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Introduction (by S. Masnou and C.-B. Schönlieb)

This paper arose from a minisymposium held in 2018 at the 9th International Conference on Curves
and Surface in Arcachon, France, and organized by Simon Masnou and Carola-Bibiane Schönlieb. This
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minisymposium featured a variety of recent developments of geometric partial differential equations
and variational models which are directly or indirectly related to several problems in image and data
processing. The current paper gathers three contributions which are in connection with the talks of
three minisymposium speakers: Blanche Buet, Jean-Marie Mirebeau, and Yves van Gennip. The first
contribution (Section 1) by Yves van Gennip provides a short overview of recent activity in the field
of PDEs on graphs, without aiming to be exhaustive. The main focus is on techniques related to the
graph Ginzburg–Landau variational model, but some other research in the field is also mentioned at
the end of the section. The second contribution (Section 2), written by Jean-Marie Mirebeau, François
Desquilbet, Johann Dreo, and Frédéric Barbaresco presents a recent numerical method devoted to
computing curves that globally minimize an energy featuring both a data driven term, and a second
order curvature penalizing term. Applications to image segmentation are discussed, and recent progress
on radar network configuration, in which the optimal curves represent an opponent’s trajectories, is
described in detail. Lastly, Section 3 is devoted to a work by Blanche Buet, Gian Paolo Leonardi,
and Simon Masnou on the definition and the approximation of weak curvatures for a large class of
generalized surfaces, and in particular for point clouds, based on the geometric measure theoretic
notion of varifolds.

1. PDEs and variational models on graphs (by Y. van Gennip)

Partial differential equations (PDEs) are equations that contain the partial derivatives of multivariate
functions. They are widely used in the modelling of phenoma in physics, economics, biology, and other
sciences. The field of PDEs on graphs deals with discretisations of PDEs on graphs (networks), which
then take the form of coupled ordinary differential equations (ODEs) or difference equations. Contrary
to numerical analysis, which typically deals with discretisations of PDEs on regular grids, the area
of PDEs on graphs is often interested in networks with highly irregular structures. Moreover, where
numerical analysis usually aims to minimize the effect which the structure of the discretisation has on
the outcome of the numerical scheme (because its goal is to approximate the solution to a continuum
PDE), in the world of PDEs on graphs the graph structure tends to carry important information
about the underlying application which needs to be preserved. Apart from the new theoretical chal-
lenges which such discretised equations pose, applications in the imaging and data sciences are strong
motivators which have driven a rapid growth in research in this area in recent years.

In this section we will give a short overview of recent activity in the field of PDEs on graphs, without
aiming to be exhaustive. The main focus will be on techniques related to the graph Ginzburg–Landau
variational model. At the end of this section we will briefly touch on some other research in the field.

1.1. The Ginzburg–Landau variational model

As a convenient starting point for our overview we use the 2012 paper by Andrea Bertozzi and Arjuna
Flenner [8] in which the authors explicitly translate a well-known continuum variational model to
the graph setting, reminiscent of the nonlocal approaches in papers such as [13, 44]. The calculus of
variations deals with models posed in the form of a minimization (or maximization) problem. Typically
this minimization is of a functional over a function space; such variational models are closely related to
differential equations: The Euler–Lagrange equations associated with the minimization problem take
the form of ordinary or partial differential equations. Also gradient flows, which are used to find (local)
minimizers are usually PDEs. In [8] the authors proposed a graph version of the Ginzburg–Landau
functional to address image segmentation, graph clustering, and classification problems. The classic
Ginzburg–Landau functional,

F (u) := ε

∫
Ω
|∇u|2 dx+ 1

ε

∫
Ω
W (u) dx,
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is a variational model for phase separation. Minimizers u : Ω → R of F are forced, through mini-
mization of the double well term 1

ε

∫
ΩW (u) dx (for small, positive, ε) to attain values close to the

minima of W (u) = u2(1 − u)2. Hence the domain Ω will be divided into two phases: {u ≈ 0} and
{u ≈ 1}. The gradient term ε

∫
Ω |∇u|2 dx on the other hand, penalises surface area between the two

phases. Minimization of the functional F is usually considered under a fixed mass constraint of the
form

∫
Ω udx = M , which is natural in the material sciences context in which this model originated.

In [8] the graph functional

f(u) :=
∑
i,j∈V

ωij(ui − uj)2 + 1
ε

∑
i∈V

W (ui)

was introduced, which is the graph analogue of F . Now the functions u : V → R have the vertex set
V of a given finite, simple, undirected graph as domain. The term

∑
i,j∈V ωij(ui−uj)2 (where ωij is a

nonnegative weight on the edge between nodes i and j and ui is the value of the function u on node i)
plays a role similar to the gradient term in F : When ωij is large, minimization of f leads u to have
similar values at nodes i and j. The double well potential term 1

ε

∑
i∈V W (ui), as before, serves to

force u to take values close to 0 or 1.
Minimization of the functional f therefore gives a labelling function u which assigns values approx-

imately equal to 0 or 1 to the vertices in such a way that vertices connected by a highly weighted edge
have similar values. This functional can be combined with either a mass constraint or an additional
data fidelity term of the form

∑
i: training data(ui− utraining

i )2 to cluster or classify the nodes of a graph
into two groups (“phases” where u ≈ 0 and u ≈ 1) based on the pairwise node similarity encoded in
the edge weights ωij . By treating the pixels of an image as nodes in a graph, data classification can
be used for image segmentation as well.

