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Abstract. This paper is devoted to the Paveri-Fontana model and its computation. The master equation of
this model has no analytic solution in nonequilibrium case. We develop a stochastic approach to approximate
this evolution equation. First, we give a probabilistic interpretation of the equation as a nonlinear Fokker-
Planck equation. Replacing the nonlinearity by interaction, we deduce how to approximate its solution thanks
to an algorithm based on a fictitious jump simulation of the interacting particle system. This algorithm is
improved to obtain a linear complexity regarding the number of particles. Finally, the numerical method is
illustrated on one traffic flow scenario and compared with a finite differences deterministic method.

Math. classification. 65N35, 15A15.
Keywords. Stochastic particle methods, Paveri-Fontana model, Traffic flow.

1. Introduction

The gas-kinetic models describe the traffic flow at a mesoscopic scale. The mesoscopic models can
be an alternative offering an additional analytic investigation to microscopic models which are more
expensive in terms of computation time. They can also be an alternative capturing the interactions
among the vehicles to macroscopic models which provide an average estimation of traffic quantities.
In addition, the mesoscopic scale establishes a bridge linking these two resolutions. The gas-kinetic
models are governed by a Boltzmann-type equation representing the evolution with respect to time
of the phase-space-density ρ which is a generalization of the macroscopic spatial density. This dis-
tribution function gives the density of vehicles at specific times, locations and velocities. Among the
first authors to propose this kind of models in vehicular traffic flow are Prigogine and Andrews [9],
Prigogine and Hermann [10] whose model describes the dynamics of the distribution of velocities in
phase-space. The authors suggest that the evolution of the density is caused by: a convection term
representing the move of vehicles according to their speed which varies their position, an acceleration
term corresponding to the attempts of the vehicles to achieve their desired speed and a deceleration
term aimed at avoiding an accident when the vehicle drives too fast. Afterwards, Paveri-Fontana [8]
proposed an improved model where the desired speed variable is considered as an independent variable.

Simulation of this kind of models by deterministic methods has been addressed in the literature (see
for instance [4]). Furthermore, some stochastic particle methods have been proposed to approximate
the solution in the spatially homogeneous case ([3], [5]).
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We propose here a new method to simulate the Paveri-Fontana model in a stochastic way. We start in-
terpreting the evolution equation of this model as a nonlinear Fokker-Planck equation. Then, we deduce
an approximation based on a system of interacting particles. These particles are only a discretization
tool and do not represent true vehicles even if their evolution is reminiscent of the behaviour of vehi-
cles. In particular, particles will be possibly slowed-down (the velocity jumps to a smaller value) by a
slower particle ahead even if some other faster particles between them are not slowed-down. Finally,
a comparison between our method and a deterministic method is performed on a case study.

2. The Paveri-Fontana model

The Paveri-Fontana model was introduced to include the contributions of the statistical spread of
accelerations due to the random fluctuations of driving [8]. The unknown is the density ρ(t, x, v, vo)
of vehicles at time t, position x ∈ R, with current velocity v ∈ R+ and desired velocity vo ∈ R+. Its
evolution is given by:

∂tρ(t, x, v, vo) + v∂xρ(t, x, v, vo) = −∂v
(
ρ(t, x, v, vo)v

o − v
τ

)
(2.1)

+ (1− P )ρ̄(t, x, v)
∫ ∞
v

(w − v)ρ(t, x, w, vo)dw

− (1− P )ρ(t, x, v, vo)
∫ v

0
(v − w)ρ̄(t, x, w)dw,

where the integral

ρ̄(t, x, v) =
∫ ∞

0
ρ(t, x, v, vo)ν(dvo)

of ρ with respect to the measure ν(dvo) is the density of vehicles at time t, position x with current
velocity v. One may choose ν(dvo) either equal to the Lebesgue measure dvo to take into account
continuously distributed desired velocities or equal to the sum

∑d
k=1 δvok(dvo) of the Dirac masses δvo

k

to model d classes of vehicles with vok denoting the common desired velocity among the k-th class for
k ∈ {1, .., d}. The second term in the left-hand side of (2.1) is the convection term. The first term
in the right-hand side models acceleration of the drivers to reach their constant desired velocity. The
sum of the two last terms models the deceleration of drivers caused by the presence of vehicles driving
slower at the same position (or just ahead). The constant τ > 0 is a relaxation time and the parameter
P ∈ (0, 1) represents the overtaking coefficient. The larger P , the easier the fast vehicles may overtake
slower ones ahead. When P = 1, the deceleration term even vanishes. When P = 0, overtaking is
still possible but will take longer because of a stronger deceleration contribution. The desired velocity
variable vo remains constant.

3. Probabilistic Approximation

To construct a probabilistic particle approximation of (2.1), we are first going to derive an equivalent
Fokker-Planck equation. We then remark that a linear version of this Fokker-Planck equation describes
the evolution of the distribution of a piecewise deterministic Markov process. Because of the nonlin-
earity in the true equivalent Fokker-Planck equation, the jump rate of the velocity and the Markov
kernel giving the new distribution of the velocity at jumps should actually depend on the unknown
density. Approximating this density by the empirical measure of N particles, we finally obtain the
dynamics of the system with N particles.
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3.1. Related Fokker-Planck equation

The evolution equation preserves the mass (or number of vehicles)
∫
ρ(t, x, v, vo)dxdv with desired

velocity vo and therefore the total mass
∫
ρ(t, x, v, vo)dxdvν(dvo) over time. Dividing (2.1) by ‖ρ0‖L1 :=∫

ρ(0, x, v, vo)dxdvν(dvo), we obtain the equation describing the evolution of the probability density
p(t, x, v, vo) = 1

‖ρ0‖L1
ρ(t, x, v, vo) with respect to the measure dxdvν(dvo).

∂tp(t, x, v, vo) = −v∂xp(t, x, v, vo)− ∂v
(
p(t, x, v, vo)v

o − v
τ

)
+
∫
λ(t, x, w)µ(t, x, w, v)p(t, x, w, vo)dw − λ(t, x, v)p(t, x, v, vo), (3.1)

where, for γ = (1− P )‖ρ0‖L1 ,

λ(t, x, v) = γ

∫ ∫ v

0
(v − w)p(t, x, w, vo)dwν(dvo), (3.2)

µ(t, x, w, v) = I{λ(t,x,w)>0}
γ(w − v)

∫
p(t, x, v, vo)ν(dvo)I[0,w](v)
λ(t, x, w) . (3.3)

When λ(t, x, w) > 0, v 7→ µ(t, x, w, v) is a probability density on R+. For given functions λ and
µ (which do not depend on the unknown p as above), we are now going to check that (3.1) is the
Fokker-Planck equation associated with a piecewise deterministic Markov process.

3.2. The piecewise deterministic Markov process

Let (X0, V0, Vdes) be distributed according to p(0, x, v, vo)dxdvν(dvo) and {(Xt, Vt, Vdes), t ∈ [0, T ]} be
the piecewise deterministic Markov process evolving according to the ODE

(S) :


Vdes remains constant,
dVt
dt = Vdes−Vt

τ ,
dXt
dt = Vt,

between the jumps of the velocity component Vt (the two other components do not jump and the
desired velocity component is even constant over time). On the time interval [t, t+ dt], the velocity Vt
jumps with probability λ(t,Xt, Vt)dt+ o(dt) (the jump rate λ is supposed bounded to avoid the accu-
mulation of jumps) and then is redistributed according to the probability measure µ(t,Xt, Vt, w)dw.

The infinitesimal generator Lt at time t of this Markov process is obtained for a smooth test function
ϕ by

Ltϕ(x, v, vo) = lim
ε→0

1
ε

{
E
[
ϕ(Xt+ε, Vt+ε, Vdes)− ϕ(Xt, Vt, Vdes)

∣∣∣∣(Xt, Vt, Vdes) = (x, v, vo)
]}
.

