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Abstract. We start from the splitting of the equations of single-fluid magnetohydrodynamics (MHD) into a
magnetic induction part and a fluid part. We design novel numerical methods for the MHD system based on
the coupling of Galerkin schemes for the electromagnetic fields via finite element exterior calculus (FEEC)
with finite volume methods for the conservation laws of fluid mechanics. Using a vector potential based
formulation, the magnetic induction problem is viewed as an instance of a generalized transient advection
problem of differential forms. For the latter, we rely on an Eulerian method of lines with explicit Runge–
Kutta timestepping and on structure preserving spatial upwind discretizations of the Lie derivative in the
spirit of finite element exterior calculus. The balance laws for the fluid constitute a system of conservation
laws with the magnetic induction field as a space and time dependent coefficient, supplied at every time
step by the structure preserving discretization of the magnetic induction problem. We describe finite volume
schemes based on approximate Riemann solvers adapted to accommodate the electromagnetic contributions
to the momentum and energy conservation. A set of benchmark tests for the two-dimensional planar ideal
MHD equations provide numerical evidence that the resulting lowest order coupled scheme has excellent
conservation properties, is first order accurate for smooth solutions, conservative and stable.

2010 Mathematics Subject Classification. 76W05, 65M60, 65M08, 65M12.
Keywords. Magnetohydrodynamics (MHD), discrete differential forms, Finite Element Exterior Calculus
(FEEC), extrusion contraction, upwinding, extended Euler equations, Orszag-Tang vortex, rotor problem.

1. Introduction

The governing evolution equations of inviscid resistive MHD for spatially homogeneous and isotropic
materials read (in non-dimensional form),

∂tρ+ div(ρu) = 0,

∂t(ρu) + div (ρu⊗ u + pI) = curlB×B,

∂tE
hd + div

((
Ehd + p

)
u
)

= curlB ·E,

∂tB + curlE = 0,
curlB = J,

J = ε−1(E + u×B).

(1.1a)

(1.1b)

(1.1c)

(1.1d)

(1.1e)

(1.1f)

Here ρ is the fluid density, p the pressure, u the fluid velocity and Ehd the hydrodynamic energy, all
scaled appropriately. The electromagnetic quantities are the magnetic induction field B, the current
J and the electric field E. The quantity ε is a symmetric positive semi-definite tensor representing the
ratio of the electric resistivity and the magnetic permeability. The total energy E is expressed through
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the equation of state E = Ehd + 1/2‖B‖2L2 = p/(γ − 1) + 1/2ρ‖u‖2L2 + 1/2‖B‖2L2 , where γ is the gas
constant.

Initial conditions ensure divB = 0 which permits us to introduce a vector potential A such that,
enforcing its uniqueness through the so-called temporal gauge,

curlA = B , E = −∂tA− grad(u ·A).
After the elimination of E, B, and J equations (1.1d)-(1.1f) can be replaced with

∂tA + εcurlcurlA + curlA× u + grad(u ·A) = 0. (1.2)
Numerical methods for MHD are usually based on recasting (1.1) as a nonlinear system of conser-

vation laws, keeping B as electromagnetic “conserved variable”. This system is subsequently tackled
by means of schemes of finite volume (FV) or discontinuous Galerkin (DG) type employing suitable
numerical fluxes. Apart from shock resolution, a big challenge for these approaches is the preservation
of the divergence constraint divB = 0, whose violation will inevitably trigger non-physical behavior
of numerical solutions [40].

We pursue a radically different approach comprising the following key elements:

(1) Following the strategy introduced in [28], we split (1.1) into the so-called extended Euler
equations (1.1a)-(1.1c), a system of conservation laws for the fluid quantities, and Maxwell’s
equations in the magneto-quasistatic approximation for the electromagnetic fields. Here we
rely on the advection-diffusion equation (1.2) for the magnetic vector potential. Both parts
are discretized in space independently, with the magnetic induction B = curlA and velocity
u treated as parameters.

(2) We use the magnetic vector potential A as a primary electromagnetic quantity so that divB = 0
is exactly satisfied for B = curlA.

(3) The discretization of the magnetic advection-diffusion equation takes the cue from Finite
Element Exterior Calculus [3, 4, 25] using a Galerkin approach and discrete differential forms,
here incarnated through families of H(curl ,Ω)-conforming finite elements.

(4) A mesh-based Eulerian discretization of (1.2) entails stabilization in the case of dominant
transport ε ≈ 0. We rely on upwinding introduced, in Section 2, through extrusion contraction
discretization of the Lie derivative of discrete differential forms.

(5) For the spatial discretization of the extended Euler system (1.1a)-(1.1c) we employ, in Section 3,
one of the many established FV or DG schemes, suitably adjusted in order to accommodate the
presence of the magnetic induction B = curlA. The latter will enter the underlying numerical
fluxes as parameter.

Owing to Items 1, 3, 5, we have dubbed our new method the FV-FEEC scheme for MHD, see Sec-
tion 3.2. We believe that Item 3 is a truly novel aspect. To the best of our knowledge, edge and
face elements have only been employed in the development of mixed finite element discretizations of
incompressible resistive MHD with partial Lie derivative in [36], and more recently in [26]. However,
robustness of the aforementioned schemes with respect to large magnetic Reynolds number is still an
issue as they rely on standard discretizations of the transport operator.

Remark 1.1. In the framework of our FEEC-based discretization the exterior derivative commutes
with both the transport operator (Lie derivative, see Proposition 2.6) and stable projections onto the
finite element spaces. Thus, B = curlA can be recovered without loss of accuracy, and, for the pure
transport problem, a B-based scheme would produce exactly the same results.
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Structure Preserving Discretizations for MHD

In this work we focus on the case ε = 0 known as ideal MHD. We consider this the most challenging
situation, because magnetic diffusion as present for ε > 0 will smoothen shocks and enhance stability
of spatial discretizations.

Beyond ideal MHD, extending the FV-FEEC approach to resistive MHD (1.1) is straightforward:
We need only augment the discrete magnetic transport equation (1.2) with a conventional conforming
Galerkin discretization of the diffusion operator εcurlcurlA [25, Section 5]. As easy is the seamless
coupling of the resistive MHD model (1.1) with a standard eddy current model in order to cover
situations outlined in Figure 1.1. If the plasma is confined to a bounded region in space, zero outflow
conditions can be imposed for the fluid model at its boundary, whereas the FEEC discretization of
the A-based formulation of the magneto-quasistatic equations can be used everywhere. It will ensure
tangential continuity of both the magnetic vector potential and of the magnetic field (in a weak sense)
across the plasma boundary.

Plasma domain:

A-based resistive MHD model (1.1)-(1.2)

Plasma boundary: u · n = 0

Magnetostatic domain (σ = 0): curlμ−1(x)curlA = 0, divA = 0

Metal electrodes (σ > 0)
Eddy current domain:

curlμ−1(x)curlA+ ∂t(σ(x)A) = 0

Truncation boundary: μ−1(x)curlA = g, A · n = 0
(g �= 0 at contacts to model current excitation)

Figure 1.1. High-current circuit breaker set-up: resistive MHD inside an air chamber
has to be coupled with an eddy current model outside. The symmetric positive semi-
definite tensors σ = σ(x) and µ = µ(x) represent the spatially varying fluid electric
conductivity and magnetic permeability, respectively.

The ease with which our FV-FEEC scheme can accommodate non-coinciding fluid and electro-
magnetic domains contrasts sharply with the difficulties faced by conventional FV techniques in such
situations. We regard this as a key advantage of our new method. However, we emphasize that com-
parison of FV-FEEC schemes with more conventional methods is beyond the scope of this article.
In Section 4 we report the behavior of our new method for several initial value problems for (1.1)
(with ε = 0) which serve as benchmark problems in the computational MHD literature. This makes it
possible for the reader to compare the quality of solutions. Additional comments can be found in the
concluding Section 5.

2. Extrusion Contraction Discretization for the Generalized Pure Advection Evo-
lution Problem

The linear eddy current problem underlying the resistive MHD model, in the presence of a conducting
fluid moving with velocity u = u(x, t), boils down to the evolution PDE (1.2) for the vector potential
A. Problem (1.2) and the well-known scalar advection-diffusion problem belong to a single family of
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second order evolution problems, the so-called generalized advection-diffusion problem. In the spirit
of FEEC, for a unified statement we rely on the language of exterior calculus: for differential k-forms
in Ω× I, with Ω bounded Lipschitz domain in Rn and I := [0, T ], the strong form of the generalized
advection-diffusion problem reads

?∂tω(t) + (−1)k+1dn−k−1ε?dkω(t) + ?Luω(t) = f(t), in Ω× I, (2.1a)
trω(t) = g(t), on (Γin ∪ Γ0)× I, (2.1b)

tr(inω(t)) = s(t), on Γin × I, (2.1c)
ω(0) = ω0, in Ω, (2.1d)

where ω(t) ∈ Λk (Ω) is a time-dependent differential k-form on Ω and u : Ω × I → Rn is a given
velocity field assumed to be Lipschitz continuous. The diffusion coefficient ε : Ω → R is a non-
negative and bounded function, and the boundary conditions are imposed at the inflow boundary
Γin := {x ∈ ∂Ω : u · n(x) < 0}, and at Γ0 := {x ∈ ∂Ω : ε > 0}. The forcing term and boundary data
are f(t) ∈ L2 Λn−k (Ω), g(t) ∈ L2Λk(Γin ∪ Γ0), and s(t) ∈ L2Λk−1(Γin). Using the standard notation
of exterior calculus, see e.g. [23, Section 1.1], ? is the Hodge operator, dk is the exterior derivative, in
is the contraction by the vector n normal to the boundary, and Lu is the Lie derivative. We point out
that (1.2) is an instance of (2.1a) for k = 1 in three dimensions written in terms of so-called Euclidean
vector proxies, see [22, Section 2].

It is well known that for the scalar advection-diffusion equation standard Galerkin discretizations
with Lagrangian finite elements break down in the singular perturbation limit of vanishing diffusion.
The observed onset of spurious oscillations reflects the weakly coercive nature of the problem in the
energy norm. A plethora of stabilization mechanisms have been devised to curb unphysical oscillations
while avoiding an excessive smearing of the solution [35].

In this work, we explore a class of finite element conforming discretizations of the transport operator
built on the duality between the contraction operator and the extrusion of manifolds. The terminology
extrusion contraction upwind schemes was introduced in [21] where the authors proposed a numeri-
cal approximation of the advection-diffusion problem, with focus on the scalar case, inspired by the
discretization of the contraction introduced in [8]. A finite-volume-like discretization of the transient
pure advection problem for 1-forms based on a similar technique was later suggested in [31].

