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Abstract. With the increasing need for volumetric B-spline representations and the lack of methodologies for
creating semi-structured volumetric B-spline representations from B-spline Boundary Representations (B-Rep),
hybrid approaches combining semi-structured volumetric B-splines and unstructured Bézier tetrahedra have been
introduced, including one that transforms a trimmed B-spline B-Rep first to an untrimmed Hybrid B-Rep (HB-
Rep) and then to a Hybrid Volume Representation (HV-Rep). Generally, the effect of h-refinement has not been
considered over B-spline hybrid representations. Standard refinement approches to tensor product B-splines and
subdivision of Bézier triangles and tetrahedra must be adapted to this representation. In this paper, we analyze
possible types of h-refinement of the HV-Rep. The revised and trim basis functions for HB- and HV-rep depend on
a partition of knot intervals. Therefore, a naive h-refinement can change basis functions in unexpected ways. This
paper analyzes the the effect of h-refinement in reducing error as well. Different h-refinement strategies are discussed.
We demonstrate their differences and compare their respective consequential trade-offs. Recommendations are also
made for different use cases.
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1. Introduction

The most common representation in CAD is the Boundary Representation (B-rep), which typically
uses parametric Non-Uniform B-Splines (NURBS) for each surface in the model. Trimming, a common
technique in constructing complex geometries results when Boolean operations are applied to models.
In those models, only restricted parts of the original surfaces visibly appear in the final models. With
the recent development of Isogeometric Analysis (IGA), there is an increasing need for both watertight
and volumetric representations of B-reps, including those with trimmed surfaces.

In general, trimmed models cannot be represented exactly as tensor product B-splines, and so are
not watertight. In commercial CAD systems, trimming curves exist in the parametric domains of
intersecting B-spline surfaces and in model (or Euclidean) space, usually approximated as linear or
cubic B-spline curves. The three trimming curve representations do not lead to the exact same model
space curves, so there are gaps or overlaps between trimmed surfaces. The Euclidean trimming curve
is typically not in either surface. However, models for analysis must be watertight. Models to be
realized with additive fabrication are typically triangulated. If the triangles generated from the two
surfaces across a trimming curve are not close enough the model is not suitable for fabrication. Post
design industries have grown around repairing inconsistent geometric models for both fabrication and
analysis. Typically, for analysis, that has been done through mesh creating and mesh mending. If the
original geometric model representation is a watertight representation, there are no gaps to mend and
the post modeling repair process is eliminated.

Another difficulty is that, while multiple methods have been proposed to generate a representation
for volumetric completion from an untrimmed NURBS B-rep, in general, there is no method that
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works for all untrimmed models, not to mention addressing trimmed ones. One principle of IGA is to
use the CAD model basis as the parametric basis for the simulation representation [6], so maintaining
the CAD representation on the boundary as closely as possible supports that goal. If the B-rep is
semi-structured B-splines/NURBS, higher order continuity improves the quality of the simulation.

Hybrid representations have been proposed in [17, 18] to address these problems. This paper inves-
tigates ways in which refinement can affect both the hybrid boundary representation and the hybrid
volume completion representation in these schemes that preserve the original surface parameterization.

In Section 2, we present related work. In Section 3 and 4, we briefly go through the steps to generate
such watertight B-rep and volumetric representation. In Section 5, we categorize errors that exist in
the HB-rep. In Section 6, we analyze different approaches to refinement and examine their effects on
representation and computation.

2. Related Work

In order to create watertight representations from the intrinsic inexactness associated with the trimmed
model, surface representations are necessarily modified, and frequently reparameterized in regions
around the trimming curves, then remodeled to approximate the original surface with regular patches.

One approach changes the representation to T-splines [14] and modifies the surface parameteriza-
tion near the trim while approximating the trimming curve according to a precision determined by the
number of knot insertion T-levels. To merge two surfaces across their trimming curve further modifica-
tions are made using their proposed NU-NURBS. Another approach uses subdivision surfaces [15, 16],
although the parameterization is modified and the geometry is approximated in at least a region of
adjacent patches near the trim. These methods take advantage of the topological flexibility of these
respective techniques and generate a unified control mesh/surface representation of the output model.
Both are applicable when usage of those representations are desirable. However, as surveyed in [12],
the trimmed B-spline still is the predominant technology in modeling.

Research into volumetric model completion from general boundaries has focused significant effort on
starting with triangle mesh boundaries and generating semi-structures trivariate B-spline representa-
tions, for examples see [1, 2, 8, 9, 10, 25]. Efforts to complete and optimize a volumetric representation
from a B-spline boundary mainly focused on a bounding hexahedron [23], or more general regions al-
ready partitioned into hexahedra [22]. Because there is no general approach to semi-structured trivari-
ate B-spline volume completion while preserving the B-spline B-rep boundary, several approaches have
been proposed that involve using tetrahedra.

Some approaches to volume completion preserve the B-spline boundary representation, yielding
trivariate B-splines from the boundary to some depth depending on a user-provided mid-structure,
and then transition to Bézier tetrahedra in the complex central region of the interior. [11] fills the
rest of the interior with linear tetrahedral elements, although it allows gaps and overlaps between the
trivariate B-splines and the linear tets. However, spline properties and the construction technique used
ensure that as the B-splines are refined, the tetrahedra boundaries converge to the interior boundary of
the trivariate B-spline. In [24], the interior is filled with high degree Bézier tetrahedra that reproduce
the interior bounding surface of the trivariate B-spline. These hybrid approaches exploit the advantage
of high accuracy of B-spline elements near the boundary. They also take advantage of the topological
flexibility of the tetrahedra to complete the representations. However, the effects of h-refinement on
the representation were not investigated.

[7] also describes an interior unstructured region filled with Bézier tetrahedra. They report on
several different representations. All have unstructured tetrahedral regions. First, the tensor product
Bézier patches are extracted from the boundary B-spline surfaces. Then one approach transforms
each rectangular patch into 2 triangular Bézier patches along one diagonal, after which the interior
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Figure 3.1. A mechanical part generated with multiple Boolean operations is shown
in its HB-rep. Ωbanded, consisting of the red regions, is the transition region that ap-
proximates the surface while reproducing the trimming curves. It contains both tensor
product and curvilinear triangle representations that touch the trimming curve. Be-
cause they represent the trimming curve exactly, even though the surface approximation
is highly accurate, Ωbanded differs from the original surfaces in both parameterization
and geometry.

is tetrahedralized. A different approach uses each Bézier patch as the base of a Bézier pyramid, then
fills the remaining volume with tetrahedra. The last method creates a trivariate tensor product Bézier
patch over each bivariate patch, and then uses either of the other two methods on its interior surface
patches. [7] includes h-refinement schemes for the multiple element types.

[19] deals with completing trimmed B-spline representations into Bézier tetrahedra. It first decom-
poses the surfaces into Bézier patches. The work assumes that the three trimming curves representing
the same intersection are not compatible; that is, they have independent knot vectors and independent
parameterizations. The first effort makes them compatible by modifying parameterizations and knot
vectors to ensure that the images of each knot value in model space all represent the same point.
Then, after making the curves compatible, it refines all curves until they all can be approximated by
piecewise linear curves within a user-specified accuracy in parametric space. A trimmed knot interval
is a parametric knot interval that at least one trimming curve intersects. The interior of the trimmed
knot interval is partitioned into multiple triangles. The surfaces are represented as degree 6 Bézier
triangles, exactly representing the piecewise linear parametric trimming curves and the original sur-
face in model space. Then coefficients of the Bézier triangles from different surfaces are modified along
trimming curves to make them match and seal the representation.