Decomposing on the number of jumps of the velocity on the time interval [t, t+ ε], one has

ϕ(Xt+ε, Vt+ε, Vdes)

=
(
ϕ(Xt, Vt, Vdes) + εVt∂xϕ(Xt, Vt, Vdes) + ε

Vdes − Vt
τ

∂vϕ(Xt, Vt, Vdes) + o(ε)
)
× I{no jump on[t,t+ε]}

+
(∫

ϕ(Xt, w, Vdes)µ(t,Xt, Vt, w)dw + o(1)
)
× I{one jump on[t,t+ε]}

+ ϕ(Xt+ε, Vt+ε, Vdes)× I{at least 2 jumps on[t,t+ε]}.

Given (Xt, Vt, Vdes) = (x, v, vo), the probability for the velocity to jump once on the time interval
[t, t+ε] is λ(t, x, v)ε+o(ε). The observation of at least two jumps on [t, t+ε] is an event of probability
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of order ε2, thus negligible in the limit considered to compute the infinitesimal generator. Hence,

Ltϕ(x, v, vo) = v∂xϕ(x, v, vo) + vo − v
τ

∂vϕ(x, v, vo)

+ λ(t, x, v)
(∫

ϕ(x,w, vo)µ(t, x, v, w)dw − ϕ(x, v, vo)
)
.

3.3. Associated linear Fokker-Planck equation

If (X0, V0, Vdes) admit a density p(0, x, v, vo), according to the measure dxdvν(dvo), then (Xt, Vt, Vdes)
also has a density p(t, x, v, vo) and for ϕ a smooth and compactly supported test function,∫

ϕ(x, v, vo)∂tpt(x, v, vo)dxdvν(dvo) = d

dt
E [ϕ(Xt, Vt, Vdes)] = E[Ltϕ(Xt, Vt, Vdes)],

=
∫
Ltϕ(x, v, vo)p(t, x, v, vo)dxdvν(dvo),

=
∫ [

v∂xϕ(x, v, vo) + vo − v
τ

∂vϕ(x, v, vo)

+ λ(t, x, v)
(∫

ϕ(x,w, vo)µ(t, x, v, w)dw − ϕ(x, v, vo)
)]
p(t, x, v, vo)dxdvν(dvo).

Applying an integration by parts with respect to x (resp. v) for the contribution of the first (resp.
second) term between square brackets in the right-hand side and exchanging the dummy variables v
and w in the integral

∫
λ(t, x, v)p(t, x, v, vo) (

∫
ϕ(x,w, vo)µ(t, x, v, w)dw)dxdv, we obtain:∫

ϕ(x, v, vo)∂tp(t, x, v, vo)dxdvν(dvo)

=
∫
ϕ(x, v, vo)

[
− ∂x(vp(t, x, v, vo)) + ∂v

(
vo − v
τ

p(t, x, v, vo)
)

− λ(t, x, v)p(t, x, v, vo) +
∫
λ(t, x, w)µ(t, x, w, v)p(t, x, w, vo)dw

]
dxdvν(dvo).

By identification, we recover (3.1).

3.4. Particle Approximation of (3.1) combined with (3.2) and (3.3)

Because of the dependence of λ and µ on the unknown density p, the Fokker-Planck equation (3.1)
derived from the Paveri-Fontana evolution equation (2.1) is nonlinear. We propose a suitable Monte-
Carlo approximation of these unknown functions λ and µ. For each time t, we are going approximate
the measure p(t, x, v, vo)dxdvν(dvo) by the empirical measure 1

N

∑N
j=1 δ(Xj

t ,V
j
t ,V

j
des

) of N interacting
particles ((Xj

t , V
j
t , V

j
des)1≤j≤N )t≥0.

The Monte-Carlo approximation of λ(t, x, v) by the corresponding empirical mean is :

λN (t, x, v) = γ

∫
vo

∫ v

w=0
(v − w)( 1

N

N∑
j=1

δ(Xj
t ,V

j
t ,V

j
des

))(dx, dw, dv
o),

= γ

N

N∑
j=1

(v − V j
t )+δ

Xj
t
(dx).

To obtain a function, we need to delocalize the positions. For ε > 0, let ϕε(y) = 1
εϕ(yε ), where ϕ is a

probability density with support in R− (to model that only the particles/vehicles ahead can slow down
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a given particle by interaction). In what follows, we choose ϕ(x) = 2√
2πe
−x2/2I{x<0}. The delocalized

empirical approximation of λ is

λNε (t, x, v) = γ

∫
vo

∫
y

∫ v

w=0
(v − w)ϕε(x− y)( 1

N

N∑
j=1

δ(Xj
t ,V

j
t ,V

j
des

))(dydwdv
o),

= γ

N

N∑
j=1

(v − V j
t )+ϕε(x−Xj

t ).

In the same way, the probability measure µ(t, x, v, w)dw according to which the velocity is redistributed
after a jump is approximated by :

µNε (t, x, v, dw) =
∑N
j=1(v − V j

t )+ϕε(x−Xj
t )δ

V jt
(dw)∑N

j=1(v − V j
t )+ϕε(x−Xj

t )
.

We can now complete the description of the particles dynamics. The triplet (Xj
t , V

j
t , V

j
des)t≥0 of the

j-th particle evolves according to the ODE (S) :
V j
des remains constant,
dV jt
dt = V j

des
−V jt
τ ,

dXj
t

dt = V j
t .

between the jumps of the velocity component V j
t (the two other components do not jump and the

desired velocity component is even constant over time). On the time interval [t, t+dt], the velocity V j
t

jumps with probability λNε (t,Xj
t , V

j
t )dt+ o(dt) and is then redistributed according to the probability

measure µNε (t,Xj
t , V

j
t , dw). This jump procedure leads to interaction between the particles.

3.5. Convergence of the particle approximation as the number N of particles tends to
infinity

The Paveri-Fontana model has some common features with the Boltzmann equation : evolution of the
position according to the current velocity which may jump according to the nonlinear term in those
equations. The term accounting for the acceleration towards the desired velocity in the Paveri-Fontana
model does not appear in the standard Boltzmann equation. Still, the sum of this acceleration term and
the convection term corresponds to a deterministic and therefore Markovian evolution which is part
of the free evolution operators considered by Graham and Méléard in [2]. This paper deals with the
convergence in total variation distance of particle approximations of generalized Boltzmann equations
with general motion between collisions and bounded nonlinear jump operator. For a fixed value ε > 0
of the delocalization parameter, the jump rate λNε (t, x, v) associated in the previous paragraph with
the Paveri-Fontana equation is bounded by 2γv

ε
√

2π . Moreover the jump measure

λNε (t, x, v)µNε (t, x, v, dw) = γ

N

N∑
j=1

(v − V j
t )+ϕε(x−Xj

t )δ
V jt

(dw),

= γ

∫
y,u,vo

(v − u)+ϕε(x− y)δu(dw) 1
N

N∑
j=1

δ(Xj
t ,V

j
t ,V

j
des

)(dydudv
o)

depends linearly on the empirical measure 1
N

∑N
j=1 δ(Xj

t ,V
j
t ,V

j
des

) at time t. If one assumes the existence
of a deterministic constant v̄ > 0 bounding all the desired and initial velocities (ν((v̄,∞)) = 0 =
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∫
x,v I{v>v̄}ρ̄(0, x, v)dxdv), the jump rate is bounded by Λ = 2γv̄

ε
√

2π . The existence of such a bound is
not restrictive from the point of view of traffic modeling.