1.2. PDEs on graphs as nonlinear relaxations of NP hard problems

The problem of finding a balanced clustering, i.e. a clustering whose clusters have approximately
similar sizes, is known to be NP hard [84, 85]. The variational Ginzburg–Landau method above can be
seen as a nonlinear relaxation which approximates this NP hard problem. This connection can be seen
especially clearly if we consider the gradient flow equation associated with f , the graph Allen–Cahn
equation:

dui
dt = −

∑
j∈V

ωij(ui − uj)−
1
ε
W ′(ui) + c(u).

Here c(u) is the term coming from the mass constraint or data fidelity term; for simplicity of the
discussion, we will assume c is absent in what follows. By recognising (∆u)i :=

∑
j∈V ωij(ui−uj) as the

combinatorial graph Laplacian from spectral graph theory [24, 84], we see that this nonlinear gradient
flow equation is closely connected with spectral clustering [84]. This connection is also present in
another often used method for approximately minimising f , a graph version of the threshold dynamics
(or Merriman–Bence–Osher; MBO) scheme [62]:

uk+1
i =

{
0, if ũi(τ) < 1

2 ,

1, if ũi(τ) ≥ 1
2 ,

where ũ(t) solves
{dũi

dt = −
∑
j∈V ωij(ũi − ũj),

ũ(0) = 0.

The parameter τ > 0 determines the length of the graph diffusion process, before thresholding hap-
pens. In practice, these equations can be solved quickly and accurately, although there are as of yet no
theoretical guarantees on the accuracy [8, 56, 61]. Using techniques such as truncated spectral decom-
position of the graph Laplacian and convex splitting, allow these methods to be scaled to very large
graphs, while matrix completion techniques such as the Nyström extension [36, 68] and fast eigenvalue
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computation algorithms such as the Rayleigh–Chebychev algorithm [3] make the construction of such
large graphs feasible in the first place.

The graph Ginzburg–Landau technique has been used successfully in, for example, data clustering
and classification and image segmentation [8, 19, 61] and has also been extended to deal with clustering
and classification into more than two classes [37, 38, 39, 59, 60]. Figure 1.1 shows an example of an
image segmentation result from [19].

Figure 1.1. Image segmentation result from [19].

The success of the Ginzburg–Landau clustering technique to approximate the NP hard balanced
clustering problem suggests that other similarly hard combinatorial problems might be approachable
using these techniques. In [52] the solution to the max-cut problem (i.e. partition the node set of a
graph into two sets such that the cut between them is maximal) is approximated by minimizers of the
graph functional

f+(u) :=
∑
i,j∈V

ωij(ui + uj)2 + 1
ε

∑
i∈V

W (ui).

A generalisation to the k-colouring problem is given in [51]. By again deriving an Allen–Cahn like
equation or MBO type scheme from f+ (or its multi-phase generalisation), which uses the signless
graph Laplacian, fast scalable methods for finding maximum cuts or k-colourings are obtained. Com-
bining regular and signless graph Laplacians also allows for clustering of signed networks, i.e. networks
with both positively and negatively weighted edges [26].

1.3. Connections between the graph Allen–Cahn equation, graph MBO scheme, and
graph mean curvature flow

Heuristically the graph MBO scheme described above can be understood as an approximation to the
graph Allen–Cahn equation: The nonlinear effect of the term 1

εW
′(ui), namely driving the solutions

ui to take values in or close to {0, 1}, is mimicked by the thresholding step in the MBO scheme.
In fact, the original continuum Allen–Cahn equation and continuum MBO scheme, which served as
inspiration for the graph variants, are closely linked through a third set of dynamics: mean curvature
flow (MCF). MCF is the evolution of the boundary of a set with a normal velocity proportional to
the local mean curvature of its boundary. It is known that continuum MCF describes the limiting
dynamics of continuum Allen–Cahn (as ε→ 0) and of continuum MBO (as τ → 0) [6, 7, 12, 14, 35].

A natural question to ask is whether there exist similar connections between the graph versions of
these dynamics. In [83] graph curvature was introduced, as well as graph MCF based on the continuum
variational formulation of MCF in [2, 55, 77]; connections to graph Allen–Cahn and graph MBO are
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under investigation, but remain elusive. Recent work, however, shows a direct connection between
graph Allen–Cahn and graph MBO [16]: If the double obstacle potential

W obs(x) :=
{

1
2x(1− x), if 0 ≤ x ≤ 1,
+∞, otherwise,

is used in the graph Allen–Cahn equation (as for example in [10]), instead of the smooth potential
W introduced above, and if λ := τ/ε = 1, then the graph MBO scheme is equivalent to the following
implicit Euler semi-discretisation of the Allen–Cahn equation:

uk+1 = e−τ∆uk − τ

ε
W obj′ ◦ uk+1.

The derivative W obj′ of the non-smooth potential is to be interpreted in the sense of subdifferential
calculus. Allowing for values λ ∈ (0, 1) provides a natural family of dynamics interpolating between
graph diffusion and the MBO scheme.

1.4. Variational techniques

Connections between these different graph-based dynamics can also be seen at a variational level,
using Γ-convergence techniques. Γ-convergence [11, 27] is a very useful tool for variational problems,
since Γ-convergence of the functionals guarantees convergence of minimizers. In [82] it was shown that
f Γ-converges to the graph cut objective functional

∑
i,j∈V ωij |ui − uj | (ui ∈ {0, 1} for all i) as ε→ 0.

This limit functional can also be interpreted as a graph based total variation, since it is a measure for
the interface between the phases {u = 0} and {u = 1}. Hence this Γ-convergence result is seen to be
the graph equivalent of a well-known continuum result from [66, 67].

