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Abstract. We analyze alternating descent algorithms for minimizing the sum of a quadratic function and
block separable non-smooth functions. In case the quadratic interactions between the blocks are pairwise,
we show that the schemes can be accelerated, leading to improved convergence rates with respect to related
accelerated parallel proximal descent. As an application we obtain very fast algorithms for computing the
proximity operator of the 2D and 3D total variation.
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1. Introduction

We discuss the acceleration of alternating minimization algorithms, for problems of the form

min
x=(xi)n

i=1

E(x) :=
n∑
i=1

fi(xi) + 1
2

∣∣∣ n∑
i=1

Aixi
∣∣∣2, (1.1)

where each xi lives in a Hilbert space Xi, fi are “simple” convex lower semicontinuous functions, that
is, their proximity operators defined as

(I + τ∂fi)−1(x̄i) = arg min
xi

fi(xi) + 1
2τ |xi − x̄i|

2, τ > 0

can be easily evaluated, and the Ai are bounded linear operators from Xi to a common Hilbert space
X .

In general, we can check that for n ≥ 2, alternating minimizations or descent methods do converge
with rate O(1/k) (where k is the number of iterations, see also [10]), and can hardly be accelerated.
This is bad news, since clearly such a problem can be tackled (in “parallel”) by classical accelerated
algorithms such as proposed in [41, 43, 42, 9, 49], yielding a O(1/k2) convergence rate for the objective.
On the other hand, for n = 2 and A1 = A2 = IX (the identity), we observe that alternating minimiza-
tions are nothing but a particular case of “forward-backward” descent (this is already observed in [21,
Example 10.11]), which can be accelerated by the above-mentioned methods.
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in Imaging (EANOI) FWF No. I1148 / ANR-12-IS01-0003. Antonin Chambolle also acknowledges support from the
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A. Chambolle & T. Pock

Beyond these observations, our contribution is to analyze the descent properties of alternating
minimizations (or implicit/explicit gradient steps as in [4, 50, 12], which might be simpler to perform),
and in particular to show that acceleration is possible for general A1, A2 when n = 2. We also exhibit
a structure which makes acceleration possible even for more than two variables. In these cases, the
improvement with respect to a straight descent on the initial problem is essentially on the constant in
the rate of convergence, since the Lipschitz constants in the partial descents are always smaller than
the global Lipschitz constant of the smooth term |

∑
iAixi|2. The fact that first order acceleration

seems to work for block coordinate descent is easy to check experimentally, and in some sense it is up
to now a bit disappointing that we provide an explanation only in very trivial cases.

Problems of the form (1.1) arise in particular when applying Dykstra’s algorithm [24, 14, 28, 6,
20, 21] to project on an intersection of (simple) convex sets, or more generally when computing the
proximity operator

min
z

n∑
i=1

gi(z) + 1
2 |z − z

0|2 (1.2)

of a sum of simple convex functions gi(z) (for Dykstra’s algorithm, the gi’s are the characteristic
functions of convex sets).

Clearly, a dual problem to (1.2) can be written as (minus)

min
x=(xi)i

n∑
i=1

(g∗i (xi)−
〈
xi, z

0
〉

) + 1
2

∣∣∣ n∑
i=1

xi
∣∣∣2 (1.3)

which has exactly form (1.4) with fi(xi) = g∗i (xi)−
〈
xi, z

0〉, and Ai = IX for all i:

min
x=(xi)n

i=1

n∑
i=1

fi(xi) + 1
2

∣∣∣ n∑
i=1

xi
∣∣∣2, (1.4)

Dysktra’s algorithm is precisely an alternating minimization method for solving (1.4). Then, z is
recovered by letting z = z0 −

∑
i xi.

Alternating minimization schemes for (1.1) (and more general problems) are widely found in the
literature, as extensions of the linear Gauss-Seidel method. Many convergence results have been estab-
lished, see in particular [4, 29, 47, 6, 20, 21]. Our main results are also valid for linearized alternating
proximal descents, for which [4, 2, 50, 12] have provided convergence results (see also [3, 15]). In
this framework, some recent papers even provide rates of convergence for the iterates when Kurdyka-
Łojasiewicz (KL) inequalities [1] are available, see [50] and, with variable metrics, the more elaborate
results in [19, 26]. In this note, we are rather interested in rates of convergence for the objective, which
do not rely on KL inequalities and a KL exponent but are, in some cases, less informative.

In this context, two other series of very recent works are closer to our study. He, Yuan and collabo-
rators [31, 27] have issued a series of papers where they tackle precisely the minimization of the same
kind of energies, as a step in a more global Alternating Directions Method of Multipliers (ADMM) for
energies involving more than two blocks. They could show a O(1/k) rate of convergence of a measure
of optimality for two classes of methods, one which consists into grouping the blocks into two subsets
(which boils down then to the classical ADMM), another which consists in updating the step with a
“Gaussian back substitution” after the descent steps. While some of their inequalities are very similar
to ours, it does not seem that they give any new insight on acceleration strategies for (1.1).

On the other hand, two papers of Beck and Beck, Tetruashvili [10, 8] address rates of convergence
for alternating descent algorithms, showing in a few cases a O(1/k) decrease of the objective (and
O(1/k2) for some smooth problems). It is simple to show, adapting these approaches, that the same
rate holds for the alternating minimization or proximal descent schemes for (1.1) (which do not a priori
enter the framework of [10, 8]). In addition, we exhibit a few situations where acceleration is possible,
using the relaxation trick introduced in the FISTA algorithm [9] (see also [30, 41]). Unfortunately,
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Accelerated block coordinate descent

these situations are essentially cases where the variable can be split into two sets of almost independent
variables, limiting the number of interesting cases. We describe however in our last section that quite
interesting examples can be solved with this technique, leading to a dramatic speed-up with respect
to standard approaches.

Eventually, stochastic alternating descents methods have been studied by many authors, in partic-
ular to deal with problems where the full gradient is too complicated to evaluate. First order methods
with acceleration are discussed in [44, 38, 37, 25]. Some of these methods achieve very good con-
vergence properties, however the proofs in these papers do not shed much light on the behavior of
deterministic methods, as the averaging typically will get rid of the antisymmetric terms which create
difficulties in the proofs (and, up to now, prevent acceleration for general problems).

The plan of this paper is as follows: in the next section we recall the standard descent rule for
the forward-backward splitting scheme (see for instance [22]), and show how it yields an accelerated
rate of convergence for the FISTA overrelaxation. We also recall that this is exactly equivalent to the
alternating minimization of problems of form (1.4) with n = 2 variables.

Then, in the following section, we introduce the linearized alternating proximal descent scheme
for (1.1) (which is also found in [50, 12], for more general problems). We give a rate of convergence
for this descent, and exhibit cases which can be accelerated.

In the last section we illustrate these schemes with examples of possible splitting for solving the
proximity operator of the Total Variation in 2 or 3 dimensions. This is related to recent domain
decomposition approaches for this problem, see for instance [32].

2. The descent rule for Forward-Backward splitting and its consequences

In this section, we recall a classical inequality [42, 9, 49] for forward-backward descent schemes which
allows not only to derive complexity estimates but also an elementary approach to acceleration. We
then show that a similar inequality holds for alternating minimizations of (1.4) with two variables,
yielding the same conclusion. Eventually we observe that, in fact, the structure of these problems is
identical, which explains why the same results hold. In the following section, will then try to consider
variant of the alternating descent scheme which still preserve this structure and for which similar
acceleration is thus possible.