With the ideal MHD problem in mind, we focus on the transient generalized pure advection
problem (ε = 0): numerical schemes proving robust in this case are also suitable for the general-
ized problem when augmented with a standard HΛk (Ω)-conforming Galerkin discretization of the
non-vanishing diffusion term. The generalized pure advection initial boundary value problem in the
space-time domain Ω × I, in weak formulation reads: For f ∈ C0(I;L2Λk (Ω)) and ω0 ∈ W|t=0, find
ω ∈ C1(I;L2 Λk (Ω)) ∩ C0(I;W ) such that

(∂tω, η)Ω + (αω, η)Ω + (Luω, η)Ω = (f, η)Ω,

(ω(0), η)Ω = (ω0, η)Ω,
(2.2)

for all η ∈ L2 Λk (Ω), where (·, ·)Ω denotes the L2 Λk (Ω) inner product (ω, η)Ω :=
´

Ω ω ∧ ?η, and the
variational spaces V and W are defined as

V := {ω ∈ L2Λk (Ω) : Luω ∈ L2Λk (Ω) ,
ˆ

Γin

tr i−u(ω ∧ ?ω) <∞},

W|t := {ω ∈ V : trω = g, tr inω = s on Γin, g(t) ∈ L2Λk(Γin), s(t) ∈ L2Λk−1(Γin)}.
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For velocity fields uniformly continuous in time and Lipschitz continuous in space, u ∈ C0(I;W 1,∞(Ω)),
the following “coercivity” condition on the velocity: there exists a constant α0 > 0 such thatˆ

Ω

(
α+ 1

2(Lu(·,t) + Lu(·,t))
)
ω ∧ ?ω ≥ α0

ˆ
Ω
ω ∧ ?ω, ∀ω ∈ L2Λk (Ω) , ∀ t ∈ I, (2.3)

with Lu = −(−1)k(n−k)?Lu?, ensures that the variational problem (2.2) is well-posed. Expressions in
vector proxies of the “coercivity” condition (2.3) on the velocity field can be found in [33, Table 3.1].
However, MHD solutions feature shocks that give rise to discontinuous velocities. A well-posedness
theory for velocity fields with less regularity is available only for scalar advection. We refer to [23,
Section 1.2] for a more detailed discussion on the well-posedness of the generalized advection problem.

Following a method of lines strategy, a suitable spatial discretization of the time-independent ad-
vection operator can be coupled with an explicit Runge–Kutta scheme. Therefore, we first consider
the stationary generalized advection boundary value problem for a k-form ω ∈ Λk (Ω): Find ω ∈ V
such that

αω + Luω = f, in Ω, trω = g , tr inω = s, on Γin, (2.4)
with f ∈ L2 Λk (Ω), g ∈ L2Λk(Γin), s ∈ L2Λk−1(Γin). We aim at finding a stable numerical dis-
cretization of the advection operator, the Lie derivative Lu, based on polynomial HΛk (Ω)-conforming
discrete differential forms.

In the following, let {Th}h>0 be a family of cellular decompositions of the domain Ω such that
every Th is either a finite element simplicial mesh in the sense of Ciarlet [10, Section 3.1], or it is a
tensor product mesh. Let ∆j(Th) denote the set of all j-faces of Th with the convention ∆n(Th) = Th.
Furthermore, let Λkh (Th), 0 ≤ k ≤ n, be an HΛk (Ω)-conforming space of piecewise polynomial discrete
differential forms, see e.g. [3, Section 5]. Let Λkh,r (Th), 0 ≤ k ≤ n, be the HΛk (Ω)-conforming space
of piecewise polynomial discrete differential k-forms of degree at most r ≥ 1, namely

Λkh,r (Th) := {ωh ∈ HΛk (Ω) : ωh|T ∈ ζ
k
r (T ), T ∈ Th}, (2.5)

where the local shape functions are ζkr (T ) = PrΛk(T ) or ζkr (T ) = P−r Λk(T ) on simplicial meshes [24, 3],
and ζkr (T ) = Q−r Λk(T ) [2] or ζkr (T ) = SrΛk(T ) [1] on Cartesian meshes.

Let 0 ≤ k ≤ n and r ≥ 1. On a n-cell T ∈ Th, the degrees of freedom (DOF) of ζkr (T ) are defined
on every j-cell fj ∈ ∆j(T ), with k ≤ j ≤M r,k

min, as

ω ∈ ζkr (T ) 7−→W `
fj

(ω) :=
ˆ
fj

trω ∧ η`j ∀` = 1, . . . , Nj , (2.6)

where {η`j}
Nj

`=1 is a basis of ζkr,j(T ) defined as

ζ
k
r,j(T ) :=


P−r−j+kΛj−k(fj), if ζkr (T ) = PrΛk(T ),
Pr−j+k−1Λj−k(fj), if ζkr (T ) = P−r Λk(T ),
Pr−2(j−k)Λj−k(fj), if ζkr (T ) = SrΛk(T ),
Q−r−1Λj−k(fj), if ζkr (T ) = Q−r Λk(T ).

(2.7)

Degrees of freedom for discrete k-forms are associated with j-facets of the mesh, where

j ∈ {k, . . . ,M r,k
min} , M r,k

min :=
{

min{n, br/2c+ k} if Λkh,r (Th) = SrΛk(Th),
min{n, r + k − 1} otherwise. (2.8)

Then DOF-based local projection operators onto polynomial spaces of differential forms Ikr,T : Λk(T )→
ζkr (T ), for every T ∈ Th, can be defined so that,

W `
fj

(Ikr,T ω) :=
ˆ
fj

tr(Ikr,T ω) ∧ η =
ˆ
fj

trω ∧ η, ∀ η ∈ ζkr,j(T ), fj ∈ ∆j(T ), k ≤ j ≤M r,k
min.
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When boundary conditions at the inflow boundary are prescribed as in (2.1b), (2.1c), we define
Λk0,r (Th) := {ωh ∈ Λkh,r (Th) : trωh = g, tr inωh = s on Γin}, (2.9)

and similarly we use Λk0 (Th) to denote the spaces Λkh (Th) endowed with inflow boundary conditions.

2.1. Contraction and Extrusion

The Lie derivative is a coordinate-independent operator which measures the rate of change of a dif-
ferential form along the flow of a vector field. It is the generalization to k-forms of the spatial part
of the material derivative which measures the rate of change observed by a material particle moving
with a fluid. LetMn be a n-dimensional smooth manifold and let u be a smooth vector field onMn.
By introducing the flow of the vector field u on the manifoldMn, namely Φ : R ×Mn →Mn such
that ∂tΦ(t, x) = u(Φ(t, x), t) with Φ(0, x) = x, the Lie derivative of a differential k-form ω ∈ Λk (Ω) is

Luω = d

dt

∣∣∣∣
t=0

Φ∗tω.

A key identity is Cartan’s “magic” formula for the Lie derivative of a k-form ω ∈ Λk (Ω),
Luω = dk−1iuω + iudkω. (2.10)

Thus, defining a discrete Lie derivative boils down to finding discrete counterparts of the exterior
derivative dk and of the contraction operator iu. Calculation of the exterior derivative is a well-defined
and purely local operation for discrete differential forms.

Greater difficulties are faced for the contraction iu. Recall that the contraction of alternating (k+1)-
forms by a Lipschitz continuous vector field u is defined as the k-form such that (iuω)(x)(v1, . . . , vk) =
ω(x)(u(x), v1, . . . , vk), for ω ∈ Altk+1 V and (v1, . . . , vk) ∈ V k, V being a real vector space and
Altk+1 V the space of alternating algebraic (k + 1)-forms on V . Pointwise application of this formula
yields a definition of the contraction operator for smooth differential forms. The correspondences
between the contraction of differential forms and proxy fields is recalled in Table 2.1.

ω ∈ Λk (Ω) k = 0 k = 1 k = 2 k = 3
iuω − u ·w w× u wu

Table 2.1. Contraction of differential forms: exterior calculus notations and corre-
sponding expressions for vector proxies w, w in R3.

A pointwise definition of contraction is problematic for discrete differential forms, which fail to be
totally continuous. In particular, for ωh ∈ Λk+1

h (Th) we find iuωh 6∈ HΛk (Ω) in general. In addition,
DOF-based interpolation will not be possible, because the traces of iuωh onto facets are ambiguous.

2.2. Upwind Discrete Contraction via Extrusion

There is a less local way to understand contraction employing orbits of smooth manifolds under the
flow, commonly called extrusion (see Figure 2.1).

Definition 2.1 (Extrusion). LetMn be an n-dimensional smooth oriented manifold. Let Sj be a j-
dimensional submanifold ofMn, the extrusion Extu(Sj , t) of Sj by the smooth vector field u, at time
t, is the (j + 1)-dimensional manifold formed by the union of the submanifolds obtained by sweeping
Sj = Φ(0,Sj) along the flow of u to the submanifold Φ(t,Sj). Specifically, Extu(Sj , t) =

⋃
s∈[0,t] Φ(s,Sj)

with orientation given by ∂Extu(Sj , t) = Φ(t,Sj)− Φ(0,Sj)− Extu(∂Sj , t).
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M2

Φ(t,S1) Extu(∂S1, t)

S1

Figure 2.1. Sketch of the extrusion of an oriented path S1.

Then the contraction iuω ∈ Λk(Mn) of a smooth (k + 1)-form ω ∈ Λk+1(Mn) on a k-dimensional
smooth oriented submanifold Mk can be defined as the instantaneous change of ω evaluated on the
extrusion ofMk [8, Equation (14)], namely

〈iuω,Mk〉 := lim
t↘0

1
t
〈ω,Extu(Mk, t)〉, (2.11)

where 〈·, ·〉 denotes the chain-cochain duality pairing.
Since in FEEC we use integrals of forms as degrees of freedom, the concept of extrusion of a

manifold by the flow of a vector field offers a natural way to define the integral of a contracted discrete
differential form over such manifold. A discrete contraction and its combination with the coboundary
operator pave the way to discretizations of the Lie derivative.

In greater detail, the duality formula (2.11) expresses the fact that the contraction of a smooth
(k + 1)-form over a k-dimensional manifold is equal to the instantaneous change of the form over
the extrusion of the manifold. Equivalently for continuous ω, (2.11) can be rewritten with the k-
dimensional submanifoldMk extruded backward in time:

〈iuω,Mk〉 = − lim
t↘0

1
t
〈ω,Extu(Mk,−t)〉, ∀ω ∈ Λk+1(Mn). (2.12)

Owing to their lack of continuity, for discrete differential forms ωh ∈ Λk+1
h (Th) the equivalence breaks

down. In general,

〈iuωh, ck〉 = lim
t↘0

1
t

ˆ
Extu(ck,t)

ωh 6= − lim
t↘0

1
t

ˆ
Ext−u(ck,t)

ωh = 〈−i−uωh, ck〉, (2.13)

where ck ∈ ∆k(Th) is a k-face of Th.
This observation allows us to introduce upwinding by opting for the right-hand-side formula. For

ωh ∈ Λk+1(Th) in place of ω this yields well-defined point values for iuωh everywhere in Ω, even on
facets of the mesh.

