.2. But on the
contrary to the latter, the variable Xn can be written: Xn = φin(ωn) = φin(ζn(ω)), where φin is the
Borelian function defined for s ∈ R by:

φin(s) =
{

0 if s > βin ;
φin(s) = 1 otherwise.

For the position of the approximated front at Tend, we introduce the random variable Yn = ∆xinXn

which corresponds to the displacement of the approximated front at iteration n. So that we have:

FNend
=

Nend∑
n=1

∆xin Xn =
Nend∑
n=1

Yn.

The variable Yn depends on ωn. But, on the contrary to Section 3.2, it also depends on in which
depends on the sub-sequence (ωi)i<n. Therefore, the set (Yn)n is not a set of IIDRRV. This adds some
difficulties to get theoretical results.

Let us first compute the expectation of Yn:

E(Y n) = E(∆xinφin(ωn)) = E

Nend∑
j=1

1{(in=j)∩(in≤n)} ∆xjφj(ωn)


=

Nend∑
j=1

E
(
1{(in=j)∩(in≤n)} ∆xjφj(ωn)

)
.

At iteration n, the approximated front is located between abscissa x−1/2 and xn−1/2. Therefore, in the
two last expressions of the equation above, the sum on j has been written from 1 to Nend ≥ n, but it
has been expressed that in must be less or equal than n in the indicator function 1{in=j∩in≤n}. Since ζn

597



T. Gallouët & O. Hurisse

does not depend on (ζ1, . . . , ζn−1), the random variables 1{(in=j)∩(in≤n)} and φj(ωn) are independent
for all j and the expectation E(Y n) can be written:

E(Y n) =
Nend∑
j=1

E
(
1{(in=j)∩(in≤n)} E (∆xjφj(ωn))

)
.

Moreover, we have:

E (∆xjφj(ωn)) = βi∆xi = ∆t, and P
(
1{(in=j)∩(in≤n)}

)
= 1, (3.35)

so that we finally get:

∀ n, E(Y n) = ∆t. (3.36)

It should be noted that for a constant and uniform velocity V , the expectation (3.36) would become
V ∆t (in (3.36) we have V = 1). This means that for each time step, the expected displacement of the
approximate front is equal to the displacement of the exact front during the corresponding time ∆t.
In other words, there is no bias in the velocity of displacement the approximated front.

The variance of Y n is defined as V ar(Y n) = E((Y n − E(Y n))2), or using former result (3.36):
V ar(Y n) = E((Y n − ∆t)2). Then, using the same arguments than for the expectation E(Y n), we get:

Var(Y n) =
Nend∑
j=1

E
(
1{(in=j)∩(in≤n)} (∆xjφj(ωn) − ∆t)2

)

=
Nend∑
j=1

P
(
1{(in=j)∩(in≤n)}

)
E

(
(∆xjφj(ωn) − ∆t)2

)
. (3.37)

Let us now detail the last expectation in the sum of the right hand side term in the relation above.
With probability 1 − βi, we have ωn > βj and thus (∆xjφj(ωn) − ∆t)2 = (∆t)2. Conversely, with
probability βj we have ωn ≤ βj , which leads to (∆xjφj(ωn) − ∆t)2 = (∆xj − ∆t)2. Therefore, we
obtain:

E
(
(∆xjφj(ωn) − ∆t)2

)
= (∆t)2(1 − βj) + (∆xj − ∆t)2βj ,

and since βj = ∆t/∆xj :

E
(
(∆xjφj(ωn) − ∆t)2

)
= ∆t2 1 − βj

βj
≤ ∆t2 1 − βj

βj
(3.38)

where r has been defined by (3.3). Thanks to the definition of r and to definition (3.4) for the time-step,
we have:

1
βj

= ∆xj

∆t
≤ h

∆t
= 1

α r
,

Equation (3.38) then gives the inequality:

E
(
(∆xjφj(ωn) − ∆t)2

)
≤ ∆t2 1 − α r

α r
,

and variance (3.37) fulfills the inequality:

∀ n, Var(Y n) ≤ ∆t2 1 − α r

α r
. (3.39)

Let us now turn to the computation of the co-variance term:

covar(Y n, Y m) = E((Y n − E(Y n))(Y m − E(Y m))),
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with m < n. Using the definition of covar(Y n, Y m), we have:

covar(Y n, Y m) = E

Nend∑
j=1

1{(in=j)∩(in≤n)} (∆xjφj(ωn) − ∆t)


Nend∑

k=1
1{(im=k)∩(im≤m)} (∆xkφk(ωm) − ∆t)

 ,

and thus:

covar(Y n, Y m)

=
Nend∑
j=1

Nend∑
k=1

E
(
1{(in=j)∩(in≤n)} 1{(im=k)∩(im≤m)} (∆xkφk(ωm) − ∆t) (∆xjφj(ωn) − ∆t)

)
.

Here again, we use the fact that ζn does not depend on (ζ1, . . . , ζn−1). In particular for m < n, ζn does
not depend on (ζ1, . . . , ζm). Therefore the random variables:

1{(in=j)∩(in≤n)} 1{(im=k)∩(im≤m)} (∆xkφk(ωm) − ∆t) and (∆xjφj(ωn) − ∆t)
are independent for m < n. We thus have:

covar(Y n, Y m)

=
Nend∑
j=1

Nend∑
k=1

E
(
1{(in=j)∩(in≤n)} 1{(im=k)∩(im≤m)} (∆xkφk(ωm) − ∆t)

)
E ((∆xjφj(ωn) − ∆t)) .

However, thanks to former result (3.35) we know that: E ((∆xjφj(ωn) − ∆t)) = 0 for all j so that we
finally get:

∀ n, ∀ m < n, covar(Y n, Y m) = 0. (3.40)

Inequality for the variance (3.39) and the computation of the covariance (3.40) are now used for
obtaining an estimation for the distance between the approximated front position FNend

and the exact
front position Tend. Let us first compute E

(
(FNend

− Tend)2)
:

E
(
(FNend

− Tend)2
)

= E


Nend∑

n=1
(Yn − ∆t)

2
 = E


Nend∑

n=1
(Yn − E(Yn))

2
 ,

where the relation Tend = Nend∆t introduced in Section 3.1 and result (3.36) have been used. By using
result (3.40) for the covariance, we get:

E
(
(FNend

− Tend)2
)

=
Nend∑
n=1

var(Yn) +
n=Nend,m=Nend∑
n=1,m=1,m ̸=n

covar(Y n, Y m)

︸ ︷︷ ︸
=0 see (3.40)

=
Nend∑
n=1

var(Yn).

Then, using inequality (3.39) yields:

E
(
(FNend

− Tend)2
)

≤ Nend∆t2 1 − α r

α r
= Tend∆t

1 − α r

α r
= Tend α r h

1 − α r

α r

The Bienayme–Tchebychev inequality can then be applied and we get for all η > 0:

P ({|FNend
− Tend| ≥ η}) ≤ 1

η2 E
(
(FNend

− Tend)2
)

≤ h

η2 Tend α r
1 − α r

α r
. (3.41)
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For η = hγ , inequality (3.41) leads to:

P ({|FNend
− Tend| | ≥ hγ}) ≤ h1−2γ Tend α r

1 − α r

α r
.

This proves that the probability that the distance between the approximated front location and the
exact front location is greater than hγ tends to zero if γ < 1/2. It corresponds essentially to a
convergence in probability with an order 1/2 in term of h.