2.1. The descent rule

Consider the standard problem

min
x∈X

F (x) := f(x) + g(x), (2.1)

where f is a proper convex lower semicontinuous function and g is a C1,1 convex function, whose
gradient has Lipschitz constant L, both defined on a Hilbert space X . We can define the simple
Forward-Backward descent scheme as the iteration of the operator:

T x̄ = x̂ := (I + τ∂f)−1(I − τ∇g)(x̄). (2.2)

Then, it is well-known [42, 9] that the objective F (x) = f(x) + g(x) satisfies the following descent
rule: for all x ∈ X ,

F (x) + 1
2τ |x− x̄|

2 ≥ F (x̂) + 1
2τ |x− x̂|

2 (2.3)
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as soon as τ ≤ 1/L. An elementary way to show this is to observe that x̂ is the minimizer of the
strongly convex function f(x) + g(x̄) + 〈∇g(x̄), x〉+ |x− x̄|2/(2τ), so that for all x,

f(x) + g(x) + |x− x̄|2τ

2
≥ f(x) + g(x̄) + 〈∇g(x̄), x− x̄〉+ |x− x̄|2τ

2

≥ f(x̂) + g(x̄) + 〈∇g(x̄), x̂− x̄〉+ |x̂− x̄|2τ

2
+ |x− x̂|2τ

2

≥ f(x̂) + g(x̂) +
(1
τ
− L

) |x̂− x̄|
2

2
+ |x− x̂|2τ

2
,

where in the last line, we have used the fact that ∇g is L-Lipschitz.
One derives easily that the standard Forward-Backward descent scheme (which consists in letting

xk+1 = Txk) converges with rate O(1/k), and precisely that if x∗ is a minimizer,

F (xk)− F (x∗) ≤ L |x
∗ − x0|2

2k (2.4)

if τ = 1/L.

2.2. Acceleration

However, it is easy to derive from (2.3) a faster rate, as shown in [9] (see also [41, 42, 43, 49]). Indeed,
letting in (2.3)

x̂ = xk+1, x̄ = xk + tk − 1
tk+1

(xk − xk−1), (2.5)

x = (tk+1 − 1)xk + x∗

tk+1

(and x−1 := x0) and rearranging, for a given sequence of real numbers tk ≥ 1, we obtain

|(tk+1 − 1)xk + x∗ − tk+1x
k+1|

2τ

2
+ t2k+1(F (xk+1)− F (x∗))

≤ |(tk − 1)xk−1 + x∗ − tkxk|
2τ

2
+ (t2k+1 − tk+1)(F (xk)− F (x∗)).

If t2k+1 − tk+1 ≤ t2k, this can easily iterated. For instance, letting tk = (k + 1)/21 and τ = 1/L, one
finds

F (xk)− F (x∗) ≤ 2L |x
∗ − x0|2

(k + 1)2 (2.6)

which is nearly optimal in regards to the lower bounds shown in [40, 42].
What is interesting to observe, here, is that this acceleration property will be true for any scheme

for which a descent rule such as (2.3) holds, with the same proof. We will now show that this is also
the case for an alternating descent of the form (1.4), if n = 2.

2.3. The descent rule for two-variables alternating descent

Consider now problem (1.4), with n = 2:

min
x=(x1,x2)∈X 2

E2(x) := f1(x1) + f2(x2) + 1
2 |x1 + x2|2. (2.7)

1Other choices might yield better properties, see in particular [18].
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We consider the following algorithm, which transforms x̄ into T x̄ = x̂ by letting

x̂1 := arg min
x1
f1(x1) + 1

2 |x1 + x̄2|2, (2.8)

x̂2 := arg min
x2
f2(x2) + 1

2 |x̂1 + x2|2. (2.9)

Then by strong convexity, for any x1 ∈ X , we have

f1(x1) + 1
2 |x1 + x̄2|2 ≥ f1(x̂1) + 1

2 |x̂1 + x̄2|2 + 1
2 |x1 − x̂1|2

while for any x2 ∈ X ,

f2(x2) + 1
2 |x̂1 + x2|2 ≥ f2(x̂2) + 1

2 |x̂1 + x̂2|2 + 1
2 |x2 − x̂2|2.

Summing these inequalities, we find

f1(x1) + f2(x2) + 1
2 |x1 + x2|2 ≥

f1(x̂1) + f2(x̂2) + 1
2 |x̂1 + x̂2|2 + 1

2 |x1 − x̂1|2 + 1
2 |x2 − x̂2|2

+ 1
2
(
|x1 + x2|2 − |x1 + x̄2|2 + |x̂1 + x̄2|2 − |x̂1 + x2|2

)
.

Now, the last line in this equation is

(x1 − x̂1)(x2 − x̄2) = 1
2 |x1 + x2 − (x̂1 + x̄2)|2 − 1

2 |x1 − x̂1|2 −
1
2 |x2 − x̄2|2,

and it follows

f1(x1) + f2(x2) + 1
2 |x1 + x2|2 + 1

2 |x2 − x̄2|2

≥ f1(x̂1) + f2(x̂2) + 1
2 |x̂1 + x̂2|2 + 1

2 |x2 − x̂2|2. (2.10)

As before, one easily deduces the following result:

Proposition 2.1. Let x0 = x−1 be given and for each k let x̄k2 = xk2 + k−1
k+2(xk2 −xk−1

2 ), xk+1
1 minimize

E2(·, x̄k2) and xk+1
2 minimize E2(xk+1

1 , ·). Call x∗ a global minimizer of E2. Then

E2(xk)− E2(x∗) ≤ 2 |x
∗
2 − x0

2|2

(k + 1)2 . (2.11)

However, we have to precise here that this result is the same as the main result in [9] recalled in
the previous section, for elementary reasons which we explain in the next Section 2.4. Observe on the
other hand that a straight application of [9] to problem (2.7) (with |x1 + x2|2/2 as the smooth term),
that is, governed by the iteration(

x̂1
x̂2

)
=
(
I + τ

(
∂f1
∂f2

))−1 (
x̄1 − τ(x̄1 + x̄2)
x̄2 − τ(x̄1 + x̄2)

)
,

needs τ ≤ 1/2 and hence yields the estimate

E2(xk)− E2(x∗) ≤ 4 |x
∗
1 − x0

1|2 + |x∗2 − x0
2|2

(k + 1)2 .

which is less good than (2.11), whereas the parallel algorithm in [25], with a deterministic block
(x1, x2), is achieving the same rate.
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2.4. The two previous problems are identical

In fact, what is not obvious at first glance is that problems (2.1) and (2.7) are exactly identical, while
the Forward-Backward descent scheme for the first is the same as the alternating minimization for the
second. A similar remark is already found in [21, Example 10.11], while the “ISTA” splitting derived
in [11] is based on the same construction. The point is the (straightforward and well-known) following
remark.

Lemma 2.2. The convex function g has L-Lipschitz gradient if and only if there exists a convex
function g0 such that

g(x) = min
y∈X

g0(y) + L
|x− y|

2

2
. (2.12)

Moreover, the minimizer yx = (I + 1
L∂g

0)−1x in (2.12) is yx = x− (1/L)∇g(x).