The hybrid boundary and volumetric representation proposed for trimmed NURBS B-reps in [18]
and [17], which is analyzed here, uses the ideas in [24] of both forming a trivariate spline and having
an unstructured interior region that meets the structured region with C0 continuity. However, this
approach[17, 18] deals with the lack of a watertight boundary, and trimming curves, that cut parametric
knot intervals into irregular pieces. The result largely keeps both the original parameterization and
geometry except around the trimming curve where the geometry is modified to seal the representation.
It does so by introducing revised basis functions wherever the supports of the B-spline basis functions
overlap a trimming curve. It further introduces basis functions along the trimming curves whose
support extends into a region around the trimming curve called Ωbanded. For model completion, the
approach in [24] is generalized so the approach is suitable for a trimmed model. In this paper, we
investigate and analyze h-refinement on the resulting HB-rep and HV-rep models.

3. HB-rep B

In this section, we review the Hybrid Boundary Representation (HB-rep). A mechanical model repre-
sentation produced from a trimmed NURBS B-rep is shown in Figure 3.1.

Let G be the representation for a trimmed B-spline B-rep model, and let R designate the collection
of all control mesh points and control mesh adjacencies for all trimmed surfaces in G. The HB-rep is
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defined using refinement (and subdivision) properties of NURBS and B-splines. Let a B-spline surface
in G, say s, be defined in its untrimmed state as a degree bi-d B-spline surface,

s(ξ, η) =
∑
i,j

ri,jBi,d,µ(ξ)Bj,d,ν(η),

where µ and ν are knot vectors. For µi, µi+1 ∈ µ and νjνj+1 ∈ ν, the rectangular parametric region
[µi, µi+1] × [νj , νj+1] is called a knot interval, whenever it is non-degenerate. Given values ξa < ξb
and ηc < ηd where there are no knot lines interior to the region (ξa, ξb) × (ηc, ηd), then s can be
written in terms of tensor products of Bézier functions {θk1,d,[ξa,ξb](ξ)}dk1=0 and {θk2,d,[ηc,ηd](η)}dk2=0.
This transformation to Bézier is easily accomplished by augmenting µ with multiple values of ξa, ξb
to form µ̃, and augmenting ν with multiples values of ηc, ηd, to form ν̃ and computing coefficients
αi,k1,µ,µ̃ and αj,k2,ν,ν̃ such that for J rect = [ξa, ξb]× [ηc, ηd]. We call J rect a sub-knot interval when it is
not a full knot interval of s,

Bi,d,µ(ξ) =
∑
k1

αi,k1,ξθk1,d,[ξa,ξb](ξ) for ξ ∈ [ξa, ξb), (3.1)

Bj,d,ν(η) =
∑
k2

αj,k2,ηθk2,d,[ηc,ηd](η) for η ∈ [ηc, ηd) (3.2)

s(ξ, η) =
∑
k1,k2

(
∑
i,j

αi,k1,ξri,jαj,k2,η)θk1,d,[ξa,ξb](ξ)θk2,d,[ηc,ηd](η) for (ξ, η) ∈ J rect (3.3)

See [5]. Using Bézier extraction notation [3], and letting Ni,j(ξ, η) = Bi,d,µ(ξ)Bj,d,ν(η), Equation 3.3
becomes

s(ξ, η) = rᵀN(ξ, η) = rᵀAθJrect(ξ, η), ∀(ξ, η) ∈ J rect, (3.4)

where r is the vectorization of the coefficient matrix used to define the surface over J rect, N(ξ, η) and
θJrect(ξ, η) are the corresponding vectors, respectively, of tensor product B-spline and tensor product
Bézier basis functions in J rect, and A = Aξ ⊗Aη the Kronecker tensor product of Bézier extraction
operators in ξ and η directions for J rect of size (d + 1)2 × (d + 1)2 [3]. Thus each B-spline can be
evaluated over the whole surface or any rectangular patch in terms of related Bézier functions. This
property is used repeatedly.

For each surface in G, the methodology for the HB-rep consists of,

(1) For each trimmed knot interval K, construct a rectilinear approximation to the trimming curve
that does not touch it and is completely interior to the trimmed surface. The region Ωbanded

is bounded by the rectilinear approximation and the trimming curve illustrated by the orange
polyline in Fig. 3.2d, and is created using the subknot intervals that touch trimming curves,
as shown. Changes from the original surface to seal the representation can occur only inside
Ωbanded.

(2) Create basis functions for the new representation.
• The revised basis functions are identical to B-splines outside Ωbanded and continuously
decrease to evaluate to 0 on the trimming curve inside Ωbanded.
• Define trim functions with support in Ωbanded that form a partition of unity on the
trimming curve and are linearly independent.

(3) Determine coefficients for the new trim basis functions, merging the pieces of the trim basis
functions over multiple intervals in Ωbanded, to complete the watertight representation and
match the model space trimming curve. In Figure 3.1, the image of Ωbanded in model space is
colored red. The representation is called a Hybrid Boundary Representation (HB-rep).
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(4) The region in each trimmed knot interval minus Ωbanded, K−Ωbanded, is a rectilinear region,
see Fig. 3.2d It is represented by the original surface. However, when the hybrid volume
representation is created [17], the innermost unstructured tetrahedral region uses sub-knot
intervals from which to derive the tetrahedralization on the interface between the regions.
Hence, we also supporrt partitioning K−Ωbanded into interior sub-knot intervals with locally
optimal shape properties. See Fig. 3.2e and Fig. 3.3. Call the partition K.

The resulting HB-rep consists of the coefficients and revised basis functions, the trim basis functions
and their coefficients, and the partitionings derived in step 4. Also, the information defining the original
trimmed B-rep is embedded.

Steps 1 and 4 are illustrated in Figure 3.2. Recall the term knot interval is used herein to denote a
tensor product of the intervals between knots, one interval in each parametric direction of an original
surface. A knot interval in G is classified into 3 groups as interior, trimmed, and exterior, based on
its relative position with respect to the trimming curves. Each trimmed knot interval is crossed by or
touches a trimming curve along a boundary, so it has regions that are interior and either exterior or on
the trimming curve. Each trimmed knot interval is further partitioned into a set of sub-knot intervals.
The sub-knot intervals are divided into 2 collections: those that are interior defining K, and those that
define a region called Ωbanded that is adjacent to the trimming curves. New functions, called revised
basis functions, are defined, one for each B-spline in the original representation. Each new function is
defined to be identical to its corresponding original B-spline except in Ωbanded. Hence, over interior
knot intervals and interior sub-knot intervals, the new representation remains unchanged. Additional
functions called trim basis functions are defined in Ωbanded that carry trimming curve and Ωbanded

geometry and parametric information, and serve to seal the gaps and retract the overlaps.

(a) (b) (c) (d) (e)

Figure 3.2. Parametric domain process to generate Ωbanded and a partition is shown
of a trimmed knot interval. The retained portion of the interval is in gray. (a) shows a
trimming curve with 5 Bézier segments passing through the trimmed knot interval. (b)
shows the rectilinear approximation and curvilinear triangle for one trimming Bézier
segment. Similarly, this is repeated for each Bézier trimming curve segment with results
shown in (c). In (d) rectangular sub-knot intervals are created that have one corner
point on the trimming curve. Ωbanded is the region between the orange rectilinear curve
and the trimming curve. Finally, in (e), the remainder of the parametric trimmed knot
interval is recursively partitioned into internal rectangular sub-knot intervals. In this
particular example, the large purple rectangle is chosen first, having the best ratio of
the lengths of the sides. This leaves two rectangles to form the other elements of the
partition.