In [83] a Lyapunov functional for the graph MBO scheme was formulated, i.e. a functional whose
value decreases along iterates of the MBO scheme (and moreover whose linearisation is minimized by
these iterates); subsequently [81] showed that in the limit τ → 0 (where τ is the diffusion time in the
MBO scheme) these Lyapunov functionals also Γ-converge to the graph cut objective functional.

The same paper [81] also introduced a mass conserving MBO scheme in which the thresholding
of ũ to uk+1 is not based on the 1

2 -level set, but rather uses an adaptive threshold which guarantees
conservation of mass. In [15] the semi-discrete implicit Euler scheme from [16] is used to show that this
mass conserving MBO scheme is follows naturally from the mass conserving Allen–Cahn equation.

1.5. Discrete-to-continuum limits

The variational setup of these models is not only useful in discovering connections between the dif-
ferent graph-based dynamics, but also allows for a natural discrete-to-continuum limit in terms of
Γ-convergence on graphs for which a reasonable continuum limit can be defined. For example, on
4-regular graphs obtained by ever finer discretisations of the flat torus [82] shows that the continuum
limit of f is given by an anisotropic total variation which preserves the directionality of the grid,
while on point clouds obtained by sampling ever more points from an underlying subset of Rn a series
of papers [42, 43, 78] has shown continuum limits for both the graph based Ginzburg–Landau and
total variation functionals. In the latter context these limit results can be interpreted as consistency
results that show that the discrete model defined on the samples is asymptotically consistent with a
continuum model. The techniques developed to associate point cloud based functions with continuum
functions have recently also been applied to prove consistency of other statistical methods [40, 41]
and to show that certain artificial neural networks have continuum limits that take the form of ODE-
constrained variational models [79]. For discrete-to-continuum limit results, also graphon methods
have been considered [45, 46, 58]
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1.6. Further applications

The above has been only a short, highly incomplete, overview of the rapidly growing field of PDEs
on graphs, using the variational Ginzburg–Landau method as starting point. We have not aimed to
be exhaustive. Other PDE operators on graphs have found applications in image analysis, such as
the p-Laplacian [21, 32, 33, 34, 54, 74, 80]. Other theoretical investigations include [57] and recently
these methods have been used to study artificial neural networks [69, 79]. Recent papers have studied
consistency and error bounds for semi-supervised learning methods and their dependence on the
amount of a priori known data [20, 22, 31, 71].

2. Generalized fast marching method for computing highest threatening trajecto-
ries with curvature constraints and detection ambiguities in distance and radial
speed (by J. M. Mirebeau, F. Desquilbet, J. Dreo, and F. Barbaresco)

2.1. Globally optimal paths with a curvature penalty

This section is concerned with planar paths minimizing certain energy functionals, between two given
points and with prescribed tangents at these points. The path energy model features a low order data-
driven term, and a higher order regularization term. A globally optimal path is found, using optimal
control techniques, which involve numerically solving a PDE on the configuration space of positions
and orientations. We discuss applications to image segmentation, and motion planning in Section 2.2.

Path energy models. In the models of interest to us, the cost of a smooth planar path x : [0, T ]→
Ω, parametrized by Euclidean arc length and within a domain Ω ⊂ R2, takes the following form:

C(x) :=
∫ T

0
α(x(s), ẋ(s)) C(‖ẍ(s)‖) ds. (2.1)

We denoted by α : Ω× S1 →]0,∞[ an arbitrary continuous data-driven term, depending on the path
position and direction. The path local curvature κ = ‖ẍ(t)‖ (recall that ‖ẋ(s)‖ ≡ 1) is penalized
in (2.1) by a cost function C(κ), which may be chosen among the following classical models, here
sorted by increasing stiffness:

Reeds–Shepp:
√

1 + κ2, Euler–Mumford: 1 + κ2, Dubins:
{

1 κ ≤ 1,
∞ else.

(2.2)

They are respectively representative of (i) a wheelchair-like robot, (ii) the bending energy of an elastic
bar, and (iii) a vehicle with a bounded turning radius. In the case of the Reeds–Shepp model, one must
further distinguish between the classical model with reverse gear, and the forward only variant [30].

Viscosity solutions, and the Fast marching algorithm. Data-driven path energies, subject
to e.g. fixed endpoints, usually possess many local minima. In order to guarantee that the global
minimum is found, path energy minimization must be reformulated as an optimal control problem.
The corresponding value function is the unique viscosity solution to a PDE of eikonal type, and the
optimal paths can be extracted by backtracking once it is numerically computed [70].

Only simple first order energies, such as
∫ T

0 α(x(s))‖ẋ(s)‖ds could originally be addressed in the
viscosity solution framework, typically using the Fast Marching Method (FMM) which solves the
eikonal PDE in a single pass over the domain [25]. Recent progress [23, 30, 63] enabled the extension
to (2.1) of the FMM. For that purpose the path is lifted in the configuration space of positions
and orientations, defining γ(t) = (x(t), θ(t)) subject to the constraint ẋ(t) = n(θ(t)) where n(θ) :=
(cos θ, sin θ). This non-holonomic constraint allows to reformulate (2.1) as a first order energy, since
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|ẍ(t)| = |θ̇(t)|. The energy of a non-admissible path γ = (x, θ) : [0, 1] → R2 × S1, defined in the
augmented space but such that ẋ(t) is not positively proportional to n(θ(t)) for some t ∈ [0, 1], is
defined as +∞, see [63] for details and comparison with alternative approaches such as [53, 75].

