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Abstract. For spaces of constant, linear, and quadratic splines of maximal smoothness on the Powell-Sabin 12-
split of a triangle, the so-called S-bases were recently introduced. These are simplex spline bases with B-spline-like
properties on the 12-split of a single triangle, which are tied together across triangles in a Bézier-like manner.

In this paper we give a formal definition of an S-basis in terms of certain basic properties. We proceed to
investigate the existence of S-bases for the aforementioned spaces and additionally the cubic case, resulting in an
exhaustive list. From their nature as simplex splines, we derive simple differentiation and recurrence formulas to
other S-bases. We establish a Marsden identity that gives rise to various quasi-interpolants and domain points
forming an intuitive control net, in terms of which conditions for C°-, C*-, and C*-smoothness are derived.

2010 Mathematics Subject Classification. 41A15, 65D07, 65D17.
Keywords. Stable bases, Powell-Sabin 12-split, Simplex splines, Marsden identity, Quasi-interpolation.

1. Introduction

1.1. Motivation

Piecewise polynomials, or splines, defined over triangulations have applications in many branches
of science, ranging from scattered data fitting to finding numerical solutions to partial differential
equations. See [1, 12] for comprehensive monographs.

In applications like geometric modelling [4] and solving PDEs by isogeometric methods [5] one
often desires a low degree spline with higher smoothness. For a general triangulation, it was shown
in Theorem 1.(ii) of [24] that the minimal degrees of a triangular C! and C? element are 5 and 9,
respectively. To obtain smooth splines of lower degree one can split each triangle in the triangulation
into several subtriangles. Three such splits are the Clough-Tocher split A (CT), the Powell-Sabin
6-split A (PS6) and 12-split A (PS12) of a triangle 2\, with 3, 6, and 12 subtriangles, respectively. On
these splits global C''-smoothness can be obtained with degree 3 for CT, degree 2 and 3 for PS6 and
degree 2 for PS12 [2, 9, 19]. C?-smoothness is achieved for PS6 and PS12 using degree 5; see [11, 21, 22]
on a general (planar) triangulation.

To compute with splines we need a basis for the spline space. In the univariate case B-splines have
many advantages. They lead to banded matrices with good stability properties for low degrees and
can be computed efficiently using stable recurrence relations. We would like similar bases for splines
on triangulations. In [3] a basis, called the S-basis, was introduced for C'' quadratics on the PS12-split.
The S-basis consists of simplex splines [16, 20] and has all the usual properties of univariate B-splines,
including a recurrence relation down to piecewise linear polynomials and a Marsden identity. Global
C'-smoothness is achieved by connecting neighboring triangles using classical Bézier techniques. This
basis has been applied for swift assembly of the stiffness matrices in the finite element method [23].
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For a quintic B-spline-like basis on the PS12-split see [14, 15]. This basis has C? supersmoothness
on each macro triangle and has global C?-smoothness. Moreover, in addition to giving C'- and C?-
smooth spaces on any triangulation, these spaces on the PS12-split are suitable for multiresolution
analysis [6, 8, 14, 18]. A similar B-spline-like simplex basis has been constructed on the CT-split [13],
while for the PS6-split a B-spline basis has been developed for the C'-smooth quadratics and cubics
and C?-smooth quintics [7, 9, 22]. The latter bases have many of the nice B-spline properties, but
have to be computed by conversion to Bernstein bases on each subtriangle.

In this paper we systematically enumerate the simplex splines and determine the possible S-bases
for the spaces of C4~1 splines of degree d on the PS12-split for d = 0, 1,2, 3. In the cubic case and for
a general triangulation, we argue that these cannot be extended to globally smooth bases. Instead, we
envision applications for local constructions, such as hybrid meshes and extra-ordinary points, which
are important issues in isogeometric analysis.

1.2. Main result

For d = 0,1,2,3, we consider the space Sq(4&) of C4~'-smooth splines of degree d on the Powell-Sabin
12-split A of a triangle A\ (see definition below). We consider bases s of Sy(A) satisfying the following
properties:

P1 sisinvariant under the dihedral symmetry group G of the equilateral triangle (cf. Section 2.1.8).
P2 s reduces to a shared B-spline basis on the boundary (cf. Remark 2.1).

P3 s forms a positive partition of unity and satisfies a Marsden identity, for which the dual
polynomials only have real linear factors (cf. Section 4).