Define Ωbanded. Given a trimming curve across two surfaces, each of the two parametric trimming
curves and the model space trimming curve need to be compatible. That is, they need to have the
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same knot values and parameterizations, and the model space values of the same knot values need to
represent the same points on the model space curves. If the output of the CAD system does not produce
this, then the method in Xia [19] is adopted to produce this result. Knots are added to the trimming
curves each time either of the parametric curves crosses a knot line in either parametric domain. Then
the curves are subdivided to Bézier segments. Each Bézier segment is further subdivided at interior
local extremal points of either parametric curve so each final Bézier curve segment is monotonic.

Figure 3.3. A valid partitioning example. The inset shows a trimmed knot interval
(bounded by magenta isoparametric lines). It is further decomposed into regions by
the yellow and cyan line, namely, (i) Ωbanded consists of curvilinear triangular and
rectangular sub-knot intervals that are adjacent to the trimming curve; and region (ii),
the rectilinear region (cyan dots in interior sub-knot intervals).

At this stage, the trimming curve defining a trimmed knot interval may have multiple segments.
(See Figure 3.2a.) A rectilinear approximation is built for each segment. Given a Bézier segment with
endpoints at (ξ0, η0), and (ξ1, η1), assume without loss of generality that (ξ0, η1) is in the interior of
the trimmed domain. The rectilinear approximation to the Bézier segment is found by connecting
the two endpoints to (ξ0, η1), see Figure 3.2b. The region between the Bézier segment and its recti-
linear approximation defines a curvilinear triangular sub-knot interval. In Figure 3.2c, the rectilinear
approximations, and their corresponding curvilinear triangular sub-knot intervals to all the Bézier
segments in the trimmed knot interval are indicated. Every trimming curve endpoint that is not a
local extremum corresponds to a rectangular sub-knot interval that has a corner at the endpoint and
shares edges with its two adjacent curvilinear triangular sub-knot intervals. In Figure 3.2d, these are
the rectangles with orange and blue sides. The shared edges must have exactly the same two endpoints
on its two sides, or an inconsistency occurs [17].

If instead, a Bézier segment is isoparametric with endpoints (ξ0, η0) and (ξ0, η1), a suitable rectilinear
approximation is found, with corners (ξ0, η0), (ξ1, η0), (ξ1, η1), (ξ0, η1) where ξ1 is obtained by extending
ξ0 into the interior for a predetermined minimum feature size. In this case, the region between the
Bézier curve and its rectilinear approximation is a rectangular sub-knot interval.

At this stage, each sub-knot interval generated should have at least one corner on the trimming
curve. The set of all sub-knot intervals is denoted Ωbanded. Examples of Ωbanded are illustrated in
Figure 3.2d in the parametric domain and in Figure 3.3 in model space.

Revised and Trim Basis Functions. Each original B-spline basis function Ni,j that has support
in Ωbanded is modified into a revised basis function Ñi,j over its support in Ωbanded such that it
continuously decreases and is 0 along any of its trimming curve intersections. (See Figure 3.4a.) Trim
basis functions are introduced to compensate for the modification and glue together surfaces across
the trimming curve. Also, in [17, 18] it is shown that the important partition of unity property obtains
for the combined set of new basis functions.
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As a result of the preceding process, a sub-knot interval in Ωbanded is either an isoparametric
rectangular sub-knot interval, denoted J rect, or a curvilinear triangular sub-knot interval, denoted
J tri. The sub-knot interval has been trimmed by the trimming curve according to one of the following
three configurations: (i) at least one isoparametric edge of J rect resides on a trimming curve, (ii) a
corner of J rect is on the trimming curve, or (iii) the curvilinear edge of J tri is part of trimming curve.

For J rect, the tensor product Bézier functions defining its surface mapping are partitioned into two
sets: those that vanish on the trimming curve and those that are nonzero. Let the identity matrix
be I = (ei,j) where ei,j = δi,j , the Kronecker δ. A masking matrix M rect is formed by modifying the
identity matrix I so that if the k-th basis function in θrect is nonzero on the trimming curve, then
ek,k = 0. This results in M rect having a zero vector for column k. M rect differs for each J rect. The
surface is

s(ξ, η) = rᵀN(ξ, η) = rᵀAM rectθJrect(ξ, η) + rᵀA(I −M rect)θJrect(ξ, η)
= rᵀÑ|Jrect(ξ, η) + rᵀAT̃|Jrect(ξ, η),∀(ξ, η) ∈ J rect,

where Ñ|Jrect = AM rectθJrect and T̃|Jrect = (I −M rect)θJrect are the vectors of revised and trim basis
functions, respectively, in J rect. To reproduce the trimmed surface, the coefficients for T̃ are rᵀA.
However, when the representation is coerced to become watertight, the coefficients for T̃ are modified
to be coefficient(s) of its defining Bézier trimming curve segment.

Without loss of generality, suppose the curvilinear triangle has 3 corners at (ξ0, η0), (ξ1, η0), and
(ξ0, η1) with 2 isoparametric edges and 1 Bézier trimming curve edge, as in Figure 3.2b. The geometry
is approximated with a degree d polynomial that matches the trimming curve exactly. Let M be
the triangle with the same corners as J tri. Define φ : M → J tri to be a degree d triangular Bézier
mapping that is the identity on the isoparametric edges and reproduces the degree d parametric Bézier
trimming curve boundary exactly and has no folds or degeneracies. For simplicity of presentation,
suppose that d = 3, and let ψ be a cubic Bézier triangle mapping from triangle M to model space
with geometry approximating s and that matches s on the two isoparametric boundaries of J tri.
Coefficient computations for both φ and ψ are detailed in [17, 18] that make the coefficients of ψ
dependent on r. With the help of a selection matrix Stri and Bézier extraction operator A in (ξ0, ξ1)×
(η0, η1), ψ’s coefficient row vector is written in form of rᵀAStri. The mapping ψ ◦ φ−1(ξ, η) is then
used to approximate the original B-spline surface mapping from J tri. The control points for the non-
isoparametric edge, including the corner vertices will be modified to be control points of a trimming
segment.

Again, using Bézier extraction notation, where θJtri is the vector of triangular Bézier basis functions
over J tri, the curvilinear triangle basis functions used to define ψ ◦ φ−1 are θJtri ◦ φ−1. While the
ψ ◦ φ−1 is C0 across adjacent sub-knot interval boundaries, it is no longer polynomial. Analogous to
the rectangular case, a 1

2(d+ 1)(d+ 2)× 1
2(d+ 1)(d+ 2) masking matrix M tri is used to segregate the

functions in θJtri ◦ φ−1 into those that vanish along the trimming curve and those that are nonzero.
Specifically, θJtri ◦φ−1 is used to replace the tensor product Bézier basis functions θJrect , and so realize
a curvilinear (non-polynomial) triangular approximation of the original B-spline surface in J tri. Thus,

rᵀN(ξ, η) ≈ ψ ◦ φ−1(ξ, η) = rᵀAStri(I −M tri)θJtri ◦ φ−1(ξ, η)
= rᵀÑ|Jtri(ξ, η) + rᵀAStriT̃|Jtri ◦ φ−1(ξ, η),∀(ξ, η) ∈ J tri,

where Ñ|Jtri = AStriM triθJtri ◦ φ−1 and T̃|Jtri = (I −M tri)θJtri ◦ φ−1 are the revised and trim basis
functions, respectively, in J tri.

