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Abstract. It is not surprising that one should expect that the degree of constrained (shape preserving) approxima-
tion be worse than the degree of unconstrained approximation. However, it turns out that, in certain cases, these
degrees are the same.

The main purpose of this paper is to provide an update to our 2011 survey paper. In particular, we discuss recent
uniform estimates in comonotone approximation, mention recent developments and state several open problems
in the (co)convex case, and reiterate that co-q-monotone approximation with q ≥ 3 is completely different from
comonotone and coconvex cases.

Additionally, we show that, for each function f from ∆(1), the set of all monotone functions on [−1, 1], and every
α > 0, we have

lim sup
n→∞

inf
Pn∈Pn∩∆(1)

∥∥∥∥nα(f − Pn)
ϕα

∥∥∥∥ ≤ c(α) lim sup
n→∞

inf
Pn∈Pn

∥∥∥∥nα(f − Pn)
ϕα

∥∥∥∥
where Pn denotes the set of algebraic polynomials of degree < n, ϕ(x) :=

√
1− x2, and c = c(α) depends only on α.

2010 Mathematics Subject Classification. 41A10, 41A17, 41A25.
Keywords. Approximation by algebraic polynomials, shape preserving approximation, constrained approx-
imation.

1. Introduction

The main purpose of this paper is to provide an update to our paper [6].
Let C[−1, 1] be the space of continuous functions on [−1, 1] equipped with the uniform norm ‖ · ‖

(since there is no confusion, we will use the same notation for the ess sup-norm of L∞ functions), and
denote by ∆(q) the set of all q-monotone functions f ∈ C[−1, 1], i.e., all functions whose qth differences
at every point x ∈ [−1, 1] are all nonnegative. In particular, ∆(1) and ∆(2) are, respectively, the sets
of nondecreasing and convex functions which are continuous on [−1, 1]. If Pn is the space of algebraic
polynomials of degree < n, then

En(f) = inf
Pn∈Pn

‖f − Pn‖ and E(q)
n (f) = inf

Pn∈Pn∩∆(q)
‖f − Pn‖

denote, respectively, the errors of best unconstrained and q-monotone approximation of a function f
by polynomials from Pn.

The first author was supported by NSERC of Canada Discovery Grant RGPIN 04215-15.
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In the sequel, c = c(. . . ) denotes positive constants which depend only on the parameters inside the
parentheses and are otherwise absolute. Note that all constants c’s are assumed to be different even if
they appear in the same line.

Given a function f ∈ ∆(q), it is clear that En(f) ≤ E
(q)
n (f) and, in 1969, Lorentz and Zeller [15]

proved that the inverse inequality E
(q)
n (f) ≤ cEn(f) is not true in general even with the constant

c = c(f, q) that depends on f . Specifically, they proved that there exists an f ∈ ∆(q) for which

lim sup
n→∞

E
(q)
n (f)
En(f) =∞.

Moreover, if f ∈ C(q)[−1, 1], then it is easy to prove (see, e.g., [2, Chapter 7 (6.7)] that there exists a
constant c = c(q) such that

En(f) ≤ c

nq
En−q(f (q)).

It is even easier to prove that, for f ∈ ∆(q) ∩ C(q)[−1, 1],

E(q)
n (f) ≤ 2

q!En−q(f
(q)). (1.1)

(Indeed, one can approximate f (q) by a nonnegative polynomial of degree < n − q and integrate q
times.) However, comparing the last two estimates we see that we have lost an order of nq.

It turns out (see [11]) that there exists a constant c = c(q) > 0 such that, for each n > q, there is a
non-polynomial f = fn ∈ ∆(q) ∩ C(q)[−1, 1], for which

E(q)
n (f) ≥ cEn−q(f (q)).

Thus, (1.1) may not, in general, be improved.
Despite all this, it is known (see e.g. [6, p. 53]) that, for every α > 0 and f ∈ ∆(q), q = 1, 2, we have

sup{nαE(q)
n (f) : n ≥ 1} ≤ c(α) sup{nαEn(f) : n ≥ 1}. (1.2)

Note that estimates of this type are, in general, invalid if q ≥ 3, and we discuss this in more detail in
Section 5. Hence, we only concentrate on the cases q = 1 and q = 2 in this section.

