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Abstract. We consider the problem of reconstructing an unknown bounded function u defined on a domain
X ⊂ Rd from noiseless or noisy samples of u at n points (xi)i=1,...,n. We measure the reconstruction error in a
norm L2(X, dρ) for some given probability measure dρ. Given a linear space Vm with dim(Vm) = m ≤ n, we
study in general terms the weighted least-squares approximations from the spaces Vm based on independent
random samples. It is well known that least-squares approximations can be inaccurate and unstable when
m is too close to n, even in the noiseless case. Recent results from [6, 7] have shown the interest of using
weighted least squares for reducing the number n of samples that is needed to achieve an accuracy comparable
to that of best approximation in Vm, compared to standard least squares as studied in [4]. The contribution
of the present paper is twofold. From the theoretical perspective, we establish results in expectation and in
probability for weighted least squares in general approximation spaces Vm. These results show that for an
optimal choice of sampling measure dµ and weight w, which depends on the space Vm and on the measure
dρ, stability and optimal accuracy are achieved under the mild condition that n scales linearly with m up
to an additional logarithmic factor. In contrast to [4], the present analysis covers cases where the function
u and its approximants from Vm are unbounded, which might occur for instance in the relevant case where
X = Rd and dρ is the Gaussian measure. From the numerical perspective, we propose a sampling method
which allows one to generate independent and identically distributed samples from the optimal measure dµ.
This method becomes of interest in the multivariate setting where dµ is generally not of tensor product type.
We illustrate this for particular examples of approximation spaces Vm of polynomial type, where the domain
X is allowed to be unbounded and high or even infinite dimensional, motivated by certain applications to
parametric and stochastic PDEs.

Math. classification. 41A10, 41A25, 41A65, 62E17, 93E24.
Keywords. multivariate approximation, weighted least squares, error analysis, convergence rates, random
matrices, conditional sampling, polynomial approximation.

1. Introduction

1.1. Reconstruction from pointwise data

Let X be a Borel set of Rd. We consider the problem of estimating an unknown function u : X → R
from pointwise data (yi)i=1,...,n which are either noiseless or noisy observations of u at points (xi)i=1,...,n
from X. In numerous applications of interest, some prior information is either established or assumed
on the function u. Such information may take various forms such as:

(i) regularity properties of u, in the sense that it belongs to a given smoothness class;

(ii) decay or sparsity of the expansion of u in some given basis;

(iii) approximability of u with some prescribed error by given finite-dimensional spaces.

This research is supported by Institut Universitaire de France and the ERC AdV project BREAD.
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Note that the above are often related to one another and sometimes equivalent, since many smoothness
classes can be characterized by prescribed approximation rates when using certain finite-dimensional
spaces or truncated expansions in certain bases.

This paper uses the third type of prior information, taking therefore the view that u can be “well
approximated” in some space Vm of functions defined everywhere on X, such that dim(Vm) = m. We
work under the following mild assumption:

for any x ∈ X, there exists v ∈ Vm such that v(x) 6= 0. (1.1)

This assumption holds, for example, when Vm contains the constant functions. Typically, the space
Vm comes from a family (Vj)j≥1 of nested spaces with increasing dimension, such as algebraic or
trigonometric polynomials, or piecewise polynomial functions on a hierarchy of meshes.

We are interested in measuring the error in the L2(X, dρ) norm

‖v‖ :=
(∫

X
|v|2dρ

)1/2
,

where dρ is a given probability measure on X. We denote by 〈·, ·〉 the associated inner product. One
typical strategy is to pick the estimate from a finite-dimensional space Vm such that dim(Vm) = m.
The ideal estimator is given by the L2(X, dρ) orthogonal projection of u onto Vm, namely

Pmu := argmin
v∈Vm

‖u− v‖.

In general, this estimator is not computable from a finite number of observations. The best approxi-
mation error

em(u) := min
v∈Vm

‖u− v‖ = ‖u− Pmu‖,

thus serves as a benchmark for a numerical method based on a finite sample.
One objective of such numerical methods is therefore to approach the accuracy em(u) by using a

sample of minimal possible size. One of the main results of this paper shows that by using a well-
chosen random sample of size n linearly proportional tom, up to a logarithmic factor, one can construct
an estimator ũ ∈ Vm such that ‖u − ũ‖ is comparable to em(u) in expectation, or to another best
approximation error with high probability. The construction of this estimator is based on properly
weighted least-squares methods.

1.2. Discrete least-squares methods

In the subsequent analysis, we make significant use of an arbitrary L2(X, dρ) orthonormal basis
{L1, . . . , Lm} of the space Vm. We also introduce the notation

em(u)∞ := min
v∈Vm

‖u− v‖L∞ ,

where L∞ is meant with respect to dρ, and observe that em(u) ≤ em(u)∞ for any probability measure
dρ.

The weighted least-squares method consists in defining the estimator as

uW := argmin
v∈Vm

1
n

n∑
i=1

wi|v(xi)− yi|2, (1.2)

where the weights wi > 0 are given. In the noiseless case yi = u(xi), this also writes

argmin
v∈Vm

‖u− v‖n, (1.3)
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where the discrete seminorm is defined by

‖v‖n :=
(

1
n

n∑
i=1

wi|v(xi)|2
)1/2

. (1.4)

This seminorm is associated with the semi-inner product 〈·, ·〉n. If we expand the solution to (1.3)
as
∑m
j=1 vjLj , the vector v = (vj)j=1,...,m is the solution to the normal equations

Gv = d, (1.5)

where the m×m Gramian matrix G has entries

Gj,k := 〈Lj , Lk〉n, j, k = 1, . . . ,m, (1.6)

and where the data vector d = (dj)j=1,...,m is given by dj := 1
n

∑n
i=1w

iyiLj(xi). This system always
has at least one solution, which is unique when G is nonsingular. When G is singular, we may define
uW as the unique minimal `2 norm solution to (1.5).

Note that G is nonsingular if and only if ‖ · ‖n is a proper norm on the space Vm. Then, if the data
are noisefree that is, when yi = u(xi), we may also write

uW = Pnmu,

where Pnm is the orthogonal projection onto Vm for the norm ‖ · ‖n.
In practice, for the estimator (1.2) to be easily computable, it is important that the functions

L1, . . . , Lm have explicit expressions that can be evaluated at any point in X so that the system (1.5)
can be assembled. Let us note that computing this estimator by solving (1.5) only requires that
{L1, . . . , Lm} be a basis of the space Vm, not necessarily orthonormal in L2(X, dρ). Yet, since our
subsequent analysis of this estimator makes use of an L2(X, dρ) orthonormal basis, we simply assume
that {L1, . . . , Lm} is of such type. In addition, this analysis shows that when using such an orthonormal
basis, the condition number of the Gramian matrix G can be controlled, which warrants the stability
of numerical computations.

In our subsequent analysis, we sometimes work under the assumption of a known uniform bound

‖u‖L∞ ≤ τ. (1.7)

We introduce the truncation operator

z 7→ Tτ (z) := sign(z) min{|z|, τ},

and we study the truncated weighted least-squares approximation defined by

uT := Tτ ◦ uW .

Note that, in view of (1.7), we have |u− uT | ≤ |u− uW | in the pointwise sense and therefore

‖u− uT ‖ ≤ ‖u− uW ‖.

The truncation operator aims at avoiding instabilities which may occur when the matrix G is ill-
conditioned. In this paper, we use randomly chosen points xi, and corresponding weights wi = w(xi),
distributed in such a way that the resulting random matrix G concentrates towards the identity I as
n increases. Therefore, if no L∞ bound is known, an alternative strategy consists in setting to zero
the estimator when G deviates from the identity by more than a given value in the spectral norm. We
recall that for m ×m matrices X, this norm is defined as ‖X‖2 := sup‖v‖2=1 ‖Xv‖2. More precisely,
we introduce the conditioned least-squares approximation, defined by

uC :=
{
uW , if ‖G− I‖2 ≤ 1

2 ,

0, otherwise.
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The choice of 1
2 as a threshold for the distance between G and I in the spectral norm is related to

our subsequent analysis. However, the value 1
2 could be be replaced by any real number in ]0, 1[ up to

some minor changes in the formulation of our results. Note that

‖G− I‖2 ≤
1
2 =⇒ cond(G) ≤ 3. (1.8)

In this paper, we consider least-squares approximations ũ of the above types uW , uT and uC .
It is well known that if n ≥ m is too much close to m, weighted least-squares methods may become

unstable and inaccurate for most sampling distributions. For example, if X = [−1, 1] and Vm = Pm−1
is the space of algebraic polynomials of degree m − 1, then with m = n the estimator coincides with
the Lagrange polynomial interpolation which can be highly unstable and inaccurate, in particular for
equispaced points. The question that we want to address here in general terms is therefore:

Given a space Vm and a measure dρ, how to best choose the samples yi and weights wi in order to
ensure that the L2(X, dρ) error ‖u − ũ‖ is comparable to em(u), with n being as close as possible to
m, for ũ ∈ {uW , uT , uC} ?