P4 s has all its domain points inside 2\, with precisely d+2 domain points (counting multiplicities)
on each edge of A\ (cf. Figure 3.1).

P5 s admits a stable recurrence relation (cf. Section 3).
P6 s admits a differentiation formula (cf. Section 3.6).
P7 s comes equipped with quasi-interpolants (cf. Section 4.3).

P8 s can be smoothly tied together across adjoining triangles using Bézier-type conditions (cf.
Section 5).

In addition some of the bases s satisfy:
P9 s has local linear independence.

We call any basis for Sy(4A) satisfying P1-P8 an S-basis. This space has dimension ng as in (1.10)
and simplex spline bases

sq = [S1dy.-sSnya), d=0,1,2,3, 3 =1[S1d4y- ) Sn,d], d=2,3, (1.1)

listed in Table 4.1. Generalizing a similar result for the bases sg, s1, s2 in [3], the main result of the
paper is the following.

Theorem 1.1. The sets s = 55,32 as in (1.1) are the only simplex spline bases for Sq(A) satisfy-
ing P1-P4. Moreover, these bases also satisfy P5-P8, while only so, s1, and sa satisfy P9.
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FiGURE 1.1. The Powell-Sabin 12-split with numbering of vertices and subtriangles
(left), and a scheme assigning every point in the triangle to a unique subtriangle of the
12-split (right).

Theorem 1.1 is known [3] to hold for the constant, linear, and quadratic bases s, s1, s2. For the
remaining bases Sa, 83, 83, Theorem 1.1 is established in this paper by showing in the coming sections
that Properties P1-P8 hold for these bases only, and that Property P9 does not hold (Remarks 3.3,
3.4, 3.5). Property P1 is imposed by only including entire G-equivalence classes of simplex splines. It
ensures that basic properties of the basis are left invariant under affine transformations. Property P2
emerges from the analysis in Section 2.2. Properties P1 and P2 significantly reduce the number of
cases to be considered. The Marsden identity of Property P3 is established in Section 4. It gives rise to
Property P4 through its explicit form (Table 4.1) and Property P7 through an explicit quasi-interpolant
(Theorem 4.9). Properties P5 and P6 follow from basic properties of simplex splines. Properties P2-P4
allow to establish a Bézier-like control net, which, together with Property P6, yields the Bézier-type
smoothness conditions of Property P8. Remarks 4.6-4.8 explain why there are no other bases with
these properties.

Supplementary computational results are presented in a Jupyter notebook [17].

1.3. Basic tools

We recall some basic tools used throughout the paper.

1.3.1. Conventions

We use small Greek letters (e.g. «, 3) for scalar values, small boldface letters (e.g. s) to denote vectors,
capital boldface letters (e.g. R,T,U) for matrices. Scalar-valued univariate functions are denoted by
small letters, scalar-valued multivariate functions are denoted by capital letters (e.g. S, M, Q), while
vector-valued multivariate are, like matrices, denoted by capital boldface letters. Calligraphic fonts
(e.g. K) are reserved for (multi)sets, expressed as

K =1k, .. ki, .. ke . ks}={k" Kk}

1758 Hs

with p; the multiplicity of k;. The size || of K is its number of elements counting multiplicities, i.e.,
|| = p1 + -+ - + ps. Generalizing the notation for closed and half-open intervals, we write [K] for the
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convex hull of K. Whenever K consists of vertices of &, we write [K) for the half-open convex hull of
KC obtained as union of the half-open subtriangles shown in Figure 1.1 (right).

Blackboard bold (e.g. Py, Sy) is used to denote function spaces. In particular, identifying matrices
with linear maps, the symbol R™"™ denotes the space of m X n real matrices. We identify R with
R™! (column vectors), and denote the standard basis vectors in R™ by e, .., en.

For an m x n matrix A and 4 = [i1,...,i,]%, 5 = [j1,..., ] with 1 <iy < --- <, <m,1<j; <
-+ < js <mn, then A(%,7) is the r x s matrix whose (k,¢) element is a;, j,. In particular, ¢(¢) denotes
the vector whose jth element is ¢;,.

The support of a function F', denoted by supp(F), is the closure of the set of values in the domain of
F at which F' is nonzero. Empty products are assumed to be 1. For any set A, the indicator function
on A is denoted by 1 4.