For interested readers, we now provide some additional details on the theoretical and numerical
approach. Denote by u(x, θ) the minimal cost (2.1) of a path from the domain boundary ∂Ω to the
endpoint x with final tangent (cos θ, sin θ). Then u, known as the value function to the optimal control
problem, is a (possibly discontinuous) viscosity solution [5, 63] to the Bellman equation

F∗(x,θ)(∇u(x, θ)) = α(x, θ) in Ω× S1, u(x, θ) = 0 on ∂Ω× S1,

where the α is the data-driven term appearing in (2.1). The Hamiltonian F∗ in the l.h.s. has the
following expression: denoting x̂ := 〈∇xu(p),n(θ)〉 and θ̂ := ∂θu(p)

Reeds–Shepp:
√
x̂2

+ + θ̂2, Euler–Mumford: x̂+
√
x̂2 + θ̂2, Dubins: max{0, x̂+ θ̂, x̂− θ̂}.

These expressions are derived from the curvature dependent cost C (2.2) as sup{(x̂+ θ̂κ)/C(κ); κ ∈ R}.
Using adequate techniques, we approximate this Hamiltonian in the following generic form

F∗(x,θ)(∇u(x, θ))2

≈ max
1≤k≤K

( ∑
1≤i≤I

αik(θ)〈∇u(x, θ), eik(θ)〉2 +
∑

1≤j≤J
βjk(θ) max{0, 〈∇u(x, θ), fjk(θ)〉}2

)
, (2.3)

where the weights αik, βjk, are non-negative, and the offsets eik, fjk have integer coordinates. The
directional derivatives are then approximated using upwind finite differences as in (2.4) below, and
the coupled system of equations resulting from the discretized PDE is solved in a single pass over the
domain [65]. It would be too long to describe here the approximation procedure [63, 65] yielding (2.3),
which involves a relaxation parameter ε > 0 and techniques from algorithmic geometry. Nevertheless
let us mention the meta parameters (I, J,K) used: Reeds–Shepp (1, 3, 1), Euler–Mumford (0, 27, 1),
Dubins (0, 6, 2). For comparison, the standard d-dimensional isotropic fast marching method [70] can
be framed in a similar setting, with (I, J,K) = (d, 0, 1): denoting by (ei)di=1 the canonical basis of Rd

‖∇u(x)‖2 =
∑

1≤i≤d
〈∇u(x), ei〉2 ≈

∑
1≤i≤d

max
{

0, u(x)− u(x− hei)
h

,
u(x)− u(x + hei)

h

}2
. (2.4)

Applications to image processing. Image segmentation methods based on active contours typ-
ically involve path energies balancing low-order data-driven terms, and higher order regularization
terms. Unfortunately, many second order models can only be locally optimized [50], resulting in spu-
rious local minima and high sensitivity to initialization. In contrast, first order models [25] can be
globally optimized using the FMM, but the lack of smoothness penalization gives way to various
artefacts referred to as leaks, shortcuts, and branches combination problems [23].

Our numerical method combines the best of the two worlds: a second order energy model (2.1),
and fast global minimization, with prescribed endpoint positions and tangents. This enables new
developments, see for instance [23] on the retina vessel tree segmentation, and [30] on white matter
fiber path extraction.

2.2. Threatening trajectories and radar network configuration

In a collaboration work with the company Thales, we optimize the configuration of a radar network for
protecting an objective within a region, against an enemy assumed to have unlimited intelligence and
computing power, and yet whose vehicle is subject to some manoeuverability constraints. The goal is
to maximize the probability of detection of the most dangerous trajectory between a given source and
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Figure 2.1. (left) blindness map of a radar (simulated data). (top right) dodging a
radar through a blind distance, (bottom right) spiraling threatening trajectory.

target, which will take advantage of any hideout in the terrain, blind spot or physical limitation in
the radar network. The trajectory is only subject to a lower bound in the turning radius, due to the
vehicle high speed (see the companion paper [29]).

We model this problem as a non-cooperative zero-sum game: a first player chooses a setting ξ for
the radar detection network Ξ, and the other player chooses a trajectory γ from the admissible class
Γ with full information over the network ξ. The players’ objective is respectively to maximize and
minimize the path cost:

C(Ξ,Γ) := sup
ξ∈Ξ

inf
γ∈Γ

Cξ(γ)

where Cξ is the function C defined in (2.1) but with a data-driven cost term αξ depending on the
setting ξ of the network, and accounting for the local probability of detection. Minimization over
γ ∈ Γ (given ξ ∈ Ξ) is performed using the fast and reliable techniques of Section 2.1. We rely on
the CMA-ES algorithm [47] for the subsequent optimization over ξ ∈ Ξ, which is rather difficult
(non-convex, non-differentiable).

In comparison with earlier works [4, 76], we use the curvature bounded Dubins model (2.2, right)
to reject non-physical attacking trajectories, featuring e.g. angular turns or oscillations in the vehicle
direction. We also considerably improve, relative to [64], the detection probability model, used to
define αξ(x, ẋ), taking into account the three following factors respectively related to the radar, the
target, and the terrain [73].

• The blindness map accounts for the probability of detection of a generic target by a radar,
depending on the distance and the radial speed of the target relatively to the radar, see
Figure 2.1, left. There are blind areas, due to the fact that a radar cannot listen to its signal
while emitting it, and to the Doppler effect, which respectively causes blind radial distances
and blind radial speeds. The positions of the blind areas are periodical and depend on internal
parameters of the radar that can be optimized: signal wavelength, and pulse repetition interval.