According to Theorem 3.1 [2], if the initial triplets (Xj
0 , V

j
0 , V

j
des) of the N particles are i.i.d. to the

density p(0, x, v, vo), then the first particle (X1
t , V

1
t , V

1
des) may be coupled with probability

P
(
∀t ∈ [0, T ], (X1

t , V
1
t , V

1
des) = (Xε

t , V
ε
t , Vdes)

)
≥ 1− 3e

ΛT − 1
N + 1 (3.4)

to a piecewise deterministic Markov process nonlinear in the sense of McKean (Xε
t , V

ε
t , Vdes)t∈[0,T ]

with time marginals pε(t, x, v, vo)dxdvν(dvo) where pε solves the spatially delocalized Paveri-Fontana
equation

∂tpε(t, x, v, vo) + v∂xpε(t, x, v, vo) = −∂v
(
pε(t, x, v, vo)

vo − v
τ

)
+ γ

∫ ∞
y=x

ϕε(x− y)p̄ε(t, y, v)dy
∫ ∞
v

(w − v)pε(t, x, w, vo)dw

− γpε(t, x, v, vo)
∫ ∞
y=x

∫ v

w=0
(v − w)ϕε(x− y)p̄ε(t, y, w)dwdy,

with p̄ε(t, y, v) =
∫
pε(t, y, v, vo)ν(dvo) and initial condition pε(0, x, v, vo) = p(0, x, v, vo). Even if it

could lead to diagonal convergence estimates with ε depending on the number N of particles, the
study of the convergence as ε→ 0 of ‖ρ0‖L1pε to a solution of the Paveri-Fontana equation is beyond
the scope of the present paper. Notice that the results in [2] also apply to the spatially homogeneous
Paveri-Fontana equation where there is no spatial variable x so that no delocalization of the jump
term is needed. Of course the existence of the deterministic bound v̄ on the velocity variable is still
needed.

In fact, it is possible to simulate exactly the piecewise deterministic Markov process nonlinear in the
sense of McKean (Xε

t , V
ε
t , Vdes)t∈[0,T ] by following the deterministic evolution of the position according

to the velocity which relaxes to the desired velocity at rate 1/τ between the jump times of a Poisson
process with intensity Λ and generating independent copies of the process that may slow it down at
each of these jump times. If (X̃ε

η, Ṽ
ε
η−) denotes the independent copy of (Xε

η, V
ε
η−) associated with

the jump time η ≤ T (V ε
η− and Ṽ ε

η− denote left-hand limits of the velocities at time η) and Ũ is an

independent random variable uniformly distributed on [0, 1], then when Ũ ≤ γ(Vη−−Ṽη−)+ϕε(Xε
η−X̃ε

η)
Λ =

ε
√

2π(Vη−−Ṽη−)+ϕε(Xε
η−X̃ε

η)
2v̄ , the nonlinear process is slowed-down : Vη = Ṽη− and otherwise it keeps its

velocity : Vη = Vη−. Of course, the independent copies needed at the jump times of the Poisson process
associated with the nonlinear process themselves possibly jump before at times given by their own
(independent) Poisson processes with intensity Λ and more independent copies are needed to compute
their evolution. In fact, looking backward in time from time T and remarking that the time-reversal
of a Poisson process is still a Poisson process with the same parameter, one sees that the process
counting for t ∈ [0, T ] the number Nt of copies needed at time T − t plus one for the original process
is a Yule process with intensity Λ : the rate at which each of the Nt copies needs a new copy is Λ so
that Nt jumps to Nt + 1 at rate ΛNt and remains contant otherwise. Therefore for each t ∈ [0, T ],
Nt is a geometric random variable with parameter e−Λt (see for instance [1] p:109). The expectation
eΛT of the initial number NT of copies grows exponentially with T which explains why this exact
simulation technique is not used in practice. Nevertheless, we are now going to take advantage of this
construction to derive the estimation of the coupling probability

P
(
≤ ∀t ∈ [0, T ], (X1

t , V
1
t , V

1
des) = (Xε

t , V
ε
t , Vdes)

)
≥ 1− e2ΛT − eΛT

N
.
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slightly less precise than the one (3.4) stated in [2] but relying on more elementary arguments. Indeed,
one may set (X1

0 , V
1

0 , V
1
des) = (Xε

0, V
ε

0 , Vdes) and let X1
t evolve according to the speed V 1

t which relaxes
at rate 1/τ to the desired speed V 1

des between the jump times of the Poisson process with intensity
Λ which drives the jumps of V ε. At each jump time η smaller than T of this Poisson process, an
independent index J uniformly distributed on {1, 2, . . . , N} is chosen. If (XJ

η , V
J
η−) denotes the position

and the left-hand limit of the velocity of the J-th particle at time η, when the uniform random variable
Ũ associated to this jump time is smaller than γ(V 1

η−−V Jη−)+ϕε(X1
η−XJ

η )
Λ = ε

√
2π(V 1

η−−V Jη−)+ϕε(X1
η−XJ

η )
2v̄ , the

first particle is slowed-down by the J-th particle : V 1
η = V J

η− and otherwise it keeps its velocity :
V 1
η = V 1

η−. Of course, one needs to construct the J-th particle up to time η. If J is different from one
and from the random indices associated with the previous jump times, the J-th particle is assigned
the initial condition, the Poisson process and the uniform random variables driving the independent
copie of (Xε, V ε) involved at the same jump time η. When J 6= 1, at each jump time before η of its
just assigned Poisson process, the J-th particle may be slowed-down by a particle with an independent
index uniformly distributed on {1, . . . , N}. When an index takes a value different from one and from
the previously considered indices, the particle with this index is assigned the initial condition, the
Poisson process and the uniform random variables driving the independent copy involved at the same
jump time. Going on, we generate random indices associated to up to the NT − 1 jump times of the
Poisson processes involved in the construction of the nonlinear process on the time interval [0, T ].
When one of the random indices is equal to one or to a previously considered index, then possibly less
Poisson processes and less jump times are needed to construct the first particle up to time T . Let ANT
denote the complementary event that all the indices up to the NT −1 jump times are pairwise distinct
and different from 1. On ANT , the first particle coincides on [0, T ] with the nonlinear process and we
bound the coupling probability from below by P(ANT ). The probability for k − 1 uniform random
variables on {1, 2, . . . , N} to be pairwise distinct and all different from 1 is

k−1∏
j=1

(1− j

N
) ≥ 1− 1

N

k−1∑
j=1

j = 1− k(k − 1)
2N .

Therefore

P(ANT ) = e−ΛT ∑
k≥1

(1− e−ΛT )k−1
k−1∏
j=1

(1− j

N
) ≥ 1− e−ΛT

2N (1− e−ΛT )
∑
k∈N

(1− e−ΛT )k−2k(k − 1),

= 1− e2ΛT − eΛT

N
.

3.6. Description of the simulation method

To simulate the particle system that we have just built, we use a fictitious jump technique. The
fictitious jumps method [6] consists in simulating a Poisson process of intensity α (> 0) given as an
upper-bound of the sum of the jump rates outside of each possible state of the particle system. At each
time of the jump of the Poisson process, we realize a random selection independently of the Poisson
process and the other previous selections to decide if one particle is slowed down by another one and
then to choose the two interacting particles. The instant of jumps of the Poisson process when the
system does not jump are called the fictitious jumps.

Between of the jump times of the Poisson process, the speeds and positions of the particles evolve
according to the O.D.E. (S). This method is applied here in the following manner.

• Firstly, we initialize the N -particles by choosing ((Xi
0, V

i
0 , V

i
des))1≤i≤N independent and identi-

cally distributed according to the probability measure p(0, x, v, vo)dxdvν(dvo) on R×R+×R+.
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We calculate the upper bound
MV = max

1≤i≤N
max(V i

0 , V
i
des)

of the initial and desired speeds of the N particles.