A natural question is whether similar results are valid for piecewise monotone and piecewise convex
functions, i.e., functions which are allowed to change their monotonicity or convexity s <∞ times in
the interval (−1, 1).

In order to give precise statements we need some additional definitions. Let Ys, s ∈ N, be the set
of all collections Ys :=

{
yi
}s
i=1 of points yi, such that −1 < ys < · · · < y1 < 1. We augment the

set by ys+1 := −1 and y0 := 1. For Ys ∈ Ys denote by ∆(q)(Ys) the set of all piecewise q-monotone
functions f ∈ C[−1, 1] that change q-monotonicity at the points in Ys. More precisely, f ∈ ∆(q)(Ys)
iff f is q-monotone in the intervals [y2i+1, y2i], 0 ≤ i ≤ bs/2c, and −f is q-monotone in the intervals
[y2i, y2i−1], 1 ≤ i ≤ b(s + 1)/2c. In particular, for q = 1, 2, these are all f ∈ C[−1, 1] that change
monotonicity/convexity at the points in Ys, and are nondecreasing/convex on [y1, 1]. For convenience,
we also include the case of q-monotone functions (that is, s = 0) in this notation by putting Y0 := ∅.
Hence, ∆(q) = ∆(q)(Y0), E(q)

n (f) = E
(q)
n (f, Y0), etc.

Denote by
E(q)
n (f, Ys) = inf

Pn∈Pn∩∆(q)(Ys)
‖f − Pn‖

the error of best co-q-monotone approximation of a function f ∈ ∆(q)(Ys).
Rewriting (1.1) for the new notions, the question now is whether the inequality

sup{nαE(q)
n (f, Ys) : n ≥ 1} ≤ c(α, s) sup{nαEn(f) : n ≥ 1} (1.3)

is valid or not.
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Surprisingly, the answer is rather different for q = 1 and q = 2 (see [6, Section 15] for references). If
q = 2, then (1.3) is valid if s = 1 and α ∈ (0, 4)∪ (4,∞), and is invalid in all other cases (i.e., if s ≥ 2
or if s = 1 and α = 4). If q = 1, then (1.3) is valid if α > 0 and α 6∈ As, where

As := {α : α = j, 1 ≤ j ≤ s− 1, or α = 2j, 1 ≤ j ≤ s} , (1.4)
and is invalid if α ∈ As.

We emphasize that (1.3) becomes valid for all s ≥ 1 and q = 1, 2 if its left-hand side is replaced
by sup{nαE(q)

n (f, Ys) : n ≥ N ∗} with N ∗ depending on α and Ys (see [6, Section 15] for detailed
discussions).

The next natural question is whether similar results are valid for pointwise estimates, but we only
concentrate on the case s = 0 since analogous results with s ≥ 1 have still not been completely
resolved, while some conclusions can be made from the known pointwise results (see e.g. [6, Tables
21, 22, 27 and 28]).

Let
ϕ(x) :=

√
1− x2, δn(x) := ϕ(x) + n−1 and ρn(x) := n−1δn(x), (1.5)

and denote
En,α(f) := inf

Pn∈Pn

∥∥∥∥f − Pnϕα

∥∥∥∥ , Ẽn,α(f) := inf
Pn∈Pn

∥∥∥∥f − Pnδαn

∥∥∥∥
E(q)
n,α(f) := inf

Pn∈Pn∩∆(q)

∥∥∥∥f − Pnϕα

∥∥∥∥ and Ẽ(q)
n,α(f) := inf

Pn∈Pn∩∆(q)

∥∥∥∥f − Pnδαn

∥∥∥∥ .
Clearly, for α > 0,

Ẽn,α(f) ≤ En,α(f) ≤ E(q)
n,α(f) and Ẽn,α(f) ≤ Ẽ(q)

n,α(f) ≤ E(q)
n,α(f).

Note that we usually refer to estimates involving En,α(f) and E(q)
n,α(f) as “interpolatory results” since

it is necessary for approximating polynomials Pn to interpolate f at ±1 in order for these quantities
to be finite.