We address this question in the case where the xi are randomly chosen. More precisely, we draw the
independent xi according to a certain probability measure dµ defined on X. A natural prescription
for the success of the method is that ‖v‖n approaches ‖v‖ as n tends to +∞.

1.3. Previous results on unweighted least squares

One first obvious choice is to use
dµ = dρ and wi = 1, i = 1, . . . , n, (1.9)

that is, sample according to the measure in which we plan to evaluate the L2 error and use equal
weights. When using equal weights wi = 1, the weighted least-squares estimator (1.2) becomes the
standard least-squares estimator, as a particular case. The strategy (1.9) was analyzed in [4], through
the introduction of the function

x 7→ km(x) :=
m∑
j=1
|Lj(x)|2,

which is the diagonal of the integral kernel of the projector Pm. This function only depends on Vm
and dρ. It is strictly positive in X due to Assumption 1.1. Its reciprocal function is characterized by

1
km(x) = min

v∈Vm,v(x)=1
‖v‖2,

and is called Christoffel function in the particular case where Vm is the space of algebraic polynomials
of total degree m− 1, see [12]. Obviously, the function km satisfies∫

X
kmdρ = m. (1.10)

We define
Km = Km(Vm, dρ) := ‖km‖L∞ ,

and recall the following results from [4, 11] for the standard least-squares method with the weights
and the sampling measure chosen as in (1.9).
Theorem 1.1. For any r > 0, if m and n are such that the condition

Km ≤ κ
n

lnn, with κ := κ(r) = 1− ln 2
2 + 2r , (1.11)

is satisfied, then the following holds:
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(i) The matrix G satisfies the tail bound

Pr
{
‖G− I‖2 >

1
2

}
≤ 2n−r. (1.12)

(ii) If u ∈ L2(X, dρ) satisfies a uniform bound (1.7), then the truncated least-squares estimator
satisfies, in the noiseless case,

E(‖u− uT ‖2) ≤ (1 + ε(n))em(u)2 + 8τ2n−r, (1.13)
where ε(n) := 4κ

ln(n) → 0 as n→ +∞, and κ as in (1.11).

(iii) With probability larger than 1− 2n−r, the truncated and nontruncated least-squares estimators
satisfy, in the noiseless case,

‖u− uT ‖ ≤ ‖u− uW ‖ ≤ (1 +
√

2)em(u)∞, (1.14)
for all u ∈ L∞(X, dρ).

The second item in the above result shows that the optimal accuracy em(u) is met in expectation,
up to an additional term of order n−r. When em(u) has polynomial decay O(m−s), we are ensured
that this additional term can be made negligible by taking r strictly larger than s/2, which amounts to
taking κ(r) small enough. Condition (1.11) imposes a minimal number of samples to ensure stability
and accuracy of standard least squares. Since (1.10) implies that Km ≥ m, the fulfillment of this
condition requires that n is at least of the order m ln(m). However simple examples show that the
restriction can be more severe, for example if Vm = Pm−1 on X = [−1, 1] and with dρ being the
uniform probability measure. In this case, one choice for the Lj are the Legendre polynomials with
proper normalization ‖Lj‖L∞ = |Lj(1)| =

√
1 + 2j so that Km = m2, and therefore condition (1.11)

imposes that n is at least of order m2 ln(m). Other examples in the multivariate setting are discussed
in [2, 3] which show that for many relevant approximation spaces Vm and probability measures dρ, the
behaviour ofKm is superlinear inm, leading to a very demanding regime in terms of the needed number
n of samples. In the case of multivariate downward closed polynomial spaces, precise upper bounds
for Km have been proven in [3, 9] for measures associated to Jacobi polynomials. In addition, note
that the above theory does not cover simple situations such as algebraic polynomials over unbounded
domains, for example X = R equipped with the Gaussian measure, since the orthonormal polynomials
Lj are unbounded for j ≥ 2 and thus Km =∞ if m ≥ 2.

The rest of our paper is organized as follows. In the next section §2, we present our main result which
allows us to circumvent all the above limitations by using a proper weighted least-squares method and
an optimal sampling measure dµm. The proof of the main result is given in §3 in a concise form since
it follows the same lines as the original results on standard least squares from [4, 11, 3]. We devote
§4 to analogous results in the case of sample evaluations affected by additive noise, proving that the
estimates are robust. The proposed method for sampling the optimal measure dµm is discussed in §5,
and we illustrate its effectiveness in §6 by numerical examples.

2. Main results

2.1. Weighted least-squares approximation

In the present paper, we show that the above limitations can be overcome, by using a proper weighted
least-squares method. We thus return to the general form of the discrete norm (1.4) used in the
definition of the weighted least-squares estimator. We now use a sampling measure dµ which generally
differs from dρ and is such that

wdµ = dρ,
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where w is a positive function defined everywhere on X and such that
∫
X w

−1dρ = 1, and we then
consider the weighted least-square method with weights given by

wi = w(xi).
With such a choice, the norm ‖v‖n again approaches ‖v‖ as n increases. The particular case dµ = dρ
and w ≡ 1 corresponds to the standard least-squares method analyzed by Theorem 1.1. Note that
changing the sampling measure is a commonly used strategy for reducing the variance in Monte Carlo
methods, where it is referred to as importance sampling.

With Lj again denoting the L2(X, dρ) orthonormal basis of Vm, we now introduce the function

x 7→ km,w(x) :=
m∑
j=1

w(x)|Lj(x)|2,

which only depends on Vm, dρ and w, as well as
Km,w = Km,w(Vm, dρ, w) := ‖km,w‖L∞ .

Note that, since the
√
wLj are an L2(X, dµ) orthonormal basis of

√
wVm, that is, the space consisting

of the functions
√
wg with g ∈ Vm, we find that

∫
X km,wdµ = m and thus Km,w ≥ m. We prove in

this paper the following generalization of Theorem 1.1.

Theorem 2.1. For any r > 0, if m and n are such that the condition

Km,w ≤ κ
n

lnn, with κ := 1− ln 2
2 + 2r , (2.1)

is satisfied, then the following holds:

(i) The matrix G satisfies the tail bound

Pr
{
‖G− I‖2 >

1
2

}
≤ 2n−r. (2.2)

(ii) If u ∈ L2(X, dρ) satisfies a uniform bound (1.7), then the truncated weighted least-squares
estimator satisfies, in the noiseless case,

E(‖u− uT ‖2) ≤ (1 + ε(n))em(u)2 + 8τ2n−r, (2.3)
where ε(n) := 4κ

ln(n) → 0 as n→ +∞, and κ as in (1.11).

(iii) With probability larger than 1− 2n−r, the nontruncated weighted least-squares estimator satis-
fies, in the noiseless case,

‖u− uW ‖ ≤ (1 +
√

2)em(u)∞, (2.4)
for all u ∈ L∞(X, dρ).

(iv) If u ∈ L2(X, dρ), then the conditioned weighted least-squares estimator satisfies, in the noiseless
case,

E(‖u− uC‖2) ≤ (1 + ε(n))em(u)2 + 2‖u‖2n−r, (2.5)
where ε(n) := 4κ

ln(n) → 0 as n→ +∞, and κ as in (1.11).

Notice that the probability and expectation are now taken with respect to the sampling measure
dµ, whereas in Theorem 1.1 they are taken in dρ.