4. Numerical experiments

Several theoretical results were presented in Section 3. They concern the GRU scheme introduced in [9,
13] for which a first convergence result was proposed in [8]. The purpose of this section is to provide a
numerical illustration of the theoretical results from the previous sections. Several convergence studies
are then carried out here for a simple 1D case of front propagation. As the scheme is not widely
known, it seems important to start this section with a more general example (Section 4.1). This first
example will provide the reader with an overview of the capabilities of the GRU scheme which is not
restricted to the simple setting studied in the previous sections. The following sections are dedicated
to illustrating the properties introduced in the Section 3 for front propagation. Section 4.2 deals with
uniform meshes, while Section 4.3 deals with non-uniform meshes.

For the test cases of sections 4.2 and 4.3, the random numbers are obtained thanks to the rand()
function of the stdlib librairy of the language C/C++. The latter is a pseudo-random generator. The
low discrepancy sequences are built using the Linear Congruential Generator (LCG) with specific (but
classical) parameters:

ωn+1 = mod(ωn + c, 1), with c =
√

5 − 1
2 and ω0 ∈ ]0, 1[.

We choose here the seed value ω0 = 0.05. The LCG sequences are used as quasi-random generators.
The settings for the initial value problem are those depicted in the beginning of Section 3. The velocity
is equal to 1. The initial solution consists in a front located at x = 0.3 (i.e. ϕ(t = 0, x) = 1 for all
x < 0.3 and ϕ(t = 0, x) = 0 otherwise). We consider the final time 0.5 s so that the final front is
located at x = 0.3 + 0.5 = 0.8. The CFL is set to α = 0.5.

4.1. A first demonstration test case

This test case was first published in [9] by the authors. It is reproduced here in order to give an
example of a simulation with the GRU scheme. It corresponds to computing approximate solutions of
system: {

∂t (ρ) + ∂x (ρU) = 0,

∂t (ρϕ) + ∂x (ρUϕ) = 0,
(4.1)

with an initial condition for the scalar quantity ϕ(t, x). System (4.1) involves a non-negative density
ρ(t, x) > 0 and a velocity U(t, x) which are assumed to be bounded. Both are given in an analytical
manner and the sole remaining unknown is ϕ(t, x). A class of solutions for system (4.1) was proposed
in [9]. We choose here one of these solutions for which the velocity is positive, constant and decreasing
along x: U(x) > 0 and dU/dx < 0. The initial solution for ϕ, i.e. ϕ(t = 0, x), is piecewise regular and it
is shown in Figure 4.1 (dotted black line). It should be remarked that this initial solution presents two
discontinuities. The final solution is also plotted in Figure 4.1 (dashed black line) and it corresponds
to a compression and translation of ϕ(t = 0, x).

Approximate solutions computed with the GRU scheme associated with an upwind-type scheme
are plotted in Figure 4.1 for several uniform meshes. The number ωn are obtained here using a

600



Convergence results for a Glimm-like scheme

low-discrepancy sequence generated using the Linear Congruential Generator. For this test case, a
convergence study showed that the approximate solutions converge towards the exact solution with an
effective order of 0.82 while the upwind scheme only gives a effective convergence rate of 1/2 due to the
presence of discontinuities in the profile of the solution. The GRU scheme thus largely improves the
accuracy of the approximate solution. In particular, fronts are maintained perfectly sharp when using
the GRU scheme. More details may be found in [9], which also includes 2D test cases on unstructured
meshes.
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ex. fin. sol.
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Comparisons of app. sol. for several meshes
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Figure 4.1. Approximate solutions obtained with the sole upwind scheme (top) and
with the upwind scheme coupled to the GRU projection step. The initial solution and
the final solution are plotted respectively with a dotted black line and a dashed black
line.