Now, for every α > 0 and f ∈ ∆(q), q = 1, 2, it follows from e.g. [6, Tables 6 and 7] and Lemma 2.2
below (with N = 1) that

sup{nαẼ(q)
n,α(f) : n ≥ 1} ≤ c(α) sup{nαẼn,α(f) : n ≥ 1}. (1.6)

Interpolatory estimates are different. First, it follows from [3] (q = 1) and [9] (q = 2) that the
following inequality is valid if f ∈ ∆(q), q = 1, 2, and α ∈ (0, 2).

sup{nαE(q)
n,α(f) : n ≥ 1} ≤ c(α) sup{nαEn,α(f) : n ≥ 1}, (1.7)

and the following lemma implies that (1.7) is not valid if α > 2. Note that it is still an open question
if, for q = 1, 2, (1.7) is valid if α = 2.

Lemma 1.1 (see e.g. [7, (1.5)] if q = 1 and [8] if q = 2; see also [5, Theorem 4]). Let q = 1 or
q = 2. For any r ∈ N and each n ∈ N, there is a function f ∈ C(r)[−1, 1] ∩∆(q), such that for every
polynomial Pn ∈ Pn ∩∆(q) and any positive on (−1, 1) function ψ such that limx→±1 ψ(x) = 0, either

lim sup
x→−1

|f(x)− Pn(x)|
ϕ2(x)ψ(x) =∞ or lim sup

x→1

|f(x)− Pn(x)|
ϕ2(x)ψ(x) =∞. (1.8)

In fact, it follows from Lemma 1.1 that, in the case q = 1, 2, even the estimate
sup{nαE(q)

n,α(f) : n ≥ N ∗} ≤ c(α) sup{nαEn,α(f) : n ≥ 1} (1.9)
is not valid in general if α > 2 and N ∗ is any natural number which is independent of f .

It turns out that, if q = 1 and N ∗ is allowed to depend on f then (1.9) is valid for any f ∈ ∆(1)

and all α > 0, and it is still an open problem if the same conclusion can be made in the case q = 2
(see also Open Problem 2 below).
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In fact, the following stronger result holds.

Theorem 1.2. Given a function f ∈ ∆(1), α > 0 and N ∈ N, there exists a constant N ∗ =
N ∗(α, f,N ) ∈ N such that

sup{nαE(1)
n,α(f) : n ≥ N ∗} ≤ c(α) sup{nαẼn,α(f) : n ≥ N}. (1.10)

Theorem 1.2 with 0 < α < 2, N = 1 and N ∗ = 1 was proved by DeVore and Yu (see [3, Theorem 2]).
If α ≥ 2, then Theorem 1.2 is a corollary of Theorem 2.1 and Lemma 2.2 (see Section 2).

Theorem 1.2 immediately implies the following.

Corollary 1.3. For each function f ∈ ∆(1) and every α > 0 we have
lim sup
n→∞

nαE(1)
n,α(f) ≤ c(α) lim sup

n→∞
nαẼn,α(f). (1.11)

We emphasize that the right-hand sides of (1.10) and (1.11) are given in terms of “non-interpolatory”
quantities Ẽn,α(f) which are smaller than “interpolatory” En,α(f). In other words, we obtain interpo-
latory estimates for monotone approximation with the same order as non-interpolatory unconstrained
estimates.

This paper is organized as follows. In Section 2, we discuss interpolatory pointwise estimates for
monotone approximation and the inverse result that will yield Theorem 1.2. Section 3 summarizes
recent results in the comonotone case. Several open problems for (co)convex approximation are stated
and briefly discussed in Section 4. Finally, we show in Section 5 that estimates of the above type for
co-q-monotone with s ≥ 1 and q ≥ 3 are, in general, invalid.

2. Pointwise estimates and proof of Theorem 1.2

The following direct interpolatory pointwise result for monotone approximation by algebraic poly-
nomials was recently proved in [7] (in fact, Theorem 1.2 in [7] is a slightly stronger than we state
here).

Theorem 2.1. For every r ≥ 1, there is a constant c(r) such that, for each function f ∈ ∆(1) ∩
C(r)[−1, 1], there are a number N = N (f, r) and a sequence {Pn}n≥N of polynomials Pn ∈ Pn ∩∆(1),
satisfying

|f(x)− Pn(x)| ≤ c(r)
(
ϕ(x)
n

)r
ω2

(
f (r),

ϕ(x)
n

)
, x ∈ [−1, 1]. (2.1)

Now, Theorem 1.2 follows immediately from Theorem 2.1 and the following lemma which easily
follows from the classical Dzyadyk inverse theorem for approximation by algebraic polynomials (see
e.g. [4, p. 381] for the references).