After deciding to use contraction based on upwind extrusion all facet-based degrees of freedom for
iuωh are uniquely defined. Thus, a global contraction operator can be constructed through a (global)
reconstruction, by interpolating the contraction of a discrete k-form into some space of HΛk−1 (Ω)-
conforming discrete differential forms. Since we are interested in piecewise polynomial discretizations,
we consider interpolation onto spaces of HΛk (Ω)-conforming polynomial discrete differential forms
Λkh,p (Th) of type (2.5), for some polynomial degree p ≥ 1 which might differ from the polynomial
degree of the approximation spaces.
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As a preliminary step, in order to introduce an interpolation operator underlying contraction, we
need to identify an “upwind direction” at the mesh facets.

Definition 2.2 (Upwind Element). Let Th be a cellular complex on Ω ⊂ Rn. Consider a point x ∈ Ω.
The n-cell T upw

x ∈ Th is said to lie in the upwind direction of x determined by the vector field u, if
the extrusion Ext−u(x, t) is (partly) contained in T upw

x for t small enough. If Ext−u(x, t) ∈ fj for some
fj ∈ ∆j(Th), 1 ≤ j < n, then at least two n-cells are lying in the upwind direction of x. In this case,
any T ∈ Th such that fj ∈ ∂T can be selected as the upwind element at x, and the choice is arbitrary.

Note that in the limit of small t the upwind element at a given point x ∈ Ω is uniquely defined. A
two-dimensional example of the elements lying in the upwind direction of points of an edge is shown
in Figure 2.2.

Ext−u

u

T1

T2

T3

T4

Figure 2.2. Two-dimensional example of the mesh elements lying in the upwind di-
rection of points on an edge determined by the vector field u.

Definition 2.3 (Upwind Interpolation of Contraction). Let Th be a cellular complex on Ω ⊂ Rn. Let
ωh ∈ Λk+1

0 (Th), 0 ≤ k ≤ n−1, be a discrete differential (k+1)-form and let u be a smooth vector field.
Consider a polynomial space of differential forms Λkh,p (Th) ⊂ HΛk (Ω), p ≥ 1, as in (2.5): let {ψ`j}j,`
be a basis of Λkh,p (Th), and Mp,k

min the number of degrees of freedom (2.8) associated with the mesh
faces. The upwind interpolation operator onto Λkh,p (Th) is defined as Iku,p : L2Λk (Ω)→ Λkh,p (Th),

Iku,p(iuωh) =
Mp,k

min∑
j=k

∑
fj∈∆j(Th)

Nj∑
`=1

W `
fj

(iupw
u ωh)ψ`j ,

where on a given j-facet fj ∈ ∆j(Th) \ Γin,
(iupw

u ωh)(x) := (iuωh|
T

upw
x

)(x), ∀x ∈ fj ,

and T upw
x is the element in the upwind direction of the point x determined by the vector field u, as in

Definition 2.2. The local degrees of freedom W `
fj

on every element T ∈ Th are defined as,

W `
fj

(iupw
u ωh) :=

ˆ
fj

tr(iupw
u ωh) ∧ η`j , ∀fj ∈ ∆j(T ) \ Γin, (2.14)

W `
fj

(iupw
u ωh) :=

ˆ
fj

tr(iuωh) ∧ η`j , ∀fj ∈ ∆j(T ) ∩ Γin, (2.15)

where {η`j}
Nj

`=1 is a basis of the local space ζkr,j(T ) defined in (2.7).
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Note that, owing to the regularity of discrete differential k-forms ωh ∈ HΛk (Ω), if the backward
extrusion of a given point x ∈ Ω is contained in a j-facet fj ∈ ∆j(Th), j < n, then iuωh|T =
iuωh|

T
upw
x

for all T ∈ Th such that fj ∈ ∂T . This justifies Definition 2.2. Moreover, Iku,p(iuωh) = iuωh
if iuωh ∈ Λkh,p (Th) ⊂ HΛk (Ω). The degrees of freedom interior to the mesh elements are not affected
by upwinding.

Remark 2.4 (Boundary conditions at the inflow boundary). The evaluation of the interpolated
contraction at the inflow boundary facets (2.15) relies on the fact that the trace of the form and the
trace of its contraction, tr(inωh), at the inflow boundary of the domain are supplied by the boundary
conditions (2.1b), (2.1c). One can decompose the velocity field u in its normal component un := (u·n)n
and its tangential component ut := (n× u)× n, such that

iuωh = iunωh + iutωh = (u · n)inωh + iutωh, ∀ωh ∈ Λkh (Th) , ∀ k.
Note that the contraction by the tangential component of the velocity is available from the trace
of ωh (2.4). However, in the case of non-smooth boundaries, the contraction might not be uniquely
defined at a given boundary j-cell, j ≤ n − 1. One could average the contributions from the n-cells
sharing the j-cell. For example, in two dimensions, at a boundary node x ∈ ∆0(Th) ∩ ∂Ω such that
x ∈ ∆0(e1) ∩∆0(e2) for some edges e1, e2 ∈ ∆1(Th) ∩ ∂Ω, one can approximate the contraction of a
1-form ωh as

iuωh ≈
1
2((u · n1)in1ωh + iut1

ωh) + 1
2((u · n2)in2ωh + iut2

ωh).

2.3. Discrete Lie derivative

Using the discretization of the contraction operator according to Definition 2.3, the discrete Lie de-
rivative is defined as,

Lhu :

Λk0,r (Th) −→Λkh,p (Th)
ωh 7−→Iku,p(iudkωh) + dk−1 Ik−1

u,p−(iuωh),
(2.16)

where p− ≥ 1 is such that dk−1 Λk−1
h,p− (Th) ⊂ Λkh,p (Th). The polynomial interpolation order p has to be

chosen such that the consistency error does not destroy the accuracy order related to the finite element
approximation. Moreover, in view of (2.12), the characterization (2.16) automatically incorporates an
upwinding of the Lie derivative. Lastly, since u is Lipschitz continuous and the discrete differential
forms are piecewise polynomials, the moments of the contracted forms on each j-cell of Th are well-
defined from within the n-cell in the upwind direction of the flow.

As a result of the discretization of the Lie derivative, the discrete advection problem, recast in weak
form, reads: Find ωh ∈ Λk0,r (Th) such that

ah(ωh, ηh) = (f, ηh)Ω , ∀ ηh ∈ Λkh,r (Th) , (2.17)

where the bilinear form ah(·, ·) is defined, for all ωh ∈ Λk0,r (Th) and ηh ∈ Λkh,r (Th), as

ah(ωh, ηh) := (αωh, ηh)Ω +
ˆ

Ω
(Iku,p(iudkωh) ∧ ?ηh + dk−1 Ik−1

u,p−(iuωh) ∧ ?ηh).

2.3.1. Discrete Lie Derivative in Terms of Euclidean Vector Proxies

We report the vector proxy representation of the discrete Lie derivative defined in (2.16), for k = 0
and k = 1 forms. These are the two cases of interest when dealing with the potential formulation of the
MHD problem. Let Vh be finite element spaces of vector proxies associated with the spaces Λk0,r (Th)
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of polynomial differential k-forms of degree at most r ≥ 1 on the three-dimensional cellular complex
Th. Let Iku,p, 0 ≤ k ≤ 2, and Iku,p− , 1 ≤ k ≤ 3, be upwind interpolation operators onto piecewise
polynomial spaces of degree at most p ≥ 1 and p− ≥ 1, respectively. Let wh ∈ Vh or wh ∈ Vh be the
vector proxy representation of the k-form ωh ∈ Λk0,r (Th) and let Mp,k

min be defined as in (2.8) for n = 3.
The discrete Lie derivative (2.16) reads

k = 0 : Lhuwh = I0
u,p(iud0wh) = I0

u,p(u · gradwh)

=
Mp,0

min∑
j=0

∑
fj∈∆j(Th)

Nj∑
`=1

W `
fj

((u · gradwh)upw)λ`j , (2.18)

(u · gradwh)upw(x) := u(x) · (gradwh)|
T

upw
x

(x), ∀x ∈ fj \ Γin,

and boundary conditions are used whenever x ∈ Γin. Here {λ`j}j,` is a basis of H1-conforming polyno-
mials of degree at most p.

Let {φ`j}j,` be a basis of H(curl ,Ω)-conforming polynomials of degree at most p and {λ`j}j,` a basis
of H1-conforming polynomials of degree at most p−. There holds,

k = 1 : Lhuwh = I1
u,p(iud1wh) + d0 I0

u,p−(iuwh) = I1
u,p(curlwh × u) + grad(I0

u,p−(u ·wh))

=
Mp,1

min∑
j=1

∑
fj∈∆j(Th)

Nj∑
`=1

W `
fj

((curlwh × u)upw)φ`j

+
Mp−,0

min∑
j=0

∑
fj∈∆j(Th)

Nj∑
`=1

W `
fj

((u ·wh)upw) gradλ`j ,

(u ·wh)upw(x) := u(x) ·wh|
T

upw
x

(x), ∀x ∈ fj \ Γin,

(curlwh × u)upw(x) := (curlwh)|
T

upw
x

(x)× u(x), ∀x ∈ fj \ Γin,

and boundary conditions are used whenever x ∈ Γin.
The representation in vector proxies of the Lie derivative of k = 2 and k = 3 can be derived

analogously, using the correspondences between the exterior derivative and the contraction operator
and the definition of the upwind interpolation I2

u,r for r ∈ {p, p−}.

Remark 2.5 (Tabata’s scheme). Let Th denote a simplicial triangulation of Ω ⊂ Rn of weakly acute
type. We consider the extrusion contraction upwind discretization of the scalar advection problem
with linear Lagrangian finite element spaces Vh. Using the discrete Lie derivative (2.18) in the weak
formulation (2.17), yields the bilinear form

ah(wh, vh) =
N0∑
`=1

u(x`) · (gradwh)|
T

upw
x`

(x`)
ˆ

Ω
λ`vh, ∀wh, vh ∈ Vh.

where {λ`}` are the barycentric coordinates and N0 := dimVh = ]∆0(Th). Approximating the inte-
gration on Ω using local quadrature rules Q(T ) = {ai,T , qi,T }ni=0 with weights {qi,T = 1/(n+ 1)}i and
nodes {ai,T }i at the mesh 0-cells (vertices of the n-simplices), results in

ah(wh, vh) =
N0∑
`=1

u(x`) · (gradwh)|
T

upw
x`

(x`)
∑
T∈Th

∑
ai,T∈∆0(T )

qi,Tλ
`(ai,T )vh(ai,T )

=
∑
T∈Th

∑
ai,T∈∆0(T )

qi,Tu(ai,T ) · (gradwh)|
T

upw
ai,T

(ai,T )vh(ai,T ),
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and the so-called upwind quadrature or Tabata’s scheme [38] is recovered. The method proposed by
Tabata to solve the transient scalar advection-diffusion problem with homogeneous Dirichlet boundary
conditions at the domain boundaries, is first order accurate, and it delivers an algebraic system M-
matrix (i.e., a non-singular matrix whose entries ai,j satisfy ai,j ≤ 0 for i 6= j and the entries bi,j
of the inverse matrix are non-negative, bi,j ≥ 0). This entails that the discrete solution operator is
inverse monotone. Therefore, when augmented with a standard linear finite element discretization of
the diffusion operator, the resulting scheme is able to preserve the inverse-monotonicity property and
hence the maximum principle characterizing the problem at the continuous level [38, Theorem 1].