Let us mention that the quantity Km,w has been considered in [6], where similar stability and
approximation results have been formulated in a slightly different form (see in particular Theorem 2.1
therein), in the specific framework of total degree polynomial spaces.
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2.2. Optimal sampling

The interest of Theorem 2.1 is that it leads us in a natural way to an optimal sampling strategy for
the weighted least-square method. We simply take

w := m

km
= m∑m

j=1 |Lj |2
, (2.6)

and with such a choice for w one readily checks that

dµ := km
m
dρ, (2.7)

is a probability measure on X since
∫
X kmdρ = m.

In addition, we have for this particular choice that

km,w = wkm = m,

and therefore
Km,w = m.

We thus obtain the following result as a consequence of Theorem 2, which shows that the above
choice of w and dµ allows us to obtain near-optimal estimates for the truncated weighted least-squares
estimator, under the minimal condition that n is at least of the order m ln(m).

Corollary 2.2. For any r > 0, if m and n are such that the condition

m ≤ κ n

lnn, with κ := 1− ln 2
2 + 2r , (2.8)

is satisfied, then the conclusions (i), (ii), (iii) and (iv) of Theorem 2.1 hold for weighted least squares
with the choice of w and dµ given by (2.6) and (2.7).

One of the interests of the above optimal sampling strategy is that it applies to polynomial ap-
proximation on unbounded domains that were not covered by Theorem 1.1, in particular X = R
equipped with the Gaussian measure. In this case, the relevant target functions u are often nonuni-
formly bounded and therefore the results in items (ii) and (iii) of Theorem 2.1 do not apply. The
result in item (iv) for the conditioned estimator uC remains valid, since it does not require uniform
boundedness of u.

Let us remark that all the above results are independent of the dimension d of the domain X.
However, raising d has the unavoidable effect of restricting the classes of functions for which the best
approximation error em(u) or em(u)∞ have some prescribed decay, due to the well-known curse of
dimensionality.

Note that the optimal pair (dµ,w) described by (2.6) and (2.7) depends on Vm, that is

w = wm and dµ = dµm.

This raises a difficulty for properly choosing the samples in settings where the choice of Vm is not
fixed a-priori, such as in adaptive methods. In certain particular cases, it is known that wm and dµm
admit limits w∗ and dµ∗ as m→∞ and are globally equivalent to these limits. One typical example
is given by the univariate polynomial spaces Vm = Pm−1, when X = [−1, 1] and dρ = ρdx where ρ is a
Jacobi weight and dx is the Lebesgue measure on X. In this case dµ∗ is the pluripotential equilibrium
measure

dµ∗ = dx

2π
√

1− x2
,

see e.g. [8, 13], and one has
cdµ∗ ≤ dµm ≤ Cdµ∗, m ≥ 1,
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for some fixed constants 0 < c < C < ∞. Thus, in such a case, the above corollary also holds for
the choice w = w∗ and dµ = dµ∗ under the condition m ≤ c

Cκ
n

lnn . The development of sampling
strategies in cases of varying values of m without such asymptotic equivalences is the object of current
investigation.

A closely related weighted least-squares strategy was recently proposed and analyzed in [7], in the
polynomial framework. There, the authors propose to use the renormalized Christoffel function (2.6)
in the definition of the weights, however sampling from the fixed pluripotential equilibrium measure
dµ∗. Due to the fact that dµm differs from dµ∗, the main estimate obtained in [7] (see p 3 therein)
does not have the same simple form of a direct comparison between ‖u− uT ‖ and em(u) as in (ii) of
Theorem 2.1. In particular, it involves an extra term d(f) which does not vanish even as n→∞.

One intrinsic difficulty when using the optimal pair (dµ,w) = (dµm, wm) described by (2.6) and (2.7)
is the effective sample generation, in particular in the multivariate framework since the measure dµm
is generally not of tensor product type. One possible approach is to use Markov Chain Monte Carlo
methods such as the Metropolis-Hastings algorithm, as explored in [6]. In such methods the samples are
mutually correlated, and only asymptotically distributed according to the desired sampling measure.
One contribution of the present paper is to propose a straightforward and effective sampling strategy
for generating an arbitrary finite number n of independent samples identically distributed according to
dµm. This strategy requires that dρ has tensor product structure and that the spaces Vm are spanned
by tensor product bases, such as for multivariate polynomial spaces, in which case dµm is generally
not of tensor product type.

Another type of reconstruction in finite-dimensional spaces with arbitrary bases and using samples
has been analysed in [1], known as “generalized sampling”.

3. Proof of Theorem 2.1

The proof is structurally similar to that of Theorem 1.1 given in [4] for items (i) and (ii) and in [3]
for item (iii), therefore we only sketch it. We observe that the matrix G in (1.6) can be written as
G =

∑n
i=1 Xi where the Xi are i.i.d. copies of the rank 1 random matrix

X = X(x) := 1
n

(w(x)Lj(x)Lk(x))j,k=1,...,m ,

with x a random variable distributed over X according to µ. One obviously has E(X) = I. We then
invoke the Chernov bound from [14] to obtain that if ‖X‖2 ≤ R almost surely, then, for any 0 < δ < 1,

Pr {‖G− I‖2 > δ} ≤ 2m
(

e−δ

(1− δ)1−δ

)1/R

= 2m exp
(
−cδ
R

)
, (3.1)

with cδ := δ + (1− δ) ln(1− δ) > 0. Taking δ = 1
2 , and observing that

‖X(x)‖2 = 1
n
w(x)

m∑
j=1
|Lj(x)|2 = Km,w(x)

n
,

we may thus take R = Km,w

n which yields (2.2) in item (i).
For the proof of (2.3) in item (ii), we first consider the event where ‖G− I‖2 ≤ 1

2 . In this case we
write
‖u− uT ‖2 = ‖Tτ (u)− Tτ (uW )‖2 ≤ ‖u− uW ‖2 = ‖u− Pnmu‖2 = ‖g‖2 + ‖Pnmg‖2, g := u− Pmu,

where we have used that PnmPmu = Pmu and that g is orthogonal to Vm, and thus

‖u− uT ‖2 ≤ em(u)2 +
m∑
j=1
|aj |2,
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where a = (aj)j=1,...,m is solution of the system
Ga = b,

and b := (〈g, Lk〉n)k=1,...,m. Since ‖G−1‖2 ≤ 2, it follows that

‖u− uT ‖2 ≤ em(u)2 + 4
m∑
k=1
|〈g, Lk〉n|2.

In the event where ‖G− I‖2 > 1
2 , we simply write ‖u− uT ‖ ≤ 2τ . It follows that

E(‖u− uT ‖2) ≤ em(u)2 + 4
m∑
k=1

E(|〈g, Lk〉n|2) + 8τ2n−r.

For the second term, we have

E(|〈g, Lk〉n|2) = 1
n2

n∑
i=1

n∑
j=1

E(w(xi)w(xj)g(xi)g(xj)Lk(xi)Lk(xj))

= 1
n2

(
n(n− 1)|E(w(x)g(x)Lk(x))|2 + nE(|w(x)g(x)Lk(x)|2)

)
=
(

1− 1
n

)
|〈g, Lk〉|2 + 1

n

∫
X
|w(x)|2|g(x)|2|Lk(x)|2dµ

= 1
n

∫
X
w(x)|g(x)|2|Lk(x)|2dρ,

where we have used the fact that g is L2(X, ρ)-orthogonal to Vm and thus to Lk. Summing over k, we
obtain

m∑
k=1

E(|〈g, Lk〉n|2) ≤ Km,w

n
‖g‖2 ≤ κ

ln(n)em(u)2,

and we therefore obtain (2.3).
For the proof of (2.4) in item (iii) we place ourselves in the event where ‖G−I‖2 ≤ 1

2 . This property
also means that

1
2‖v‖

2
2 ≤ 〈Gv,v〉2 ≤

3
2‖v‖

2
2, v ∈ Rm,

which can be expressed as a norm equivalence over Vm,
1
2‖v‖

2 ≤ ‖v‖2n ≤
3
2‖v‖

2, v ∈ Vm. (3.2)

We then write that for any v ∈ Vm,
‖u− Pnmu‖ ≤ ‖u− v‖+ ‖v − Pnmu‖

≤ ‖u− v‖+
√

2‖v − Pnmu‖n
≤ ‖u− v‖+

√
2‖u− v‖n

≤ (1 +
√

2)‖u− v‖L∞ ,

where we have used (3.2), the Pythagorean identity ‖u − v‖2n = ‖u − Pnmu‖2n + ‖v − Pnmu‖2n, and the
fact that both ‖ · ‖ and ‖ · ‖n are dominated by ‖ · ‖L∞ . Since v is arbitrary, we obtain (2.4).