• We calculate an upper bound α of the sum of the jump rates of the particles system out
of each feasible state. The jump rate at time t of the particle i is given by λNε (t,Xi

t , V
i
t ) =

γ
N

∑N
j=1(V i

t − V
j
t )+ϕε(Xi

t −X
j
t ). Hence, the sum of the jump rates at time t is

N∑
i=1

λNε (t,Xi
t , V

i
t ) = γ

N

N∑
i,j=1

(V i
t − V

j
t )+ϕε(Xi

t −X
j
t ). (3.5)

Between the jumps, the speed of each particle evolves by the dynamics (S) between its value
at the last jump and the desired speed. Furthermore, the speed jumps always corresponding
to a decrease (slowing down by a leading car that drives slower). Therefore, the speed of each
particle i stays lower than the maximum between its initial speed and its desired speed :
supt V i

t ≤ max(V i
0 , V

i
des).

Let (i, j) be a couple of distinct indices in {1, . . . , N}.
If V i

t ≥ V
j
t , then 0 ≤ (V i

t − V
j
t )+ ≤MV and (V j

t − V i
t )+ = 0 so that

(V i
t − V

j
t )+ + (V j

t − V i
t )+ ≤MV . (3.6)

If V i
t ≤ V

j
t the inequality (3.6) still holds by symetry.

Moreover, since ϕε(.) = 1
εϕ( .ε) with ϕ(x) = 2

ε
√

2πe
−x2/2I{x<0}, ϕε(Xi

t − Xj
t ) ≤ ||ϕε||∞ =

1
ε ||ϕ||∞ = 2

ε
√

2π . Taking successively back this upper-bound, and then (3.6) into (3.5), we
obtain
N∑
i=1

λNε (t,Xi
t , V

i
t ) = γ

N

N∑
i=2

i−1∑
j=1

(
(V i
t − V

j
t )+ϕε(Xi

t −X
j
t ) + (V j

t − V i
t )+ϕε(Xj

t −Xi
t)
)
,

≤ 2γ
Nε
√

2π

N∑
i=2

i−1∑
j=1

(
(V i
t − V

j
t )+ + (V j

t − V i
t )+

)
,

≤ 2γ
Nε
√

2π
× N(N − 1)MV

2 = γ(N − 1)MV

ε
√

2π
.

Thus, we choose

α = γ × (N − 1)×MV

ε
√

2π
.

• Let (ξk)k≥1 be a sequence of independent random variables uniformly distributed on [0, 1]. The
times

Tk = − 1
α

k∑
l=1

ln ξl, k ≥ 1

are the jump times of the Poisson process with intensity αNt =
∑
k∈N

I{Tk≤t}


t≥0

. (3.7)

We also use an independent sequence (Uk)k≥1 of independent random variables uniformly
distributed on [0, 1] to choose which particles will be slowed-down at the times (Tk)k≥1.

236



A probabilistic particle approximation of the “Paveri-Fontana” kinetic model

• Setting T0 = 0, we simulate the evolution of the particle system by induction on k ∈ N.

– On the interval [Tk, Tk+1[, we solve the O.D.E. (S) using the variation of the constant
method :

∀t ∈ [Tk, Tk+1[,
{
Vt = (VTk − Vdes)× exp (− t−Tk

τ ) + Vdes,

Xt = XTk + τ × (VTk − Vdes)× (1− exp (− t−Tk
τ )) + Vdes × (t− Tk),

where Vt, Xt respectively denote the vectors of the speeds and positions of the particles
1, .., N at time t. Vdes is the constant vector of the desired speed of all the particles. We
set XTk+1 = limt→Tk+1−Xt because the positions evolve continuously in time. In contrast,
the speeds may jump, thus we denote VTk+1− = limt→Tk+1− Vt.

– We use the random variable Uk+1 to decide if a particle is slowed down at Tk+1 and, when
appropriate, which particle is slowed-down by which other particle :
∗ if

αUk+1 >
N∑
i=1

λNε (Tk+1−, Xi
Tk+1 , V

i
Tk+1−) = γ

N

N∑
i,j=1

(V i
Tk+1− − V

j
Tk+1−)+ϕε(Xi

Tk+1 −X
j
Tk+1

), (3.8)

then no speed change occurs : VTk+1 = VTk+1−,
∗ otherwise, the index Ik+1 of the slowed down particle at Tk+1 is given by :

Ik+1 = min
{
i ∈ {1, . . . , N} : αUk+1 ≤

i∑
l=1

λNε (Tk+1−, X l
Tk+1 , V

l
Tk+1−)

}
.

If we set Sk+1 =
∑Ik+1−1
l=1 λNε (Tk+1−, X l

Tk+1
, V l

Tk+1−), the index Jk+1 of particle
which slows it down, is given by

Jk+1 = min

j ∈ {1, . . . , N} : αUk+1 ≤ Sk+1 + γ

N

j∑
m=1

(V Ik+1
Tk+1− − V

m
Tk+1−)+ϕε(X

Ik+1
Tk+1
−Xm

Tk+1)

 .
To take into account the slow-down of the particle Ik+1 by the particle Jk+1 and
the preservation of the speeds of all the other particles, we set

V
Ik+1
Tk+1

= V
Jk+1
Tk+1− and ∀i 6= Ik+1, V

i
Tk+1 = V i

Tk+1−.

Since the average number αT of jump times of the Poisson process up to the simulation horizon T
is proportional to N − 1, and a double loop is needed to choose the couple of particles interacting at
each jump time, this method leads to an algorithmic complexity of O(N3) (see [7]), which is costly if
the number N of particles is large.

We propose an alternative algorithm where the selection of the pair of particles interacting at each
jump time of the Poisson process is carried out randomly and uniformly.

• Let ({Ik, Jk})k≥1 be a sequence of random variables independent and uniformly distributed on

{{i, j}, 1 ≤ i, j ≤ N, i 6= j},

independent of the Poisson process of parameter α = γ×(N−1)×MV

ε
√

2π and of the sequence (Uk)k≥1
of independent random variables uniformly distributed on [0, 1].

• Between the jump times (Tk)k≥1 of the Poisson process, the positions and speeds evolve fol-
lowing the O.D.E. (S).
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• For k ≥ 1, at time Tk, if

Uk ≤
1
MV

(
(V Ik
Tk− − V

Jk
Tk−)+I{XJk

Tk
>X

Ik
Tk
} + (V Jk

Tk− − V
Ik
Tk−)+I{XIk

Tk
>X

Jk
Tk
}

)
exp

(
−

(XIk
Tk
−XJk

Tk
)2

2ε2

)
,

the slowest of the two particles, necessarily ahead, slows down the other particle and the
velocities of the other particles are preserved :

V Ik
Tk

= V Jk
Tk

= min(V Ik
Tk−, V

Jk
Tk−) et ∀i /∈ {Ik, Jk}, V i

Tk
= V i

Tk−.

Let us check that this algorithm actually simulates the particle approximation introduced above. For
1 ≤ i, j ≤ N with i 6= j, the probability that the particle j slows down the particle i between t and
t+ dt is equal, up to a o(dt) term, to

P(Nt+dt −Nt = 1)× P ({I1, J1} = {i, j})× P
(
U1 ≤

1
MV

(V i
t − V

j
t )+I{Xj

t>X
i
t}

exp
(
− (Xi

t −X
j
t )2

2ε2

))
,

= αdt× 1(N
2
) × 1

MV
(V i
t − V

j
t )+I{Xj

t>X
i
t}

exp
(
−(Xi

t −X
j
t )2

2ε2

)
,

= 2γ
Nε
√

2π
(V i
t − V

j
t )+I{Xj

t>X
i
t}

exp
(
−(Xi

t −X
j
t )2

2ε2

)
= γ

N
(V i
t − V

j
t )+ϕε(Xi

t −X
j
t ).