2.4. Commuting Property of the Discrete Lie Derivative

Owing to Cartan’s formula (2.10), it can be easily verified that the exterior derivative and the Lie
derivative commute, namely

dkLuω = Ludkω, ∀ω ∈ Λk (Ω) . (2.19)

The commuting property has the fundamental consequence that closed differential forms are Lie ad-
vected into closed forms. In the MHD perspective, this corresponds to the fact that the B field is
solenoidal at every time. Moreover, it entails that, if ω ∈ Λk (Ω) is solution of the advection problem
for k-forms, then dkω is solution of the advection problem for (k + 1)-forms, under suitable forcing
terms, initial and boundary conditions. As an example, in three-dimensional ideal MHD flows, the
magnetic potential A and the magnetic induction field, B = curlA, satisfy the advection problem for
the vector proxies of differential 1-forms and 2-forms, respectively.

The discretization of the Lie derivative proposed in (2.16) yields an advection operator satisfying
the commuting property (2.19) in the discrete setting.

Proposition 2.6. Let Ω ⊂ Rn be a bounded Lipschitz domain and let Th be a cellular complex on
Ω. Let p+, r+ ≥ 1 be such that dk Λkh,p (Th) ⊂ Λk+1

h,p+ (Th) and dk Λkh,r (Th) ⊂ Λk+1
h,r+ (Th), respectively,

with p, r ≥ 1. Let u ∈ W 1,∞(Ω) and let Lhu be the extrusion contraction upwind discretization of
the Lie derivative Lu in (2.16). For all 0 ≤ k ≤ n− 1, the following diagram

Λk0,r (Th) dk

−−−−→ Λk+1
h,r+ (Th)yLh

u

yLh
u

Λkh,p (Th) dk

−−−−→ Λk+1
h,p+ (Th) ,

commutes, namely, Lhudkωh = dkLhuωh, for all ωh ∈ Λk0,r (Th) ⊂ HΛk (Ω).

Proof. The commutativity of the discrete exterior and Lie derivatives follows immediately from the
topological properties of the (discrete) exterior derivative. Indeed, if ωh ∈ Λkh,r (Th), the definition of
discrete Lie derivative in (2.16) results in

Lhudkωh = Ik+1
u,p+(iudk+1dkωh) + dk Iku,p(iudkωh) = dk(Iku,p(iudkωh))

= dk(dk−1 Ik−1
u,p−(iuωh) + Iku,p(iudkωh)) = dkLhuωh,

owing to the fact that the discrete exterior derivative satisfies dk+1 ◦ dk = 0.

The result of Proposition 2.6 has two major consequences. Under the assumption of unique
solvability of the discrete time-dependent problem corresponding to (2.17), discrete closed k-forms
are Lie advected into closed k-forms. Consider the semi-discrete problem ∂tωh + αωh + Lhuωh = f ,
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and suppose the initial datum is a closed form. From an algebraic perspective, let L be the ma-
trix associated with the discretization of the Lie derivative (2.16). Let Wm be the vector of de-
grees of freedom for ωh at time tm. In the simplest case of explicit Euler timestepping, MWm+1 =
MWm −∆tm αMWm −∆tmLWm + ∆tmFm, where M is the mass matrix and Fm is the load vector
associated with the source term at time tm. By Proposition 2.6, the incidence matrix Dk, represent-
ing the exterior derivative operator, commutes with L. Hence, under suitable boundary conditions,
DkWm = 0 for all m ≥ 1, provided the right hand side is closed at all times. Secondly, the polynomial
spaces P−r Λk(Th) and Q−r Λk(Th) form long exact sequences for a fixed polynomial degree r ≥ 1 [3,
Section 3.5]. If a priori convergence results (in a certain norm) independent of the form degree k can
be established, then, upon suitably tuning the polynomial approximation and interpolation orders, no
accuracy is lost in solving the advection problem for the magnetic potential, rather than the magnetic
induction advection.
Remark 2.7 (Discontinuous velocity). Inevitable shock formation in compressible MHD requires us
to deal with the Lie advection associated with discontinuous velocities. In the presence of velocity
fields with very low regularity, well-posedness results for the generalized advection equations and a
notion of generalized flow maps are largely unavailable. However, provided a discrete velocity field uh
can be uniquely defined at the mesh facets, e.g. through consistent averaging, the upwind interpolation
of contraction and hence a discrete Lie derivative associated with uh can be derived. In this setting,
the discrete commuting diagram property does still hold. In the context of MHD, local wave speeds
offer a way of uniquely defining a velocity at faces where an upwind direction cannot be determined
from u, see Remark 4.1 for details.

3. Extended Euler Equations

The local splitting of the MHD system yields an advection problem for the magnetic induction/
potential with a known discontinuous velocity field, and the extended Euler system of conservation
laws for the fluid variables with the B field treated as a discontinuous known function. Using standard
vector identities, see e.g. [15, Section 2.4.1 and Appendix A.1], the evolution equations for the fluid
variables (1.1a)-(1.1c) reduce to the fluid part of the ideal MHD equations written in conservation
form, namely 

∂tρ+ div(ρu) = 0,
∂t(ρu) + div

(
ρu⊗ u +

(
p+ 1

2‖B‖
2
L2

)
I−B⊗B

)
= 0,

∂tE + div
((
E + p+ 1

2‖B‖
2
L2

)
u− (u ·B)B + ε curlB×B

)
= 0.

(3.1)

The extended Euler system is a parametric hyperbolic system of conservation laws. In three dimensions,
if U := (ρ, ρu1, ρu2, ρu3, E) denotes the vector of the conserved fluid variables, and x = (x1, x2, x3) ∈
R3, then (3.1) can be written in conservation form according to (1.1) as

∂tU +
3∑
`=1

∂x`f `(U,B) = 0. (3.2)

If δi,` denotes the Kronecker delta, the directional fluxes {f `}3`=1 are defined as

f `(U,B) =



ρu`

ρu1u` −B1B` +
(
p+ 1

2‖B‖
2
L2

)
δ1,`

ρu2u` −B2B` +
(
p+ 1

2‖B‖
2
L2

)
δ2,`

ρu3u` −B3B` +
(
p+ 1

2‖B‖
2
L2

)
δ3,`(

E + p+ 1
2‖B‖

2
L2

)
u` − (u ·B)B`


.
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The extended Euler equations form a weakly hyperbolic system of conservation laws. In order to
draw information on the spectral structure of the system, one can derive, as in [14, Section 2.1], a
quasi-linear form of (3.2) in the primitive variables unknowns V := (ρ, u1, u2, u3, p), namely

∂tV +
3∑
`=1

A`(V,B)∂x`V = S(V,B, DB),

where the right hand side S might depend on the induction field B and its Jacobian DB. The direc-
tional Jacobian A(V,B) · n :=

∑3
`=1A

`(V,B)n` in the direction of the unit vector n = (n1, n2, n3) is
given by

A(V,B) · n =


u · n ρn1 ρn2 ρn3 0

0 u · n 0 0 1/ρn1
0 0 u · n 0 1/ρn2
0 0 0 u · n 1/ρn3
0 ρ(aE,1(V,B))2 ρ(aE,2(V,B))2 ρ(aE,3(V,B))2 u · n

 ,
where the sound speeds of the acoustic waves of the extended Euler system in each direction are

aE,`(V,B) = 1
√
ρ

√
γpn` + (γ − 1)

[
n`(‖B‖2L2 −B2

` )−B`(B · n−B`n`)
]
, ` ∈ {1, 2, 3}. (3.3)

If uE := (aE,1(V,B), aE,2(V,B), aE,3(V,B)), the eigenvalues of the directional Jacobian are
λ1 = u · n− uE · n, λ2,3,4 = u · n, λ5 = u · n + uE · n. (3.4)

The Riemann solution of the extended Euler system is then characterized by five waves: two acoustic
waves, rarefactions/shocks moving to the left/right and a shear wave.

3.1. Finite Volume Discretization

For the numerical discretization of the extended Euler problem, we design, in the present section,
finite volume schemes using reduced waves approximate Riemann solvers as in [14, Section 2.1].

For the sake of simplicity, hereafter we restrict to Cartesian domains Ω = J1 × . . .× Jn ⊂ Rn, with
J` ⊂ R, ` = 1, . . . , n, bounded and connected, and to tensor product partitions {Th}h of Ω. We assume
that T `h`

is a uniform mesh on J` with M `
h := ]T `h`

elements and mesh width h` = |J`|/M `
h. Every

control volume Tj ∈ Th is identified by its barycenter xj = (x1
j1 , . . . , x

n
jn), where j = (j1, . . . , jn) is a

multi-index in J := Nn ∩ ([1,M1
h ] × . . . × [1,Mn

h ]). The interfaces of the element Tj ∈ Th are denoted
by xj+ 1

2 et
where et is the t-th unit vector in Rn.

The weak solution U(x, t) of the extended Euler system is approximated by cell averages,

U(x, t)|Tj
≈ Uj(t) := 1

|Tj|

ˆ
Tj

U(x, t)dx, ∀Tj ∈ Th, j ∈ J.

A semi-discrete finite volume scheme for the conservation law (3.2) on a fixed element Tj ∈ Th is given
by

∂tUj(t) = −
n∑
`=1

F `
j+ 1

2 e`
(t)− F `

j− 1
2 e`

(t)

h`
, ∀ j ∈ J,

where F `
j+ 1

2 e`
(t) = F `

j+ 1
2 e`

(B(xj+ 1
2 e`
, t), t) is a numerical flux consistent with the directional flux f `.