• The radar cross section accounts for the probability of detection of a specific target, depending
on its orientation relative to the radar. For instance, a furtive plane often has a low probability
of detection if seen from the front, and a higher one if seen from the side.
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Figure 2.2. Threatening trajectories, from a circular region towards its center point,
with optimized radar positions. Left: Positional factor αξ(x) in the cost map, where ξ
is the radar configuration. Right: Digital elevation map.

• The elevation map is used to determine blind regions in the terrain due to obstruction of the
radar line of sight. In a mountainous area, a target can take advantage of valleys to move
“under the radar”. The Earth curvature is also taken into account.

The profile of the cost function with regard to the direction of movement is typically non-convex,
which is significant only in the presence of a curvature penalization. For that, we choose the Dubins
model, in which the curvature radius is bounded. We showcase the following three phenomena.

• Trajectories dodging radars through their blind distances (cf. Figure 2.1, top right). In this
picture, only the positional factor in the cost map is shown in greyscale, and not the part of
the cost depending on the orientation. The red line represents the optimal trajectory of the
target, going from the left to the right of a rectangular domain, with a radar in the center. It
features a circle arc, at a precise blind distance from the radar, and two spiral arcs, see below.

• Spiraling threatening trajectories, taking advantage of the blind radial speed (cf. Figure 2.1,
bottom right). The red line represents the trajectory of the target, going from the left to the
center of the domain where the radar is located, maintaining a constant angle with the radar
in order to minimize visibility, except at the end due to the imposed bound on path curvature.

• Hiding in valleys (cf. Figure 2.2). A digital elevation map, of 50km×50km around the city
of Davos in the Alps, is used to construct a probability of detection map, see Figure 2.2.
Threatening trajectories tend to concentrate in valleys. The optimized radar positions are
close to the target to be defended, and either on high ground or in alignment with long valleys.

Future works will be devoted to further enhancing the model, taking into account limited knowledge
of the attacker (e.g. due to the use of passive radar receivers), introducing success criteria more complex
than mere detection (e.g. requiring detection early enough for interception), and considering speed
and altitude variations along the trajectory.
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3. Discrete curvatures of point cloud varifolds (by B. Buet, G. P. Leonardi, and S.
Masnou)

We sketch in this section the main points allowing to define consistent and stable notions of discrete
curvatures on point clouds provided with a varifold structure.

3.1. Introduction

Continuous definitions (of surface, regularity, dimension, curvatures. . . ) generally cannot be trans-
formed directly into their discrete counterpart, especially when dealing with unstructured data such
as point clouds. Moreover, these discrete counterparts are generally not unique and highly scale-
dependent. Geometric measure theory offers a particularly well-suited framework for the study of such
unstructured discrete surfaces. The long-standing Plateau problem has given birth to several differ-
ent weakenings of the notion of surface. While their common purpose was to gain compactness while
preserving mass/area continuity (or lower semi-continuity at least), they actually provide consistent
settings for developing a theory of discrete surfaces. We propose to give an insight on a varifold per-
spective for point cloud processing, as it has been proposed in [17], evidencing good approximation
properties in so-called flat distance and a flexible notion of discrete curvature with stability and con-
vergence property with respect to flat distance as well. We insist on the fact that our purpose is not
to describe varifolds theory in a general way but quite the reverse, we limit ourselves to the minimal
background on varifolds needed for understanding this work, we refer to [72] for general varifolds
theory.

3.2. The varifold framework

It is quite natural to associate with a surface a measure that describes it, for instance its area measure,
this is also true with a point cloud that can be associated with a sum of Dirac masses. In both
cases, there is no loss of information, we can recover the initial object by taking the support of the
associated measure. Varifolds push the structure an “order” further, encoding not only the surface M
but its whole tangent bundle TM = {(x, TxM), x ∈M}. We first introduce two sub-classes of varifold
structures, namely point cloud varifolds and smooth varifolds, we will focus on afterwards, then we
give an approximation result of smooth varifolds by point cloud ones and eventually we introduce the
flat distance between varifolds.

Point cloud varifolds and smooth varifolds. Let d, n ∈ N, 1 ≤ d ≤ n and let us denote by
Gd,n = {d–vector sub-space of Rn}. Point cloud varifolds and smooth varifolds are d–varifolds, that is:

Definition 3.1 (d–varifold). A d–varifold in Rn is a Radon measure in Rn ×Gd,n.

Thanks to Riesz representation theorem, we can alternatively see varifolds as continuous linear
forms on Cc(Rn ×Gd,n,R) the space of continuous compactly supported functions from Rn ×Gd,n to
R. Let us start with smooth varifolds

Definition 3.2 (Smooth varifolds). Let M ⊂ Rn be a d–sub-manifold, we define V = v(M) by

V (B) = Hd ({x ∈M : (x, TxM) ∈ B}) , for all Borel sets B ⊂ Rn ×Gd,n ,

where Hd denotes the d–dimensional Hausdorff measure, or equivalently as the continuous linear form

V (φ) =
∫
M
φ(x, TxM) dHd(x) for all φ ∈ Cc(Rn ×Gd,n,R) .

Loosely speaking, v(M) is the natural measure exactly supported in TM . Let us give some examples.
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• Let Γ ⊂ R2 be a closed regular curve parametrized by γ : [0, L] → R2 with unit speed :
‖γ′(t)‖ = 1. Following Definition 3.2, the smooth varifold V = v(D) associated with Γ acts on
continuous functions φ ∈ Cc(R2 ×G1,2) through

V (φ) =
∫

Γ
φ(x, TxΓ) dH1(x) =

∫ L

t=0
φ(γ(t), span γ′(t)) dt (3.1)

• If we consider a line D ⊂ Rn, the tangent line is the same for all x ∈ D: TxD = D. In
this case the varifold V = v(D) can be decomposed into a tensor product of a first measure
H1
|D (i.e. the length measure on the line D) in Rn and a second measure δD in G1,n, such a

measure is usually denoted by V = H1
|D ⊗ δD. Such a decomposition is in general impossible.