Hence the total probability that particle i is slowed down between t and t+ dt is equal to
N∑
j=1

γ

N
(V i
t − V

j
t )+ϕε(Xi

t −X
j
t ) + o(dt) = λNε (t,Xi

t , , V
i
t ) + o(dt)

and then its new speed is drawn according to∑N
j=1

γ
N (V i

t − V
j
t )+ϕε(Xi

t −X
j
t )δ

V jt
(dw)∑N

j=1
γ
N (V i

t − V
j
t )+ϕε(Xi

t −X
j
t )

= µNε (t,Xi
t , V

i
t , dw).

We remark that it is not necessary to know the couples (Xi
Tk
, V i

Tk−)i/∈{Ik,Jk} to implement this algo-
rithm. Thus, to save computation time, only the positions and speeds of the particles Ik and Jk are
updated to decide whether one is slowed-down by the other. For this purpose, we need to associate
with each particle i a new variable Si giving the last time when its couple position/speed (Xi, V i)
has been updated. The cost of the algorithm is linear with respect to the number N of particles since
only two particles are updated at each jump time of the Poisson process.
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Algorithm 1 Simulation of the Paveri-Fontana model with linear cost in N
Input: N , T , τ , P , ρ(0, x, v, vo), ε.
Initialization:

• Computation of ||ρ0||L1 , γ = (1− P )||ρ0||L1 and p(0, x, v, vo) = 1
||ρ0||L1

ρ(0, x, v, vo).

• Initialization of the particles : generation of ((Xi
0, V

i
0 , V

i
des))1≤i≤N independent and indentically

distributed according to the probability measure p(0, x, v, vo)dxdvν(dvo). Initialize the last
update time Si of the couple position/speed of the particle i to 0 for each i ∈ {1, . . . , N}.

• Computation of MV = max1≤i≤N max(V i0 , V ides) and α = γ×(N−1)×MV

ε
√

2π .

• Generate U ↪→ U([0, 1]) and set t = − log(U)
α .

Iteration:
while t < T do

Uniform choice of a couple of indices {i, j} :
i = dN × U[0, 1], e j = d(N − 1)× U[0, 1]e

if j > i− 1 then
j = j + 1

end if
The positions, speed and last update time of particles i and j are updated following :

Xi = Xi + τ × (V i − V ides)× (1− exp (− t− S
i

τ
)) + V ides × (t− Si)

V i = (V i − V ides)× exp (− t− S
i

τ
) + V ides

Si = t

V j = (V j − V ides)× exp (− t− S
j

τ
) + V ides

Xj = Xj + τ × (V j − V ides)× (1− exp (− t− S
j

τ
)) + V ides × (t− Sj)

Sj = t

Interaction with the right probability

if MV × U([0, 1]) <
{

(V i − V j)(V i > V j)I{Xj>Xi} + (V j − V i)(V j > V i)I{Xi>Xj}
}
× exp

(
− (Xi−Xj)2

2ε2

)
then
V i = min(V i, V j); V j = V i

end if
Generate U ↪→ U([0, 1]), s = − log(U)

α , and increase the current time : t = t+ s.
end while
for i = 1→ N do

Xi = Xi + τ × (V i − V ides)× (1− exp (−T − S
i

τ
)) + V ides × (T − Si)

V i = (V i − V ides)× exp (−T − S
i

τ
) + V ides

end for
Output: (Xi

T , V
i
T , V

i
des)1≤i≤N .
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4. Comparison to a deterministic finite differences method

In order to reduce the dimension in which the Paveri-Fontana equation is posed, we consider the case
where there are d classes of vehicles and for k ∈ {1, . . . , d}, all the vehicles in the k − th share the
same desired speed vok. Setting ρk(t, x, v) = ρ(t, x, v, vok), with (x, v) ∈ R × R+, the Paveri-Fontana
equation (2.1) rewrites :

∂tρ
k(t, x, v) + v∂xρ

k(t, x, v) = −∂v
(
ρk(t, x, v)v

o
k − v
τ

)
, (4.1)

+ (1− P )
d∑
l=1

ρl(t, x, v)
∫ ∞
v

(w − v)ρk(t, x, w)dw,

− (1− P )ρk(t, x, v)
∫ v

0
(v − w)

d∑
l=1

ρl(t, x, w)dw, 1 ≤ k ≤ d.

We consider this equation under the initial condition ρk(t, x, v) = ρ0,k(x, v), for (x, v) ∈ R× R+. The
different classes interact through the two last terms on the right-hand side of equation (4.1) which
model the slow down of the vehicles by other vehicles at the same position, but with lower speed. The
finite differences method consists in approximating the partial derivates in a P.D.E. using a Taylor
expansion. It first necessitates to build a mesh for the time, space and speed variables, where the
approximate solution is computed.

Discretization of the computational domain:
We truncate the domain R × R+ into a bounded rectangular subdomain [xmin, xmax] × [vmin, vmax]
and we solve the system on the time interval [0, Tmax]. The interval [vmin, vmax] should be chosen to
contain the desired speed vok of the class k for k ∈ {1, . . . , d}.

• Discretization of time : We choose a uniform grid with nT steps and step size ∆t = Tmax
nT

.
The approximate solution is intialized at time t0 = 0 by discretizing the initial condition
(ρ0,1, . . . , ρ0,d). At each step n ∈ {1, . . . , nT }, the approximate solution at time tn = t0 + n∆t
is obtained from the approximate solution at tn−1.

• Spatial discretization : For i ∈ {0, . . . , I + 1}, we set xi = xmin + i∆x where ∆x = xmax−xmin
I+1 .

• Discretization of the set of velocities : The nodes of the velocity domain [vmin, vmax] are given
by vj = vmin + j∆v, for 0 ≤ j ≤ J + 1 where ∆v = vmax−vmin

J+1 and the interfaces by vj+ 1
2

=
vmin + (j + 1

2)×∆v for j ∈ {0, . . . , J}.

For (n, i, j) ∈ {0, . . . , nT } × {0, . . . , I + 1} × {0, . . . , J + 1}, the approximate density of class
k ∈ {1, . . . , d} at time tn, in position xi with speed vj is denoted ρn,ki,j ' ρk(tn, xi, vj).

Initialization :
Set ρ0,k

i,j = ρ0,k(xi, vj) for k ∈ {1, . . . , d}, i ∈ {1, . . . , I} and j ∈ {1, . . . , J}.

Boundary conditions in space and speed :
We use the homogenous Dirichlet conditions :

ρn,ki,j = 0 for n ∈ {0, . . . , nT } and (i, j) : i = 0 or j ∈ {0, J + 1}
on all edges of the domain [xmin, xmax]× [vmin, vmax] but the edge x = xmax where there is no need to
require a condition because the vehicles have a positive speed and move from xmin to xmax. The value
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of (ρn,kI+1,j)1≤j≤J is initialized to (0, 0, . . . , 0) at time step n = 0 and will evolve with n to ensure the
conservation of the total number of vehicles: the outgoing vehicles from the spatial interval [xmin, xmax]
are artificially stored in xmax.

Discretization of the equation :
Using a splitting approach, the equation (4.1) can be rewritten in the form

∂tρ
k(t, x, v) = T1 + T2 + T3 + T4

with

• T1 = −v∂xρk(t, x, v),

• T2 = −∂v
(
ρk(t, x, v) (vok−v)

τ

)
,

• T3 = (1− P )ρk(t, x, v)
∫∞

0 (w − v)ρk(t, x, w)dw,

• T4 = (1−P )
∑
l 6=k ρ

l(t, x, v)
∫∞
v (w−v)ρk(t, x, w)dw+(1−P )ρk(t, x, v)

∫ v
0 (w−v)

∑
l 6=k ρ

l(t, x, w)dw,

where the interaction term is splitted into the auto-interaction term T3 between the vehicles of the
class k and the interaction between the vehicles of the class k and the vehicles of a different class l 6= k
(term T4).