Finally, (2.5) in item (iv) is proven in a very similar way as (2.3) in item (ii), by writing that in the
event ‖G− I‖2 > 1

2 , we have ‖u− uC‖ = ‖u‖, so that

E(‖u− uC‖2) ≤ em(u)2 + 4
m∑
k=1

E(|〈g, Lk〉n|2) + 2‖u‖2n−r,
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and we conclude in the same way. �

Remark 3.1. Let us stress that the probabilistic estimate (2.4) of item (iii) is stated in a uniform
sense: once the draw falls in the event ‖G − I‖2 ≤ 1

2 which has high probability, the estimate (2.4)
is valid for all functions u in L∞. In this estimate, the L2 error ‖u − Pnmu‖ is controlled by the best
approximation error em(u)∞ in L∞. One way to recover a control of the error by the more natural
quantity em(u) is to search for an estimate in a nonuniform sense: returning to the proof, in the
estimate

‖u− Pnmu‖ ≤ ‖u− v‖+
√

2‖u− v‖n,
we take v := Tτ (Pmu) as the truncated best L2 approximation of u, where τ := ‖u‖L∞ , so that
‖u− v‖ ≤ em(u). Then, for the given function u− v ∈ L∞, one may apply a concentration inequality
in order to bound ‖u− v‖n by ‖u− v‖+ ε(n) with high probability where ε(n) decreases rapidly to 0
as n increases.

4. The noisy case

In a similar way as in [4, 10], we can analyze the case where the observations of u are affected
by an additive noise. In practical situations the noise may come from different sources, such as a
discretization error when u is evaluated by some numerical code, or a measurement error. The first
one may be viewed as a perturbation of u by a deterministic funtion h, that is, we observe

yi = u(xi) + h(xi).
The second one is typically modelled as a stochastic fluctuation, that is, we observe

yi = u(xi) + ηi.

where ηi are independent realizations of the centered random variable η = y − u(x). Here, we do not
necessarily assume η and x to be independent, however we typically assume that the noise is centered,
that is,

E(η|x) = 0,
and we also assume uniformly bounded conditional variance

σ2 := sup
x∈X

E(|η|2|x) <∞. (4.1)

Note that we may also consider a noncentered noise, which amounts in adding the two contributions,
that is,

yi = u(xi) + βi, βi = h(xi) + ηi, (4.2)
with h(x) = E(β|x). The following result shows that the estimates in Theorem 2.1 are robust under
the presence of such an additive noise.

Theorem 4.1. For any r > 0, if m and n are such that condition (2.1) is satisfied, then the following
holds for the noise model (4.2):

(i) if u ∈ L2(X, dρ) satisfies a uniform bound (1.7), then the truncated weighted least-squares
estimator satisfies

E(‖u− uT ‖2) ≤ (1 + 2ε(n))em(u)2 + (8 + 2ε(n))‖h‖2 + Km,wσ
2

n
+ 8τ2n−r, (4.3)

(ii) if u ∈ L2(X, dρ), then the conditioned weighted least-squares estimator satisfies

E(‖u− uC‖2) ≤ (1 + 2ε(n))em(u)2 + (8 + 2ε(n))‖h‖2 + Km,wσ
2

n
+ 2‖u‖2n−r, (4.4)
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where in both cases ε(n) := 4κ
ln(n) → 0 as n→ +∞, with κ as in (1.11), and Km,w :=

∫
X km,wdρ.

Proof. We again first consider the event where ‖G− I‖2 ≤ 1
2 . In this case we write

‖u− uT ‖ ≤ ‖u− uW ‖,
and use the decomposition u− uW = g − Pnmg − f where g = u− Pmu as in the proof of Theorem 2.1
and f stands for the solution to the least-squares problem for the noise data (βi)i=1,...,n. Therefore

‖u− uW ‖2 = ‖g‖2 + ‖Pnmg + f‖2 ≤ ‖g‖2 + 2‖Pnmg‖2 + 2‖f‖2 = ‖g‖2 + 2‖Pnmg‖2 + 2
m∑
j=1
|nj |2,

where n = (nj)j=1,...,m is solution to

Gn = b, b :=
(

1
n

n∑
i=1

βiw(xi)Lk(xi)
)
k=1,...,m

= (bk)k=1,...,m.

Since ‖G−1‖2 ≤ 2, it follows that

‖u− uT ‖2 ≤ em(u)2 + 8
m∑
k=1
|〈g, Lk〉n|2 + 8

m∑
k=1
|bk|2.

Compared to the proof of Theorem 2.1, we need to estimate the expectation of the third term on the
right side. For this we simply write that

E(|bk|2) = 1
n2

n∑
i=1

n∑
j=1

E(βiw(xi)Lk(xi)βjw(xj)Lk(xj)).

For i 6= j, we have

E(βiw(xi)Lk(xi)βjw(xj)Lk(xj)) =
(
E(βw(x)Lk(x))

)2
=
(
E(h(x)w(x)Lk(x))

)2

=
∣∣∣∣∫
X
hwLkdµ

∣∣∣∣2 = |〈h, Lk〉|2.

Note that the first and second expectations are with respect to the joint density of (x, β) and the third
one with respect to the density of x, that is, µ. For i = j, we have

E(|βiw(xi)Lk(xi)|2) = E(|βw(x)Lk(x)|2)

=
∫
X
E(|βw(x)Lk(x)|2|x)dµ

=
∫
X
E(|β|2|x)|w(x)Lk(x)|2dµ

=
∫
X
E(|β|2|x)w(x)|Lk(x)|2dρ

=
∫
X

(|h(x)|2 + E(|η|2|x))w(x)|Lk(x)|2dρ

≤
∫
X

(|h(x)|2 + σ2)w(x)|Lk(x)|2dρ.

Summing up on i, j and k, and using condition (2.1), we obtain that
m∑
k=1

E(|bk|2) ≤
(

1− 1
n2

)
‖h‖2 + Km,w

n
‖h‖2 + Km,w

n
σ2 ≤

(
1 + κ

logn

)
‖h‖2 + Km,wσ

2

n
. (4.5)

For the rest we proceed as for item (ii) and (iv) in the proof of Theorem 2.1, using that in the event
‖G− I‖2 > 1

2 we have ‖u− uT ‖ ≤ 2τ and ‖u− uC‖ = ‖u‖.
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Remark 4.2. Note that for the standard least-squares method, corresponding to the case where
w ≡ 1, we know that Km,w = m. The noise term thus takes the stardard form mσ2

n , as seen for
example in Theorem 3 of [4] or in Theorem 1 of [10]. Note that, in any case, condition (2.1) implies
that this term is bounded by κσ2

logn .

The conclusions of Theorem 4.1 do not include the estimate in probability similar to item (iii) in
Theorem 2.1. We can obtain such an estimate in the case of a bounded noise, where we assume that
h ∈ L∞(X) and η is a bounded random variable, or equivalently, assuming that β is a bounded random
variable, that is we use the noise model (4.2) with

|β| ≤ D, a.s. (4.6)
For this bounded noise model we have the following result.

Theorem 4.3. For any r > 0, if m and n are such that condition (2.1) is satisfied, then the following
holds with probability larger than 1−2n−r, for the the noise model (4.2) under (4.6): the nontruncated
weighted least-squares estimator satisfies

‖u− uW ‖ ≤ (1 +
√

2)em(u)∞ +
√

2D, (4.7)
for all u ∈ L∞(X, dρ).

Proof. Similar to the proof of (iii) in Theorem 2.1, we place ourselves in the event where ‖G−I‖2 ≤ 1
2

and use the norm equivalence (3.2). We then write that for any v ∈ Vm,
‖u− uW ‖ ≤ ‖u− v‖+ ‖v − Pnmu‖+ ‖Pnmβ‖.