When it exists, this means that one can separate integration with respect to Rn and Gd,n and
indifferently switch integration order. Yet, on the curve Γ, the tangential direction generally
depends on the position in the curve.

Notice that smooth varifolds are obviously a particular case of so called rectifiable varifolds for
which one only requires the existence of an approximate tangent plane almost everywhere. Typical
examples of such varifolds are associated with Lipschitz graphs, allowing for instance corners or edges.

Definition 3.3 (Point cloud varifolds). Let X = {xi}i=1...N ⊂ Rn be a finite set of points in Rn,
(mi)i=1...N ⊂ R+ be associated weights and (Pi)i=1...N ⊂ Gd,n be associated directions. Then, define
V = v(X) as the weighted sum of Dirac masses V =

∑N
i=1miδ(xi,Pi) .

In particular for V = v(X), V (B) =
∑N
i=1miχB(xi, Pi) forB Borel set, and V (φ) =

∑N
i=1miφ(xi, Pi)

for φ ∈ C(Rn×Gd,n,R). Note that while v(M) is uniquely defined fromM whenM is a d–sub-manifold
since TM is uniquely defined from M , this is false for point cloud varifolds, v(X) is not uniquely de-
fined from the positions X = {xi}i=1...N since there is not a unique way of defining mi, Pi, i = 1 . . . N
from X.

(a) A rectifiable varifold. (b) A point cloud varifold.

Notice that we recover the spatial measure (i.e. Hd|M for a smooth varifold and
∑
imiδxi for a point

cloud varifold) by defining the mass ‖V ‖ of V as follows:

Definition 3.4 (Mass). Given a d–varifold in Rn, we define its mass ‖V ‖ as the Radon measure in
Rn such that for all B ⊂ Rn Borel set, ‖V ‖(B) = V (B ×Gd,n).

Approximation in weak star topology. As both point clouds and sub-manifolds are now endowed
with a structure of d–varifolds, we can use topologies/distances between varifolds to compare them,
hoping that in some topology, we have built a good framework of approximation, meaning that it
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is possible to approximate a d–submanifold M by point clouds in this topology. Again by Riesz
theorem, varifolds are the dual of Cc(Rn ×Gd,n,R) and thus inherit of a weak star topology induced
by Cc(Rn ×Gd,n,R). To be more explicit, a sequence of d–varifolds (Vh)h weak star converge to V if
and only if Vh(φ) −−−→

h→∞
V (φ) for all φ ∈ Cc(Rn × Gd,n,R). Let us give a first result ensuring that

weak star topology provides a consistent framework of approximation:

Theorem 3.5. Let V = v(M) be a smooth d–varifold in Rn, then there exists a sequence of point
cloud d–varifolds (Vh)h that weak star converges to V .

This approximation result still holds when replacing the smooth d–varifold by any d–rectifiable
varifold.

Flat distance. Let us now introduce a distance that locally metrizes weak star topology in the sense
of Theorem 3.7.

Definition 3.6 (Flat distance). Let V , W be d–varifolds in Rn and B ⊂ Rn be an open set. We
introduce

∆B(V,W ) := sup


∫
Rn×Gd,n

φ dV −
∫
Rn×Gd,n

φ dW

∣∣∣∣∣∣∣
φ ∈ Cc(Rn ×Gd,n,R) is 1–Lipschitz
supRn×Gd,n

|φ| ≤ 1
sptφ ⊂ B ×Gd,n

 .

When B = Rn, ∆Rn (simply denoted by ∆) is the flat distance or also known as bounded Lipschitz
distance.

Let us consider two simple examples of 1–varifolds in R in order to understand the restriction on
test functions in Definition 3.6, starting with the assumption φ 1–Lipschitz. Consider V0 = δ(0,R) and
for ε > 0, Vε = δ(ε,R) two 1–varifolds in R, then ∆(V0, Vε) ≥ |ψ(0)− ψ(ε)| (with any ψ ∈ Cc(R,R)
and φ(x, S) = ψ(x) ∈ Cc(R × G1,1,R)). If there is no control on the slope of the test function, then
taking ψ(0) = 1 and ψ(ε) = −1, we get ∆(V0, Vε) ≥ 2 independently of ε > 0, which is really bad for
approximation purposes. If we now remove the assumption |φ| ≤ 1, then for ε > 0, ∆(V0, (1 + ε)V0) ≥
ε|φ(0,R)| and thus is infinite if φ is not bounded, which is also bad. While we evidenced with toy
examples the soundness of those two restrictions on test functions φ ∈ Cc(Rn × Gd,n,R), they turn
out to be sufficient, in the sense that ∆ metrizes weak star convergence in compact sets, as stated in
next theorem.

Theorem 3.7 ([9]). Let (Vh)h, V be d–varifolds in Rn such that suph Vh(Rn) + V (Rn) < ∞ and
assume that there exists a compact set K ⊂ Rn such that sptV , sptVh ⊂ K × Gd,n for all h ∈ N.
Then,

Vh weak star converges to V ⇔ ∆(V, Vh) −−−→
h→∞

0 .