1.3.2. The Powell-Sabin 12-split

Consider the triangle /\ with vertices p;, pyp; € R? and midpoints

. D1 +p27 s = Do +P37 g = Ps T P1 (1.2)
2 2 2
Taking the complete graph on these six points, one obtains additional points
Pyt P Pyt P Ps + D P +Dy+P
D7 = 4 ) 67 Dg = 4 ) 55 Dy = 5 9 65 Dy = L 32 3 (13)

and subtriangles A1, ...,/\5 as in Figure 1.1. The resulting split is called the Powell-Sabin 12-split
A\ of A\

1.3.3. Barycentric and directional coordinates

The barycentric coordinates B = (31, B2, 83) of a point & € R? with respect to the triangle /\ =
[P1, P2, P3] is the unique solution to

x = [1py + Popy + Bsps, 1= PBi+ B2+ s (1.4)
Similarly, we write 8% = ( Bi»j,k’ Bgﬂﬂ gé»j’k) for the barycentric coordinates of & with respect to
the triangle [p;, Pj pi] C /. To save space in the recursion and differentiation matrices, we use the
short-hands

Vi i=2B; =1, Bij=Pi—Bj oij=0i+D5 for i,j =1,2,3. (1.5)
Note that
vz 0at Ly, i=2j-1,2j, o)
v <0 at A, i#2j—1,25. '
For any u = [Ul,UQ]T € R?, consider the corresponding directional derivative D, = u -V =
ula%l + uQa%z. The unique solution a := [ay, oo, 3]’ of
u = a1p; + a2py + azps, 0=01 + oz + as, (1.7)
2

is called the directional coordinates of uw. If u = q' — ¢*, with ¢',q> € R?, then aj = ﬁ} —
§ =1,2,3, where 8% := B, 53, Bi]T is the vector of barycentric coordinates of q’, i = 1,2.
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1.3.4. Function spaces

Let P;4(R?) denote the space of bivariate polynomials of total degree at most d and with real coefficients,
which has dimension vy := (d + 1)(d + 2)/2. On a triangle /A with barycentric coordinates 31, 32, (3,
a convenient basis of Py is formed by the Bernstein polynomials

d! o
d o P . . . _
Bilviz,is - i1Yiglis! 711 %2/8?337 i1+ i + 13 = d. (18)
Analogously, on the 12-split A of a triangle /\, we consider the spaces
Sa(A) = {f € CT" D) : flp, €Pg, k=1,...,12}, d=0,1,2,... (1.9)

The dimension ng of this space is [15, Thm. 3]

1 3
(no,n1,ma,n3,...) = (12,10,12,16,...),  ng= 5d2 +od+T, d>2 (1.10)

For d = 0,1,2, we equip these spaces with the S-bases s} = [de]?i | presented in [3].

Each piecewise polynomial on A can be represented as an element of the Pg-module IP’CIIQ, ie., as a
vector with components the polynomial pieces on the faces 2\, of A.

2. Simplex splines

In this section we recall the definition and some basic properties of simplex splines, and determine a
list of all simplex splines in Sy(&) for d = 0,1, 2, 3.

2.1. Definition and properties

First we provide the definition of simplex spline convenient for our purposes, and recall properties
necessary for the remainder of the paper.

2.1.1. Geometric construction

Let ki,...,kqs3 C R? be a sequence of points in the plane, called knots, defining a multiset K.
Let o = [ki,...,kq13] € R¥2 be a simplex whose projection P : R4*2 — R? onto the first two
coordinates satisfies P(k;) = k;, for i = 1,...,d + 3. For any integer k& > 1, let vol, denote the
k-dimensional volume. For k = 2 we simply write area := vola, to be understood in the usual sense.
We define the integral normalized simplex spline

MR R, MK = TP

This is well defined, independently of the choice of the simplex o [20, §18.3].

We will restrict ourselves to simplex splines on the 12-split A of a triangle /\, in which case
K = {p"* - pi°}. While M[K] is the simplex spline most commonly encountered in the literature,
our discussion is simpler in terms of the (area normalized) simplex spline, defined as

~1
QIK] := arca(A) - ("C |2_ 1) MIK].

Whenever pu7 = pug = g = 0, we use the graphical notation

ﬁ’ = Q[pipipsppIPEpi).
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1

FIGURE 2.1. From left to right, the simplex splines iQ[pi”mpaL §Q[P%P2p4p6], and
3Q[p1pyp4PsPg) in 2.