Lemma 2.2. Suppose that r ∈ N0, α ∈ (0, 2) and N ∈ N. If, for f : [−1, 1] 7→ R and every n ≥ N ,
there is a polynomial Pn ∈ Pn such that

|f(x)− Pn(x)| ≤ ρr+αn (x), x ∈ [−1, 1], (2.2)
then f ∈ C(r)[−1, 1] and

ω2(f (r), t) ≤ c(r, α)tα + c(r,N)t2Er+2(f).

Proof. Without loss of generality assume that N > r+ 2. Denote by Rr+2 ∈ Pr+2 the polynomial of
best uniform approximation of the function f . Put RN := PN , if∥∥∥(f − PN )ρ−r−αN

∥∥∥ ≤ ∥∥∥(f −Rr+2)ρ−r−αN

∥∥∥ ,
otherwise put RN := Rr+2. Also, let

g := f −RN , Qn := Pn −RN for n ≥ N , and Qn ≡ 0 for 1 ≤ n < N .
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Then, for all n ≥ 1,
|g(x)−Qn(x)| ≤ ρr+αn (x), x ∈ [−1, 1],

and so the classical Dzyadyk inverse theorem implies that g ∈ C(r)[−1, 1] and
ω2(g(r), t) ≤ c(r, α)tα.

By the Dzyadyk inequality for the derivatives of algebraic polynomials (see e.g. [4, (7.1.11)] and note
that the constant M there actually depends on bsc), we have∥∥∥(R(r+2)

N −R(r+2)
r+2 )ρ2−α

N

∥∥∥ ≤ c1
∥∥∥(RN −Rr+2)ρ−r−αN

∥∥∥ ,
where c1 = c(r). Therefore,

N 2α−4
∥∥∥R(r+2)
N

∥∥∥ ≤ N 2α−4
∥∥∥ρα−2
N

∥∥∥ ∥∥∥R(r+2)
N ρ2−α

N

∥∥∥ =
∥∥∥R(r+2)
N ρ2−α

N

∥∥∥
=
∥∥∥(R(r+2)

N −R(r+2)
r+2 )ρ2−α

N

∥∥∥ ≤ c1

∥∥∥∥∥RN − fρr+αN

∥∥∥∥∥+ c1

∥∥∥∥∥f −Rr+2

ρr+αN

∥∥∥∥∥
≤ 2c1

∥∥∥∥∥f −Rr+2

ρr+αN

∥∥∥∥∥ ≤ 2c1Er+2(f)
∥∥∥∥∥ 1
ρr+αN

∥∥∥∥∥ = 2c1N 2r+2αEr+2(f).

Hence,
ω2(f (r), t) ≤ ω2(g(r), t) + ω2(R(r)

N , t) ≤ c(r, α)tα + t2
∥∥∥R(r+2)
N

∥∥∥
≤ c(r, α)tα + 2c1N 4+2rt2Er+2(f),

and the proof is complete.

Remark 2.3. Lemma 2.2 is, actually, a particular case of the following statement which is a version of
the general classical Dzyadyk-Timan-Lebed’-Brudnyi inverse theorem for approximation by algebraic
polynomials (see e.g. [4, p. 381] for references). We preferred to give a short proof of Lemma 2.2 in
order that the article be self-contained. This general Theorem 2.4 is not applied in the current paper,
but it will likely be needed (especially for k = 1 and k = 2) for answering the open problems in
Section 4.

Theorem 2.4. Suppose that r ∈ N0, k ∈ N, N ∈ N, and

φ ∈ Φk :=
{
φ : [0,∞)→ [0,∞) : φ(0) = 0, φ ↑ and t−kφ(t) ↓

}
is such that ∫ 1

0

rφ(u)
u

du < +∞

(i.e., if r = 0 then this condition is vacuous). If, for f : [−1, 1] 7→ R, there exists a sequence of algebraic
polynomials {Pn}n≥N such that

|f(x)− Pn(x)| ≤ ρrn(x)φ (ρn(x)) , for all x ∈ [−1, 1] and n ≥ N ,
then f ∈ Cr[−1, 1] and, for 0 < t ≤ 1/2,

ωk(f (r), t) ≤ c(k, r)
∫ t

0

rφ(u)
u

du+ c(k, r)tk
∫ 1

t

φ(u)
uk+1du+ c(k, r,N )tkEk+r(f).