Proof. This is elementary, as g has L-Lipschitz gradient if and only if g∗ is (1/L)-strongly convex, if
and only if z 7→ g∗(z)− |z|2/(2L) is convex: the function g0 is then obtained as the Legendre-Fenchel
transform of the latter.
In addition, if yx is the minimizer in (2.12), given z and yz the minimizer for z, and using ∂g0(yx) +
L(x− yx) 3 0,

g(z) = g0(yz) + L
|z − yz|2

2 ≥ g0(yx) + 〈L(x− yx), yz − yx〉+ L
|z − yz|2

2
= g(x) + 〈L(x− yx), z − x〉+ 1

2L‖L(x− yx)− L(z − yz)‖2

which is precisely showing that ∂g(x) = {L(x − yx)} (and that it is L-Lipschitz). This is a standard
fact, including in the non-convex case, see for instance [16].

Hence, (2.1) can be rewritten as the minimization problem

min
x,y∈X

f(x) + g0(y) + L
|x− y|

2

2
. (2.13)

and the Forward-Backward scheme (2.2) with step τ = 1/L is an alternating descent scheme for
problem (2.13), first minimizing in y and then in x.

Observe that the descent rule (2.10) is a bit more precise, though, than (2.3). In particular, it also
implies the same accelerated rate for the scheme (minimizing first in x, and then in y):

xk+1 = (I + τ∂f)−1
(
yk + tk−1

tk+1
(yk − yk−1)

)
, (2.14)

yk+1 = xk+1 − τ∇g(xk+1), (2.15)

with tk as before, which coincides with [9] only when ∇g is linear.

3. Proximal alternating descent

Now we turn to problem (1.1) which is a bit more general, and less trivially reduced to another
standard problem as in the previous section. In general, we can not always assume that it is possible
to exactly minimize (1.1) with respect to one variable xi. However, we can perform a gradient descent
on the variable xi by solving problems of the form

min
xi

fi(xi) +
〈
Aixi,

∑
j

Aj x̄j

〉
+ 〈Mi(xi − x̄i), xi − x̄i〉

2τi
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for any given x̄, where Mi is a nonnegative operator defining a metric for the variable xi as soon as
fi is “simple” enough in the given metrics. Then, in case Mi/τi is precisely A∗iAi, the solution of this
problem is a minimizer of

min
xi

fi(xi) + 1
2

∣∣∣Aixi +
∑
j 6=i

Aj x̄j
∣∣∣2,

so that the alternating minimization algorithm can be considered as a special case of the alternating
descent algorithm (which will require onlyMi/τi ≥ A∗iAi). In the sequel to simplify we will consider the
standard metric corresponding toMi = IXi , however any other metric for which the proximal operator
of fi could be calculated is admissible in practice. Hence we will focus on alternating descent steps for
problem (1.1) in the standard metrics. The alternating proximal scheme seems to be first found in [4,
Alg. 4.1], while the linearized version we are focusing on is proposed and studied in [50, 12, 19, 26].

Main iteration. It can be described as follows: we let for each i, τi > 0, and starting from x̄, we
produce x̂ by minimizing

min
xi

fi(xi) +
〈
xi, A

∗
i

(∑
j<i

Aj x̂j +
∑
j≥i

Aj x̄j
)〉

+ |xi − x̄i|2τi

2
. (3.1)

We now try to establish descent rules for this main iteration. For any xi ∈ Xi,

fi(xi) + 1
2

∣∣∣Aixi +
∑
j<i

Aj x̂j +
∑
j>i

Aj x̄j
∣∣∣2 + |xi − x̄i|2τi

2
=

fi(xi) + 1
2

∣∣∣∑
j<i

Aj x̂j +
∑
j≥i

Aj x̄j
∣∣∣2 +

〈
xi − x̄i, A∗i

(∑
j<i

Aj x̂j +
∑
j≥i

Aj x̄j
)〉

+ 1
2

∣∣∣Ai(xi − x̄i)∣∣∣2 + |xi − x̄i|2τi

2

≥ fi(x̂i) + 1
2

∣∣∣∑
j<i

Aj x̂j +
∑
j≥i

Aj x̄j
∣∣∣2 +

〈
x̂i − x̄i, A∗i

(∑
j<i

Aj x̂j +
∑
j≥i

Aj x̄j
)〉

+ 1
2

∣∣∣Ai(xi − x̄i)∣∣∣2 + |x̂i − x̄i|2τi

2
+ |xi − x̂i|2τi

2

= fi(x̂i) + 1
2

∣∣∣∑
j≤i

Aj x̂j +
∑
j>i

Aj x̄j
∣∣∣2 − 1

2

∣∣∣Ai(x̂i − x̄i)∣∣∣2
+ 1

2

∣∣∣Ai(xi − x̄i)∣∣∣2 + |x̂i − x̄i|2τi

2
+ |xi − x̂i|2τi

2
.

Letting for each i, Bi = (1/τi)I −A∗iAi and assuming Bi ≥ 0, it follows

fi(xi) + 1
2

∣∣∣Aixi +
∑
j<i

Aj x̂j +
∑
j>i

Aj x̄j
∣∣∣2 +

|xi − x̄i|2Bi

2 ≥

fi(x̂i) + 1
2

∣∣∣∑
j≤i

Aj x̂j +
∑
j>i

Aj x̄j
∣∣∣2 +

|x̂i − x̄i|2Bi

2 + |xi − x̂i|2τi

2
. (3.2)
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Summing over all i, we find:

E(x) + ‖x− x̄‖
2
B

2 ≥ E(x̂) + ‖x̂− x̄‖
2
B

2 +
n∑
i=1

|xi − x̂i|
2τi

2

+ 1
2

[∣∣∣ n∑
j=1

Ajxj
∣∣∣2 − ∣∣∣ n∑

j=1
Aj x̂j

∣∣∣2

+
n∑
i=1

(∣∣∣∑
j≤i

Aj x̂j +
∑
j>i

Aj x̄j
∣∣∣2 − ∣∣∣Aixi +

∑
j<i

Aj x̂j +
∑
j>i

Aj x̄j
∣∣∣2)], (3.3)

where ‖x‖2B =
∑n
i=1 |xi|2Bi

. Denoting yi = Aixi we can rewrite the last two lines of this formula (with
obvious notation) as follows:

− 1
2

∣∣∣ n∑
i=1

yi − ŷi
∣∣∣2 +

n∑
i=1

〈
yi − ŷi,

∑
jyj
〉

+
n∑
i=1

〈
ŷi − yi,

∑
j<iŷj + yi + ŷi

2 +
∑
j>iȳj

〉

= −1
2

∣∣∣ n∑
i=1

yi − ŷi
∣∣∣2 + 1

2

n∑
i=1
|ŷi − yi|2

+
n∑
i=1

〈
ŷi − yi,

∑
j<i(ŷj − yj) +

∑
j>i(ȳj − yj)

〉
. (3.4)

Notice then that
n∑
i=1

〈
ŷi − yi,

∑
j<i(ŷj − yj)

〉
=

n∑
j=1

∑
i>j

〈ŷi − yi, ŷj − yj〉

=
n∑
i=1

∑
i<j

〈ŷj − yj , ŷi − yi〉 = 1
2

n∑
i=1

〈
ŷi − yi,

∑
j 6=i(ŷj − yj)

〉

= 1
2

(∣∣∣ n∑
i=1

ŷi − yi
∣∣∣2 − n∑

i=1
|ŷi − yi|2

)
(3.5)

so that (3.4) boils down to
n∑
i=1

〈
ŷi − yi,

∑
j>i(ȳj − yj)

〉
.