The first two terms already appeared in the noiseless case and can be treated in the same way. The
new term Pnmβ corresponds to the weighted least-squares approximation from the noise vector, and
satisfies

‖Pnmβ‖ ≤
√

2‖Pnmβ‖n ≤
√

2‖β‖n ≤
√

2D.
This leads to (4.7).

5. Random sampling from µm

The analysis in the previous sections prescribes the use of the optimal sampling measure dµm defined
in (2.7) for drawing the samples x1, . . . , xn in the weighted least-squares method. In this section we
discuss numerical methods for generating independent random samples according to this measure, in
a specific relevant multivariate setting.

Here, we make the assumption that X = ×di=1Xi is a Cartesian product of univariate real domains
Xi, and that dρ is a product measure, that is,

dρ =
d⊗
i=1

dρi,

where each dρi is a measure defined on Xi. We assume that each dρi is of the form
dρi(t) = ρi(t)dt,

for some nonnegative continuous function ρi, and therefore

dρ(x) = ρ(x) dx, ρ(x) =
d∏
i=1

ρi(xi), x = (x1, . . . , xd) ∈ X.

In particular dρ is absolutely continuous with respect to the Lebesgue measure.
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We consider the following general setting: for each i = 1, . . . , d, we choose a univariate basis (φij)j≥0
orthonormal in L2(Xi, dρi). We then define the tensorized basis

Lν(x) :=
d∏
i=1

φiνi
(xi), ν ∈ Nd0,

which is orthonormal in L2(X, dρ). We consider general subspaces of the form
Vm := span{Lν : ν ∈ Λ},

for some multi-index set Λ ⊂ Nd0 such that #(Λ) = m. Thus we may rename the (Lν)ν∈Λ as (Lj)j=1,...,m
after a proper ordering has been chosen, for example in the lexicographical sense.

The measure dµm is thus given by dµm(x) = µm(x)dx, where

µm(x) := 1
m

m∑
i=1
|Li(x)|2ρ(x) = 1

#(Λ)
∑
ν∈Λ
|Lν(x)|2ρ(x), x ∈ X. (5.1)

We now discuss our sampling methods for generating n independent random samples x1, . . . , xn

identically distributed according to the multivariate density (5.1). Note that this density does not
have a product structure, despite ρ is a product density. There exist many methods for sampling
from multivariate densities. In contrast to Markov Chain Monte Carlo methods mentioned in the
introduction, the methods that we next propose exploit the particular structure of the multivariate
density (5.1), in order to generate independent samples in a straightforward manner, and sampling
only from univariate densities. The first method is sequential conditional sampling, discussed in §5.1,
and the second method is mixture sampling, discussed in §5.3.

Given the vector x = (x1, . . . , xd) of all the coordinates, for any A ⊆ {1, . . . , d}, we introduce the
notation

xA := (xi)i∈A, Ā := {1, . . . , d} \A, xĀ := (xi)i∈Ā,
and

dxA :=
⊗
i∈A

dxi, dρA :=
⊗
i∈A

dρi, ρA(xA) :=
∏
i∈A

ρi(xi), XA := ×
i∈A

Xi.

In the following, we mainly use the particular sets
Aq := {1, . . . , q} and Āq := {q + 1, . . . , d},

so that any x ∈ X may be written as x = (xAq , xĀq ).
Using such a notation, for any q = 1, . . . , d, we associate to the joint density µm its marginal density

ψq of the first q variables, namely

ψq(xAq ) :=
∫
XĀq

µm(xAq , xĀq ) dxĀq . (5.2)

Since (φij)j≥0 is an orthonormal basis of L2(Xi, dρi), for any q = 1, . . . , d and any ν ∈ Nd0, we obtain
that ∫

XĀq

|Lν(xAq , xĀq )|2ρ(xAq , xĀq )dxĀq = ρAq (xAq )
q∏
i=1
|φiνi

(xi)|2, xAq ∈ XAq .

Therefore, the marginal density (5.2) can be written in simple form as

ψq(xAq ) = 1
#(Λ)ρA

q (xAq )
∑
ν∈Λ

q∏
i=1
|φiνi

(xi)|2. (5.3)

In the next sections, for the given set Λ of interest, we use the notation
λj := max

ν∈Λ
νj and λΛ := max

j=1,...,d
λj .
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5.1. Sequential conditional sampling

Based on the previous notation and remarks, we propose an algorithm which generates n samples
xk = (xk1, . . . , xkd) ∈ X with k = 1, . . . , n, that are independent and identically distributed realizations
from the density µm in (5.1).

The general principle of sequential conditional sampling is that any multivariate probability density
p(x1, . . . , xd) can be written as

p(x1, . . . , xd) = p1(x1)p2(x2|x1) · · · pd(xd|x1, . . . , xd−1), (5.4)
using the conditional densities pk(xk|x1, . . . , xk−1) of xk given x1, . . . , xk−1, that are defined as

pk(xk|x1, . . . , xk−1) := p1,...,k(x1, . . . , xk)
p1,...,k−1(x1, . . . , xk−1)

using the marginal densities p1,...,k(x1, . . . , xk) and p1,...,k−1(x1, . . . , xk−1) of p with respect to the
first k and k − 1 coordinates, respectively. Therefore, a random sample x = (x1, . . . , xd) of p can
be generated by first drawing x1 according to p1(·), and then xk according to pk(·|x1, . . . , xk−1) for
any k = 2, . . . , d. The method requires the explicit knowledge of all the marginals p1,...,k(·|x1, . . . , xk)
for any k = 1, . . . , d − 1. This happens to be the case for the density µm in (5.1), whose marginals
have been explicitly calculated in (5.3). We next discuss this method in more detail for our particular
setting.

In the multivariate case the coordinates can be arbitrarily reordered. Start with the first coordinate
x1 and sample n points x1

1, . . . , x
n
1 ∈ X1 from the univariate density

ϕ1 : X1 → R : t 7→ ϕ1(t) := ψ1(t) = ρ1(t)
#(Λ)

∑
ν∈Λ
|φ1
ν1(t)|2, (5.5)

which coincides with the marginal ψ1 of x1 calculated in (5.3). In the univariate case d = 1 the
algorithm terminates. In the multivariate case d ≥ 2, by iterating q from 2 to d, consider the qth
coordinate xq, and sample n points x1

q , . . . , x
n
q ∈ Xq in the following way: for any k = 1, . . . , n, given

the values xkAq−1 = (xk1, . . . , xkq−1) ∈ XAq−1 that have been calculated at the previous q − 1 steps,
sample the point xkq ∈ Xq from the univariate density

ϕq : Xq → R : t 7→ ϕq(t|xkAq−1) := ρq(t)
∑
ν∈Λ |φqνq

(t)|2
∏q−1
j=1 |φjνj

(xkj )|2∑
ν∈Λ

∏q−1
j=1 |φ

j
νj (xkj )|2

. (5.6)

The expression on the right-hand side of (5.6) is continuous at any t ∈ Xq and at any xkAq−1 ∈ XAq−1 .
Assumption 1.1 ensures that the denominator of (5.6) is strictly positive for any possible choice of
xkAq−1 = (xk1, . . . , xkq−1) ∈ XAq−1 , and also ensures that the marginal ψq−1 is strictly positive at any
point xkAq−1 ∈ XAq−1 such that ρAq−1(xkAq−1) 6= 0. For any t ∈ Xq and any xkAq−1 ∈ XAq−1 such that
ρAq−1(xkAq−1) 6= 0, the density ϕq satisfies

ϕq(t|xkAq−1) =
ψq(xkAq−1 , t)
ψq−1(xkAq−1)

, (5.7)

where the densities ψq and ψq−1 are the marginals defined in (5.2) and evaluated at the points
(xkAq−1 , t) ∈ XAq and xkAq−1 ∈ XAq−1 , respectively. From (5.7), using (5.3) and simplifying the term
ρAq−1(xkAq−1) =

∏q−1
j=1 ρj(xkj ) 6= 0, one obtains the right-hand side of (5.6). The right-hand side of

equation (5.7) is well defined for any t ∈ Xq and any xkAq−1 ∈ XAq−1 such that ρAq−1(xkAq−1) 6= 0,
and it is not defined at the points xkAq−1 ∈ XAq−1 such that ρAq−1(xkAq−1) = 0 where ψq−1(xkAq−1)
vanishes. Nonetheless, (5.7) has finite limits at any point (xkAq−1 , t) ∈ XAq , and these limits equal
expression (5.6).
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According to technical terminology, the right-hand side of equation (5.7) is the conditional density
of xq given x1, . . . , xq−1 with respect to the density ψq, and ϕq is the continuous extension to XAq of
this conditional density.