2.1.2. Piecewise polynomial structure

Q[K] is a piecewise polynomial on the convex hull [K] of K, with knot lines formed by the complete
graph of K [20, §18.5]; see Figure 2.1.

2.1.3. Degree
Each polynomial piece of Q[K] has total degree bounded as [20, §18.5]
deg Q[K] < d:=|K| - 3. (2.1)

2.1.4. Smoothness

The smoothness across a knot line can be controlled locally. More precisely, for any & € A\, let u be
the maximum number of knots of K (counting multiplicities), at least two of which are distinct, along
any affine line containing . Then Q[K] will have continuous derivatives up to order d+1— p at @ [20,
§18.6], which we will express with the notation

QIK] € CHH17H at . (2.2)

For example, if Q[K] is a C% !-smooth simplex spline of degree d, then any line segment in A\ can
contain at most two distinct knots.

2.1.5. Recursion
For d > 1, the simplex spline can be expressed in terms of simplex splines of lower degree [20, §18.5],

d+3

QU)(x) = Y BQIKC\Kil(@), S8 =1 Y Bk =weR: (23)

=1

For simplex splines with knot multiset £ = {p}* --- p{°} € R? composed of vertices of A, we can
therefore equivalently define Q[K] recursively by

0 if area([K]) =0,
QIK](x) := 1ix) (m)%(([%)) if area([K]) # 0 and |K| = 3, (2.4)
1, 8,QIC\k; (@) if area((K]) # 0 and K] > 3,
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with @ = Bipy + -+ + BroPio, B1 + -+ + P10 = 1, and B; = 0 whenever p; = 0. For instance, with
B1, B2, B3 the barycentric coordinates of A\,

C&3251‘1A+52'0+53'0=,31‘1A-

2.1.6. Differentiation
When it is defined, the directional derivative of the simplex spline of degree d can be expressed in
terms of simplex splines of lower degree [20, §18.6],

d+3

Dy QK] =d > QK \ kjl, da;=0, > ajkj=ucR (2.5)
j=1 J J

For instance, with a1, s, ag directional coordinates of u with respect to the triangle A\,
1
LY S¥ LY S 'S

2.1.7. Knot insertion

The simplex spline admits the knot insertion formula [20, §18.4]

d+3
K=Y cQUKUy\kjl, D ¢=1, > ckj=yecR: (2.6)
Jj=1 J J
For instance, repeatedly applying knot insertion at the midpoints p, = ¢ip; + ¢;p;, ¢ = ¢; = %, at
the cost of the end points p;, p; € {p;, P2, P3},

PRV NS WRFRLY N7 WL W
S SR N HIr WY
BY SIS N Y

2.1.8. Symmetries

The dihedral group G of the equilateral triangle consists of the identity, two rotations and three
reflections, i.e.,

3 1 2 2

AN \!

(=)
w

N

The affine bijection sending py, to (cos 27wk/3,sin 27k/3), for k = 1,2,3, maps A to the 12-split of an
equilateral triangle. Through this correspondence, the dihedral group permutes the vertices py, ..., P
of A. Every such permutation o induces a bijection Q[p}" ---pi{°] — Qlo(p1)* -+ o(p1y)"*°] on
the set of all simplex splines on 4. For any set s of simplex splines, we write

[slg :=={Q[o(K)] : QK] € 5, 0 € G}
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for the G-equivalence class of s, i.e., the set of simplex splines related to s by a symmetry in G. In
particular, the bases in (1.1) shown in Table 4.1 take the compact form

w=[LA A

o= 1 e e 1 SR
o= [ s 1),

= [ sl 1B,

5= i 58w dibe oo 1)
5= 1 38w o 1B o),

We say that s is G-invariant whenever [s]g = s (Property P1). One sees immediately that this is the
case for the bases in (1.1).

2.1.9. Restriction to an edge

Let e = [p;, py] be an edge of A with midpoint p; and let @i (t) := (1 — t)p; + tp;. By induction on
K1,

0 if i 4+ pj + e < |K] =1,
QK] o pir(t) = AN .
Ko girlt) ;f:(([/q))B(t) if pi + py + e = K| = 1,
where B is the univariate B-spline with knot multiset {0/ 0.5/7 1/ }.
We say that Q[K] reduces to a B-spline on the boundary when B is one of the consecutive univariate
B-splines BY, ..., Bg+2 on the open knot multiset {0971 0.5 1941} i.e.,

(2.8)

Bl :=Blo* 05,  BY:=B0%05'1"), ...,  BY,:=B[0.5 19 (2.9)

Similarly a basis {S1,...,Sn,} of Sq(&) reduces to a B-spline basis on the boundary (Property P2)
when, for 1 <i < k < 3, as multisets,

1 1 g
{S10 @ik, Sngovin} ={(BY) -+ (Biyq) 0™ "2}
One sees that this is the case for the bases in (1.1).