One deduces from (3.3) that for all x,

E(x) + ‖x− x̄‖
2
B

2 ≥ E(x̂) + ‖x̂− x̄‖
2
B

2

+
n∑
i=1

〈
Ai(x̂i − xi),

∑
j>iAj(x̄j − xj)

〉
+

n∑
i=1

|xi − x̂i|
2τi

2
. (3.6)

This can also be written

E(x) + ‖x− x̄‖
2
B

2 ≥ E(x̂) + ‖x̂− x̄‖
2
B

2 + ‖x− x̂‖
2
B

2

+ 1
2

n∑
i=1
|Ai(xi − x̂i)|2 +

n∑
i=1

〈
Ai(x̂i − xi),

∑
j>iAj(x̄j − xj)

〉
. (3.7)
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Then, using (3.5) again, one has

1
2

n∑
i=1
|Ai(xi − x̂i)|2 +

n∑
i=1

〈
Ai(x̂i − xi),

∑
j>iAj(x̄j − xj)

〉
= 1

2

n∑
i=1
|yi − ŷi|2 +

n∑
i=1

〈
ŷi − yi,

∑
j>i(ȳj − ŷj)

〉
+

n∑
i=1

〈
ŷi − yi,

∑
j>i(ŷj − yj)

〉
1
2

∣∣∣ n∑
i=1

yi − ŷi
∣∣∣2 +

n∑
i=1

〈
ŷi − yi,

∑
j>i(ȳj − ŷj)

〉
which, combined to (3.7), yields also the following estimate:

E(x) + ‖x− x̄‖
2
B

2 ≥ E(x̂) + ‖x̂− x̄‖
2
B

2 + ‖x− x̂‖
2
B

2

+ 1
2

∣∣∣ n∑
i=1

Ai(xi − x̂i)
∣∣∣2 +

n∑
i=1

〈
Ai(x̂i − xi),

∑
j>iAj(x̄j − x̂j)

〉
. (3.8)

3.1. A O(1/k) convergence rate

Convergence of the alternating proximal minimization scheme in this framework (and more general
ones, see for instance [4]), in the sense that (xk) is a minimizing sequence, is well-known and not so
difficult to establish. In case the energy is coercive, we can obtain from (3.6) a O(1/k) decay estimate
after k × n alternating minimizations, following essentially the similar proofs in [10, 8]. The idea is
first to consider x = x̄ in (3.6), yielding

E(x̄) ≥ E(x̂) + ‖x̂− x̄‖
2
B

2 +
n∑
i=1

|x̂i − x̄i|
2τi

2
.

In particular, if x∗ is a solution, letting x̄ = xk, it follows

E(xk+1)− E(x∗) + ‖x
k+1 − xk‖2B

2 +
n∑
i=1

|xk+1
i − xki |

2τi

2

≤ E(xk)− E(x∗). (3.9)

A rate will follow if we can show that ‖x̂ − x̄‖ bounds E(x̂) − E(x∗). From (3.8) we obtain, choosing
x = x∗,

E(x̂)− E(x∗) + ‖x̂− x̄‖
2
B

2 + ‖x
∗ − x̂‖2B

2

+ 1
2

∣∣∣ n∑
i=1

Ai(x∗i − x̂i)
∣∣∣2 +

n∑
i=1

〈
Ai(x̂i − x∗i ),

∑
j>iAj(x̄j − x̂j)

〉
≤ ‖x

∗ − x̄‖2B
2 .

Now, since
‖x∗ − x̄‖2B

2 − ‖x̂− x̄‖
2
B

2 − ‖x
∗ − x̂‖2B

2 = 〈x̂− x∗, x̄− x̂〉B,
this is also

E(x̂)− E(x∗) + 1
2

∣∣∣ n∑
i=1

Ai(x∗i − x̂i)
∣∣∣2 ≤ 〈x̂− x∗, x̄− x̂〉B − n∑

i=1

〈
Ai(x̂i − x∗i ),

∑
j>iAj(x̄j − x̂j)

〉
,

and there exists C (depending on the Ai’s) such that

E(xk+1)− E(x∗) ≤ C

√√√√ n∑
i=1

|xk+1
i − xki |

2τi

2

‖xk+1 − x∗‖.
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Thus, (3.9) yields, letting ∆k := E(xk)− E(x∗),

∆k+1 + 1
C2‖xk+1 − x∗‖2

∆2
k+1 ≤ ∆k. (3.10)

It follows:

Proposition 3.1. Assume that E is coercive. Then the alternating minimization algorithm produces
a sequence (xk) such that

E(xk)−min E ≤ O
(1
k

)
.

Proof. Indeed, if E is coercive, one has that ‖xk − x∗‖ is a bounded sequence and (3.10) reads
∆k+1 + C̃∆2

k+1 ≤ ∆k. (3.11)
Then, it follows from [8, Lemma 3.6] that

∆k ≤ max
{

∆0

2
k−1

2
,

4
C̃(k − 1)

}
.

For the reader’s convenience, we give a variant of Amir Beck’s proof, which shows a slightly different
estimate (and that, in fact, asymptotically, the “4” can be reduced). We can let xk = C̃∆k, with this
normalization we get that

xk+1(1 + xk+1) ≤ xk ⇒ xk+1 ≤
−1 +

√
1 + 4xk

2 ,

and
xkx

−2
k+1 − x

−1
k+1 − 1 ≥ 0

so that
1

xk+1
≥ 1 +

√
1 + 4xk

2xk
≥ 1
xk

+ 1− xk. (3.12)

Notice that from the first relationship, we find that

xk+1 + 1
4 ≤ xk+1 + 1

2 ≤
√
xk + 1

4
which yields

xk+1 ≤
(
x0 + 1

4

) 1
2k+1
− 1

2 .

In particular it takes only

k̄ ≥ log log(x0 + 1/2)− log log 5/4
log 2

iterations to reach xk̄ ≤ 3/4, which is for instance 7 iterations if x0 ≈ 1020, and one more iteration
to reach xk̄+1 ≤ 1/2. Then thanks to (3.12), one has for k ≥ k̄ + 1 that 1/xk+1 ≥ 1/xk + 1/2 ≥
1/xk̄+1 + (k − k̄)/2, yielding C̃∆k ≤ (2 + ε)/k for any ε > 0 and k large enough. Using (3.12) again
one sees that this bound can, in fact, be made as close as wanted to 1/k (but for k large).