The densities ϕ1, . . . , ϕd defined in (5.5)–(5.6) can be concisely rewritten for any q = 1, . . . , d as

ϕq(t|xkAq−1) = ρq(t)
∑
ν∈Λ

αν(xkAq−1)|φqνq
(t)|2, (5.8)

where the nonnegative weights (αν)ν∈Λ are defined as

αν = αν(zAq−1) :=


1

#(Λ) , if q = 1,∏q−1
j=1 |φjνj

(zj)|2∑
ν̃∈Λ

∏q−1
j=1 |φ

j

ν̃j
(zj)|2

, if 2 ≤ q ≤ d,

for any zAq−1 = (z1, . . . , zq−1) ∈ XAq−1 . Since
∑
ν∈Λ αν = 1, each density ϕq in (5.8) is a convex

combination of the densities ρq|φq1|2, . . . , ρq|φ
q
λq
|2. Note that if the orthonormal basis (φqj)j≥0 have

explicit expressions and can be evaluated at any point in Xq, then the same holds for the univariate
densities (5.8). In particular, in the polynomial case, for standards univariate densities ρi such as
uniform, Chebyshev or Gaussian, the orthonormal polynomials (φij)j≥1 have expressions which are
explicitly computable, for example by recursion formulas.

In Algorithm 1 we summarize our sampling method, that sequentially samples the univariate densi-
ties (5.8) to generate independent samples from the multivariate density (5.1). In the univariate case
d = 1 the algorithm does not run the innermost loop, and only samples from ϕ1. In the multivariate
case d ≥ 2 the algorithm runs also the innermost loop, and conditionally samples also from ϕ2, . . . , ϕd.
Our algorithm therefore relies on accurate sampling methods for the relevant univariate densities (5.8).

Algorithm 1 Sequential conditional sampling for µm.

INPUT: n, d, Λ, ρi, (φij)j≥0 for i = 1, . . . , d.
OUTPUT: x1, . . . , xn

i.i.d.∼ µm.
for k = 1 to n do
αν ← (#(Λ))−1, for any ν ∈ Λ.
Sample xk1 from t 7→ ϕ1(t) = ρ1(t)

∑
ν∈Λ

αν |φ1
ν1(t)|2.

for q = 2 to d do

αν ←

q−1∏
j=1
|φjνj

(xkj )|2

∑
ν̃∈Λ

q−1∏
j=1
|φj
ν̃j

(xkj )|2
, for any ν ∈ Λ.

Sample xkq from t 7→ ϕq(t) = ρq(t)
∑
ν∈Λ

αν |φqνq
(t)|2.

end for
xk ← (xk1, . . . , xkd).

end for
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5.2. Sampling the univariate densities

We next discuss two possible methods for sampling from such densities: rejection sampling and inver-
sion transform sampling, see e.g. [5]. Both methods equally apply to any univariate density ϕq, and
therefore we present them for any q arbitrarily chosen from 1 to d.

Rejection sampling (RS). For applying this method, one needs to find a suitable univariate density
Θq, whose support contains the support of ϕq, and a suitable real Mq > 1 such that

ϕq(t) ≤MqΘq(t), t ∈ supp(ϕq).
The density Θq should be easier to sample than ϕq, i.e. efficient pseudorandom number generators for
sampling from Θq are available. The value of Mq should be the smallest possible. For sampling one
point from ϕq using RS: sample a point z from Θq, and sample u from the standard uniform U(0, 1).
Then check if u < ϕq(z)/MqΘq(z): if this is the case then accept z as a realization from ϕq, otherwise
reject z and restart sampling z and u from beginning. On average, acceptance occurs once every Mq

trials. Therefore, for a given q, sampling one point from ϕq by RS requires on average Mq evaluations
of the function

t 7→ ϕq(t)
MqΘq(t)

= ρq(t)
MqΘq(t)

∑
ν∈Λ

αν |φqνq
(t)|2.

This amounts to evaluating Mq times a subset of the terms φq0, . . . , φ
q
λq
. The coefficients αν depend

on the terms φj0, . . . , φ
j
λj

for j = 1, . . . , q − 1, which have been already evaluated when sampling the
previous coordinates 1, . . . , q− 1. Thus, if we use RS for sampling the univariate densities, the overall
computational cost of Algorithm 1 for sampling n points x1, . . . , xn ∈ X is on average proportional to
n
∑d
q=1Mq(λq + 1).

When the basis functions (φqj)j≥0 form a bounded orthonormal system, an immediate and simple
choice of the parameters in the algorithm is

Mq = max
ν∈Λ
‖φqνq
‖2L∞ , and Θq(t) = ρq(t). (5.9)

With such a choice, we can quantify more precisely the average computational cost of sampling n points
in dimension d. When (φqj)j≥0 are the Chebyshev polynomials, whose L∞ norms satisfy ‖φqj‖L∞ ≤

√
2,

we obtain the bound 2n
∑d
q=1(λq + 1) ≤ 2nd(λΛ + 1) ≤ 2ndm. When (φqj)j≥0 are the Legendre

polynomials, whose L∞ norms satisfy ‖φqj‖L∞ ≤
√

2j + 1, we have the crude estimate 2n
∑d
q=1(λq +

1)2 ≤ 2nd(λΛ + 1)2 ≤ 2ndm2. In general, when (φqj)j≥0 are Jacobi polynomials, similar upper bounds
can be derived, and the dependence of these bounds on n and d is linear.

Inversion transform sampling (ITS). Let Φq : Xq → [0, 1] be the cumulative distribution func-
tion associated to the univariate density ϕq. In the following, only when using the ITS method, we
make the further assumption that ρq vanishes at most a finite number of times in Xq. Such an as-
sumption is fulfilled in many relevant situations, e.g. when ρq is the density associated to Jacobi or
Hermite polynomials orthonormal in L2(Xq, dρq). Together with Assumption 1.1, this ensures that
the function t 7→ Φq(t) is continuous and strictly increasing on Xq. Hence Φq is a bijection between
Xq and [0, 1], and it has a unique inverse Φ−1

q : [0, 1]→ Xq which is continuous and strictly increasing
on [0, 1]. Sampling from ϕq using ITS can therefore be performed as follows: sample n independent
realizations u1, . . . , un identically distributed according to the standard uniform U(0, 1), and obtain
the n independent samples from ϕq as (Φ−1

q (u1), . . . ,Φ−1
q (un)).

For any u ∈ [0, 1], computing z = Φ−1
q (u) ∈ Xq is equivalent to find the unique solution z ∈

Xq to Φq(z) = u. This can be executed by elementary root-finding numerical methods, e.g. the
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bisection method or Newton’s method. As an alternative to using root-finding methods, one can build
an interpolant operator Iq of Φ−1

q , and then approximate Φ−1
q (u) ≈ Iq(u) for any u ∈ [0, 1]. Such

an interpolant Iq can be constructed for example by piecewise linear interpolation, from the data
(Φq(tq1), tq1), . . . , (Φq(tqsq

), tqsq
) at sq suitable points tq1 < . . . < tqsq

in Xq.
Both root-finding methods and the interpolation method require evaluating the function Φq point-

wise in Xq. In general these evaluations can be computed using standard univariate quadrature for-
mulas. When (φqj)j≥0 are orthogonal polynomials, the explicit expression of the primitive of ϕq can be
used for directly evaluating the function Φq.

Finally we discuss the overall computational cost of Algorithm 1 for sampling n points x1, . . . , xn ∈
X when using ITS for sampling the univariate densities. With the bisection method, this overall cost
amounts to n

∑d
q=1 γqWq, where γq is the maximum number of iterations for locating the zero in Xq up

to some desired tolerance, and Wq is the computational cost of each iteration. With the interpolation
of Φ−1

q , the overall cost amounts to n evaluations of each interpolant Iq, in addition to the cost of
building the interpolants which does not depend on n.