To get the approximate solution (ρn+1,k
i,j )k,i,j at time tn+1 from the approximate solution (ρn,ki,j )k,i,j

at time tn, one successively approximates the evolution equations ∂tρk(t, x, v) = Tl for l ∈ {1, 2, 3, 4}
and one denotes (ρn+m/4,k

i,j )k,i,j the approximate solution after m of these steps. Note that when the
four steps are performed, we obtain the approximate solution at time tn+1. The discretization of every
equation is made in order to preserve the total quantity

∑I+1
i=0

∑J+1
j=0 ρ

n,k
i,j ∆x∆v =

∑I+1
i=1

∑J
j=1 ρ

n,k
i,j ∆x∆v

of the vehicles of each class k ∈ {1, . . . d} over time.
The homogeneous Dirichlet boundary conditions are extended to the intermediate times

ρ
n+m/4,k
i,j = 0 for (n,m) ∈ {0, . . . , nT − 1} × {1, 2, 3} and (i, j) such as i = 0 or j ∈ {0, J + 1}.

Discretization of ∂tρk(t, x, v) = T1:

For a given initial condition, the solution at time t of this equation is the translation ρk(t, x, v) =
ρ0,k(x − vt, v) of the initial condition. The numerical discretization is carried out by the upstream
spacially-decentered scheme :

∂tρ
k(tn, xi, vj) + vj∂xiρ

k(tn, xi, vj) ≈
ρ
n+1/4,k
i,j − ρn,ki,j

∆t + vj ×
ρn,ki,j − ρ

n,k
i−1,j

∆x = 0
⇒

ρ
n+1/4,k
i,j = ρn,ki,j −

∆t
∆x × vj × (ρn,ki,j − ρ

n,k
i−1,j) for (k, i, j) ∈ {1, . . . , d} × {1, . . . , I} × {1, . . . , J}.

As
ρn,ki,j − ρ

n,k
i−1,j

∆x =
ρn,ki+1,j − ρ

n,k
i−1,j

2∆x −
ρn,ki+1,j + ρn,ki−1,j − 2ρn,ki,j

2∆x
is multiplied by −∆t× vj < 0, the choice of an upstream decentered scheme ensures that the second
order spatial derivative term added in comparison with a centered scheme has a positive coefficient in
the second member. This stabilizes the calculations at the cost of introducing numerical viscosity.
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For (k, j) ∈ {1, . . . , d} × {1, . . . , J}, the boundary condition ρn,k0,j = 0 implies that the telescoping sum∑I
i=1(ρn,ki,j −ρ

n,k
i−1,j) is equal to ρ

n,k
I,j . In order to ensure the conservation of the total quantity of vehicles

of the class k, one then sets

ρ
n+1/4,k
I+1,j = ρn,kI+1,j + ∆t

∆x × vj × ρ
n,k
I,j .

Actually, the discretization of the other evolution equations ∂tρk(t, x, v) = Tl for l ∈ {2, 3, 4} will be
conservative into the domain and does not require to modify the values of the approximate solution
in x = xmax so that we set

ρn+1,k
I+1,j = ρn,kI+1,j + ∆t

∆x × vj × ρ
n,k
I,j .

Discretization of ∂tρk(t, x, v) = T2:
We apply a scheme based on an upstream decentered discretization of the operator ∂v

(
ρk(t, x, v)v

o
k−v
τ

)
.

As previously, this ensures that the second order speed derivative term added in comparison with a
centered scheme, has a positive coefficient to second member.

We choose the direction of discretization according to the sign of vok − v. Let jok ∈ {1, . . . J} be
the index of the speed grid point closest to the desired speed vok of the class k. The approximation is
performed on each interface vj+ 1

2
.

Let i ∈ {1, . . . I}.
If j ∈ {1, . . . , j0

k − 1},

ρ
n+1/2,k
i,j = ρ

n+1/4,k
i,j − ∆t

τ∆v
[
(vok − vj+ 1

2
)× ρn+1/4,k

i,j − (vok − vj− 1
2
)× ρn+1/4,k

i,j−1

]
.

If j = j0
k ,

ρ
n+1/2,k
i,jo
k

= ρ
n+1/4,k
i,jo
k

− ∆t
τ∆v

[
(vok − vj+ 1

2
)× ρn+1/4,k

i,jo
k
+1 − (vok − vj− 1

2
)× ρn+1/4,k

i,jo
k
−1

]
.

If j ∈ {j0
k + 1, . . . , J},

ρ
n+1/2,k
i,j = ρ

n+1/4,k
i,j − ∆t

τ∆v
[
(vok − vj+ 1

2
)× ρn+1/4,k

i,j+1 − (vok − vj− 1
2
)× ρn+1/4,k

i,j

]
.

To prove the conservativity of this scheme, we compute the sum on j for fixed i :

J∑
j=1

(ρn+1/2,k
i,j − ρn+1/4,k

i,j ) =− ∆t
τ∆v ×

jok−1∑
j=1

[
(vok − vj+ 1

2
)× ρn+1/4,k

i,j − (vok − vj− 1
2
)× ρn+1/4,k

i,j−1

]

− ∆t
τ∆v ×

(
(vok − vj+ 1

2
)× ρn+1/4,k

i,jo
k
+1 − (vok − vj− 1

2
)× ρn+1/4,k

i,jo
k
−1

)

− ∆t
τ∆v ×

J∑
j=jo

k
+1

[
(vok − vj+ 1

2
)× ρn+1/4,k

i,j+1 − (vok − vj− 1
2
)× ρn+1/4,k

i,j

]
.

Using the two telescoping sums, one gets

J∑
j=1

(ρn+1/2,k
i,j − ρn+1/4,k

i,j ) = − ∆t
τ∆v × (−(vok − v 1

2
)× ρn+1/4,k

i,0 + (vok − vJ+ 1
2
)× ρn+1/4,k

i,J+1 ).
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As ρn+1/4,k
i,0 = ρ

n+1/4,k
i,J+1 = 0, ∀i ∈ {1, . . . , I} (Dirichlet boundary conditions), one concludes that

J∑
j=1

(ρn+1/2,k
i,j − ρn+1/4,k

i,j ) = 0.

Hence, one has
∑I
i=1

∑J
j=1 ρ

n+1/2,k
i,j =

∑I
i=1

∑J
j=1 ρ

n+1/4,k
i,j .

Discretization of ∂tρk(t, x, v) = T3:

For k ∈ {1, . . . , d} and (i, j) ∈ {1, . . . , I} × {1, . . . , J}, we set

ρ
n+3/4,k
i,j = ρ

n+1/2,k
i,j + (1− P )×∆t× ρn+1/2,k

i,j ×
[

J∑
m=1

(vm − vj)ρn+1/2,k
i,m

]
×∆v.

The conservativity is satisfied, because exchanging the dummy indices j and m, one gets
J∑
j=1

ρ
n+1/2,k
i,j

J∑
m=1

vmρ
n+1/2,k
i,m =

J∑
j=1

ρ
n+1/2,k
i,j

J∑
m=1

vjρ
n+1/2,k
i,m .

Discretization of ∂tρk(t, x, v) = T4:

For k ∈ {1, . . . , d} and (i, j) ∈ {1, . . . , I} × {1, . . . , J}, we set

ρn+1,k
i,j = ρ

n+3/4,k
i,j + (1− P )∆v ×

(
ρ
n+3/4,k
i,j ×

j−1∑
m=1

(vm − vj)×
∑
l 6=k

ρ
n+3/4,l
i,m

+
∑
l 6=k

ρ
n+3/4,l
i,j ×

J∑
m=j+1

(vm − vj)× ρn+3/4,k
i,m

)
. (4.2)

Summing by parts, we obtain the equality
J∑
j=1

ρ
n+3/4,k
i,j

j−1∑
m=1

(vm − vj)×
∑
l 6=k

ρ
n+3/4,l
i,m =

J∑
m=1

∑
l 6=k

ρ
n+3/4,l
i,m ×

J∑
j=m+1

(vm − vj)ρn+3/4,k
i,j

that ensures the conservativity (we can exchange the dummy indices j and m in the right-hand side).