Remark 3.2. One can observe that as xk converges to the set of solutions (which will be true in
finite dimension), then the constant C̃ ≥ 1/(C2‖xk+1 − x∗‖2) in (3.11) is improving, yielding a better
actual rate. In particular if E satisfies in addition a Kurdyka-Łojasiewicz type inequality [1] near a
limiting point x∗, then this global rate should be improved (see [50, 19, 26] for rates on the iterates in
this situation).
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3.2. The case n = 2

In case n = 2, the situation is simpler (as for the alternating minimizations, for which [10] already
showed that acceleration is possible for smooth functions). Indeed, (3.6) shows that

E(x) + ‖x− x̄‖
2
B

2

≥ E(x̂) + ‖x̂− x̄‖
2
B

2 + 〈A1(x̂1 − x1), A2(x̄2 − x2)〉+ 1
2

n∑
i=1

|xi − x̂i|
2τi

2

≥ E(x̂) + ‖x̂− x̄‖
2
B

2 − |A1(x̂1 − x1)|
2

2
− |A2(x̄2 − x2)|

2

2
+ 1

2

n∑
i=1

|xi − x̂i|
2τi

2

so that

E(x) +
|x1 − x̄1|2B1

2 + |x2 − x̄2|
2τ2

2
≥ E(x̂) + ‖x̂− x̄‖

2
B

2 +
|x1 − x̂1|2B1

2 + |x2 − x̂2|
2τ2

2
. (3.13)

This makes the FISTA acceleration of [9] possible for this scheme, yielding the following rate, as
explained in Section 2.2.

Proposition 3.3. Let xk = (xk1, xk2) be produced by iteration (3.1), starting from an initial point
(x0

1, x
0
2) and choosing x̄, x̂ in (3.1) as in (2.5), with tk = (k + 1)/2. Then one obtains the rate:

E(xk)− E(x∗) ≤ 2
(k + 1)2

(
|x0

1 − x∗1|2B1 + |x
0
2 − x∗2|
τ2

)
,

where x∗ is any minimizer of the problem.

If one can do an exact minimization with respect to x1, one has in addition B1 = 0 and falls back
into the situation described in Section 2.3. Moreover, if one also performs exact minimizations with
respect to x2, then the rate becomes

E(xk)− E(x∗) ≤ 2
|x0

2 − x∗2|A∗
2A2

(k + 1)2

which is the generalization of (2.11).

3.3. A more general case which can be accelerated

In fact, the case n = 2 is a particular case of a more general situation where the interaction term can
be written as the sum of pairwise interactions between two variables xi and xj .

Formally, it means that for all i, j, there exists Ai,j a bounded linear operator from Xi to a Hilbert
space Xi,j = Xj,i such that for all x = (xi)ni=1 ∈ ×ni=1Xi,∣∣∣ n∑

j=1
Ajxj

∣∣∣2 =
∑

1≤i<j≤n
|Ai,jxi +Aj,ixj |2. (3.14)

In this case, one checks that for any (xi, xj) ∈ Xi ×Xj , if i < j then

〈Aixi, Ajxj〉 = 〈Ai,jxi, Aj,ixj〉,

while for i = 1, . . . , n,
|Aixi|2 =

∑
j 6=i
|Ai,jxi|2.
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It follows
n∑
i=1

〈
Ai(x̂i − xi),

∑
j>iAj(x̄j − xj)

〉
=

∑
1≤i<j≤n

〈Ai,j(x̂i − xi), Aj,i(x̄j − xj)〉

≥ −1
2

∑
1≤i<j≤n

(
|Ai,j(xi − x̂i)|2 + |Aj,i(xj − x̄j)|2

)

= −1
2

n∑
i=1

∑
i<j≤n

|Ai,j(xi − x̂i)|2 −
1
2

n∑
i=1

∑
1≤j<i

|Ai,j(xi − x̄i)|2,

where in the last term we have exchanged the indices i and j. On the other hand,

1
2

n∑
i=1
|Ai(xi − x̂i)|2 = 1

2

n∑
i=1

∑
j 6=i
|Ai,j(xi − x̂i)|2

and it follows that

1
2

n∑
i=1
|Ai(xi − x̂i)|2 +

n∑
i=1

〈
Ai(x̂i − xi),

∑
j>iAj(x̄j − xj)

〉
.

≥ 1
2

n∑
i=1

∑
1≤j<i

|Ai,j(xi − x̂i)|2 −
1
2

n∑
i=1

∑
1≤j<i

|Ai,j(xi − x̄i)|2.

We therefore deduce from (3.7) that

E(x) + ‖x− x̄‖
2
B

2 + 1
2

n∑
i=1

∑
1≤j<i

|Ai,j(xi − x̄i)|2.

≥ E(x̂) + ‖x̂− x̄‖
2
B

2 + ‖x− x̂‖
2
B

2 + 1
2

n∑
i=1

∑
1≤j<i

|Ai,j(xi − x̂i)|2. (3.15)

It follows, once more, that FISTA-like acceleration is possible for this alternating minimization strat-
egy, yielding the following rate.

Proposition 3.4. Assume (Ai)i have the structure described in (3.14). Let xk = (xki )ni=1 be produced
by iteration (3.1), starting from an initial point x0 and choosing x̄, x̂ in (3.1) as in (2.5), with tk =
(k + 1)/2. Then one has:

E(xk)− E(x∗) ≤ 2
(k + 1)2

‖x0 − x∗‖2B
2 + 1

2

n∑
i=1

∑
1≤j<i

|Ai,j(x0
i − x∗i )|2


for any minimizer x∗.

4. Application: various splitting strategies for Total Variation minimization

In this section, we consider different splitting algorithms for minimizing the Rudin, Osher, Fatemi
(ROF) model for total variation (TV)-based image denoising.

min
u

TVp(u) + λ

2 ‖u− f‖
2
2, (4.1)

where f ∈ RMN is the (noisy) input image and λ > 0 is a regularization parameter. TVp corresponds
to a discrete `p-norm (p ∈ {1, 2}) based approximation of the total variation. We will denote by û the
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(a) Original image (600 × 800) (b) λ = 10

(c) λ = 5 (d) λ = 1

Figure 4.1. Test image of size 600×800 with intensity values in the range [0, 1] used in
our experiments. We consider experiments with different strength of the regularization
parameter to study the behavior of the algorithm in these cases.

unique minimizer of (4.1). The exact definition of the total variation function TVp will depend on the
certain type of the splitting strategy and hence it will be detailed in the respective sections.

Let us fix some notation. An image x is defined on a M ×N pixel grid with indices (1, 1) ≤ (i, j) ≤
(M,N) which is re-organized into a single column vector u ∈ RMN but for the ease of notation we
will keep the structure of the indices. We will also make use of the function

δC(x) =
{

0 if x ∈ C,
∞ else,

which denotes the indicator function for a convex set C.
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Figure 4.2. Chains-based splitting: The edges are decomposed into horizontal chains
(blue) and vertical chains (red).

4.1. Chain-based splitting

In this section, we consider the anisotropic version of (4.1) (p = 1)

min
u
P(u) = TV1(u) + λ

2 ‖u− f‖
2, (4.2)

which allows a splitting of the total variation as TV1(u) = TVh(u) + TVv(u), where

TVh(u) =
M,N−1∑
i,j=1

|ui,j+1 − ui,j |

computes the total variation along the horizontal edges and

TVv(u) =
M−1,N∑
i,j=1

|ui+1,j − ui,j |

computes the total variation along the vertical edges. See Figure 4.2 for a simple example, where the
blue lines correspond to the total variation along the horizontal edges and the red lines correspond
to the total variation along the vertical edges. This splitting has already been considered before, see
for instance [23, 5], but to the best of our knowledge, no formal justification of the fact that it can be
accelerated has been given.