5.3. Mixture sampling

An alternative to sequential conditional sampling in Algorithm 1 can be developed by exploiting again
the structure of µm in (5.1). The density µm is a convex combination with equal weights 1

m = 1
#(Λ) of

the #(Λ) densities ρ|Lν |2 =
∏d
q=1 ρq|φqνq

|2 for ν ∈ Λ. The following Algorithm 2 exploits this additive
mixture structure. It starts by drawing n independent random indices ν1, . . . , νn

i.i.d.∼ U(Λ), that is, we
randomly choose each νj among the elements of Λ with equal probability 1

#(Λ) . These random variables
select the densities ρ|Lν1 |2, . . . , ρ|Lνn |2 in the mixture, and each of these densities has product form
ρ|Lνk |2 =

∏d
q=1 ρq|φ

q
νk

q
|2. For any q, sampling from the univariate density ρq|φqνk

q
|2 can be done for

example with the rejection sampling method described in section §5.2, by choosing a density Θq for
which an efficient pseudorandom generator is available and a suitable Mq > 1 such that

ρq(t)|φqνk
q
(t)|2 ≤MqΘq(t), t ∈ Xq.

In general, sampling from the univariate densities ρq|φqj |2 might not be an easy task: for example,
when (φqj)j≥0 are orthogonal polynomials, the density ρq|φqj |2 vanishes (at least) at 2j points giving
rise to large oscillations. This is the main drawback of Algorithm 2, in contrast to Algorithm 1 that
prevents this effect by sampling from the density ϕq where the densities ρq|φq1|2, . . . , ρq|φ

q
λq
|2 are piled

up. The zeros of ϕq are drastically reduced in number (or even completely removed), thanks to the
interlacing property of the zeros of orthogonal polynomials. An immediate consequence of reducing
the number of zeros of ϕq is that the oscillations are also reduced in number and amplitude.

Remark 5.1. The computational cost of the various algorithms that we have proposed in this sec-
tion for sampling µm is generally higher than the cost of sampling the product density ρ. However,
this difference in the cost is negligible in frequently encountered situations where the computational
cost of the pointwise evaluations of the function is several orders of magnitude larger than the com-
putational cost of sampling the densities. For example, in the context of numerical approximation
of parametric PDEs, each pointwise evaluation amounts to running a potentially costly finite ele-
ment/difference/volume solver. In such cases, weighted least squares provide a substantial saving on
the overall number of samples, at the price of a negligibly more costly generation of the samples.
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Algorithm 2 Mixture sampling from µm.

INPUT: n, d, Λ, ρi, (φij)j≥0 for i = 1, . . . , d.
OUTPUT: x1, . . . , xn

i.i.d.∼ µm.
for k = 1 to n do
Sample νk from U(Λ)
for q = 1 to d do
Sample xkq from t 7→ ρq(t)|φqνk

q
(t)|2.

end for
xk ← (xk1, . . . , xkd).

end for

6. Examples and numerical illustrations

This section presents the numerical performances of the weighted least-squares method compared to
the standard least-squares method, in three relevant situations where dρ can be either the uniform
measure, the Chebyshev measure, or the Gaussian measure. In each of these three cases, we choose
w and dµ in the weighted least-squares method from (2.6) and (2.7), as prescribed by our analysis
in Corollary 2.2. For standard least squares we choose w and dµ as in (1.9). Our tests focus on the
condition number of the Gramian matrix, that quantifies the stability of the linear system (1.5) and
the stability of the weighted and standard least-squares estimators. A meaningful quantity is therefore
the probability

Pr{cond(G) ≤ 3}, (6.1)
where, through (1.8), the value three of the threshold is related to the parameter δ = 1/2 in the
previous analysis. For any n and m, from (1.8) the probability (6.1) is larger than Pr{‖G− I‖2 ≤ 1

2}.
From Corollary 2.2, under condition (2.8) between n, m and r, the Gramian matrix of weighted least
squares satisfies (2.2) and therefore the probability (6.1) is larger than 1 − 2n−r. For standard least
squares, from Theorem 1.1 the Gramian matrix satisfies (6.1) with probability larger than 1 − 2n−r,
but under condition (1.11).

In all the presented numerical tests the probability (6.1) is numerically approximated by its empirical
counterpart, obtained by counting how many times the event cond(G) ≤ 3 occurs when repeating the
random sampling one hundred times.

All the examples presented in this section are confined to multivariate approximation spaces of
polynomial type. One natural assumption in this case is to require that the set Λ is downward closed,
that is, satisfies

ν ∈ Λ and ν̃ ≤ ν =⇒ ν̃ ∈ Λ,
where ν̃ ≤ ν means that ν̃j ≤ νj for all i = 1, . . . , d. Then Vm is the polynomial space spanned by the
monomials

z 7→ zν :=
d∏
j=1

z
νj

j ,

and the orthonormal basis Lν is provided by taking each (φij)j≥0 to be a sequence of univariate
orthonormal polynomials of L2(Xi, dρi).

In both the univariate and multivariate forthcoming examples, the random samples from the mea-
sure dµm are generated using Algorithm 1. The univariate densities ϕ1, . . . , ϕd are sampled using the
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inversion transform sampling method. The inverse of the cumulative distribution function is approxi-
mated using the interpolation technique.

6.1. Univariate examples

In the univariate case d = 1, let the index set be Λ = {0, . . . ,m − 1} and Vm = PΛ = span{zk :
k = 0, . . . ,m− 1}. We report in Fig. 6.1 the probability (6.1), when G is the Gramian matrix of the
weighted least-squares method. Different combinations of values for m and n are tested, with three
choices of the measure dρ: uniform, Gaussian and Chebyshev. As in further figures, the empirically
approximated probability is represented by the color level from black (0) to white (1). The results
do not show perceivable differences among the performances of weighted least squares with the three
different measures. In any of the three cases, n/ ln(n) ≥ 4m is enough to obtain a probability equal
to one that cond(G) ≤ 3. This confirms that condition (2.8) with any choice of r > 0 ensures (6.1),
since it demands for a larger number of samples.

dρ uniform measure dρ Gaussian measure dρ Chebyshev measure

Figure 6.1. Weighted least squares, Pr{cond(G) ≤ 3}, d = 1. Left: dρ uniform
measure. Center: dρ Gaussian measure. Right: dρ Chebyshev measure.

dρ uniform measure dρ Gaussian measure dρ Chebyshev measure

Figure 6.2. Standard least squares, Pr{cond(G) ≤ 3}, d = 1. Left: dρ uniform
measure. Center: dρ Gaussian measure. Right: dρ Chebyshev measure.

Fig. 6.2 shows the probability (6.1) when G is the Gramian matrix of standard least squares.
With the uniform measure, the condition n/ ln(n) ≥ m2 is enough to have (6.1) with empirical
probability larger than 0.95. When dρ is the Gaussian measure, stability requires a very large number

199



A. Cohen & G. Migliorati

of evaluations, roughly n/ ln(n) linearly proportional to exp(m/3). For the univariate Chebyshev
measure, it is proven that standard least squares are stable under the same minimal condition (2.8) as
for weighted least squares. In accordance with the theory, the numerical results obtained in this case
with weighted and standard least squares are indistinguishable, see Fig. 6.1-right and Fig. 6.2-right.

6.2. Multivariate examples

Afterwards we present some numerical tests in the multivariate setting. In dimension d larger than one
there are many possible ways to enrich the polynomial space PΛ. The number of different downward
closed sets whose cardinality equals m gets very large already for moderate values of m and d. There-
fore, in our numerical results, for a given dimension d, we first randomly generate a particular sequence
Λ1 ⊂ · · · ⊂ Λm, where each Λj ⊂ Nd0 is downward closed, #(Λj) = dim(PΛj

) = j and the starting
set Λ1 contains only the null multi-index. More specifically, given Λk, we take Λk+1 = Λk ∪ {νk},
where νk is randomly selected among the finitely many elements ν /∈ Λk such that Λk ∪ {ν} remains
downward closed. Once such a sequence is fixed, the tests in Fig. 6.3 and Fig. 6.4 are performed using
the embedded polynomial spaces PΛ1 ⊂ . . . ⊂ PΛm , for both weighted and standard least squares and
for the three choices of the measures dρ. Such a choice allows us to establish a fair comparison be-
tween the two methods and among different measures, without the additional variability arising from
modifications to the polynomial space. We comment further on the influence of the chosen sequence
Λ1 ⊂ · · · ⊂ Λm.

dρ uniform measure dρ Gaussian measure dρ Chebyshev measure

Figure 6.3. Weighted least squares, Pr{cond(G) ≤ 3}, d = 10. Left: dρ uniform
measure. Center: dρ Gaussian measure. Right: dρ Chebyshev measure.