5. Numerical Investigations

In order to test the ability of the Paveri-Fontana model implemented by our schemes to reproduce
some typical scenarios observed in a traffic flow, we propose to investigate a test case concerning two
groups of vehicles.

5.1. Description of the test case

This scenario examines the interaction between two groups of vehicles. The ahead group I is supposed
to be slower than the rear one, group II. Namely, when initializing the algorithm, we assign smaller
speeds to the ahead vehicles and smaller positions and larger speeds to the rear vehicles. Each group
has its own desired speed.
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Firstly we present the numerical values of the parameters used in the two approximating methods.
We investigate convergence properties of each method and then compare their numerical results.

We initialize the density with a piecewise constant density function whose analytical expression is:

ρ0(x, v) =


ρI if x ∈ [XI

min, X
I
max] and v ∈ [V I

min, V
I
max],

ρII if x ∈ [XII
min, X

II
max] and v ∈ [V II

min, V
II
max],

0 otherwise.

The L1-norm of this density is

||ρ0||L1 = ρI0 × (XI
max −XI

min)× (V I
max − V I

min) + ρII0 × (XII
max −XII

min)× (V II
max − V II

min).

The Paveri-Fontana model parameters are presented in Table 5.1. Table 5.2 contains the parameters
of the initial density and of the discretization domain used in the finite differences method.

Parameters Values
voI 25m/s
voII 30m/s
τ 15s and 30s
P 1

2
Table 5.1. Parameters
of P-F model

Parameters Values
ρI , ρII 0.02, 0.01 veh.s/m2

XI
min , XI

max 500m , 1000m
XII
min, XII

max 0m , 300m
V I
min , V I

max [17 , 25] m/s ie [61 , 90] km/h
V II
min, V II

max [25 , 30] m/s ie [90 , 108] km/h
[xmin, xmax] [−20, 5980] m
[vmin, vmax] [15.5, 30.5] m/s
Table 5.2. Initial density and discretization
domain

Notice that, at the beginnning of the discussion of the numerical results, we will quickly investigate
the choices P = 0 and P = 1 for the overtaking coefficient. But most of the simulations are performed
with P = 1

2 .

5.1.1. Initialization of the particle method

The numbers of particles NI in class I and NII in class II are selected in a deterministic way :

N I = dN × (XI
max −XI

min)× (V I
max − V I

min)× ρI

||ρ0||L1
e,

N II = N −N I ,

with N ∈ {10000, 100000}.
For class I, the initial positions and velocities are chosen i.i.d. : one has ∀1 ≤ i ≤ NI , Xi

0 ↪→
U[XI

min;XI
max] and V i

0 ↪→ U[V I
min;V I

max]. The desired speed of each particle of this class is fixed
to V i

des = voI .
Likewise for class II, ∀NI + 1 ≤ j ≤ N , Xj

0 ↪→ U[XII
min;XII

max] and V j
0 ↪→ U[V II

min;V II
max]. The corre-

sponding desired speed is V j
0 = voII .

Let us now derive some theoretical properties of the solution to the Paveri-Fontana equation. We
will later investigate the ability of the two numerical methods to reproduce these properties.
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5.2. Minimal position and velocity

When there is only one class i.e. all vehicles have the same desired speed vo, setting v(t) = vo + (v −
vo)e−

t
τ and x(t) = x+ vot+ τ(v− vo)(1− e−

t
τ ) so that v′(t) = vo−v(t)

τ and x′(t) = v(t), and using the
Paveri-Fontana equation describing the evolution of the density ρ̄(t, x, v) of vehicles, one gets that

d

dt

(
e−

t
τ ρ̄(t, x(t)v(t))

)
= e−t/τ

(
∂tρ̄(t, x(t), v(t)) + v(t)∂xρ̄(t, x(t), v(t)) + vo − v(t)

τ
∂vρ̄(t, x(t), v(t))− 1

τ
ρ̄(t, x(t), v(t))

)
,

= e−
t
τ

(
∂tρ̄(t, x(t), v(t)) + v(t)∂xρ̄(t, x(t), v(t)) + ∂v

(
ρ̄(t, x(t), v)v

o − v
τ

) ∣∣∣∣
v=v(t)

)

= e−
t
τ (1− P )ρ̄(t, x(t), v(t))

∫ +∞

0
(w − v(t))ρ̄(t, x(t), w)dw.

Hence
e−

t
τ ρ̄(t, x(t), v(t)) = ρ̄0(x, v) exp

(
(1− P )

∫ t

0
e−

s
τ

∫ +∞

0
(w − v(s))ρ̄(s, x(s), w)dwds

)
.

If ρ̄0(x, v) vanishes when v ≤ vmin for any position x, we deduce that ρ̄(t, x, v) vanishes when v ≤ vo + (vmin −
vo)e− t

τ for any position x.

In the same way when the initial density ρ̄0(x, v) vanishes for x < xmin or v < vmin, we deduce that ρ̄(t, x, v)
vanishing for x < xmin + vo × t+ τ × (vmin − vo)(1− e−

t
τ ) or v < vo + (vmin − vo)× e−

t
τ .

In the test case introduced above, as the vehicles of class I are not slowed-down by those of class II (the
maximum speed V Imax = voI = 25m/s over class I equals the minimum speed V IImin = 25m/s over class II), we
can generalize this reasoning to assert that:

ρI(t, x, v) = 0 if x < XI
min(t) = XI

min + voI × t+ τ × (V Imin − voI )(1− e− t
τ ), (5.1)

or v < V Imin(t) = voI + (V Imin − voI )e− t
τ . (5.2)

Similar arguments can be applied to assert that the density of class II is null below some minimal positions and
velocities until the interaction with class I begins.

5.3. The interaction time between both classes
The interaction time trec is defined as the time required by the leading vehicle of class II to catch up the last
vehicle of class I.

By the previous paragraph, the minimal position where the spatial density of class I is non-zero is :

XI
min(t) = XI

min + v0
I × t+ τ × (1− e− t

τ )× (V Imin − voI ).
Until the vehicles of class II catch up those of class I, a similar reasoning ensures that the maximal position
where the spatial density of class II is non-zero is :

XII
max(t) = XII

max + voII × t.
Therefore the interacting time trec solves f(trec) = 0 where

f(t) = XII
max −XI

min + (voII − v0
I )× trec + τ × (1− e−

trec
τ )(v0

I − V Imin).
Approximating trec by Newton’s method which consists in computing inductively

tk+1 = tk −
f(tk)
f ′(tk) , at k − th time step, (5.3)

we obtain ttheorec ≈ 21.7s if the relaxation time is τ = 15s, and ttheorec ≈ 18.2s if τ = 30s.
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5.4. Discussion of the results

Influence of the overtaking coefficient P
Figure 5.1 shows the positions and speeds of the particles (in red for class I and blue for class II) as a function
of time for various choices of the overtaking coefficient P .

The left part deals with the case P = 1. The interaction term vanishes in the Paveri-Fontana equation. Thus
the speeds do not jump and all the particles of class II overtake those of class I without interacting with them.
The middle part corresponds to P = 1

2 . We observe speed jumps for particles of class II which are slowed-down
The rightmost figure shows the case P = 0 where the deceleration term is the strongest. The particles of class
II stay behind and adjust their speed to those of the particles of the ahead class until the end of the simulation
time considered here. However, for a longer simulation time, the particles of class II end up overtaking.