Figure 3.4 illustrates a simple example. Figure 3.4a shows a particular trimmed B-spline and its
revised counterpart. Although both have trimmed domains, the B-spline is nonzero along its trimming
curve, but the revised function has continuously diminished to 0 over Ωbanded. Figure 3.4b shows
the partition of a trimmed knot interval [0, 1] × [0, 1]. Originally, 16 B-spline basis functions Ni,j for
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(a) (b)

(c)

Figure 3.4. A trimmed B-spline basis function (a) topN0,0 and its revised counterpart
(a) bottom. Ñ0,0. In (b), the partition of knot interval [0, 1]× [−1, 0] consists of 4 sub-
knot intervals: 3 rectangular and 1 curvilinear triangular. Ωbanded is represented by the
hatched region, and the 4 black dots represent the control points of the trimming curve.
(c) shows all of the 16 revised B-spline basis functions Ñi,j and 4 trim basis functions
T̃i corresponding to the 4 dots.

i ∈ {−1, 0, 1, 2}, j ∈ {−1, 0, 1, 2} existed over this domain corresponding to their 16 original control
points. Two types of new basis functions now exist: (i) 16 revised B-spline basis functions Ñi,j that
are different from original ones only in Ωbanded, and forced to be identically 0 on the trimming curve;
(ii) 4 trim basis functions T̃i for i ∈ {0, 1, 2, 3} with coefficients that correspond to 4 control points
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of the Euclidean cubic trimming curve (Figure 3.4c). Outside of Ωbanded, all T̃i ≡ 0, and Ñi,j ≡ Ni,j .
The extraction relationship between the original surface and the sub-knot interval is maintained.

Seal the Trim. During the construction of the new basis functions, each trim basis function is
initially associated with a control point from rᵀA. The control points corresponding to basis functions
that are nonzero on the trimming curve are replaced with control points from the model space trimming
curve cm. The set of all control points that are coefficients of trim basis functions is denoted Υ. By
combining trim basis functions corresponding to the same control point in different sub-knot intervals
across trimming curves, C0 basis functions are constructed, and the new representation B is watertight,
as illustrated in Figure 3.5. With R correspond to revised basis functions and Υ correspond to trim
basis, no extra degrees of freedom are added to B. The total degrees of freedom is |R|+ |Υ|.

Figure 3.5. Making the representation watertight. Two trimmed surfaces that inter-
sect at cm (green) in model space. Representations of each surface over its J rect and
J tri in Ωbanded are shown to not actually coincide. Then the appropriate coefficients of
the trim basis functions are modified so that the model space trimming curve bounds
on both the red and blue surfaces.

The remainder partition. After Ωbanded is created in a trimmed knot interval, the residual part
of the trimmed knot interval is a rectilinear region. All evaluations and properties can be computed
over this region using the B-splines that define the original surface, but if that choice is made, it
would have to be verified for each evaluation that the point is not in Ωbanded. Instead, the residual is
partitioned into interior rectangular sub-knot intervals whose local surface representations are defined
as in Equations 3.1, 3.2, and 3.3. One construction goal is to make the resulting sub-knot intervals as
square as possible. However, according to [13], finding an optimal solution to this problem is considered
NP-hard. Therefore, a greedy divide-and-conquer approach was introduced in [17, 18] to resolve the
problem recursively (see Figures 3.2e and 3.3). Let K be the resulting collection of interior axis aligned
sub-knot intervals. Note that B-splines with support in any element of K can be written in terms of
the corresponding Bézier functions over that rectangular region.

Example. In Figure 3.1, a mechanical part with multiple trimming curves has been converted to an
HB-rep. The size of the curvilinear triangles on the flat surfaces is constrained only by the trimming
curves since the geometry can be represented exactly. In this image, Ωbanded has been reduced in order
to maintain the original representation everywhere except in the red regions. In those regions, the new
representation, a perturbation of the original, is exact, up to trimming curve error.
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4. HV-rep V

In previously related work [11, 24] completed untrimmed B-spline B-rep models to form hybrid vol-
umes. The approach forms trivariate splines by extending meshes inward from the exterior towards
a mid-structure to some depth. The remaining interior is then filled with unstructured compatible
Bézier tetrahedra. In [17] the volume completion problem is addressed in the more general and more
challenging context of trimmed B-spline B-rep models. In particular, control meshes of trimmed B-
splines do not form manifolds, an attribute that was critical to previous hybrid approaches to volume
completion on untrimmed models.

The methodology in creating the Hybrid Volume Representation (HV-rep) goes according to the
following steps:

(1) Input an HB-rep B and a mid-structureM, as well as several parameters, where one of them
is the number of control levels in the final trivariate spline, say n. Note that the information
in G is contained in B.

(2) Create a vector field for tracing the control points in R from the given boundary surface to
the mid-structureM. Set R0 = R.

(3) Proceed through the following process, for i from 1 to n,
(a) Trace each control point in Ri−1 from its current location to the mid-structure and com-

pute its length.
(b) Normalize the newly computed length to n−i+1

n , and move along the trace a scaled distance
of 1

n . These new points form the initial ith control mesh layer Ritr. Since it is likely that
when the trimming curves are applied, the surfaces do not match along their trims, they
must be adjusted.

(c) Apply a least squares process to adjust the surfaces so the trimmed surfaces edges are
close to each other, forming Rilstsq.

(d) Move the surfaces apart so that there is a small separation gap around each trimming
curve (i.e., the surfaces do not overlap), forming Risep

(e) Form Ri by applying mesh smoothing (as in [11, 24]) so the spacing of the tracings is
more uniform.

(f) Using Ωbanded, the revised and trim basis functions, seal the layer and create Bi.

In a 2-D scenario, Figure 4.1 illustrates some of the issues while describing our solution approach.
The input is the HB-rep B, a mid-structureM, and parameters, including n, the number of inward

trajectory layers, along with depth factor ω, scalar for separating ε, relaxation factor β and θ that
defines pyramid layer thickness. In the naming convention, the superscript designates the corresponding
layer, and the subscript refers to the stage in each layer such as Ritr and Gi, for example.

4.1. Trace R

In order to create a suitable field that can serve to guide us in constructing the control point trace
paths, it is first necessary to create an appropriate polyhedron. To do so, a triangle mesh is created from
each trimmed surface by dividing each control mesh quadrilateral into two triangles. Then the Boolean
operations used to create G are applied to the corresponding triangle meshes to generate a polyhedron
P. The control meshes input as part of B should have been previously refined sufficiently so P has the
same topology as B. In Figure 4.1a the intersected control polygon for the curves serves as the polygon.
Then the points of R are separated into 2 disjoint covering subsets: E contains those control points
that are on P and R− E contains those that are not. In Figure 4.1, Pi+2, Pi+3, Qj , Qj+1 ∈ (R− E).
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(a) (b)

(c) (d)

Figure 4.1. A 2D example of our approach. (a) An intersection of two curves with
associated control polygons (Pi . . . Pi+3 and Qi . . . Qi+3) uses only part of the curves
(thick strokes). Control points are separated into two groups: E (colored dots in black
circles) and R− E . In (b) paths for control points in E are traced appropriately being
guided by a harmonic gradient vector field while inward trajectories for R − E are
generated using the trajectories from their mesh neighbors (Section 4.1). Resulting
curves might intersect with each other, so this is resolved in Section 4.2 (c). In (d),
endpoints of traced trimmed curve are adjusted to their midpoint, thus sealing the gap.

Further, let OE = {r ∈ E : there is an edge in R joining r to a point in R − E} and define OR−E
analogously. Define O = OE ∪OR−E . In Figure 4.1, Pi+1, Qj+2 ∈ OE . Geometrically, the control points
in O are close to the trimming curves.

The control points of E are traced inward towardsM by following a vector field. A discrete harmonic
function h is created with increasing values from boundary P to mid-structure M. The vector field
f used is a blend of the gradient of the harmonic function h and the gradient of a signed distance
function g: f = h ∇h‖∇h‖ + (1− h)∇g.

For each vertex in E i, the tracing curve to find E i+1
tr terminates at harmonic value 1 (on M).

Normalized arc length parameterizations of the tracing curve are reparameterized to the parametric
domain [ inω, 1]; and the point at parametric value i+1

n ω is assigned to E i+1
tr . As control points in R−E

are not on P, they cannot be traced. Instead, for p ∈ R − E , a breadth-first search is applied to the
control mesh to find the q ∈ E closest to p in Euclidean distance. A translated copy of the tracing of
q is used.