We first report the results obtained for the tests in dimension d = 10. The results in Fig. 6.3 confirm
that weighted least squares always yield an empirical probability equal to one that cond(G) ≤ 3,
provided that n/ log(n) ≥ 2m. This condition ensures that (2.8) with any choice of r > 0 implies (6.1),
thus verifying Corollary 2.2. Again, the results do not show significant differences among the three
choices of the measure dρ: a straight line, with the same slope for all the three cases uniform, Chebyshev
and Gaussian, separates the two regimes corresponding to empirical probabilities equal to zero and
one. Compared to the univariate case in Fig. 6.1, the results in Fig. 6.3 exhibit a sharper transition
between the two extreme regimes, and an overall lower variability in the transition regime.

The results for standard least squares with d = 10 are shown in Fig. 6.4. In the case of the uniform
measure, in Fig. 6.4-right, stability is ensured if n/ ln(n) ≥ 3.5m, which is more demanding than the
condition n/ ln(n) ≥ 2m needed for the stability of weighted least squares in Fig. 6.3-right, but much
less strict than the condition required with standard least squares in the univariate case, where n/ ln(n)
scales like m2. These phenomena have already been observed and described in [11]. Similar results
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dρ uniform measure dρ Gaussian measure dρ Chebyshev measure

Figure 6.4. Standard least squares, Pr{cond(G) ≤ 3}, d = 10. Left: dρ uniform
measure. Center: dρ Gaussian measure. Right: dρ Chebyshev measure.

as those with the uniform measure are obtained with the Chebyshev measure in Fig. 6.4-left, where
again standard least squares achieve stability using more evaluations than weighted least squares in
Fig. 6.3-left. The case of the Gaussian measure drastically differs from the uniform and Chebyshev
cases: the results in Fig. 6.4-center clearly indicate that a very large number of evaluations n compared
to m is required to achieve stability of standard least squares.

Analogous results as those presented in Figs. 6.1 and 6.3 for weighted least squares have been
obtained also in other dimensions, and with many other sequences of increasingly embedded polynomial
spaces. In the next tables we report some of these results for selected values of d = 1, 2, 5, 10, 50, 100.
We choose n = 26599 and m = 200 that satisfy condition (2.8) with r = 1, and report in Table 6.1
the empirical probabilities that approximate (6.1), again calculated over one hundred repetitions. This
table provides multiple comparisons: weighted least squares versus standard least squares, for the three
choices of the measure dρ (uniform, Gaussian and Chebyshev) and with d varying between 1 and 100.

method dρ d = 1 d = 2 d = 5 d = 10 d = 50 d = 100
weighted LS uniform 1 1 1 1 1 1
weighted LS Gaussian 1 1 1 1 1 1
weighted LS Chebyshev 1 1 1 1 1 1
standard LS uniform 0 0 0.54 1 1 1
standard LS Gaussian 0 0 0 0 0 0
standard LS Chebyshev 1 1 1 1 1 1

Table 6.1. Pr{cond(G) ≤ 3}, with n = 26559 and m = 200: weighted least squares
versus standard least squares, dρ uniform versus dρ Gaussian versus dρ Chebyshev,
d = 1, 2, 5, 10, 50, 100.

In Table 6.1, all the empirical probabilities related to results for weighted least squares are equal to
one, and confirm the theory since, for the chosen values of n, m and r, the probability (6.1) is larger
than 1 − 5.67 × 10−7. This value is computed using estimate (3.1) from the proof of Theorem 2.1.
In contrast to weighted least squares, whose empirical probability equal one independently of dρ and
d, the empirical probability of standard least squares does depend on the chosen measure, and to
some extent on the dimension d as well. With the uniform measure, the empirical probability that
approximates (6.1) equals zero when d = 1 or d = 2, equals 0.54 when d = 5, and equals one when
d = 10, d = 50 or d = 100. In the Gaussian case, standard least squares always feature null empirical
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method dρ d = 1 d = 2 d = 5 d = 10 d = 50 d = 100
weighted LS uniform 1.5593 1.4989 1.4407 1.4320 1.4535 1.4179
weighted LS Gaussian 1.5994 1.5698 1.4743 1.4643 1.4676 1.4237
weighted LS Chebyshev 1.5364 1.4894 1.4694 1.4105 1.4143 1.4216
standard LS uniform 19.9584 29.8920 3.0847 1.9555 1.7228 1.5862
standard LS Gaussian ∼ 1019 ∼ 1019 ∼ 1019 ∼ 1016 ∼ 109 ∼ 103

standard LS Chebyshev 1.5574 1.5367 1.5357 1.4752 1.4499 1.4625
Table 6.2. Average of cond(G), with n = 26559 and m = 200: weighted least squares
versus standard least squares, dρ uniform versus dρ Gaussian versus dρ Chebyshev,
d = 1, 2, 5, 10, 50, 100.

probabilities. With the Chebyshev measure, the condition number of G for standard least squares is
always lower than three for any tested value of d.

In addition to the results in Table 6.1, further information is needed for assessing how severe is the
lack of stability when obtaining null empirical probabilities. To this aim, in Table 6.2 we also report
the average value of cond(G), obtained when averaging the condition number of G over the same
repetitions used to estimate the empirical probabilities in Table 6.1. The information in Table 6.2 is
complementary to that in Table 6.1. On the one hand they point out the stability and robustness of
weighted least squares, showing a tamed condition number with any measure dρ and any dimension
d. On the other hand they provide further insights on stability issues of standard least squares and
their dependence on dρ and d.

For standard least squares with the uniform measure, the average condition number reduces as
the dimension d increases, in agreement with the conclusion drawn from Table 6.1. One possible
explaination of this phenomenon is the following: while Km(PΛ, dρ) is known to satisfy the bound

Km(PΛ, dρ) ≤ m2, (6.2)

for all downward closed sets Λ of cardinality m and in any dimension d, equality in this bound is only
attained for certain sets Λ. In particular, it is attained for the sets Λ of rectangular shape, that is

Λ := {ν : ν ≤ µ}, (6.3)

for some µ = (µ1, . . . , µd) ∈ Nd0 such that
∏d
j=1(1 + µj) = m. However, as d gets larger, the typical

value of Km(PΛ, dρ) may be significantly smaller for a general downward closed set, which is the case
for our randomly generated sequence Λ1 ⊂ · · · ⊂ Λm. The Gramian matrix of standard least squares
with the Gaussian measure is very ill-conditioned for all tested values of d, with again a reduction as
d gets large. For standard least squares with the Chebyshev measure, the averaged condition number
of G is only slightly larger than the one for weighted least squares.

As explained above, the results for standard least squares in Fig. 6.4, Table 6.1 and Table 6.2 are
sensitive to the chosen sequence of polynomial spaces. Testing different sequences might produce dif-
ferent results, that however necessarily obey to the estimates proven in Theorem 1.1 with uniform and
Chebyshev measures, when n, m and r satisfy condition (1.11). Many other examples with standard
least squares have been extensively discussed in previous works e.g. [11, 3], also in situations where n,
m and r do not satisfy condition (1.11) and therefore Theorem 1.1 does not apply. In general, when
n, m and r do not satisfy (1.11), there exist multivariate polynomial spaces of dimension m such
that the Gramian matrix of standard least squares with the uniform and Chebyshev measures does
not satisfy (1.12). Examples of such spaces are discussed in [11, 3]. Using these spaces would yield
null empirical probabilities in Table 6.1 for standard least squares with the uniform and Chebyshev
measures.
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For weighted least squares, when n, m and r satisfy condition (2.8), any sequence of polynomial
spaces yields empirical probabilities close to one, according to Corollary 2.2. Indeed such a robustness
with respect to the choices of dρ, of the polynomial space and of the dimension d represents one of
the main advantages of the weighted approach.
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