4.2. Front propagation on uniform meshes

Let us first compare the approximate solutions computed with the sole upwind scheme (without GRU
step) and with the upwind scheme coupled to the GRU step while using rand() or LCG sequences. The
approximate solutions are plotted in Figure 4.2 for meshes with 200 and 400 cells. Fronts are maintained
perfectly sharp with the GRU scheme, while the upwind scheme smears the front over several cells.
Convergence curves are plotted on Figure 4.3 for the set of meshes with 25 × 2k, k ∈ [[0, 11]] cells. It
can clearly be seen that the use of rand() sequences does not improve much the effective convergence
rate even if the front remains sharp. On the contrary, the use of LCG sequences leads to almost perfect
accuracy. For all the tests we performed here, the error in the front position is either 0 or 1 cell (of
size h). For the former case, the error is not plotted (because it is not defined on a logarithmic scale),
which explains that some points (i.e., meshes) are missing for the blue curve in Figure 4.3. For the
latter case, the associated points of the blue curve belong to the line log(err) = log(h).

The results with the rand() sequences described above exhibit poor quality, while the corresponding
theoretical results of Section 3 show a better convergence rate. In fact, we use here a single sequence
for each mesh, while theoretical results are statistical. Recovering the theoretical (statistical) results

601



T. Gallouët & O. Hurisse

0,5 0,6 0,7 0,8 0,9
X

0

0,2

0,4

0,6

0,8

1

p
h

i

upwind 200 cells

upwind 400 cells

upwind+rand 200 cells

upwind+rand 400 cells

upwind+LCG 200 cells

upwind+LCG 400 cells

Approximated solutions

Figure 4.2. Approximate solutions obtained with the upwind scheme and with the
upwind scheme associated with the GRU step using rand() or LCG sequences.

-10 -8 -6 -4 -2
log(h)

-9

-8

-7

-6

-5

-4

-3

lo
g

(e
rr

)

upwind

upwind + rand()

upwind + LCG

line log(err)=log(h)

slope 1/2

Conv. curves uniform meshes

Figure 4.3. Convergence curves for the upwind scheme and for the upwind scheme
associated with the GRU step using rand() or LCG sequences.

would require unaffordable computational effort. Indeed, for a given mesh with Nc cells, we should
perform Kt tries with different random values for each iteration, then each of these results should be
pursued in the next iteration by another Kt tries, and so on. Since the number of iterations increases
with Nc, this procedure would require ∼ (Kt)Nc simulations for a given mesh.

We thus perform a weak form of this statistical numerical experiment. For every single mesh, the
approximate solution is computed using several different rand() sequences. Each sequence gives only
one front position. Then, the average position of the approximated front and its standard deviation
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are computed. We use Nc different tries of the rand() sequence for each mesh with Nc cells. This
appears to be enough, at least for small meshes, in our case for Nc < 6400. The average front position
and the standard deviation are plotted in Figure 4.4 for 25 × 2k, k ∈ [[0, 8]] cells. For finer meshes, the
computations require a lot of computational time, and the number of tries Nc becomes too small to
obtain converged statistics (at least for the average front position). Convergence curves in Figure 4.4
clearly show that the average and the standard deviation have an effective convergence rate of 1, which
indicates that the probability function of the position of the front tends to a Dirac function centered
on the exact front position. These results are also in agreement with the first result obtained in [8].
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Conv. curves for front position - rand() - std. dev. and average

Figure 4.4. Convergence curves for the front position when using several rand() se-
quences. The logarithm of the distance between the exact front and the approximated
average front is plotted in blue. The standard deviation of the position of the front is
plotted in green.

4.3. Front propagation on non-uniform meshes

In this section, some theoretical results of Section 3 are assessed for non-uniform meshes. The first test
concerns the “odd-even” meshes. We choose here a ratio of two between two neighboring cells, i.e., a = 2
with the notation of Section 3: ∆xi = h for odd cells and ∆xi = h/2 for even cells. The convergence
curves with respect to h/2 are plotted in Figure 4.5a for the cases using 1 or 2 sequences, as described
in Section 3.3.1. These results highlight that the approximate solutions using a sole LCG sequence
do not converge toward the correct solution. On the contrary, introducing a second sequence allows
recovering the behavior observed on uniform meshes. For rand() sequences, no difference in terms of
convergence is observed for 1 or 2 sequences, and order 1/2 is recovered, as for the case of uniform
meshes. The results obtained for the “odd-even” meshes are the same when cells are randomly mingled
to create blocks of h-sized cells and blocks of h/2-sized cells. For such meshes, convergence curves are
plotted in Figure 4.5b. As with “odd-even” meshes, the use of two LCG sequences allows recovering
convergence toward the correct solution. Moreover, the results computed for rand() sequences are not
sensitive to the number of sequences.