Control mesh Ritr, along with the original basis functions of G and parametric trimming curves
result in an initial trimmed surfaces layer Gitr.
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(a) (b) (c) (d)

Figure 4.2. HB-rep models are shown in (a) and (c). When only tracing is applied,
self-intersections are typically found in models that involve either Boolean intersection
or subtractions (b). Tracing on model that only has union operations leads to gaps
around trimming curves (d).

4.2. Adjust Ritr

By following the tracing, the resulting Gitr is not a manifold as illustrated in Figures 4.2b and 4.2d.
Ritr are adjusted so that the resulting trimmed surfaces do not intersect and corresponding trimming
curve pairs on different surface pieces are close to each other. This section discusses Step 3c through
Step 3e in Section 4.

The least squares fit adjusts the control points in Oi. Along a trimming curve, associated curves
c1, c2 exist in the parametric domains of two trimmed surfaces si1,tr, si2,tr, respectively. We start by
sampling over the trimming curve with parameter t. For each sample t on the parametric trimming
curves, the reference position of the Euclidean trimming curve is computed from both sides as their
midpoint, cie,tr(t) = 1

2(si1,trc1(t) + si2,trc2(t)). To simplify the explanation, we adopt subscript k to
designate the ordering of each tensor product B-spline basis function and its corresponding control
point. Let sitr be one of the surfaces resulting from tracing with parametric trimming curve c, sitr(ξ, η) =∑
kNk(ξ, η)rik,tr, where rik,tr ∈ Ritr, and its basis function is Nk. The least squares system is formulated

as,

minimize
∆ri

k

∑
u

∥∥∥∥∥∑
k

Nk(c(t))(rik,tr + ∆rik,tr)− cie(t)
∥∥∥∥∥

2

,

where ∆rik,tr is the unknown displacement vector of control points rik,tr. Denote the set of updated
control points as Rilstsq = {rik,lstsq = rik,tr + ∆rik,tr}.

Next, the control points in Rilstsq are separated from each other across the trimming curves to avoid
extra intersections in the surfaces. For that purpose, we create meshes of direction vectors in parametric
space for Rilstsq. Each mesh of parametric direction vectors is initialized to the 0 vector. Then the
parametric trimming curve is sampled and for each sample, the curve normal direction pointing towards
the interior of the trimmed parametric domain is computed. The basis function for each control point
in Oilstsq is evaluated at the parametric samples. The normal direction of the sample(s) with the largest
basis function value is assigned and denoted vik,sep. The direction vectors associated with Oilstsq are
then propagated to all direction vectors in each mesh by applying 50 iterations of Laplacian smoothing
over the meshes of parametric direction vectors. Finally, we update the control mesh by moving the
surface layer using these vectors assigned to each control point for a short distance to leave a gap
around the trimming curve to create Risep = {rik,lstsq + εv̂ik,sep} where v̂ik,sep is vik,sep projected into
model space using the fitted plane of rik,lstsq’s local control mesh.
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Then, a relaxation step is necessary because both the signed distance function and the harmonic
field non-uniformly shrink distances between control points as they move inward. We apply Laplacian
smoothing to the control mesh to get a target position p̃ for each control point p and move p to
(1− β)p+ βp̃ where β is a blending input parameter in [0, 1], used to create Ri.

Coefficients for the trim basis functions are obtained from curve fitting the midpoints of the sampled
trim curves using the knot vectors from the parametric trimming curves. The set of coefficients is called
Υi and is used with the appropriate trim basis functions. The trimmed surface layer Gi (corresponding
to control meshes Ri) is transformed into Bi, which is topologically identical to B. Control points in
Ri are paired with corresponding revised basis functions; and control points in Υi are paired with
appropriate trim basis functions. The resulting control lattice over all layers Bi, along with the same
degree d as the surface and uniform open knot vector (0 on B and 1 on Bn), defines a hybrid trivariate
B-spline region T .

4.3. Construction of Pyramid Elements

The interior boundary surface of T must serve as a boundary for the unstructured remaining interior
volume. The representation for the interior boundary surface of T can use the dependent represen-
tations over each rectangular sub-knot interval to represent the base of a Bézier pyramid of degree d.
The Bézier pyramid [4] has been shown to have the boundary geometry of Bézier triangles on each of
the 4 faces, and a tensor product degree bi-d Bézier on its base surface. The collection of them then
leaves only an unstructured volume U bounded by degree d Bézier triangles that must be determined.
Alternatively, if the interior boundary surface of T were to directly interface with the unstructured
region, there would need to be two tetrahedra over each rectangular sub-knot interval surface, each
one of degree 2d as in [24, 20].

T2

T1

B B

T S

Figure 4.3. T is converted to S . Left: inward (upward direction) extensions of rect-
angular (blue) and triangular (red) sub-knot intervals. T is divided into T1 and T2.
Right: The wedges in T2 are removed, and the tensor product Béziers in T2 are con-
verted to pyramids (yellow). The semi-structured region S is the union of three types
of elements depicted in 3 colors. The inner boundary of S consists only of Bézier
triangles.

In creating the pyramid interface, care must be taken so that pyramids do not intersect each other.
Since T is constructed to have no self-intersections, it is subdivided in the inward direction into
two trivariate splines, and the resulting innermost single knot interval trivariate is used to generate
pyramids. T2 is the trivariate with a single knot interval in the inward direction that is transformed
to the pyramid interface layer. The other multi-interior inward knot trivariate spline is called T1.

The interior knot intervals and the sub-knot intervals from trimmed knot intervals and 3.4 are used
to transform the representation in T2 to dependent trivariate Bézier representations. Each tensor-
product Bézier volume from T2 is transformed to a Bézier pyramid whose coefficients are linear
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combinations of those of its tensor-product Bézier volume (Figure 4.3). See [17] for details of the
algorithm for the coefficients of pyramids. The control points with corresponding rational pyramid
basis functions [4] define a pyramid element.

The semi-structured region consists of T1 and the pyramids, whose coefficients are linear combina-
tions of coefficients from T2. Thus, the only degrees of freedom are the ones from Bi for i ∈ {0, 1, . . . , n}.
The region is denoted S . The degrees of freedom of S is (n+ 1)(|R|+ |Υ|).
U is an unstructured region with Bézier tetrahedral elements. Its boundary coincides with the inner

surface of S . It is constructed following [24]. The HV-rep is complete as V = (S ,U).
If instead, the user prefers to use unstructured Bézier hexahedra (trivariate patches), each element

of U can be transformed into an unstructured Bézier trivariate using reparameterization technique
described in [21].

5. HB-Rep Error

Because Ωbanded is the only perturbed region that differs from the original B-spline surface, several
attributes can be identified that affect the error in the HB-rep. Since this representation maintains
parameterization, the error between G and B is measured by the Euclidean distance between the
corresponding model space points evaluated at the same parametric value. The error has two attributes
that matter in the effort to preserve the original representation: the area of Ωbanded and the error
distance values. If a surface is flat, the curvilinear triangles in Ωbanded can represent the surface
geometry exactly and distort the original parameterization minimally, but the HB-rep does not preserve
the original B-spline representation. Consequently, it is preferred to keep Ωbanded narrow. On the other
hand, a narrow Ωbanded also requires that the sub-knot intervals be small which results in shorter cubic
trimming curve segments, and more trim functions.