3.3. Discrete mean curvature

Our purpose is now to introduce discrete curvatures, starting with discrete mean curvature, whose
convergence holds with respect to weak star convergence of point cloud varifolds (to a smooth varifold).
We first introduce the notions that generalize mean curvature for d–varifolds, we then adapt it to point
cloud and eventually state convergence results.

First variation and generalized mean curvature. Let us start with a smooth d–varifold V =
v(M) associated with a smooth closed d–sub-manifold M . By its very definition, V encodes TM ,
that is order 1 information about M . It is then reasonable to expect mean curvature to rewrite as a
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distributional derivative of order 1 of V . Indeed, consider the order 1 distribution δV : C1
c(Rn,Rn)→ R

defined as

δV (X) =
∫
M

divTxMX(x) dHd(x) =︸︷︷︸
divergence
theorem

−
∫
M

H(x)︸ ︷︷ ︸
mean curvature

vector of M

·X(x) dHd(x) . (3.2)

What is important in (3.2) is that the distribution δV encodes mean curvature and entirely relies on
varifold structure v(M) we defined on M . For this last reason, it can be extended to any d–varifold
as follows:

Definition 3.8 (First variation, [1]). Let V be a d–varifold in Rn, we define for X ∈ C1
c(Rn,Rn),

δV (X) =
∫

(x,S)∈Rn×Gd,n

divSX(x) dV (x, S) with
{

divSX(x) =
∑n
i=1DX(x)τi · τi,

(τ1, . . . , τd) orthon. basis of S ∈ Gd,n.
δV is a distribution of order 1 called first variation of V .

As we saw in (3.2), if V = v(M) with M smooth and closed, then δV identifies with the (vector)
Radon measure −HHd|M = −H‖V ‖, and H is the Radon–Nikodym derivative of −δV = HHd|M with
respect to ‖V ‖ = Hd|M . As soon as δV identifies with a Radon measure (which can be reformulated
as δV being continuous with respect to Cc(Rn,Rn) topology), it is similarly possible to define a
generalized mean curvature vector.

Definition 3.9 (Generalized mean curvature). Let V be a d–varifold in Rn and assume that δV is a
Radon measure. Then define H( · , V ) ∈ L1(Rn, ‖V ‖) as the Radon–Nikodym derivative of −δV with
respect to ‖V ‖. It is called generalized mean curvature vector.

Let us come back to the example of smooth varifold V = v(Γ) introduced in (3.1). Let X ∈
C1
c(R2,R2), then recalling the action of V on continuous functions and applying it with (x, S) 7→

divS X(x), we obtain

δV (X) =
∫

divS X(x) dV (x, S) =
∫ L

t=0
divspan γ′(t)X(γ(t)) dt =

∫ L

t=0
DX(γ(t))γ′(t) · γ′(t) dt

=
∫ L

0

d
dtX(γ(t)) · γ′(t) dt = −

∫ L

t=0
X(γ(t)) · γ′′(t)︸ ︷︷ ︸

κ(γ(t))

dt (3.3)

= −
∫

Γ
X · κ . (3.4)

Notice that in this case, divergence theorem reduces to the classical by parts integration (3.3). By
definition, the generalized mean curvature directly reads on (3.4) as κ and recalling that γ is an
arc-length parametrization γ′′ is indeed the curvature.

Unfortunately, if V is a point cloud d–varifold, there is no hope that δV is a Radon measure. Indeed,
in R, let V = δ(0,R) and X ∈ C1

c(R,R), one can check that δV (X) = X ′(0) = −(δ0)′(X) and it is
well-known (and easy to check) that (δ0)′ is not a Radon measure. We introduce a regularization via
convolution of δV in order to overcome this lack of regularity of the first variation of point clouds.

Discrete mean curvature. Let ρ : R→ R+ ∈ C∞(R) be even and compactly supported in (−1, 1)
and define (ρε)ε>0 in Rn by ρε(x) = ε−nρ(|x|/ε). The regularized linear form δV ∗ ρε then identifies to
a smooth and locally integrable function in Rn whose expression is

δV ∗ ρε(x) = 1
εn+1

∫
Rn×Gd,n

ρ′
( |y − x|

ε

)
ΠS

(
y − x
|y − x|

)
dV (y, S) , x ∈ Rn (3.5)
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where ΠS is the orthogonal projection onto the d–plane S ∈ Gd,n.
So as to define a mean curvature from this regularized first variation, we follow the definition of

H( · , V ) as a Radon–Nikodym, and we consequently define Hε( · , V ) as the Radon–Nikodym derivative
of δV ∗ ρε with respect to ‖V ‖ ∗ ξε (where ξε is define similarly to ρε from a smooth positive and even
profile ξ compactly supported in (−1, 1)). Now, the Radon–Nikodym derivative of two measures that
are absolutely continuous with respect to Lebesgue measure is simply the quotient of the associated
densities:

Definition 3.10 (ε–mean curvature [17, 4.1]). Let V be a d–varifold in Rn, for x ∈ Rn and ε > 0, we
define

Hε(x, V ) = − 1
Cρ,ξ

δV ∗ ρε(x)
‖V ‖ ∗ ξε(x) , (3.6)

the constant Cρ,ξ > 0 explicitly depends on ρ and ξ.

First of all, Definition 3.10 is consistent for smooth varifolds V = v(M) (and more generally recti-
fiable varifolds whose first variation is a Radon measure) in the sense that for x ∈M ,

Hε(x, V ) −−→
ε→0

H(x) = H(x, V ) .