We introduce auxiliary variables u1,2 ∈ RMN and multipliers x1,2 ∈ RMN and consider the following
Lagrangian formulation of (4.2):

min
u1,2,u

sup
x1,2

TVh(u1) + 〈x1, u− u1〉+ TVv(u2) + 〈x2, u− u2〉+ λ

2 ‖u− f‖
2.
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Now, minimizing the Lagrangian over u1,2 and u and denoting by TV∗h,v the convex conjugate of TVh,v

we arrive at the dual problem

max
x1,2
D(x1,2) = −TV∗h(x1)− TV∗v(x2)− 1

2λ‖x1 + x2‖2 + 〈x1 + x2, f〉. (4.3)

The primal variable u can be recovered from the dual variables x1,2 via

u = f − x1 + x2
λ

,

and the primal-dual gap P(u) − D(x1,2) can be shown to bound λ‖u− û‖2, where û is the unique
minimizer of (4.2).

Observe that (4.3) is exactly of the form (2.7) and according to Proposition 2.1, this problem can
be accelerated. An accelerated alternating minimization takes the following form: Choose x−1

2 = x0
2 ∈

RMN , t1 = 1, for each k ≥ 0 compute

tk+1 = 1+
√

1+4t2
k

2 ,

x̄k2 = xk2 + tk−1
tk+1

(
xk2 − xk−1

2

)
,

xk+1
1 = arg min

x1
TV∗h(x1) + 1

2‖x1 + x̄k2 − λf‖2,

xk+1
2 = arg min

x2
TV∗v(x2) + 1

2‖x
k+1
1 + x2 − λf‖2.

(4.4)

Thanks to the Moreau identity [7, Thm 14.3], the two last lines of Algorithm (4.4) can be rewritten
as 

xk+1
1 = (λf − x̄k2)− arg min

x1
TVh(x1) + 1

2‖x1 − (λf − x̄k2)‖2,

xk+1
2 = (λf − xk+1

1 )− arg min
x2

TVv(x2) + 1
2‖x2 − (λf − xk+1

1 )‖2.

Both partial minimization problems can be solved by solving M independent one-dimensional ROF
problems on the horizontal chains and N independent one-dimensional ROF problems on the vertical
chains. Efficient direct algorithms to solve one-dimensional ROF problems have been recently proposed
in [23, 35, 5, 33, 36]. The dynamic programming algorithm of [35, 36] seems most appealing for our
purpose since it guarantees a worst case complexity which is linear in the length of the chain. We will
therefore make use of this algorithm.

In the experiments presented in Table 4.1, we compare the proposed accelerated alternating min-
imization (AAM) with respect to a plain alternating minimization (AM) as studied in Section 3.1.
Similar to the observations made in [45], we observed that the convergence of (4.4) can be speeded
up by restarting the extrapolation factor (by setting tk = 1) of the algorithm from time to time. We
experimented with different heuristics and best working heuristic turned out to restart the algorithm
whenever the dual energy was increasing within the last 10 iterations. We denote this variant by
(AAM-r).

In Table 4.2, we test a Open-MP based multi-core implementation of the (AAM-r) algorithm using
a Intel Xeon CPU E5-2690 v2 @ 3.00GHz processor with 20 cores. We stop the (AAM-r) algorithm
as soon as u and x1,2 fulfill

‖u− û‖∞ ≤ ‖u− û‖2 ≤
√

(P(u)−D(x1,2))/λ ≤ 1/256,

which ensures that the maximum pixel error of u is less than 1/256 that is the exactly accuracy
of the input data. We compare the performance with a single-core implementation of the graph cut
(GC) based algorithm proposed in [33, 17]2 which utilizes the max-flow algorithm of Boykov and
Kolmogorov [13]. From the timings, one can observe that the proposed algorithm is already competitive

2The implementation has been taken from http://www.cmap.polytechnique.fr/∼antonin/software/
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to (GC) using only one core, but a multi-core implementation appears much faster. We can also observe
that (AAM-r) is quite stable with respect to the value of λ.

Table 4.1. Results for chains-based splitting applied to the image shown in Figure 4.1.
The table shows the number of iterations to reach a primal-dual gap less than tol.

(AM) (AAM) (AAM-r)
tol λ = 10 λ = 5 λ = 1 λ = 10 λ = 5 λ = 1 λ = 10 λ = 5 λ = 1
10−1 80 90 90 30 30 30 30 30 30
10−3 410 380 550 80 80 80 80 80 80
10−6 1810 2220 2830 270 260 300 170 180 190
10−9 3770 10000+ 5640 630 790 570 220 320 250

Table 4.2. CPU times for the (AAM-r) algorithm using a multi-core implementation.
(GC) refers to a single-core implementation of the graph cut based algorithm proposed
in [33, 17].

#cores λ = 10 λ = 5 λ = 1
1 4.13 4.12 4.96
5 1.08 0.94 1.20
10 0.63 0.62 0.75
20 0.48 0.44 0.53

(GC) 3.82 6.37 19.76

4.2. Squares based splitting

In this section consider the a discrete approximation of the total variation on squares. Let s =
(s1, s2, s3, s4)T be the nodes of a square, with s1 being the top-left node and enumerating the remain-
ing nodes in clock-wise orientation. On this square we define an operator D ∈ R4×4, that computes
the cyclic finite differences

Ds = (s2 − s1, s3 − s2, s4 − s3, s1 − s4)T , TVp(s) = ‖Ds‖p

and TVp(s) computes the p-norm based total variation on the square s. Figure 4.3 shows a qualitative
comparison between the anisotropic total variation (p = 1) and the isotropic total variation (p = 2).

In order to apply the definition of the total variation on squares to the whole image u, we define
a linear operator Si,j that extracts the 4 nodes of the square from the image u with its top-left node
located at (i, j), that is

Si,ju = (ui,j , ui,j+1, ui+1,j+1, ui+1,j)T .
See Figure 4.4 for a visualization of the splitting. The idea is now to perform a splitting of the total
variation into squares whose top-left nodes have even indices and squares whose top-left node have
odd indices, that is

TVp(u) = TVe(u) + TVo(u),
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(a) p = 1, λ = 5 (b) p = 2, λ = 3

Figure 4.3. A subview of the images shown in Figure 4.1 emphasizing the differences
between anisotropic total variation (p = 1) and isotropic total variation (p = 2). In
this example, we adapted the value of λ for a better comparison.

Figure 4.4. Squares-based splitting: The edges are decomposed into small loops
(squares) where red squares have even and blue squares have odd top left indices.

where TVe(u) corresponds to the total variation on the even squares and TVo(u) corresponds to the
total variation on the odd squares. They are respectively given by

TVe(u) =
bM/2c,bN/2c∑

i,j=1
‖DS2i,2ju‖p, TVo =

bM/2c,bN/2c∑
i,j=1

‖DS2i−1,2j−1u‖p.
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Observe that for the ease of notation, we shall skip some edges at the boundaries, which however
can be easily assigned to even or odd squares. In case p = 1 the discretization is equivalent (up to
the skipped edges at the borders) to the discretization on chains. We point out that this splitting
can be extended to higher dimensions using for examples cubes with even and odd origins in 3D. A
similar checkerboard-like decomposition of the total variation has also been adopted in [39] to perform
a block-coordinate descent on the primal ROF model. This algorithm however requires a smoothing
of the total variation in order to guarantee convergence.