Error in Ωbanded derives from two sources: the distance and curve parametrization error between
Euclidean cubic trimming curve and the trimmed surfaces, and error of the approximated surfaces
in curvilinear triangular sub-knot intervals. The former error comes from the input and is inherited
from the imprecise nature of trimming curves themselves. In the HB-rep, it follows from the difference
between the Euclidean trimming curve cm and the parametric trimming curve composed with the
surface mapping, given that it is required to exactly reproduce the Euclidean trimming curve to
achieve watertightness. Since, for any given Bézier segment of a trimming curve, corresponding Bézier
segments are all intended to represent the same curve, for any given value of t, s1(c1(t)), s2(c2(t)), and
cm(t) represent the identical intersection point in model space. However, when si is a bicubic spline
surface and ci is piecewise cubic, si(ci) is a degree 18 curve, but cm is only cubic, so there will be a
shape distortion as well in a region of the surface near the trimming curve. The error in the trimming
curve cm provides a lower bound that can be achieved for the error in Ωbanded.

The other source of error is related to curvilinear triangular sub-knot intervals within Ωbanded. As
discussed earlier, the surface mapping for curvilinear triangular sub-knot intervals in HB-rep is ψ◦φ−1,
which is different from the original B-spline surface mapping. To reduce the error, one choice would
be to use the ψ ◦ φ−1 combination but to optimize the location of the single interior control points
for each of ψ and φ (for d = 3). Another is to use a degree 2d Bézier representation for ψ. Before
matching cm, the curvilinear geometry can be matched exactly to the image of the trimmed surface.
Once cm is matched, that mapping is still an approximation. Hence, one might optimize the interior
control point locations based on both the surface and trimming curve. However, for d = 3, using 2d
leads to 10 interior control points to optimize for each curvilinear triangle in the domain. The third
alternative, the one we have adopted, is to reduce the error in Ωbanded by reducing its size, typically
by subdividing Bézier segments where the error in the approximation is too large. Such a subdivision
usually leads to two triangles, each about 1/4 the parent’s size, and a rectangle that touches the
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Figure 5.1. The trimming curve segment corresponding to the center curvilinear tri-
angular sub-knot interval is subdivided into two pieces. The triangle is repartitioned
into two curvilinear triangular and one rectangular sub-knot intervals. The two adjacent
rectangular sub-knot intervals also change their shapes under the subdivision.

trimming curve at a corner. As the size of a curvilinear triangular sub-knot interval is reduced, ψ and
its control mesh converge to the original B-spline surface because of the way the control points of ψ
are defined. Furthermore, rectangular sub-knot intervals that were in Ωbanded typically become part of
K and represent the surface exactly so the error profile is reduced. Therefore, the HB-rep can converge
to an exact trimmed representation under trimming curve refinement, subject to the error in cm. This
is illustrated in Figure 5.1 for subdivision of one curvilinear triangle.

Quality of trimming curve approximation
0 1 2 3 4

trimming curve refinement level: 0 0.035 0.021 0.017 0.015 0.010
1 0.029 0.018 0.010 0.0063 0.0035
2 0.029 0.018 0.010 0.0063 0.0035

Table 5.1. Effects of trimming curve approximation and triangle refinement on sur-
face max error

Shown in Table 5.1 is a demonstration of the effect of two ways to reduce surface max error for the
model in Figure 4.2a. The columns correspond to different quality trimming curve approximations.
Given discrete trimming data, the levels are simulated by creating cubic trimming curve approxima-
tions to the trimming curve data at multiple accuracy levels, with the 0 level being the least accurate.
The rows correspond to subdividing that column’s trimming curve at its previous row’s midpoint to
effectively create curvilinear triangles that are approximately one-fourth the previous rows size and
approximating the surface over that triangle. For each column, a lower row always shrinks the area of
the approximated surface. However, it does not reduce the maximum error of the approximated sur-
face on the second trimming curve refinement level. That is because after first refinement the greatest
error occurs on the trimming curve and, therefore, cannot be further reduced. Note that each level of
subdivision reduces the area that is approximated in HB-rep

6. h-refinement

Refinement is used to add design degrees of freedom to a model and to discretize the model. By
augmenting the original knot vectors with additional knot values, the original spline space is embedded
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in a larger spline space with more degrees of freedom. The original model can be represented in terms
of the basis of this larger space, but the added knots lower the derivative smoothness of the basis
functions at those values. So changing coefficients in the new basis changes the model. In IGA, the
term h-refinement refers to a similar concept that embeds a model in a larger spline space having
new additional knots in each knot vector at the midpoints of every knot interval of the original knot
vectors. Each knot interval, therefore, spawns 4 child knot intervals after refinement. Since IGA uses
the same bases for simulation that are used to design the geometry models, refinement provides a way
to maintain exact geometry while increasing the degrees of freedom for simulation under a process
that makes elements uniformly smaller. Convergence estimates are frequently formulated in terms of
multiple levels of h-refinement.
h-refinement is not straightforward for the HB-rep because of its complicated structure. Knot in-

sertion in trimmed knot intervals can change the classification of resulting child sub-knot intervals.
We investigate whether it would be preferable to apply h-refinement to an existing HB-rep B, or to
apply the h-refinement to the trimmed B-rep G and then convert it to an HB-rep.

First, for a B-spline surface s ∈ G, consider its untrimmed representation. Let µ and ν be the
knot vectors, and let µ̃ and ν̃ be the refined knot vectors, with new knots added at the midpoints of
each internal knot interval for each knot vector. Let Ni,j be as before, and let Qk,l be B-spline basis
functions resulting from the refinement. Then,

s(ξ, η) = rᵀN(ξ, η) (6.1)
= rᵀAQ(ξ, η),

where r is the vectorization of the coefficient matrix used to define the surface, N(ξ, η) and Q(ξ, η) are
the corresponding vectors of original tensor product B-splines and refined tensor product B-splines,
respectively, and A = Aµ,µ̃ ⊗Aν,ν̃ the Kronecker tensor product of B-spline refinement operators in
ξ and η directions. r̃ᵀ = rᵀA forms the refined control mesh with basis functions Q.

Let µ × ν denote the knot intervals for the original B-spline representation and µ̃ × ν̃ denote the
knot intervals after h-refinement. An interior knot interval µ × ν leads to 4 interior knot intervals in
µ̃ × ν̃, as is usually the case. If µ × ν is exterior to the trimmed surface, its h-refinement children
are also external, and none is used or referenced. For a trimmed knot interval, the case for which the
trimming curves cross µ× ν is the more interesting one.

(a) (b) (c) (d) (e)

Figure 6.1. Partitions of a trimmed knot interval

With a partition K already computed, the information can be reused to further divide sub-knot
intervals in the partition that intersect new knot lines into smaller ones so that the resulting partition
is valid. Figure 6.1 illustrates the effect of h-refinement on a single trimmed knot interval and Ωbanded.
Note that Ωbanded must be recomputed locally since the trimming curve has been subdivided two
times. In Figures 6.1a and 6.1b, it can be seen that some curvilinear triangular sub-knot intervals in
Ωbanded at the top and the bottom of the figures remain unchanged because they do not cross any
knot lines introduced by h-refinement.
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In Figure 6.1a the gray rectangular regions bounded by the black lines form K. Ωbanded consists
of the curvilinear triangles in dark blue, with an edge on the trimming curve, and the light blue
rectangular regions touch the trimming curve at one point. In Figure 6.1b red lines show the knot
interval refined into 4 child knot intervals. The knot lines cross the trimming curve in two places
so there will need to be at least two more subdivisions of the trimming curve, with changes to the
curvilinear triangular and rectangular sub-knot intervals. Figure 6.1c shows a refined classification.
Note that the dark blue triangle with the cyan dot in Figure 6.1a has been partitioned into (i) three
curvilinear triangle sub-knot intervals with cyan dots, (ii) two light red rectangles with cyan dots,
each touching the trimming curve at a single point, and (iii) one gray rectangle that no longer belongs
in Ωbanded. The light blue rectangle with the magenta dot has been subdivided into three rectangular
knot intervals, only one of which should remain in Ωbanded. The light blue rectangular region with
the yellow dot sustains partitioning in two from the refinement, with only the top rectangle properly
surviving in Ωbanded. But requirements for it being adjacent to curvilinear triangles indicate its further
subdivision. In Figure 6.1d boundaries of Ωbanded of the original and refined partitions are rendered
with thick blue and red lines (with shared segments in magenta). Ωbanded gets narrower as h-refinement
is applied to the surface.