The temporal interval I is divided into subintervals I =
⋃N−1
m=0(tm, tm+1], N ∈ N, with tm+1 =

tm + ∆tm. The temporal discretization is based on explicit strong-stability preserving Runge–Kutta
(SSP-RK) schemes [16]. Concerning the choice of the time step, we adopt a perspective where the
extended Euler equations are considered as embedded in the physics of the full ideal MHD system.
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Since in MHD the fast magnetosonic waves propagate on a time scale much faster than the fluid
velocity, these waves dictate the time step restrictions necessary for a stable numerical update. For
the temporal discretization of the extended Euler system, the m-th time step is taken to be

∆tm = CCFL

(
n∑
`=1

λ`,mmax
h`

)−1

,

where CCFL > 0 is a constant and {λ`,mmax}n`=1 are the maximum eigenvalues associated with the fast
magnetosonic waves, namely

λ`,mmax = max
j∈J

(|u`,mj |+ cM,`
f (Um

j ,Bm
j )), ` = 1, . . . , n,

cM,`
f (U,B) = 1√

2

√√√√√a2 +
‖B‖2L2

ρ
+

√√√√(a2 +
‖B‖2L2

ρ

)2

− 4a2B
2
`

ρ
, ` = 1, . . . , n. (3.5)

3.1.1. Approximate Riemann Solvers

Reduced-wave nonlinear solvers, the so-called HLL solvers, approximate the wave structure of the full
Riemann problem by a simplified set of known waves and provide an accurate and computationally
efficient alternative to the use of Roe-type linearized Riemann solvers [9]. For the sake of better
readability, in the following only the x := x1-direction is considered, the superscript ` = 1 is omitted
and we switch from the multi-index j to the index i treating the problem as one-dimensional.
Two-wave HLL Solver. The Harten–Lax–van Leer (HLL) approximate Riemann solver, introduced
in [20] for the inviscid gas dynamic equations, assumes a wave configuration for the Riemann problem
solution consisting of three constant states separated by two shock waves moving to the left and to
the right of the interface. The resulting HLL flux solver at time tm is

Fm,HLL
i+1/2 = F (Um

i ,Um
i+1,Bm

i+1/2) =


f(Um

i ,Bm
i+1/2) if sLi+1/2 > 0,

f∗,HLL
i+1/2 if sLi+1/2 < 0 < sRi+1/2,

f(Um
i+1,Bm

i+1/2) if sRi+1/2 < 0.

The selection of the left sLi+1/2 and right sRi+1/2 acoustic wave speeds determines different variants of
the approximate flux. The middle flux f∗,HLL

i+1/2 is determined, together with the intermediate subsonic
state U∗i+1/2, by applying local conservation through Rankine–Hugoniot conditions, namely

f(Um
i+1,Bm

i+1/2)− f∗,HLL
i+1/2 = sRi+1/2(Um

i+1 −U∗i+1/2),

f∗,HLL
i+1/2 − f(Um

i ,Bm
i+1/2) = sLi+1/2(U∗i+1/2 −Um

i ).

Note that the computation of the flux f(Um
i ,Bm

i+1/2) requires the knowledge of both the tangential and
normal components of the B field at the interface. Whenever one of these quantities is not uniquely
defined, we will take the arithmetic average {B1}i+1/2 and/or {B2}i+1/2 across the interface.

To determine the right and left speeds, Einfeldt suggested in [11] to use the minimum and maximum
eigenvalues of a Roe average to restrain the spreading of contact discontinuities and increase the
resolution at isolated shocks. Lacking a Roe average for the extended Euler system, we take the right
and left speeds as,

sLi+1/2 := min{u1,m
i − aE,1(Vm

i ,Bm
i ),

{
u1,m

}
i+1/2

− âE,1({Vm}i+1/2 , {B
m}i+1/2)},

sRi+1/2 := max{u1,m
i+1 + aE,1(Vm

i+1,Bm
i+1),

{
u1,m

}
i+1/2

+ âE,1({Vm}i+1/2 , {B
m}i+1/2)},

(3.6)
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where
{
u1,m}

i+1/2 is the arithmetic average of the normal velocity and âE,1 is the sound speed of the
acoustic wave of the extended Euler system (in the x1-directions) associated with the (arithmetic)
averaged directional Jacobian

Â1
i+1/2 =



{
u1,m}

i+1/2 {ρm}i+1/2 0 0 0
0

{
u1,m}

i+1/2 0 0 {1/ρm}i+1/2
0 0

{
u1,m}

i+1/2 0 0
0 0 0

{
u1,m}

i+1/2 0
0

{
ρm(aE,1)2

}
i+1/2

{
ρm(aE,2)2

}
i+1/2

{
ρm(aE,3)2

}
i+1/2

{
u1,m}

i+1/2


.

Analogously to aE,1 in (3.3), the speed âE,1 is defined as

(âE,1)2 =
{ 1
ρm

}
i+1/2

{
ρm(aE,1)2

}
i+1/2

=
(

1
ρmi

+ 1
ρmi+1

)(
γ(pmi + pmi+1) + (γ − 1)[(Bm

2 )2
i + (Bm

2 )2
i+1 + (Bm

3 )2
i + (Bm

3 )2
i+1]

)
.

Despite the efficiency and robustness of HLL-type Riemann solvers, the two-wave configuration hin-
ders the resolution of physical features, in particular Alfvén and slow waves and contact discontinuities,
yielding overdiffusive solutions.
Three-wave HLLC Solver. Contact discontinuities are “restored” in the modified HLL solver in-
troduced by Toro, Spruce and Speares [39] and dubbed HLLC. The HLLC solver approximates the
Riemann solution by three waves allowing for two intermediate states. The fast magnetosonic waves
are modeled as in the HLL solver, whilst the intermediate states are separated by a wave moving with
speed sMi+1/2 and modeling a contact discontinuity (associated with the multiple eigenvalue λ2,3,4 (3.4)).
The HLLC numerical flux is defined as

Fm,HLLC
i+1/2 = F (Um

i ,Um
i+1,Bm

i+1/2) =


f(Um

i ,Bm
i+1/2) if sLi+1/2 > 0,

f∗L if sLi+1/2 < 0 < sMi+1/2,

f∗R if sMi+1/2 < 0 < sRi+1/2,

f(Um
i+1,Bm

i+1/2) if sRi+1/2 < 0.

The left and right speeds model the fast magnetosonic waves and are as in (3.6), the middle wave
speed sMi+1/2 is the velocity of the averaged Jacobian sMi+1/2 =

{
u1,m}

i+1/2 since it models the contact
discontinuity. The intermediate fluxes are determined by applying local conservation through the
Rankine–Hugoniot conditions

sLi+1/2U∗L − f∗L = sLi+1/2Um
i − f(Ui,Bm

i+1/2),

sMi+1/2U∗L − f∗L = sMi+1/2U∗R − f∗R,

sRi+1/2Um
i+1 − f(Um

i+1,Bm
i+1/2) = sRi+1/2U∗R − f∗R,

(3.7)

where U∗R and U∗L denote the right and left intermediate states, respectively. Simple algebraic manipu-
lations yield the intermediate fluxes f∗R and f∗L. However, since the system (3.7) is underdetermined, a
further constraint on the intermediate states needs to be imposed. Linde suggested in [29, Section 4.3.3]
to compute the jump of the intermediate states as a non-negative fraction of the initial jump across
the middle wave, namely U∗R −U∗L = α(Um

i −Um
i+1) for α ∈ [0, 1]. If c∗ := |aE,1(V m

i ,Bm
i ) − sMi+1/2|,

the choice

α = max
{

0, 1− s

c∗

}
, s :=

‖f(Um
i+1,Bm

i+1/2)− f(Um
i ,Bm

i+1/2)− sMi+1/2(Um
i+1 −Um

i )‖`1∥∥∥Um
i+1 −Um

i

∥∥∥
`1

,
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aims at robustness of the Riemann solver together with good resolution of isolated shocks. As pointed
out in [29], s gives an indication of the speed of the dominant wave in the frame of reference of the
middle wave. Note that s can be in principle computed using a different norm.

3.1.2. Limitations of Finite Volume Schemes for the Extended Euler System

The formulation of approximate Riemann solvers for the extended Euler equations based on HLL-type
solvers for the MHD Riemann problem is an attempt to capture the wave structure of the reduced
problem viewed as a subset of the ideal MHD wave fan. However, the good properties of the aforemen-
tioned approximate Riemann solvers for the MHD system are not inherited straightforwardly by the
extended Euler equations. As pointed out in [14], the lack of control on the B field and the unavailabil-
ity of a Roe average, which consequently affects the choice of the wave speeds, do not guarantee that
the resulting scheme is able to exactly capture fast magnetosonic shocks or isolated contact disconti-
nuities. Analogously, with the B field resulting from the extrusion contraction approximation (2.16) of
the magnetic advection problem for the magnetic field/potential, none of the foregoing solvers for the
extended Euler system is provably positively conservative. Furthermore, the presence of the B field
as a parameter entering the fluxes hinders the design of numerical fluxes satisfying a discrete version
of the entropy inequality ∂t(ρs) + div(ρus) ≤ 0, where s := log(p) − γ log(ρ) is the thermodynamic
entropy.

3.2. Fully Coupled FV-FEEC Schemes

The extrusion contraction upwind discretization derived in Section 2 for the magnetic induction equa-
tion and the finite volume schemes for the extended Euler system described in Section 3 can be
combined in numerical schemes for the full ideal MHD problem, which we coin FV-FEEC (Finite
Volume-Finite Element Exterior Calculus).

We implement a synchronous splitting, Algorithm 1, where the two systems, extended Euler and
magnetic advection, are concurrently advanced in time, in the sense that after spatial discretization,
the two problems are re-coupled to form a single system of ODEs. The latter is solved via explicit SSP
Runge–Kutta timestepping. In this way, the coupling fields, the velocity and the magnetic induction,
are updated within each subsystems at every intermediate stage of the temporal scheme.

Algorithm 1 Synchronous splitting algorithm
1: Set m = 0, t = 0. Given initial conditions (ρ0,u0, E0,B0).
2: while time t < T do
3: um;0 = um; Bm;0 = Bm.
4: for each stage 1 ≤ i ≤ s of an s-stage SSP-RK timestepping do

5:

(
um;i

Am;i

)
←− Solve extended Euler and advection of (n− 2)-forms given

{(
Bm;j

um;j

)}i−1

j=0
.

6: Bm;i ←− Compute the (discrete) curl of Am;i.
7: end for
8: um+1 = um;s; Am+1 = Am;s; Bm+1 = Bm;s.
9: Set t = t+ ∆tm, m = m+ 1.

10: end while
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4. Numerical Experiments in Two Dimensions

This section is devoted to testing the new family of FV-FEEC schemes for the two-dimensional planar
MHD problem. The aim is to provide numerical evidence of their accuracy, good stability properties
and ability in preserving the physical distinctive features of the model at the continuous level. The
two-dimensional setting provides a first step to assess the robustness of numerical schemes maintaining
many of the physical features of the three-dimensional model.

Lacking a stability and convergence theory for the extrusion contraction upwind schemes, we first
test the method introduced in Section 2.2 for the transient advection problem. The aim is to derive
empiric convergence properties in the L2-norm and in some energy norm, and to look for numerical
confirmation of the discrete commuting property stated in Proposition 2.6.

4.1. Numerical Tests: Extrusion Contraction

Since we are interested in the transient advection problem as part of the planar two-dimensional MHD
model, we restrict to numerical simulations for the advection of 0-forms and 1-forms in two dimensions.
Note that in this case the magnetic potential is a scalar function representing the transverse out-plane
component of the three-dimensional vector magnetic potential, B = curl2DA := (∂yA,−∂xA)>.

4.1.1. Transient Advection of 0-Forms

On the domain Ω = [0, 2]2 and on the time interval I = [0, T ] ⊂ R, T > 0, we consider the pure
advection problem for the scalar magnetic potential A, namely

∂tA(t) + u · gradA(t) = 0, in Ω× I,
A(0) = A0, in Ω,

(4.1)

with periodic boundary conditions.