From now on, we fix the overtaking coefficient to P = 1
2 .
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Figure 5.1. Speeds and positions for the overtaking probability P = 1, 1
2 and 0 (τ = 15s).

Convergence of the probabilistic method
The convergence of this method is illustrated by Figures 5.2 to 5.5 representing the spatial and speed densities
of the two classes with N = 10000 (blue curves) and N = 100000 particles (red curves).
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Figure 5.2. Spatial density of class I obtained by the stochastic method with N =
10000 (blue) and N = 100000 (red) particles at times t = 0 (left), t = 40s (middle)
and t = 120s (right). τ = 30s.

We find the same profile with random fluctuations whose amplitude is divided by approximately
√

10 when
the number N of particles is multiplied by 10, which is consistant with the decay of the variance of the empirical
mean in an I.I.D. setting.
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Figure 5.3. Speed density of class I obtained by the stochastic method with N =
10000 (blue) and N = 100000 (red) particles at times t = 0 (left), t = 40s (middle)
and t = 120s (right). τ = 30s.
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Figure 5.4. Spatial density of class II obtained by the stochastic method with N =
10000 (blue) and N = 100000 (red) particles at times t = 0 (left), t = 40s (middle)
and t = 120s (right). τ = 30s.
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Figure 5.5. Speed density of class II obtained by the stochastic method with N =
10000 (blue) and N = 100000 (red) particles at times t = 0 (left), t = 40s (middle)
and t = 120s (right). τ = 30s.

Convergence of the deterministic method

We compare the results of the upwind scheme on two meshes with different thinness. The stepsizes ∆t, ∆x and
∆v are chosen to satisfy the CFL condition. Figures 5.6 to 5.9 compare the spatial and speed densities of the
two classes for these two discretizations.
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Figure 5.6. Spatial density of class I obtained by the finite differences method at
times t = 20s (left), t = 50s (middle) and t = 90s (right). In blue: ∆t = 1.25.10−2s,
∆x = 1.25m and ∆v = 2.10−2m/s. In red: ∆t = 8.3.10−3s, ∆x = 0.83m and ∆v =
1.3.10−2m/s. τ = 30s.
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Figure 5.7. Speed density of class I obtained by the finite differences method at
times t = 20s (left), t = 50s (middle) and t = 90s (right). In blue: ∆t = 1.25.10−2s,
∆x = 1.25m and ∆v = 2.10−2m/s. In red: ∆t = 8.3.10−3s, ∆x = 0.83m and ∆v =
1.3.10−2m/s. τ = 30s.
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Figure 5.8. Spatial density of class II obtained by the finite differences method at
times t = 20s (left), t = 50s (middle) and t = 90s (right). In blue: ∆t = 1.25.10−2s,
∆x = 1.25m and ∆v = 2.10−2m/s. In red: ∆t = 8.3.10−3s, ∆x = 0.83m and ∆v =
1.3.10−2m/s. τ = 30s.
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Figure 5.9. Speed density of class II obtained by the finite differences method at
times t = 20s (left), t = 50s (middle) and t = 90s (right). In blue: ∆t = 1.25.10−2s,
∆x = 1.25m and ∆v = 2.10−2m/s. In red: ∆t = 8.3.10−3s, ∆x = 0.83m and ∆v =
1.3.10−2m/s. τ = 30s.

The stability of the finite differences scheme is observed during the numerical iterations.

We observe the convergence of the spatial density of class I. After a long time, the speed density of this class
tends to the quantity ρI × (XI

max − XI
min) × (V Imax − V Imin) multiplied by the Dirac mass in voI = 25m/s.

Approximating this measure on a discrete mesh is problematic, which explains the observed differences between
the two approximate solutions on Figure 5.7 at t = 90s. The approximate spatial density of class II at time
t = 90s is slightly more concentrated for the thin discretization than the rough discretization (see Figure 5.8).
This is due to the numerical diffusion.

Comparison of the two methods
Figures 5.10 to 5.13 show that the spatial and speed densities obtained from the two methods with the finest
discretization (N = 100000 in the particle method, ∆t = 8.3.10−3s, ∆x = 0.83m and ∆v = 1.3.10−2m/s
in the finite differences method) match well. Figures 5.10 and 5.11 show that the marginal spatial and speed
densities for class I obtained by the stochastic method respectively vanish below the theoretical minimal position
XI
min(t) and speed V Imin(t). In contrast, the deterministic densities are still positive slightly below the minimal

position and speed. Figures 5.14 and 5.15 respectively present the bidimensional densities obtained from the
deterministic method and the stochastic method.
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Figure 5.10. Spatial density of Class I at times t = 0 (left), t = 30s (middle),
t = 160s (right) computed by the finite differences method in blue – and by the
stochastic method in red –. The green line | delineates the minimal position XI

min(t)
given by (5.1). τ = 30s.
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Figure 5.11. Speed density of Class I at times t = 0 (left), t = 30 (middle), t = 160
(right) computed by the finite differences method in blue – and by the stochastic
method in red –. The green line | delineates the minimal speed V I

min(t) given by (5.2).
τ = 30s.
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Figure 5.12. Spatial density of Class II at times t = 0 (left), t = 30s (middle),
t = 160s (right) computed by the finite differences method in blue – and by the
stochastic method in red –. τ = 30s.
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Figure 5.13. Speed density of Class II at times t = 0 (left), t = 30s (middle), t = 160s
(right) computed by the finite differences method in blue – and by the stochastic method
in red –. τ = 30s.

The deterministic method detects the interaction at time tdetrec ∈ [18s, 19s] when τ = 30s and tdetrec ∈ [20s, 21s]
when τ = 15s. The stochastic method detects the interaction at tstochrec ≈ 18.5s, whereas the Newton algorithm
predicts it at ttheorec ≈ 18.2s when τ = 30s and at tstochrec ≈ 21.8s while ttheorec ≈ 21.7s for τ = 15s. The slight
anticipation of this time by the deterministic method can be explained by the numerical diffusion introduced
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Figure 5.14. Densities of the two classes computed from the deterministic method at
times t = 0 (left), t = 50s (middle) and t = 120s (right). τ = 30s.
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Figure 5.15. Densities of the two classes computed from stochastic method at times
t = 0 (left), t = 50s (middle) and t = 120s (right). τ = 30s.
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by the second order term present in the upwind scheme.

The numerical experiments show that the two methods reproduce well the expected properties of the Paveri-
Fontana model.

Figure 5.16 depicts the evolution of the relative L1-errors between the two methods through time. For example,

the top left picture shows the evolution of the quantity
∫
x

∣∣∫
v
ρdetI (t,x,v)−ρpart

I
(t,x,v)dv

∣∣dx
ρI×(XImax−XImin)×(V Imax−V Imin) .

The error on the spatial density of class I stays small (below 10 The deterioration of the error on the speed density
for this class is probably related to the difficulty for the deterministic method to account for the convergence
of this density to ρI × (XI

max −XI
min) × (V Imax − V Imin) times the Dirac mass in voI . Moreover, the L1-error is

not a relevant criterion to measure the discrepancy between two Dirac distributions.

6. Conclusion

In this work, we have developed a new stochastic particle method to approximate the Paveri-Fontana model.
We built a deterministic upwind scheme to have a reference solution and validate the benefits of the particle
method on a test case.
In the scenario discussed here, a first class of vehicles with lower desired speed was caught up by a class of
vehicles with a higher desired speed.

The numerical experiments showed :

• the ability of the both methods to reproduce the model properties;

• that the deterministic method slightly anticipates the first interacting time trec owing to the numerical
diffusion generated in the upwind scheme;

• that the stochastic density solution is null outside the expected support, but that the support is larger
than expected for the deterministic solution, which is probably due to the numerical diffusion;

• that the computation time of the particle method is much smaller than the one of the deterministic
scheme.
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