In particular, if N ≤ k + r, then

ωk(f (r), t) ≤ c(k, r)
∫ t

0

rφ(u)
u

du+ c(k, r)tk
∫ 1

t

φ(u)
uk+1du.

Lemma 2.2 immediately follows from Theorem 2.4 by setting k = 2 and φ(u) = uα, 0 < α < 2. The
proof of Theorem 2.4 is rather standard and will be omitted.
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3. Comonotone approximation: uniform estimates

The following theorem was proved in [10] (see also [6, Theorem 12]).

Theorem 3.1. If Ys, s ≥ 1, and α > 0 are given, and if a function f ∈ ∆(1)(Ys) satisfies

nαEn(f) ≤ 1, n ≥ 1, (3.1)

then
nαE(1)

n (f, Ys) ≤ c(α, s), n ≥ N ∗,
where N ∗ = 1 if α 6∈ As (with As defined in (1.4)) and N ∗ = N ∗(α, Ys), if α ∈ As.

Moreover, this statement cannot be improved since, if s ≥ 1 and α ∈ As, then for every m ≥ 1,
there are a collection Ys and a function f ∈ ∆(1)(Ys) satisfying (3.1) and

mαE(1)
m (f, Ys) ≥ c(s) lnm.

Suppose now that we do not have (3.1) and only have knowledge about the degree of unconstrained
approximation En(f) beginning with some natural number N . What can we say about the degree of
comonotone approximation in that case? More precisely, the question is:

does there exist a natural number N ∗ such that

sup{nαE(1)
n (f, Ys) : n ≥ N ∗} ≤ c(α, s) sup{nαEn(f) : n ≥ N}, (3.2)

and what parameters among α, N , Ys and f does it have to depend on?

The answer to this question is, in general, different for each given triple (α,N , s) ∈ R+×N×N0 (we
include the case s = 0 for comparison). It turns out that there are three different types of behavior of
N ∗ and, in order to describe them, we use the following notation:

1. We write (α,N , s) ∈ “ + ”, if (3.2) holds with N ∗ = N .

2. We write (α,N , s) ∈ “⊕ ”, if

• (3.2) holds with N ∗ = N ∗(α,N , Ys), and
• (3.2) is not valid with N ∗ which is independent of Ys, that is, for each A > 0 and M ∈ N,
there exist a number m > M , a collection Ys ∈ Ys and a non-polynomial f ∈ ∆(1)(Ys) such
that

mαE(1)
m (f, Ys) ≥ A sup{nαEn(f) : n ≥ N}. (3.3)

3. We write (α,N , s) ∈ “	 ”, if

• (3.2) holds with N ∗ = N ∗(α,N , Ys, f), and
• (3.2) is not valid with N ∗ which is independent of f , that is, for each A > 0, M > 0 and
Ys ∈ Ys, there exist a number m > M and a non-polynomial f ∈ ∆(1)(Ys), such that (3.3)
holds.

Remark 3.2. We emphasize that, in the case “	”, (3.2) is not valid with N ∗ which is independent
of f , for each Ys ∈ Ys. So far, we have not encountered any cases when (3.2) is not valid with N ∗
which is independent of f , for some but not for all Ys ∈ Ys.

Also, while it is theoretically possible for (3.2) to hold with N ∗ that depends on N but is strictly
larger than N , we have not encountered any such cases either.

The following theorem summarizes the results in [10], [14] and [12].
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Theorem 3.3. For every pair (α, s) ∈ R+ ×N0, there exists a constant c(α, s) that has the following
property: If Ys ∈ Ys, f ∈ ∆(1)(Ys), N ∈ N and nαEn(f) ≤ 1, n ≥ N , then

nαE(1)
n (f, Ys) ≤ c(α, s), n ≥ N ∗,

where
1. (α,N , s) ∈ “ + ” if

• α /∈ As and N ≤ dα/2e, or
• 2s < α ≤ 2s+ 2 and N ≤ s+ 2, or
• α > 2s+ 2 and N ≥ 1.