Test of Convergence: Constant Velocity. The initial condition A0 = 1
π cos(πy) + 1

2π cos(2πx) is
advected at constant velocity u = (4, 4)>. On a family of Cartesian meshes {Th}h, we consider the
discrete variational formulation (2.17) with approximation spaces Λ0

h,r (Th) of bilinear (r = 1) and
biquadratic (r = 2) Lagrangian finite elements. The polynomial degree of the upwind interpolation is
chosen to coincide with the polynomial degree of the finite element trial and test spaces, that is p = r
in (2.18). In order to gauge the spatial accuracy of the extrusion contraction scheme, we use Heun
timestepping with uniform time step ∆t = 0.1h for bilinear Lagrangian finite element approximations
and ∆t = 0.01h for biquadratic Lagrangian finite elements. Owing to the periodicity of the domain,
we can compare the numerical solution at final time T = 0.5 with A0.

The projection of the numerical and exact solution at final time onto the one-dimensional line
{x ∈ Ω, y = 1} is shown in Figure 4.1, bottom row. The piecewise linear discretization yields a rather
diffusive solution and first order accuracy in both the L2- and H1-norms, as reported in Figure 4.1
where the L2-error of the potential A and of its two-dimensional curl , the magnetic induction field B,
is reported. Second order convergence is attained in the case of piecewise biquadratic discretization
(and interpolation).

Orszag–Tang Benchmark with Given Velocity Field.We assess the performance of the extrusion
contraction scheme in solving the more challenging MHD problem given by the Orszag–Tang vortex
system [32] (see Section 4.3.3 for further details). We consider problem (4.1) with initial magnetic
potential A0 = 1

π cos(πy) + 1
2π cos(2πx). The velocity field is supplied at each time step as the output
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Figure 4.1. Test for advection of 0-forms with constant velocity. Convergence plot
of the error in the L2-norm at time t = 0.5 for the magnetic potential A and the
induction field B (top row). The exact solution is Aex ≡ A0 and analogous for the B
field. Projection of the exact and numerical solution for y = 1 on a 200×200 Cartesian
mesh (bottom row). Left: first order interpolation, bilinear Lagrangian finite elements.
Right: second order interpolation, biquadratic Lagrangian finite elements.

of a high order finite volume discretization of the full ideal MHD system obtained with the ALSVID-
UQ 3.0 (2014-03-20) code1 (using a three-wave HLL solver and WENO reconstructions modified in
order to keep the pressure and density positive).

The scalar advection problem is discretized in space on a Cartesian mesh using extrusion contraction
piecewise linear and piecewise quadratic upwind schemes with velocity field averaged at the interpola-
tion nodes and upwind direction at each node given by the averaged velocity (in MHD flow simulations
a more sophisticated approach to avoid the possible shortcoming of averaging the velocity values will
be pointed out in Section 4.3). The polynomial order of the upwind interpolation operator coincides
with the polynomial approximation degree. Heun timestepping is used for the temporal approximation
on the time interval I = [0, 1] with uniform time step ∆t = 5 · 10−4.

The projection of the magnetic induction field, obtained with the foregoing discretizations, on lines
at constant x is compared with the reference finite volume discrete solution in Figure 4.2. As expected,
the piecewise quadratic extrusion contraction approximation produces more accurate solutions than
the piecewise linear discretization. Obviously, near shocks and discontinuities, the piecewise quadratic
solution exhibits “overshoots” and “undershoots”. This is a typical by-product of numerical discretiza-
tions higher than first order accurate, as symptom of lack of monotonicity. We will comment on this
issue later in Section 5.

1http://www.sam.math.ethz.ch/alsvid-uq (Accessed March 2016)
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Figure 4.2. Orszag–Tang benchmark with given velocity field. Comparison plots of
the projection of the B field for constant values of the x-coordinate on a Cartesian
mesh with 200 × 200 elements. Discretization of the advection problem for 0-forms
using piecewise linear and piecewise quadratic extrusion contraction upwind schemes.
As “reference” solution, a high order finite volume solution of the full ideal MHD system
obtained with the ALSVID-UQ code is considered.

4.1.2. Transient Advection of 1-Forms

On a simply connected bounded domain Ω ⊂ R2 with Lipschitz boundary, we address the discretization
of the initial boundary value problem describing the advection of the magnetic induction

∂tB + u divB + grad⊥(B · u) = f , in Ω× I,
B(0) = B0, in Ω,

(4.2)

with periodic boundary conditions and where ⊥ denotes a clockwise rotation of π/2. We consider lowest
order finite element approximations with finite element spaces of polynomial discrete differential forms
of the first family, namely the rotated Raviart-Thomas elements [34].
Test of Convergence: Constant Velocity. The goal of this experiment is twofold: infer the possible
accuracy of the scheme and verify that solenoidal vector fields are indeed advected into solenoidal
vector fields, as asserted in Proposition 2.6. The magnetic advection problem (4.2) is considered on
the domain Ω = [0, 2]2 with periodic boundary conditions and in the time interval I = [0, 0.5]. The
initial condition is set to B0 = (− sin(πy), sin(2πx))>, the velocity is constant u = (4, 4)> and the
forcing term vanishes f = (0, 0)>. In view of the periodic boundary conditions, we compare the solution
at final time with the initial condition. Figure 4.3 shows that the L2-error converges with order one
with respect to the mesh width h and the divergence of the magnetic induction field is maintained
zero up to machine precision.
Advection of Non-Solenoidal Magnetic Induction. As a second test case, we consider the advec-
tion of a magnetic induction field with non-zero divergence with the aim of monitoring the convergence
rate of the solution in the L2-norm and in the energy norm. On the unit square Ω = [0, 1]2 with pe-
riodic boundary conditions and in the time interval I = [0, 0.5], we consider the magnetic advection
problem (4.2) with initial condition given by

B0 :=
{

(ϕ,ϕ)> if x2 + (y − 0.25)2 < 0.25,
(0, 0)> otherwise,
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Figure 4.3. Test for advection of 1-forms with constant velocity. Convergence plot
of the error in the L2-norm at final time T = 0.5 (left). L2-norm of the magnetic
induction field (right). Piecewise linear extrusion contraction upwind schemes with
Heun timestepping with uniform time step ∆t = 0.1h.

with ϕ(x, y) := cos(π
√
x2 + (y − 0.25)2)4. The “hump” is Lie advected on the diagonal of the domain

with velocity field u = (2, 2)>. The forcing term in this experiment is set to zero, f = (0, 0)>.
We compute the numerical errors associated with the spatial discretization, at final time T = 0.5.

Figure 4.4 shows that first order convergence is attained both in the L2-norm and in the H(div,Ω)-
seminorm.
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Figure 4.4. Advection of 1-forms.
Non-solenoidal magnetic induction.
Numerical convergence study of the-
piecewise linear extrusion contrac-
tion scheme. Heun timestepping
and uniform time step ∆t = 0.1h.

4.2. Numerical Experiments for Extended Euler

To experimentally gauge the performances of lowest order finite volume schemes for the extended Euler
system derived in Section 3, we propose a two-dimensional MHD test with given magnetic induction
field [6, Section 6]. More in details, the solution is smooth and known analytically at any point in
space and time in the domain Ω × I = [−5, 5]2 × [0, 0.5], see Section 4.3.1 for further details. Let
r(x, y, t) :=

√
(x− t)2 + (y − t)2, the flow is characterized by the following set of data,

ρ(x, y, t) = 1, p(x, y, t) = 1 + 1
8π (µ2(1− r2)− κ2)e1−r2

,
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u(x, y, t) = (1, 1)> + κ

2πe
1/2(1−r2)(t− y, x− t)>.

The ratio of specific heats is γ = 5/3 and the parameters κ = µ = 1. The magnetic induction field
B is given at each time step in analytic form as B(x, y, t) = µ

2πe
1/2(1−r2)(t − y, x − t)>. We aim at

assessing the convergence properties of the scheme. Explicit Euler timestepping (CCFL = 0.4) is coupled
with a piecewise constant finite volume discretization in space and tested with different approximate
Riemann solvers. In Figure 4.5, the L1-error of the primitive variables at final time T = 0.5 is reported.
As expected, first order convergence is observed.
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Figure 4.5. Smooth vortex. Accuracy test for finite volume discretizations of the
extended Euler system with given analytic B field. Different approximate Riemann
solvers are considered. In the legend, HLL refers to the two-wave Riemann solver with
wave speeds as in (3.6) and HLLC to the three-wave Linde solver.

4.3. Numerical Experiments for Ideal MHD

In this section we numerically study the fully coupled FV-FEEC scheme described in Section 3.2 on a
set of two-dimensional ideal MHD benchmark simulations. In particular, for the magnetic advection
subproblem we focus on the potential-based formulation (1.2), for which extrusion contraction upwind
schemes have been tested in Section 4.1.1.

Remark 4.1 (Collisional fluid velocities). On a tensor product partition Th of the computational
domain Ω, the fluid velocity resulting from lowest order finite volume discretizations of the extended
Euler equations is a Th-piecewise constant function u ∈ P0(Th) (collecting the cell averages of the
fluid velocity in each mesh element). However, the extrusion contraction upwind discretization of the
advection problem entails an upwind interpolation of the Lie derivative which requires the knowledge
of the velocity field at the mesh nodes and along edges. One can approximate the value at a given
node by averaging the values from the elements sharing the node. This pointwise interpolation might
appear rather crude. It is especially the case in the presence of colliding or diverging velocity at a
node or an edge where one might lose information on the local dynamics.

In MHD, the fast magnetosonic wave speed provides a good indicator of the flow dynamics. Hence,
in the FV-FEEC algorithm implemented in the numerical experiments below, the upwind direction
entering the discrete Lie derivative at the mesh cells where the velocity field is colliding or diverging is
determined by the fast MHD wave speed, namely cMf := (cM,1

f , cM,2
f ), where cM,`

f , ` ∈ {1, 2} is defined
as in (3.5). Once the upwind direction has been uniquely identified at each mesh cell, the pointwise
advection velocity at the nodes is taken from within the upwind element.
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4.3.1. Accuracy Test: Smooth Vortex

In order to experimentally assess the accuracy of the lowest order FV-FEEC scheme, we present a
genuinely two-dimensional (non-trivial) MHD test where the solution is known analytically at every
point in space and time. The smooth vortex test was proposed in [6, Section 6] (a scaling factor

√
4π has

been absorbed in the definition of B). The problem is associated with a smoothly varying fluid vortex
which propagates at a π/4 angle to the computational mesh on the domain Ω = [−5, 5]2 with periodic
boundaries. The initial condition is given by a vortex characterized by fluctuations of the velocity and
of the magnetic field, superimposed to an unperturbed MHD flow U0 = (ρ0, p0, u

1
0, u

2
0) = (1, 1, 1, 1),

B0 = 0. Let r(x, y, t) :=
√

(x− t)2 + (y − t)2, the flow is described by the following set of data,

ρ(x, y, t) = 1, p(x, y, t) = 1 + 1
8π (µ2(1− r2)− κ2)e1−r2

,

u(x, y, t) = u0 + κ

2πe
1/2(1−r2)(t− y, x− t)>,

B(x, y, t) = µ

2πe
1/2(1−r2)(t− y, x− t)>, A(x, y, t) = µ

2πe
1/2(1−r2).