Furthermore, choosing ρ and ξ satisfying sρ′(s) +nξ(s) = 0 allow to stabilize numerical computations
since it cancels the integrand of the first order term in the expansion of |Hε −H|, which is generally
zero only due to by parts integration. In this case Cρ,ξ = n/d.

More than consistency, we have the following stability (and convergence follows directly from both
consistency and stability) theorem:

Theorem 3.11 ([17, Thm. 4.5]). Let V = v(M) be a smooth d–varifold associated with a closed
smooth d–sub-manifold M , H its mean curvature vector. Let x ∈M and assume that

• (zh)h is a sequence of points in Rn tending to x.

• (Vh)h is a sequence of d–varifolds in Rn such that ∃ ηh ↓ 0,

dh = sup
{ ∆B(V, Vh)

min (‖V ‖(Bηh), ‖Vh‖(Bηh))

∣∣∣∣ B = B(x, r) ball centered at x ∈M
B(x, r)ηh = B(x, r + ηh)

}
−−−−→
h→+∞

0 .

Then, for εh ↓ 0 satisfying dh+|zh−x|+ηh

ε2
h

−−−→
h→∞

0,

|Hεh(zh, Vh)−Hεh(x, V )| = Oh→∞

(
dh + |zh − x|

ε2h

)

Eventually, let us insist on the fact that Definition 3.10 rewrites “simply” for a point cloud varifold
as it only involves computations of ε–neighbourhoods and elementary operations. More precisely, for

V =
N∑
i=1

miδ(xi,Pi), we obtain Hε(x, V ) = −

d

nε

N∑
i=1

miρ
′
( |xi − x|

ε

) ΠPi(xi − x)
|xi − x|

N∑
i=1

miξ

( |xi − x|
ε

) .
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3.4. Discrete second fundamental form

We now address the question of recovering from the varifold structure not only the mean curvature
vector but the whole second fundamental form (whose mean curvature is the trace). In this section,
we give an overview of the path leading to a notion of weak second fundamental form as a family of
linear distribution of order 1 allowing to recover similar convergence properties as for mean curvature
(see [18]). To this end, we consider Hutchinson’s weak notion of second fundamental form (see [49])
that consists in testing divergence theorem on vector fields X now depending both on x ∈ Rn and
S ∈ Gd,n. However, our motivation differs from Hutchinson’s, who gave a weak notion of second
fundamental form, but strong enough to ensure that its Lp–control implies strong regularity ([48]):
the varifold is then at every point of its support (locally) a finite union of graphs thus excluding triple
junctions in R2 for instance. In contrast we aim at defining a discrete second fundamental form with
good properties of convergence, similar to Theorem 3.11. That is the reason why we consider only
test functions depending linearly on S ∈ Gd,n, that is functions of the form SjkX(x) = Sjkφ(x)ei
for i, j, k = 1 . . . n and (e1, . . . , en) the canonical basis of Rn. On one hand we lose Hutchinson’s
regularity results, but on the other hand we obtain a notion of second fundamental form to which
similar techniques as for the mean curvature may be applied.

Let us start with smooth varifolds. LetM be a closed and smooth d–sub-manifold and let V = v(M),
then for all i, j, k = 1 . . . n and every φ ∈ C1

c(Rn,R), the following by parts integration formula hold:

−
∫
M

(ΠTxM∇φ)i dHd =
∫
M

(
Aijkφ+ (TxM)jk

∑
q

Aqiqφ
)

dHd

with Aijk(x) = ei ·ΠTxM∇{x 7→ (TxM)jk}
We can thus define the weak second fundamental form of V as soon as for i, j, k = 1 . . . n, the following
linear forms δijkV are Radon measures

δijkV : φ ∈ C1
c(Rn,R) 7−→ ei ·

∫
Rn×Gd,n

SjkΠS∇φ(x) dV (x, S) .

In this case, we can take the Radon–Nikodym derivative βijk ∈ L1
loc(‖V ‖) of −δijkV with respect to

‖V ‖, βijk = − δijkV
‖V ‖ . For x ∈ M , Aijk(x) is then defined as the unique solution of the system with n3

equations:

Aijk + cjk

n∑
q=1

Aqiq = βijk with cjk(x) = TxM .

It is then possible to recover the extended second fundamental form Bk
ij = B(eTi , eTj ) · ek by Bk

ij =
1
2 (Aijk +Ajik −Akij). At this stage, it “only” remains to regularize δijkV via convolution and define
for ε > 0, (βijk)ε, (cjk)ε as

βεijk = −δijkV ∗ ρε
‖V ‖ ∗ ξε

and cεjk(x) =
∫
Rn×Gd,n

Sjkζε(y − x) dV (y, S)
‖V ‖ ∗ ζε(x)

and eventually Aεijk as solution of the regularized system. In doing so, we obtain the same consistency
and stability properties as for the ε–mean curvature.

Figure 3.1 shows two examples of curvature approximation on 3D point clouds. In future work,
we plan to apply these techniques to more general data in arbitrary dimension and codimension
for classification, analysis or denoising purposes. Another possible extension is the approximation of
second-order derivatives of irregularly sampled functions, which might be useful for various grid-free
numerical methods.
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Figure 3.1. Left: Gaussian curvature κ1κ2 computed on a 3D point clouds from
Stanford repository http://graphics.stanford.edu/data/3Dscanrep/, from nega-
tive values (blue) to positive ones (red) passing through null values (white), Right:
Sum of absolute values of principal curvatures |κ1| + |κ2| computed on a 3D point
cloud from Farman Institute 3D Point Sets [28], from null values (blue) to high posi-
tive ones (yellow) passing through green.
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