2. (α,N , s) ∈ “	 ” if
• dαe = 1, and s ≥ 1 and N ≥ s+ 2, or s = 0 and N ≥ 3, or
• dαe = 2 and N ≥ s+ 3.

3. (α,N , s) ∈ “⊕ ” in all other cases.
It is easier to visualize the conclusions of Theorem 3.3 and recognize the pattern of the behavior of

the dependence of N ∗ on the parameters in the tables below.
In order to illustrate the behavior of N ∗ when the function changes monotonicity at least once, we

need a new symbol:
⊕
+ :=

{
⊕, if α ∈ As,
+, otherwise.

Note that Table 1 for monotone approximation already appeared in [6, Table 14], and we repeat it
here for easy comparison.

dα/2e
...

...
...

... . ..

4 + + + + · · ·
3 + + + + · · ·
2 + + + + · · ·
1 + + 	 	 · · ·

1 2 3 4 N

3.1.1 Table 1: s = 0

dαe
...

...
...

... . ..

5 + + + + · · ·
4 + + + ⊕ · · ·
3 + + + ⊕ · · ·
2 ⊕

+ ⊕ ⊕ 	 · · ·
1 + ⊕ 	 	 · · ·

1 2 3 4 N

3.1.2 Table 2: s = 1

dαe
...

...
...

...
... . ..

7 + + + + + · · ·
6 + + + + ⊕ · · ·
5 + + + + ⊕ · · ·
4 ⊕

+
⊕
+ ⊕ ⊕ ⊕ · · ·

3 + + ⊕ ⊕ ⊕ · · ·
2 ⊕

+ ⊕ ⊕ ⊕ 	 · · ·
1 ⊕

+ ⊕ ⊕ 	 	 · · ·
1 2 3 4 5 N

3.2.1 Table 3: s = 2

dαe
...

...
...

...
...

... . ..

9 + + + + + + · · ·
8 + + + + + ⊕ · · ·
7 + + + + + ⊕ · · ·
6 ⊕

+
⊕
+

⊕
+ ⊕ ⊕ ⊕ · · ·

5 + + + ⊕ ⊕ ⊕ · · ·
4 ⊕

+
⊕
+ ⊕ ⊕ ⊕ ⊕ · · ·

3 + + ⊕ ⊕ ⊕ ⊕ · · ·
2 ⊕

+ ⊕ ⊕ ⊕ ⊕ 	 · · ·
1 ⊕

+ ⊕ ⊕ ⊕ 	 	 · · ·
1 2 3 4 5 6 N

3.2.2 Table 4: s = 3
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For the general table we require one more symbol:

⊕
	 :=

{
	, if 0 < α ≤ 1,
⊕, if 1 < α ≤ 2.

dα/2e
...

...
...

...
...

...
...

...
... . ..

s+ 2 + + + · · · + + + + + · · ·
s+ 1 + + + · · · + + + + ⊕ · · ·
s

⊕
+

⊕
+

⊕
+ · · · ⊕

+
⊕
+ ⊕ ⊕ ⊕ · · ·

s− 1 ⊕
+

⊕
+

⊕
+ · · · ⊕

+ ⊕ ⊕ ⊕ ⊕ · · ·
...

...
...

... . .. ...
...

...
...

...
...

3 ⊕
+

⊕
+ ⊕ · · · ⊕ ⊕ ⊕ ⊕ ⊕ · · ·

2 ⊕
+

⊕
+ ⊕ · · · ⊕ ⊕ ⊕ ⊕ ⊕ · · ·

1 ⊕
+ ⊕ ⊕ · · · ⊕ ⊕ ⊕ ⊕

	 	 · · ·
1 2 3 · · · s− 1 s s+ 1 s+ 2 s+ 3 N

Figure 3.3. Table 5: s ≥ 4

4. Convex and co-convex approximation: open problems and remarks

For convex functions an analog of Theorem 2.1 is unknown. Thus, we formulate our first open problem.