Similar to the previous section we derive the dual problem as

max
x1,2
D(x1,2) = −TV∗e(x1)− TV∗o(x2)− 1

2λ‖x1 + x2‖2 + 〈x1 + x2, f〉. (4.5)

TV∗e,o denote the conjugate functions of TVe,o. A simple computation shows that

TV∗e(x1) =
bM/2c,bN/2c∑

i,j=1
δK(S2i,2jx1), TV∗o(x2) =

bM/2c,bN/2c∑
i,j=1

δK(S2i−1,2j−1x2),

where K is the convex set defined by
K = {DT ξ : ‖ξ‖q ≤ 1},

where ξ ∈ R4, q =∞ if p = 1 and q = 2 if p = 2.
Observe that the conjugate functions completely decompose into independent problems on the

squares. Hence, it suffices to consider the partial minimization with respect to a single square of the
form

min
s
δK(s) + 1

2‖s− s̄‖
2, (4.6)

for some s̄ ∈ R4. Using the definition of K, this problem is equivalent to solving the constraint
quadratic problem

min
‖ξ‖q≤1

1
2‖D

T ξ − s̄‖2, (4.7)

and a minimizer ŝ of (4.6) can be computed from a minimizer ξ̂ of (4.7) via ŝ = DT ξ̂.

4.2.1. The case p = 1

In case p = 1, all constraints on ξ are decoupled. A possibility to solve this problem is to adapt
the graph cut approach [33] which in this case requires only very few computations. However, we
found that it was about twice more efficient to approximately solve this problem by an alternating
minimization scheme. Keeping fixed ξ1,3, we can solve for ξ2,4 via

ξ2 = max
{
− 1,min

{
1, ξ1+ξ3+s̄3−s̄2

2

}}
, ξ4 = max

{
− 1,min

{
1, ξ1+ξ3+s̄1−s̄4

2

}}
.

Likewise keeping fixed ξ2,4, we can globally solve for ξ1,3 using

ξ1 = max
{
− 1,min

{
1, ξ2+ξ4+s̄2−s̄1

2

}}
, ξ3 = max

{
− 1,min

{
1, ξ2+ξ4+s̄4−s̄3

2

}}
.

In a practical implementation it turns out that one iteration of this alternating minimization is enough
when storing the values ξ during the iterations and performing a warm start from the previous solution.

Table 4.3 compares the proposed accelerated alternating minimization with a standard implementa-
tion of Beck and Teboulle’s algorithm [9] (FISTA) applied to the dual problem (4.5). We again tested
the accelerated alternating minimization algorithm (AAM) and a variant (AAM-r) that restarts the
overrelaxation parameter whenever the dual energy increased within the last 100 iterations. From the
results, on can see that (AAM) needs about 2-3 times less iterations and (AAM-r) needs about 3-5
times less iterations compared to (FISTA).
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Table 4.3. Results for squares-based splitting (p = 1) applied to the image shown in
Figure 4.1. The table shows the number of iterations to reach a primal-dual gap less
than tol.

(FISTA) (AAM) (AAM-r)
tol λ = 10 λ = 5 λ = 1 λ = 10 λ = 5 λ = 1 λ = 10 λ = 5 λ = 1
100 800 1200 3100 300 400 1000 300 400 800

10−1 1700 2900 8000 500 800 2300 500 800 1000
10−3 9600 10000+ 10000+ 2200 4500 10000+ 2200 1800 1800
10−6 10000+ 10000+ 10000+ 10000+ 10000+ 10000+ 3900 2900 2900

4.2.2. The case p = 2

In case p = 2 we only have a single constraint ‖ξ‖2 ≤ 1. The KKT sufficient optimality conditions
of (4.7) are given by

(DDT + µI)ξ −Ds̄ = 0,
‖ξ‖22 − 1 ≤ 0,

µ ≥ 0,
µ(‖ξ‖22 − 1) = 0,

(4.8)

where µ ≥ 0 is a Lagrange multiplier. Let D = USV T be a singular value decomposition of D with
singular values S = diag(2,

√
2,
√

2, 0). Since the columns of

U = (u1, u2, u3, u4) = 1
2


1 1 1 1
−1 1 −1 1
1 −1 −1 1
−1 −1 1 1


are the eigenvectors of DDT we also have

DDT + µI = UΣ(µ)UT ,

where Σ(µ) = S2 + µ = diag(µ+ 4, µ+ 2, µ+ 2, µ). Then, the first line of (4.8) yields

ξ = UΣ(µ)+UTDs̄,

where Σ(µ)+ denotes the Moore-Penrose-Inverse of Σ(µ), which is well-defined also for µ = 0. We
deduce that

‖ξ‖22 = ‖UΣ(µ)+UTDs̄‖22 = 2(t21 + t22)
(µ+ 2)2 + 4t23

(µ+ 4)2 ,

with t1 =
〈
DTu2, s̄

〉
, t2 =

〈
DTu3, s̄

〉
, t3 =

〈
DTu1, s̄

〉
. The optimality system (4.8) now becomes

2(t21 + t22)
(µ+ 2)2 + 4t23

(µ+ 4)2 − 1 ≤ 0,

µ ≥ 0,

µ

(
2(t21 + t22)
(µ+ 2)2 + 4t23

(µ+ 4)2 − 1
)

= 0.
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We solve the reduced system for µ by a projected Newton scheme. We let µ0 ≥ 0 and then, for each
n ≥ 0 we let

µn+1 = max

0, µn −
2(t21+t22)
(µ+2)2 + 4t23

(µ+4)2 − 1

−4(t21+t22)
(µ+2)3 −

8t23
(µ+4)3

 .
Once, µ is computed, ξ can be recovered from µ via

ξ = UΣ(µ)+UTDs̄.

It turns out that the above Newton scheme has a very fast convergence. If we perform a warm
start from the previous solution µ during the iterations of the accelerated block descent algorithm, we
observe that 6 Newton iterations are enough to reach an accuracy of 10−20. In practice, the best overall
performance is obtained by doing inexact optimizations using only one Newton iteration. Additionally,
we can perform a simple reprojection of ξ on the constraint ‖ξ‖p ≤ 1 before computing the dual energy
to ensure feasibility of the dual problem.

Table 4.4 presents the results in case of the isotropic (p = 2) total variation on squares. In contrast
to the setting p = 1, we observed that the restarting strategy did not significantly improve the
convergence and hence we omit the results. In general, the isotropic (p = 2) total variation appears to
be significantly more difficult to optimize compared to the anisotropic (p = 1) total variation. From
the results it can be seen that the proposed accelerated alternating minimization (AAM) is roughly 3
times faster compared to a standard implementation of (FISTA) applied to the dual problem (4.5).

Table 4.4. Results for squares-based splitting (p = 2) applied to the image shown in
Figure 4.1. The table shows the number of iterations to reach a primal-dual gap less
than tol.

(FISTA) (AAM)
tol λ = 10 λ = 5 λ = 1 λ = 10 λ = 5 λ = 1
100 500 700 1800 200 200 500

10−1 1000 1500 3900 300 500 1200
10−3 5500 8800 10000+ 1500 2400 5900

Remark 4.1. Before closing this subsection, let us observe (cf. Section 3.3) that instead of the red-
black Gauss-Seidel scheme we adopted in the two previous examples, we could also implement a
standard serial Gauss-Seidel scheme, which however did not improve the results and does not allow
for a parallel implementation.