Revised basis functions over the original dark blue triangle with the cyan dot functions are defined
using appropriate ψ◦φ−1, which includes cubic Bézier triangle functions composed with an inverse map,
as are the trim basis functions. After refinement, a child of the curvilinear triangle can be a rectangular
sub-knot interval that is no longer in Ωbanded (grey rectangle with a cyan dot in Figure 6.1c). This
region in the unrefined watertight HB-rep cannot be reproduced by the refined HB-rep maintaining
the same parameterization as well as geometry. This is because the unrefined representation has a
surface mapping ψ ◦ φ−1 which is not polynomial over the curvilinear triangle. But in the refined
representation, it becomes a bivariate tensor product Bézier. A closer inspection of the introduced
knot line going through the original curvilinear triangle in Figure 6.1b reveals that the straight line is
mapped by φ−1 into a curved line in the canonical triangular domain. Therefore, the surface over an
ostensibly simple rectangular domain cannot be expressed as a tensor product Bézier.

This approach also can lead to unnecessarily partitioned sub-regions of the trimmed knot interval.
In Figure 6.1c, the lower right knot interval becomes an interior knot interval after h-refinement, and
its partition within is unnecessary. However, because the partition after refinement is based on the
partition of the original, the segmentations that existed for the unrefined case are kept, and refined, as
necessary. Many rectangular sub-knot intervals in Ωbanded are not in the refined Ωbanded, or their child
rectangles are not. Since they had one or more control points in the unrefined Υ that were modified
to match the trimming curve, the children representations are also changed from the original surface.
Such an example appears in the comparisons of Figure 6.1a and Figure 6.1c, where the light blue
rectangle with the magenta dot is subdivided into one rectangle in refined Ωbanded and 2 rectangles
that should be in K. Thus, elements of K can remain unchanged or be subdivided, depending on if
refining knot lines cross them. But Ωbanded must be recomputed. Because a goal is to retain the original
representation as much as possible, the child rectangular sub-knot intervals that become internal must
have their representations reset to have coefficients obtained through Bézier extraction. The child
rectangular sub-knot intervals and the child curvilinear triangles that are part of the refined Ωbanded

are computed similarly, with control points partitioned into those that go with the refined revised
basis functions and those that go with the refined trim basis functions. Because the trimmed knot
interval was refined, the refined Ωbanded is of narrower extent, the size of the union of the children
partitions continues to converge toward the trimming curve with each level of refinement. While the
number and size of the sub-knot intervals in the union of the children refined K are less optimal than
if they were recomputed each time, they do not affect the refined revised basis functions, since, over
those sub-knot intervals, the refined revised basis functions are identical to the refined B-splines. Their
shapes are more relevant during integration and when they serve as the bases for the pyramid layer.
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Consider instead the case for which the effect of h-refinement is considered initially only on the
trimming curves. First, discuss a single trimmed surface. A later discussion presents the effect in a
model. Each parametric trimming curve is refined wherever a new knot line crosses it. The Ωbanded

constructed is the same one as results from constructing the Ωbanded for the unrefined trimmed knot
intervals and then deriving the refined Ωbanded. Now there are four child knot intervals, some of whom
may now be interior knot intervals, as in the lower right sub-knot interval of Figure 6.1e. The resulting
union of the partitions of the child knot intervals has fewer elements than that obtained by refining
the existing partition. Compare Figures 6.1c and 6.1e. The method differs from the one with partition
already computed in that its K usually has a better partition because the partitioning algorithm
puts a priority on resulting partition quality over which integration has better characteristics and the
pyramid base layer is better proportioned. Because the surface over the rectangular regions in K is the
same as the original B-spline surface, with its degrees of freedom totally dependent on those of the
B-spline, the two methods differ neither in parameterization nor in geometry. However, while Ωbanded

for the refined model is computed to be the same, this approach recomputes the representations for
the surfaces over Ωbanded, as in the first case. So computing this type of h-refinement, while creating
different sub-partitions K, has exactly the same degrees of freedom as the first case’s h-refinement.

The difference between the two approaches to h-refinement is apparent only when the HV-rep is
considered. In both, the approximation in the Ωbanded region is recomputed attaining better accuracy
while converging towards the trimming curves.

Figure 6.2. h-refinement is applied to a trimmed surface. (a) shows error on the
original surface. The boundaries of sub-knot intervals in Ωbanded and surface knot lines
are rendered in black. The result of h-refinement is shown in (b). An inset of the red
rectangle is shown in (c). The max error after h-refinement occurs on the trimming
curve.

An example of h-refinement on a trimmed surface is considered in Figure 6.2. A surface with 16 knot
intervals is considered (6.2a). An L-shape hole is trimmed off from the surface creating 12 trimmed
knot intervals and 4 interior ones. Initially, the greatest error occurs in the middle of curvilinear
triangular sub-knot intervals. h-refinement is applied by uniformly inserting knots in each of the knot
intervals in both directions. Partitions are recomputed, as is the HB-rep. The operation decreases
both max error and the region where the error occurs (6.2b). Figure 6.2c shows an inset of the lower
trimmed boundary of the L-shape. The greatest error occurs on the trimming curve. Therefore, it
cannot be further reduced without a better trimming curve. Degrees of freedom in Figure 6.2a is
|R|+ |Υ| = 49 + 204 = 253. Degrees of freedom in Figure 6.2b is 121 + 237 = 358.

The example above presents the effects when the single trimmed knot interval refinement is con-
sidered. Across the trimming curve in a trimmed B-rep, there might be different knot intervals that
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reside in adjacent trimmed surfaces sharing one trimming curve corresponding to each curvilinear
triangular sub-region this can lead to multiple recomputations of Ωbanded. A more efficient approach
is to determine the effect of surface refinement on each surface across all trimming curves, and the
new knots that should be added to each trimming curve. Then the new knots should be merged, so
there is a refined trimming curve each of whose Bézier segments is a post h-refinement result. In this
way, the refined Ωbanded may become significantly narrower with just a few levels of refinement.

6.1. h-refinement in S

(a) (b) (c) (d)

Figure 6.3. Given the HB-rep in Figure 4.2a, an HV-rep is generated with a trivariate
representation to ω = 0.75 (3/4 of the modified tracing distance toward the mid-
structure). Several isolayers are shown in (a). T is computed separately for each of 3
levels of h-refinement with the layers shown for ω = 0.75 in (b) (the coarsest) through
(d) (the finest).

When transforming an HB-rep into an HV-rep, other issues related to h-refinement can arise. Again
we investigate several different approaches to refinement.