Open Problem 1. Prove or disprove the following statement:

for every r ≥ 1, there is a constant c(r) such that, for each function f ∈ ∆(2) ∩
C(r)[−1, 1], there are a number N = N (f, r) and a sequence {Pn}n≥N of polynomials
Pn ∈ Pn ∩∆(2), satisfying (2.1).

We remark that the statement in the above open problem is valid if r = 0 and N = 2 (see e.g. [9]).
At the same time, its validity is unknown even if ω2 in (2.1) is replaced with ω1.

Analogs of Theorem 1.2 and Corollary 1.3 are also open in the convex case.

Open Problem 2. Is it true that, for each function f ∈ ∆(2) and every α ≥ 2, we have

lim sup
n→∞

nαE(2)
n,α(f) ≤ c(α) lim sup

n→∞
nαEn,α(f)? (4.1)

Note that it follows from [9] that, for 0 < α < 2, (4.1) is valid.
We now turn our attention to uniform estimates. For (co)convex approximation, results similar to

the ones discussed in the (co)monotone case in Section 3 were previously summarized in [6, Tables
29-31]). Everything was resolved with one exception which is the entry “?∗” in [6, Table 31]. Namely,
if 2 < α ≤ 4 and N = s + 3 ≥ 6, we did not know if the constant N ∗ in the inequality (3.2) (with
E(1) replaced by E(2)) had to depend only on Ys or on f as well (and we knew that “?∗” could not be
replaced by anything other than “⊕” or “	”).

We now know (see [12]) that, for 2 < α < 4, we have N ∗ = N ∗(α, Ys) in this case, i.e., if α 6= 4,
then “?∗” in [6, Table 31] can be replaced by “⊕”, and this question is still open if α = 4. Hence, we
have the following open problem.
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Open Problem 3. Prove or disprove the following statement:

If s ≥ 3 and Ys ∈ Ys, then there is a constant c(s) such that, for every f ∈ ∆(2)(Ys),
there exists a natural number N ∗ = N ∗(s, Ys) such that

sup{n4E(2)
n (f, Ys) : n ≥ N ∗} ≤ c(s) sup{n4En(f) : n ≥ s+ 3}. (4.2)

Remark 4.1. If one replaces n ≥ s+ 3 by n ≥ s+ 2 in (4.2), then the statement in this open problem
is true. At the same time if n ≥ s+ 3 is replaced by n ≥ s+ 4, then this statement is, in general, not
true (see [6, Table 31]). Moreover, it follows from the fact that there is “	” in [6, Table 31] if α = 4
and N = s+ 4 that this statement is true if N ∗ is allowed to depend on f .

In the case s = 3, even the following problem is still open, and we feel that its resolution will
successfully resolve Open Problem 3 which is more general.

Open Problem 4. Prove or disprove that, if a function f ∈ C[−1, 1] ∩ C(2)(−1, 1) is such that
x(x2 − 1/4)f ′′(x) ≥ 0, x ∈ (−1, 1), and n4En(f) ≤ 1, for all n ≥ 6, then there exists an absolute
constant N ∗ ∈ N such that, for each n ≥ N ∗, there is a polynomial Pn ∈ Pn satisfying

x(x2 − 1/4)P ′′n (x) ≥ 0, x ∈ (−1, 1), (4.3)

and
n4 ‖f − Pn‖ ≤ c, (4.4)

where c is an absolute constant.

Note that it is possible to construct a polynomial P6 ∈ P6 satisfying both (4.3) and (4.4) with n = 6.
However, this does not resolve this open problem.

5. Higher order shape constraints

Shape preserving approximation with q ≥ 3 is completely different from comonotone and coconvex
cases. Recall that W r, r ≥ 1, denotes the Sobolev space of (r − 1)-times differentiable functions f ,
such that f (r−1) is absolutely continuous in [−1, 1] and ‖f (r)‖ <∞. It is well known that if f ∈ W r,
then

En(f) ≤ c(r)‖f
(r)‖
nr

, n ≥ r.

However, in [13, Theorem 1.1], it was proved that

Theorem 5.1. For each q ≥ 3, r ≥ 1, s ≥ 1 and any collection Ys ∈ Ys, there exists a function
f ∈ ∆(q)(Ys) ∩W r, such that

lim sup
n→∞

nrE(q)
n (f, Ys) =∞.