As initial datum we take U(x, 0) with u0 = (u1
0, u

2
0)> = (1, 1)>, κ = µ = 1 and A(x, 0) for the magnetic

advection subproblem. The ratio of specific heats is γ = 5/3. The time interval is I = [0, 0.5]. Explicit
Euler is used as timestepping with CFL constant CCFL = 0.4.

The numerical convergence study on smooth solutions in Figure 4.6 (left) displays first order conver-
gence of the errors of the scalar magnetic potential in the norms associated with the Bochner spaces
L∞(I, L2(Ω)) and L∞(I,H1(Ω)) and defined as ‖A‖L∞(I,H) := ess supt∈I ‖A(t)‖H on the Sobolev
space (H, ‖·‖H). Analogous conclusions can be drawn from Figure 4.6 (right) where the L∞(I, L1(Ω))-
errors of the Th-piecewise constant MHD primitive variables are illustrated.
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Figure 4.6. Accuracy test for full ideal MHD system. L∞(I, L2(Ω))- and
L∞(I,H1(Ω))-error of the magnetic potential (left), L∞(I, L1(Ω))-error of the MHD
primitive variables (right). Piecewise constant finite volume discretizations of the ex-
tended Euler system with HLL Riemann solver and piecewise linear extrusion contrac-
tion scheme for the advection of the magnetic potential, explicit Euler timestepping
and CCFL = 0.4.

4.3.2. Super-Fast Expansion: Shock Tube Test

To the aim of testing the robustness of numerical schemes in delivering physically admissible solutions
of the one-dimensional MHD equations, a super-fast expansion simulation has been used in e.g. [30,
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Section 6.1 p. 338] and [14, Section 3.2]. With the same goal, we study a variant of the foregoing
test case in a formally two-dimensional setting. Let us consider the domain Ω = [0, 1]2 with periodic
upper {x ∈ Ω : y = 1} and lower {x ∈ Ω : y = 0} boundaries. In the remaining part of ∂Ω, non-
reflecting Neumann type boundary conditions are applied to the conserved variables of the extended
Euler system, and outflow boundary conditions to the advection problem since the evolution of the
velocity field does not induce any inflow boundary on the considered time interval I = [0, 0.2]. We
perform planar two-dimensional simulations of the one-dimensional (in the x-direction) shock tube
test with initial data

ρ0(x, y) = 1, p0(x, y) = 0.45,

u1
0(x, y) =

{
−3.1 if x < 0.5,
3.1 if x > 0.5, u2

0(x, y) = 0,

B0(x, y) = (0, 0.5)>, A0(x, y) = −0.5x,

and γ = 5/3 as ratio of specific heats. As the problem involves a left-moving and a right-moving
rarefaction wave, the central region is subject to a super-fast expansion yielding very low density
and pressure. In [14, Section 3.2], it has been observed that linearized Roe solvers for finite volume
discretizations of the full MHD system usually run into negative pressure and density in such test
case. The FV-FEEC scheme proves positively conservative at all tested resolutions, see Figure 4.7.
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Figure 4.7. Super-fast expansion. Semi-logarithmic plot of the projection onto {x ∈
Ω : y = 0.5} of the numerical pressure (left) at the intermediate time t = 0.1. Numerical
discretization on a 1600×1600 Cartesian mesh with Heun timestepping and CCFL = 0.4.
Lowest order extrusion contraction for the advection of the magnetic potential and finite
volume scheme for the extended Euler equations using the HLL approximate Riemann
solver. On the right, semi-logarithmic evolution plot of the minimum of the discrete
pressure until time t = 0.2 at 800× 800 and 1600× 1600 mesh resolutions.

4.3.3. Orszag–Tang Benchmark

The so-called Orszag–Tang vortex system was introduced in [32, Section 3], and describes the transition
to supersonic turbulence in the MHD equations. The development of shock waves and the complex
interaction between various shocks with different speed, which characterized the solution, makes the
Orszag–Tang benchmark a challenging test for numerical methods. Let us consider the domain Ω =
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[0, 2]2 with periodic boundary conditions. The time interval is I = [0, 1]. The initial conditions for the
primitive fluid variables, the magnetic induction field B and the magnetic potential A are

ρ0(x, y) = γ2, p0(x, y) = γ, u0(x, y) = (− sin(πy), sin(πx))>,

B0(x, y) = (− sin(πy), sin(2πx))>, A0(x, y) = 1
π

cos(πy) + 1
2π cos(2πx),

and γ = 5/3 is the gas constant. Since the Orszag–Tang test is a widely used benchmark, we can
compare the performances of the FV-FEEC scheme with the numerical discretizations of [14]. As
reported in [14, Section 3.3], finite volume schemes for the full MHD system based on Roe solvers,
two-wave HLL and three-wave HLLC solvers, with and without divergence cleaning (via projection
methods), experienced negative pressures at fine mesh resolution.

In Table 4.1, we compare the maximum pressure at final time T = 1 of the lowest order FV-
FEEC discretization with the results reported in [14, Table 2.2] for the first order finite volume
schemes HLL/SUS and HLLC/SUS from [14] and [12]. The reported values are comparable at all mesh
resolutions: the HLLC solver for FV-FEEC gives slightly more “accurate” results, as experienced in
Section 4.2 when testing approximate Riemann solvers on the extended Euler system, and shown in
Figure 4.8 in comparison with a second order accurate “reference” solution2.

]Th
HLL/SUS FV-FEEC HLLC/SUS FV-FEEC

[14, Table 2.2] HLL [14, Table 2.2] HLLC
100× 100 4.94 4.38 5.04 5.05
200× 200 5.39 5.29 5.41 5.65
400× 400 5.79 5.84 5.81 5.91
800× 800 6.05 6.06 6.07 6.10

1600× 1600 6.21 6.20 6.22 6.23

Table 4.1. Orszag–Tang benchmark. Maximum value of the discrete pressure at final
time obtained with the FV-FEEC scheme with two-wave HLL and three-wave HLLC
Riemann solvers, and compared with the values from the finite volume discretizations
HLL(C)/SUS of [14].

Finite volume schemes are, by construction, conservative methods. However, the conservation prop-
erty is not naturally inherited by the coupled FV-FEEC discretizations. In order to numerically assess
the conservation properties of the FV-FEEC scheme, we monitor the evolution of the mean, on the
computational domain Ω, of the conserved variables over time. Given the scalar function f(x, t) and
the initial datum f0(x), we compute, on the partition of the temporal interval, the following error,

E(f) := max
1≤m≤N

|fm − f0|, f
m :=

 
Ω
f(x, tm)dx and f0 :=

 
Ω
f0(x)dx. (4.3)

Whenever needed we consider the relative error Er(f) := E(f)/|f0|. Table 4.2 reports the values of
the aforementioned error on the conserved MHD variables and for different mesh refinements: perfect
conservation.

In Figure 4.9, we report the L1-error of the primitive MHD variables at final time T = 1 computed
with respect to the second order “reference” solution. The observed convergence rate is around 0.6.

Finally, the ability of the FV-FEEC scheme to reproduce physically reliable solutions with rather
sharp resolution of the shock fronts is gauged in Figures 4.10 and 4.11, see also the results available in
literature e.g. [13, Section 3.4] or [40, Section 6.4]. The lowest order FV-FEEC is admittedly diffusive

2The “reference” solutions used throughout the present section were provided by R. Käppeli, SAM, ETH Zürich, and
based on the FISH code [27].

248



Structure Preserving Discretizations for MHD

0 0.5 1 1.5 2
1.5

2

2.5

3

3.5

4

4.5

5
Time t = 1, x = 0.83062

y

d
e

n
s
it
y

 

 

HLL

HLLC

Reference sol

0 0.5 1 1.5 2
1

1.5

2

2.5

3

3.5

4

4.5
Time t = 1, y = 0.54187

x

d
e
n
s
it
y

 

 

HLL

HLLC

Reference sol

Figure 4.8. Orszag–Tang benchmark. Projections of the discrete density for constant
values of the x-coordinate (left) and y-coordinate (right). Numerical discretization on a
1600×1600 Cartesian mesh. The finite volume scheme for the extended Euler equations
is based on two-wave HLL and three-wave HLLC approximate Riemann solver. Heun
timestepping with CCFL = 0.4. A second order accurate finite volume solution on 3200×
3200 mesh elements is used as “reference” solution.

]Th Er(ρ) E(ρu1) E(ρu2) E(B1) E(B2) Er(E)
200× 200 1.3097e−15 2.1723e−11 4.0363e−12 1.8402e−11 4.5034e−12 2.1552e−15
400× 400 1.8335e−15 1.3512e−10 3.3280e−11 2.0040e−10 3.4728e−10 1.8236e−15
800× 800 2.2264e−15 4.1668e−10 1.0388e−10 9.8822e−10 7.6756e−10 2.8183e−15

1600× 1600 3.6671e−15 5.6204e−09 5.9614e−10 2.0064e−09 4.8494e−09 3.1498e−15

Table 4.2. Orszag–Tang benchmark. Conservation properties of the FV-FEEC
scheme. “Error” (4.3) of the MHD conserved variables at different mesh resolutions.

10−3 10−2
10−1

100

h

‖p− pref‖L1(Ω)

‖ρ− ρref‖L1(Ω)

‖B1 − (B1)ref‖L1(Ω)

‖u1 − u1ref‖L1(Ω)

O(h0.6)

Figure 4.9. Orszag–Tang
benchmark. Plot of the L1-
error vs. the mesh width h.
The error of the MHD primi-
tive variables is computed at
final time t = 1 and with re-
spect to a “reference” solution
on a 3200× 3200 mesh.

and does not capture all the complex shock interaction features visible in the second order accurate
solution in Figure 4.11 (right column). Neither the FV-FEEC nor the second order “reference” solution
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manage to reproduce the current sheet in the second component of the B field at the center of the
domain.

Figure 4.10. Orszag–Tang benchmark. Pressure. On the left, numerical solution on a
1600× 1600 Cartesian mesh obtained with the FV-FEEC scheme and Heun timestep-
ping with CCFL = 0.4. Finite volume scheme for the extended Euler equations based on
the HLL approximate Riemann solver. The color map is scaled to the extrema of the
“reference” solution on a 3200× 3200 mesh (right column).