4.3. Disparity estimation

In the last application we consider the problem of computing a disparity image from a pair of rectified
stereo images I l,r. We assume that I l,r are of size M × N and we consider K ordered disparity
values [d1, ...dk]. We start from the Ishikawa formulation [34, 46] that represents the non-convex
stereo problem as a minimum cut problem in a three-dimensional space.

min
ui,j,k+1≤ui,j,k

ui,j,k∈{0,1}
u·,·,1=1
u·,·,K=0

I(u) = TVh(u) + TVv(u) + TVl(u), (4.9)
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where

TVh(u) =
∑

1≤i≤M
1≤j≤N−1

1≤k≤K

whi,j |ui,j+1,k − ui,j,k|, TVv(u) =
∑

1≤i≤M−1
1≤j≤N
1≤k≤K

wvi,j |ui+1,j,k − ui,j,k|,

and

TVl(u) =
∑

1≤i≤M
1≤j≤N

1≤k≤K−1

ci,j,k|ui,j,k − ui,j,k+1|.

The weights wh,vi,j are edge indicator weights that are computed from the left input image I l in order to
yield improved disparity discontinuities. The weights ci,j,k are related to the matching cost of the left
and right image for given disparity values dk at pixel (i, j). The disparity image di,j is recovered from
ui,j,k by letting di,j = dk if ui,j,k − ui,j,k+1 = 1 which can happen only for one value k ∈ {1, ...,K − 1}.

Instead solving (4.9) using a max-flow algorithm as originally used in [34], we solve a 3D ROF-like
problem:

min
v
P(v) = I(v) + 1

2‖v − g‖
2,

where g is given for all i, j by

gi,j,k =


γ if k = 0,
0 if 1 < k < K,

−γ if k = K,

and γ is some positive constant (usually we use γ = 103). It can be shown that if γ is large enough,
the solution v̂ will satisfy for all i, j: v̂i,j,0 > 0, and v̂i,j,K < 0. Then, in this case it can be shown [17]
that

ûi,j,k =
{

0 if v̂i,j,k ≥ 0,
1 if v̂i,j,k < 0,

is a solution of (4.9).
We solve the 3D ROF problem by again performing a splitting into chains. Since this problem is

now 3D, we need to split into three types of chains: horizontal, vertical and in the direction of the
labels. Considering a Lagrangian approach, we arrive at the dual problem

max
x1,2,3

D(x1,2,3) = −TV∗h(x1)− TV∗v(x2)− TV∗l (x3)− 1
2λ‖x1 + x2 + x3‖2 + 〈x1 + x2 + x3, g〉.

Since we now have three blocks, it is not clear that an accelerated alternating minimization converges
(although, in fact, we observed it in practice). We should either perform plain alternating minimization,
or we treat two of the variables (e.g. x1,2 = (x1, x2)) as one block on which we perform a partial
proximal descent as investigated in Section 3. It corresponds to a particular instance of (1.1) with two
blocks (x′1, x′2) given by x′1 = (x1, x2) and x′2 = x3 and with A1x

′
1 = x1 + x2 and A2x

′
2 = x3. The

functions f1, f2 are given by f1(x′1) = TV∗h(x1) + TV∗v(x2) and f2(x′2) = TV∗l (x3). Furthermore, the
step sizes are given by τ ′1 = 1/2 and τ ′2 = 1 which means that for x′1 we have to perform a descent and
for x′2 we can do exact minimization.
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(a) Left image (b) Disparity image

Figure 4.5. Disparity estimation: (a) shows the left input image of size 1000 × 1482
and (b) shows the disparity image.

The accelerated proximal alternating descent now takes the following form: choose x−1
1 = x0

1 ∈
RMNK , x−1

2 = x0
2 ∈ RMNK , set τ = 1/2, and set t0 = 1. For each k ≥ 0 compute

tk+1 = 1+
√

1+4t2
k

2 ,

x̄k1,2 = xk1,2 + tk−1
tk+1

(
xk1,2 − xk−1

1,2

)
,

xk+1
3 = arg min

x3
TV∗l (x3) + 1

2‖x̄
k
1 + x̄k2 + x3 − λf‖2,

xk+1
1 = arg min

x1
TV∗h(x1) + 1

2τ ‖x1 − (x̄k1 − τ(x̄k1 + x̄k2 + xk+1
3 − λf))‖2,

xk+1
2 = arg min

x2
TV∗v(x2) + 1

2τ ‖x2 − (x̄k2 − τ(x̄k1 + x̄k2 + xk+1
3 − λf))‖2.

(4.10)

Observe that the three proximal steps can be computed as before using an algorithm for minimizing
1D ROF problems.

We present an application to large scale disparity estimation. We use the “Motorcycle” stereo
pair taken from the recently introduced high resolution stereo benchmark data set [48] at half size
(M × N = 1000 × 1482). One of the two input images is shown in Figure 4.5 (a). We discretize the
disparity space in the range of [d1, ..., dk] = [0, ..., 125] pixels. This results in K = 126 discrete disparity
values. The weights ci,j,k are computed using a illumination-robust image matching cost function. For
all i, j, k, we aggregate the truncated absolute differences between the image gradients of the left and
right images in a 2× 2 correlation window:

ci,j,k = 1
4

i,j∑
m=i−1,n=j−1

min(α, |(I lm+1,n − I lm,n)− (Irm+1,n+dk − Irm,n+dk)|)

+ min(β, |(I lm,n+1 − I lm,n)− (Irm,n+dk+1 − I
r
m,n+dk)|).

The truncation values are set to α = β = 0.1. The weights wh and wh are computed for all i, j as
follows:

whi,j = λ ·
{
µ if |I li,j+1 − I li,j | > δ,

1 else,
, wvi,j = λ ·

{
µ if |I li+1,j − I li,j | > δ,

1 else,
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Table 4.5. Results for the 3D ROF model applied to disparity estimation of the image
shown in Figure 4.5. The table shows the iterations to reach a primal-dual gap less than
tol. Note that due to the size of the problem, a global gap of 100 corresponds to a
relative gap (normalized by the primal energy) of about 6.57 · 10−10.

tol (AM) (AAD)
101 20 20
100 100 50

10−1 390 110

where we set µ = δ = 0.1 and λ = 1/600.
Table 4.5 shows a comparison of the proposed accelerated alternating descent (AAD) algorithm

with a standard alternating minimization (AM) algorithm which has been discussed in Section 3.1.
For both algorithms we again used a multi-core implementation and ran the code on 20 cores of
the same machine, mentioned above. From the table, one can see that (AAD) is much faster than
(AM) especially for computing a higher accurate solution. We point out that in order to compute the
disparity map the 3D ROF model does not need to be solved for a very high accuracy. Our results
suggest that usually 50 iterations are enough to recover the solution of the minimum cut and hence
the optimal disparity image. Note that computing the 2D disparity image amounts for computing a
3D ROF problem of size 1000× 1482× 126, that is solving for 560196000 dual variables! One iteration
of the (AAD) algorithm on the 20 core machine takes about 8.78 seconds, hence the disparity image
can be computed in ∼ 250 seconds. The final disparity image is shown in Figure 4.5 (b).
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