One approach is to perform h-refinement on the trimmed B-rep G, then generate the corresponding
HB-rep and HV-rep. If this is the chosen direction, then each control mesh is finer and moves closer
to the surface than the control mesh that spawned it at the previous level. It is unclear if a different
mid-structure would be appropriate for each of the refinements. Our experiment chose to use the same
mid-structure, ensuring it was internal to all levels of refinements. In Figure 6.3, results from tracing
and adjusting are shown by surface layers that have the same topology as B. The model used in this
example is the same one used in Figure 4.2a. It is constructed by subtracting one curved box from
another. In Figure 6.3a, a planar cutaway shows several internal layers of both gold and gray surfaces.
The innermost layer shown corresponds to ω = 0.75 is shown in Figure 6.3b. Figure 6.3c and 6.3d
show the same layer computed separately for each of 2 levels of h-refinement. Each control lattice
was computed from an HB-rep that started from unrefined (Figure 6.3b), one level of h-refinement
(Figure 6.3c), and two levels of h-refinement (Figure 6.3d). There is an artifact visible towards the
right side of Figure 6.3d that does not exist in Figure 6.3b and is only slightly visible in Figure 6.3c.
The most refined inner surfaces seem to have a wrinkle near O. We deduce that it is caused in the
adjustment phase. During the adjustment phase, in order to modify intersecting trimmed surface
(Figure 4.2b), control points around trimming curves are moved towards the interior direction of the
respective surface. Since the control mesh is denser after refinement, when the same moving parameter
(ε as used in [17]) is used, as in this experiment, control points in O are more likely to overshoot a
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reasonable location, thus forming a wrinkle. Adjusting ε to be related to refinement level can alleviate
the problem.

This type of artifact is observed only near trimming curves with acute dihedral angles, usually
formed by Boolean subtraction or intersection. A union, on the contrary, does not cause this artifact.
For example, in Figure 4.2d, the inner layer of a tetrapod is shown. The tetrapod is a union of four
capsule shapes. The adjustment phase is not included in this example to demonstrate more clearly the
gaps between trimmed surfaces as the tracing paths increase in depth. Because the adjustment phase
moves control points towards the trimming curves and brings them closer, wrinkles are not formed.

Alternatively, refinement can occur after the control lattices of the trivariates are computed. After
tracing and adjustment are applied, a control lattice of the coarse control mesh without h-refinement is
generated. Corresponding control points Ri and trimmed surface layers Gi are computed, to generate
h-refinement of the control lattice. After h-refinement, at each layer, appropriate knots due to h-
refinement are inserted into the trimming curves, they are made compatible and Ωbanded is formed for
each surface in B, and percolated into each layer. The resulting interior isolayers are modified only
slightly by the trimming surface with that recomputation, while, as previously discussed, the boundary
layer, the refined B more accurately approximates the original surfaces near the trimming curves.

So far, there has been no discussion of the effects of trivariate refinement on the inner boundary
surface (of T1) that serves as the base layer for the pyramid interface and the unstructured region.
In general, the knot interval behavior of innermost surface in T1 is the same as that for B, and
corresponds to interior knot intervals, interior sub-knot intervals in the K, and sub-knot interval
behavior in Ωbanded. The B-spline representation is used over the knot intervals and partitions of the
K, so a particular partitioning into elements does not affect the refined representation. However, the
pyramids are defined in using the innermost surface partitioned according to the knot intervals and
sub-knot intervals in the partition K as their bases. Therefore, the partition affects the pyramids,
as its refinements cause the pyramid and unstructured region to also be refined or modified. After
h-refinement, all interior knot intervals used to create the pyramids of the unrefined HV-rep can be
directly refined in a standard manner. Those elements form the bases of refined pyramids, using the
approach in [7]. So refined interior intervals and refined pyramids over them follow directly. Adjacent
tetrahedra can be refined in a compatible manner [7].

The refined pyramid region above refined trimmed knot intervals, including K, is more complex to
define. For a simpler presentation, assume that given a parent trimmed interval, there is the parent
Ωbanded and the refined Ωbanded that is the union of the Ωbanded for all the child trimmed sub-knot
intervals. Further, Let K be the residual rectilinear region in the trimmed knot interval after Ωbanded

is extracted. Then K is a partitioning of K. Suppose there are four child knot intervals, each either
an interior knot interval or a trimmed knot interval of the refined HB-rep surface. The child trimmed
knot intervals each have their own child partition, Kc. Intersections of elements in Kc with those in K
can lead to a need to subdivide existing pyramids above elements in K in irregular, complicated, ways
that do not preserve the idea of uniform refinement in h-refinement, and lead to poorly shaped Bézier
pyramids. Instead, the trivariate spline layer T2 is used to define new child pyramids with heights
related to the dimensions of their bases. An interior child knot interval and its new pyramid have
a standard representation for further refinements. For a child trimmed knot interval, the pyramid is
again recomputed adapted to the size of base. This is also done for the rectangular elements in Ωbanded.
These elements over the child Ωbanded and the child K need to be recomputed with each subsequent
refinement until they can be removed as interior child knot intervals. Then they would be standard
elements. In addition to recomputing the pyramids, tetrahedra that are neighbors (face, edge, vertex)
of the parent pyramids adjacent to the pyramids that need recomputation must be removed. Then
the empty region bounded by refined pyramids, recomputed pyramids, and refined tetrahedra must
be re-tetrahedralized.
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Convergence properties of B-splines with each level of refinement guarantee that child trimmed
knot intervals may increase in number, but they will decrease in area, and converge towards the
trimming surface in the trivariate lattice. Thus the regions requiring re-pyramidalization and re-
tetrahedralization get progressively smaller.

7. Conclusion

Volumetric model completion from trimmed B-reps is a nascent focus of recent research. Simulations
frequently require volumetric representations that are not native to CAD systems. Trimmed B-reps
are integral to design yet their inexactness causes significant problems for analysis. The discussed
HB-rep and HV-rep can be recomputed if the trimmed B-rep changes, when, for example, surfaces are
modified relative to each other.

Hybrid representations have the drawbacks of requiring multiple refinement and subdivision schemes
that are compatible. While h-refinement has one standard meaning for B-splines and NURBS curves,
surfaces, and volumes, there are multiple refinement schemes for triangles and tetrahedra, any one of
which can be used in a simulation.

Revised basis functions and trim basis functions cannot be exactly refined, since they are not
polynomial near the trimming curves. The partitions near the trimming curve that are used in defining
them are not refined uniformly when h-refinement is performed on the trimmed B-spline B-rep model.
This causes significant complexity in formulating appropriate definitions for h-refinement.

We discuss strategies to apply h-refinement on HB-rep along with corresponding consequences. In
general, the HB-rep cannot maintain its parameterization and geometry during h-refinement within
Ωbanded. However, as an HB-rep is refined, the region preserving the original parameterization and
geometry increases. The error introduced by triangular curvilinear sub-knot interval approximation
is reduced. As that error reduces, error inherited from the trimming curve eventually dominates,
and cannot be further reduced without a better-fitted trimming curve. The user has the option to
keep the partition information from the unrefined partition for K in each trimmed knot interval. By
keeping the partition from the unrefined K, the region that requires computation of new pyramids and
tetrahedra is reduced with each refinement. However, if the shape and size of the pyramids become an
issue, computing new partitions over each refined trimmed knot interval can lead to better pyramids,
also of reduced size. Then tetrahedralization is required only over the region bounded by the refined
tetrahedra and pyramids over internal knot intervals from the previous level. These regions requiring
recomputation are also reduced since refinement of trimmed knot intervals eventually leads to interior
child intervals, except adjacent to trimming curves.

The hybrid representation with no trimming curves can be refined using B-spline h-refinement in
the tensor product trivariate region, with compatible refinements as proposed in [7] for pyramids and
Bézier tetrahedra. We have demonstrated that a straightforward approach cannot be directly applied
to the HB-rep and the HV-rep. Although one approach might be to create new HB-reps and HV-reps
for each refinement, we have demonstrated that the HB-rep on the refined representation is the same as
refining the HB-rep of the unrefined representation. However, we have also demonstrated that unless
parameters are carefully adjusted, HV-reps computed after several levels of refinement can have a
reduced quality in the interior, compared to applying modified refinement to the original HV-rep.

We have presented two new approaches to refinement that support an h-refinement convergent
approach (in a B-spline manner) that simultaneously refine the representation and ensure that the
representation converges to the original surfaces, while still maintaining a consistent HV-rep.
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