In fact, for q = 3 and r ≥ 3, a somewhat stronger result was proved in [13, Theorem 1.6] and then
generalized in [1].

Theorem 5.2. Let q ≥ 3, r ≥ q, s ≥ 1 and Ys ∈ Ys. Then, there is a function f ∈ ∆(q)(Ys) ∩W r,
such that

lim sup
n→∞

nr−q+2E(q)
n (f, Ys) > 0.

We also note that more restrictive but more precise estimates were proved in [13, Theorems 1.2 and
1.5].
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Theorem 5.3. Let q ≥ 3, s ≥ 1 and Ys ∈ Ys. There is a function f ∈ ∆(q)(Ys) ∩W q−2, such that
E(q)
n (f, Ys) ≥ c(q, Ys), n ≥ 1,

and there is a function f ∈ ∆(q)(Ys) ∩W q−1, such that
nE(q)

n (f, Ys) ≥ c(q, Ys), n ≥ 1,
where c(q, Ys) are positive constants that depend only on q and Ys.

References

[1] S. I. Bezkryla. On Jackson–Stechkin type estimates for piecewise q-convex approximation of functions.
Visnyk. Math. Mech., Kyiv. Univ. Im. Tarasa Shevchenka, 36:6–10, 2016.

[2] R. A. DeVore and G. G. Lorentz. Constructive approximation, volume 303 of Grundlehren der Mathema-
tischen Wissenschaften. Springer, 1993.

[3] R. A. DeVore and X. M. Yu. Pointwise estimates for monotone polynomial approximation. Constr. Approx.,
1(4):323–331, 1985.

[4] V. K. Dzyadyk and I. A. Shevchuk. Theory of uniform approximation of functions by polynomials. Walter
de Gruyter, 2008.

[5] H. H. Gonska, D. Leviatan, I. A. Shevchuk, and H.-J. Wenz. Interpolatory pointwise estimates for polyno-
mial approximation. Constr. Approx., 16(4):603–629, 2000.

[6] K. A. Kopotun, D. Leviatan, A. Prymak, and I. A. Shevchuk. Uniform and pointwise shape preserving
approximation by algebraic polynomials. Surv. Approx. Theory, 6:24–74, 2011.

[7] K. A. Kopotun, D. Leviatan, and I. A. Shevchuk. Interpolatory pointwise estimates for monotone polyno-
mial approximation. J. Math. Anal. Appl., 459(2):1260–1295, 2018.

[8] K. A. Kopotun, D. Leviatan, and I. A. Shevchuk. Interpolatory estimates for convex piecewise polynomial
approximation. J. Math. Anal. Appl., 474(1):467–479, 2019.

[9] D. Leviatan. Pointwise estimates for convex polynomial approximation. Proc. Am. Math. Soc., 98(3):471–
474, 1986.

[10] D. Leviatan, D. V. Radchenko, and I. A. Shevchuk. Positive results and counterexamples in comonotone
approximation. Constr. Approx., 36(2):243–266, 2012.

[11] D. Leviatan and I. A. Shevchuk. Counterexamples in convex and higher order constrained approximation.
East J. Approx., 1(3):391–398, 1995.

[12] D. Leviatan and I. A. Shevchuk. Comparing the degrees of unconstrained and shape preserving approxi-
mation by polynomials. J. Approximation Theory, 211:16–28, 2016.

[13] D. Leviatan and I. A. Shevchuk. Jackson type estimates for piecewise q-monotone approximation, q ≥ 3,
are not valid. Pure Appl. Funct. Anal., 1(1):85–96, 2016.

[14] D. Leviatan, I. A. Shevchuk, and O. V. Vlasiuk. Positive results and counterexamples in comonotone
approximation II. J. Approximation Theory, 179:1–23, 2014.

[15] G. G. Lorentz and K. L. Zeller. Degree of approximation by monotone polynomials. II. J. Approximation
Theory, 2:265–269, 1969.

108


	1. Introduction
	2. Pointwise estimates and proof of Theorem 1.2
	3. Comonotone approximation: uniform estimates
	4. Convex and co-convex approximation: open problems and remarks
	5. Higher order shape constraints
	References