Let us now turn to the case of block-shaped meshes. We consider here three values for γ: 1/3, 1/2,
and 2/3, and we set ∆xi = h for odd blocks and ∆xi = h/2 for even blocks. This is a simpler setting
than the one studied in Section 3.3.1. The convergence curves are plotted in Figure 4.6 for 1 sequence
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(a) Odd-even meshes with cells sizes ∆xi =
h/(1 − mod(i, 2)).
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Figure 4.5. Convergence curves with respect to the small cell-size h′ = h/2 for “odd-
even” meshes for 1 sequence or 2 sequences. The red curves corresponds to the use of
rand() sequences, while the blue ones corresponds to the LCG sequences.

(on the left) and for 2 sequences (on the right). It can be observed that all the approximate solutions
converge toward the exact one. When one sequence is used, the convergence rate clearly depends on
the value of γ. We measured an effective convergence rate of: ∼ 0.3 for γ = 1/3, ∼ 0.62 for γ = 1/2,
and ∼ 0.9 for γ = 2/3. This is in rather good agreement with the bound found in Section 3.3.1. With
2 sequences, the same type of results as those on uniform meshes are recovered, and the distance
between the exact front and the approximated front is of order h/2. In fact, there are either 1 cell or
0 cells in terms of distance. Since the small cells have a size h/2 and the large cells have a size h, this
explains the points that are above the line err = h in Figure 4.6 (on the right).

5. Conclusion

In conclusion, the GRU scheme represents an interesting advancement in the numerical treatment of
front propagation, particularly for complex geometrical settings. It offers substantial improvements
over classical first-order schemes. The new theoretical results presented in this study further deepen
the understanding of the behavior of the GRU scheme, in particular when using low-discrepancy
sequences. Moreover, the numerical tests provide valuable insights for practical applications for which
non-uniform/unstructured meshes are required. From a practical point of view, an important results
is that convergence of the approximate solutions seems to be guaranteed provided that the number of
mesh-size discontinuities increases slower that the number of cells.
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Figure 4.6. Convergence curves with respect to the small cell-size h′ = h/2 for block-
shaped meshes. On the right: approximate solution are obtained with 2 sequences; on
the left: only one sequence is used.

6. Appendix

6.1. A technical lemma

Lemma. Let β be a real number in [0, 1]. For all s ≥ 0, we have: e−βs (1 − β + βes) ≤ es2/8.

Proof. The proof of the lemma is based on function s 7→ f(s) = s2/8 − (−βs + ln (1 − β + βes)).
The first and second derivatives of s 7→ f(s) are respectively:

f ′(s) = s

4 −
(

−β + βes

(1 − β + βes)

)
and f ′′(s) = 1

4 − (1 − β)βes

(1 − β + βes)2 .

Since (1 − β + βes)2 = (1 − β − βes)2 + 4(1 − β)βes, we have the inequality (1 − β + βes)2 ≥
4(1 − β)βes and thus f ′′(s) ≥ 0 for all s ≥ 0. The derivative of f for s = 0 is f ′(0) = 0, and
then f ′(s) ≥ 0 for all s ≥ 0. As f(0) = 0, we thus get that f(s) ≥ 0 for all s ≥ 0, which means that:

∀ s ≥ 0, s2/8 ≥ (−βs + ln (1 − β + βes)) ,

and thus that:
∀ s ≥ 0, es2/8 ≥ e−βs (1 − β + βes) .

This ends the proof of the lemma.
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