4.3.4. Rotor Problem

A key dimensionless parameter for ideal MHD models is the so-called plasma beta, the ratio of thermal
to magnetic pressure, β = 2µ0p/‖B‖2L2 , where µ0 is the permeability of free space. Delivering physically
admissible solutions in presence of low-beta plasmas (β � 1) is particularly challenging for numerical
schemes. The rotor problem provides a numerical test for the low-beta plasma setting. It was introduced
in [7, Section 3.1] to test the emergence and propagation of torsional Alfvén waves. The interior of
the rotor is characterized by low values of the pressure, so that the test is also well-suited to attest
the robustness of a numerical method in preserving positivity. The initial set up consists of a dense
spinning cylinder (the rotor) of radius 0.05, surrounded by the ambient fluid at rest which occupies
the remaining part of the computational domain Ω = [0, 1]2. The initial magnetic field is uniform
but, as the rotor spins with the initial rotating velocity, the magnetic field in the x-direction starts
wrapping around the rotor causing torsional Alfvén waves to propagate into the ambient fluid. As a
result, the angular momentum will eventually decrease while the rotor will experience compression
under the effect of the increased magnetic pressure assuming an oblong shape.

The physical problem is set up on an unbounded domain. This translates into artificial non-reflecting
Neumann-type boundary conditions for the conserved variables entering the extended Euler system.
Concerning the magnetic advection problem, the evolution of the velocity field guarantees that no
inflow boundaries will occur at any time. The initial data are as explained above and characterized
by,

ρ0(x, y) =


10 if r < 0.1,
1 + 9f if 0.1 < r < 0.115,
1 if r > 0.115,

p0(x, y) = 0.5,
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Figure 4.11. Orszag–Tang benchmark. Magnetic induction field. On the left, numer-
ical solution on a 1600 × 1600 Cartesian mesh obtained with the FV-FEEC scheme
and Heun timestepping with CCFL = 0.4. Finite volume scheme for the extended Euler
equations based on the HLL approximate Riemann solver. The color map is scaled to
the extrema of the “reference” solution on a 3200× 3200 mesh (right column).

u1
0(x, y) =


5− 10y if r < 0.1,
(5− 10y)f if 0.1 < r < 0.115,
0 if r > 0.115,

u2
0(x, y) =


10x− 5 if r < 0.1,
(10x− 5)f if 0.1 < r < 0.115,
0 if r > 0.115,

B0(x, y) =
( 2.5√

4π
, 0
)>

, A0(x, y) = 2.5√
4π
y,

where r :=
√

(x− 0.5)2 + (y − 0.5)2, f := (23 − 200r)/3 and the gas constant is γ = 5/3. The
simulation runs until time T = 0.295.

In order to numerically analyze the conservative properties of the FV-FEEC scheme tested on the
rotor problem, Table 4.3 reports the error (4.3) on the conserved variables.

The FV-FEEC performs robustly also in the rotor test, as attested by Figure 4.12. The scheme
captures many of the features of the MHD rotor flow being however rather diffusive when compared
with the second order “reference” solution.
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]Th Er(ρ) E(ρu1) E(ρu2) Er(B1) E(B2) Er(E)
200× 200 4.3462e−04 4.1243e−11 2.3873e−12 4.8734e−04 3.0872e−04 9.3236e−04
400× 400 8.2870e−05 9.7000e−12 4.3911e−11 9.9092e−05 6.5086e−08 1.7748e−04
800× 800 5.5013e−06 3.5593e−11 4.5438e−10 6.7642e−06 1.1632e−10 1.1712e−05

1600× 1600 1.0410e−07 1.6785e−08 5.7213e−07 1.3463e−07 1.7050e−09 2.2139e−07

Table 4.3. Rotor problem. Conservation properties of the FV-FEEC scheme. “Er-
ror” (4.3) of the MHD conserved variables at different mesh resolutions.

Figure 4.12. Rotor problem. Numerical solution on a 1600×1600 Cartesian mesh ob-
tained with the lowest order FV-FEEC scheme and Heun timestepping with CCFL = 0.4.
Finite volume scheme for the extended Euler equations based on the HLL approximate
Riemann solver. The color map of the pressure plot is scaled to the extrema of the
“reference” solution on a 3200× 3200 mesh, shown on the top right plot.

4.3.5. Blast Wave Problem

As a last test case, we consider the isothermal blast wave problem proposed in [5, Section 6.2.2].
Note that we did not develop a numerical scheme tailored to the isothermal MHD model, we rather
“emulated” the isothermal behavior by setting the ratio of specific heats close to unitary (γ = 1.001
in the forthcoming simulations). The blast wave benchmark is numerically challenging because it is
characterized by a highly anisotropic explosion spreading out from a high density cloud initialized in
a circular region of the domain. As pointed out in [5], failing to provide a control of the divergence of
the induction field can engender detrimental small-scale fluctuations.

In the domain Ω = [0, 1]2 the initial data are,

ρ0(x, y) = p0(x, y) =
{

100 if
√

(x− 0.5)2 + (y − 0.5)2 < 0.05,
1 otherwise,

u0(x, y) = 0,

B0(x, y) =
( 5√

π
, 0
)>

, A0(x, y) = 5√
π
y.

The simulation spans the time interval I = [0, 0.09]. Boundary conditions are of non-reflecting
Neumann-type for the extended Euler variables, and the velocity field gives no inflow boundary.
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The conservative properties of the scheme are numerically gauged in Table 4.4 where the error
defined in (4.3) on the conserved variables is reported.

]Th Er(ρ) E(ρu1) E(ρu2) Er(B1) E(B2) Er(E)
200× 200 8.5943e−14 1.3769e−12 5.8536e−11 7.8382e−15 4.3338e−11 8.9687e−14
400× 400 2.6538e−15 8.6998e−12 7.5751e−10 1.7876e−15 1.7969e−10 3.9629e−15
800× 800 2.0471e−15 1.8790e−11 1.4140e−09 2.8231e−15 1.1313e−10 9.6211e−15

1600× 1600 2.1693e−14 7.6349e−08 6.4150e−07 9.9568e−14 5.3582e−09 1.8401e−14

Table 4.4. Blast wave test. Conservation properties of the FV-FEEC scheme. “Er-
ror” (4.3) of the MHD conserved variables at different mesh resolutions.

Numerical instabilities are a typical outcome of the blast wave test even for lowest order finite
volume approximations of the full MHD system, see [13, pp. 356-357]. The blast wave MHD flow is
characterized by outward- and inward-going fast magnetosonic shock and the magnetic induction field
experiences a strong compression on account of the explosion. As it can be observed in Figure 4.13,
the FV-FEEC scheme is robust, oscillations-free and it approximates the shocks rather sharply. The
second row of Figure 4.13 shows the magnetic induction field lines: no fluctuations are observed, not
even in the middle of the computational domain (compare with [5, Figure 9] and [13, Figure 8]).

5. Concluding Remarks

We have developed a family of numerical methods to solve the single-fluid standard MHD problem by
coupling two different spatial discretizations of fluid and electromagnetic variables. The evolution of the
electromagnetic fields relies on FEEC-based extrusion contraction upwind schemes. These methods
are characterized by an intrinsic upwinding, which acts as a linear stabilization in the presence of
boundary and internal layers, and by the fact that the resulting discrete Lie derivative commutes
with the exterior derivative. This implies that in MHD the divergence constraint is satisfied exactly,
and no mesh-staggering of fluid and electromagnetic variables, typical of constrained transport and
“central schemes” for hyperbolic problems, is required. Although supported by numerical evidence,
a rigorous stability and convergence analysis of the extrusion contraction upwind schemes is still an
open problem.

Concerning the fluid dynamics part of the MHD model, we designed finite volume schemes hinged
on approximate Riemann solvers tailored to accommodate the presence of the magnetic induction,
which enters the system of conservation laws as a varying coefficient. The further adaptation of this
construction to design numerical fluxes yielding a discrete version of the entropy inequality would pave
the way to entropy stable schemes of arbitrarily high order.

The lowest order fully coupled FV-FEEC schemes are first order accurate for smooth solutions, pos-
sess built-in structure preserving properties, and perform robustly in many challenging MHD bench-
mark tests. The promising numerical results obtained when using discretizations of the electromagnetic
fields based on discrete differential forms, even in the presence of complex flows, suggest that struc-
ture preserving conforming discretizations can be competitive also in computational fluid dynamics,
typically preserve of finite volume and discontinuous Galerkin methods. Analogous splitting-based nu-
merical methods for the MHD system obtained via fully discontinuous Galerkin discretizations of the
potential-based advection problem (by staggering the magnetic potential with respect to the fluid vari-
ables similarly to a Yee-type scheme [41]) yield unphysical solutions on some challenging benchmark
tests, as documented in [33, Section 7.2].
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Figure 4.13. Blast wave test. Numerical discretization on a 1600 × 1600 Cartesian
mesh with lowest order FV-FEEC scheme and Heun timestepping, CCFL = 0.4. Finite
volume scheme for the extended Euler equations using HLL approximate Riemann
solver.

5.1. Towards Higher Order FV-FEEC Schemes

The promising numerical results obtained with the lowest order FV-FEEC discretizations can be a
starting point for the design of second and higher order accurate schemes. The “synchronization”
of the coupling step in Algorithm 1 ensures that no additional error associated with the splitting is
introduced. We can therefore identify two main objectives for the derivation of formally high order
FV-FEEC schemes:

(1) A high order discretization of the transient advection problem, able to supply a magnetic in-
duction field accurate to the same order and endowed with a nonlinear mechanism for damping
oscillations, capable of ensuring some TVD-like property without affecting the accuracy of the
scheme;

(2) A high order extension of the FV schemes for the extended Euler equations via reconstruction
and limiting, with controls on the preservation and evolution of physically admissible states.

Concerning the first aspect, when resorting to the potential-based formulation of the advection prob-
lem, high order numerical schemes should ideally curb the emergence of spurious oscillations in both
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the magnetic potential and the magnetic induction field. In the context of extrusion contraction up-
wind schemes, entropy viscosity methods [17, 18] seem particularly attractive for the aforementioned
task since they are based on the addition of a degenerate nonlinear diffusion term, tuned locally by
a numerical viscosity proportional to the local entropy production. Specifically, the commutativity of
the exterior derivative and the discrete Lie derivative allows the construction of nonlinear residual-
based viscosity schemes for the advection of the magnetic potential, based, however, on the (entropy)
residual of the magnetic induction equation. Preliminary results in this direction can be found in [33,
Section 4.4]. In the alternative situation occurring when directly discretizing the magnetic induc-
tion problem, one should rely on the addition of artificial magnetic diffusion, based again on the
induction residual. The augmented discrete operator obtained from the Lie derivative plus the second
order artificial diffusion will still satisfy a commuting diagram property. On the other hand, it is not
straightforward to gauge the effectiveness of the artificial viscosity since the nonlinear second order
stabilization will have no impact on the kernel of the exterior derivative.

High order finite volume schemes for the extended Euler equations can be designed via ENO and
WENO reconstruction techniques [19, 37]. The resulting schemes prove numerically robust and pro-
vide non-oscillatory solutions [33, Section 6.3.2], but they are not provably positively conservative.
Devising a positivity fix for the finite volume discretizations of the extended Euler system in order
to guarantee admissible updated and evolved fluid variables seems a challenging task since the lowest
order scheme itself is not provably positively conservative. These issues represent intriguing topics for
further investigation.
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