Remark 2.1. Property P2 should be interpreted as follows: It requires that after restricting a bivariate
basis to any edge of any triangle using the above reparametrization to [0, 1], one ends up with the
same univariate basis. For instance, for the C? quintics on the 12-split [15] this is the B-spline basis
on the open knot multiset {0°0.52 16}, while for the C! cubics on the Clough-Tocher split [13] this is
the cubic Bernstein basis (i.e., the B-splines on the open knot multiset {0% 14}).

2.2. Enumeration on the 12-split

Any simplex spline Q[K] on A is specified by a multiset K = {p}" ---p{{°}. Let us see how various
properties of Q[K] translate into conditions on the knot multiplicities.
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Certain segments, like [p;, pg|, do not appear as edges in the 12-split, meaning that C'*°-smoothness
is required across these segments. Hence, by (2.2),

pips = pipg = pgpg =0,
popir = pape = prpg = 0, (2.10)
papr = psps = prpg = 0.

If Q[K] has degree d, then, by (2.1),
To achieve C"-smoothness across the knotlines in A, necessarily

p1+ ps A+ pr 4+ po <d+1—r, pa+pe+pr <d+1l-—r,
p2 + p6 + pg + pio < d+1—r, pa+ps+us <d+1-—r, (2.12)
p3 + pa+ py +pao <d+1-—r, ps + pe +pg <d+1-—r,

whenever two of the multiplicities are nonzero.

Lemma 2.2. Suppose Q[p}" -+ pi{°] is a C"-smooth simplex spline on A of degree d. If d < 2r + 1,
then

Wy = pg = g = 0. (2.13)

Ifd < [%r—‘, then
pr10 =0, (2.14)
P+ s, o+ fie, [13 + fa, fa + pe, pa+ ps, s+ pe <d+1—r, (2.15)

(whenever both multiplicities are nonzero),
3
M4+M5+M6§§(d+1—7"), (2.16)
1
i+ iz iz = 5 (3r 43— d), (2.17)

Proof. Suppose pu7 > 1. Then, by (2.10), uo = pus = ug = pg = 0. Adding the first row in (2.12) and
subtracting (2.11), yields u7 < d — 1 — 2r. This is a contradiction whenever d < 2r + 1, establishing
the first statement of the theorem.

Next assume d < [%r-‘ Adding the first column in (2.12) and using (2.11), yields d + 3 + 2p19 <
3d + 3 — 3r. Solving for 10, we obtain the second statement of the theorem.

The third statement follows immediately from the first two and (2.12). Moreover, adding the inequali-
ties in the second column in (2.12), dividing by two, and using (2.11), one obtains the fourth statement.

Finally, together with (2.11), we obtain the fifth statement. |

Next we determine the C?!-smooth simplex splines of degree d on A for d = 0, 1,2, 3. Selecting
those that reduce to either zero or a B-spline on the boundary, we arrive at Table 2.1.

2.2.1. The case d =0 and r = —1

The C~'-smooth constant simplex splines Q[K] on A have || = 3, corresponding to triples of knots
not lying on a line.
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2.2.2. Thecased=1 andr =0

The C°-smooth linear simplex splines Q[K] on A have knot multiplicities satisfying py = pg = g = 0
by Lemma 2.2, and therefore p1 + --- 4+ pug + pio = 4 by (2.11). By (2.12), pio < 1. If pio = 1,
then (2.12) implies 1, p2, . .., pe < 1. Up to symmetry, and systematically distinguishing cases by the
number of corner knots, we obtain the simplex splines

Ao oo o -

If p1o = 0, then, again distinguishing cases by the number of corner knots, we obtain the simplex

A b s dd B

2.2.3. The cased=2 andr =1

The C'-smooth quadratic simplex splines Q[K] on A have knot multiplicities satisfying 7 = ug =
w9 = 1o = 0 by Lemma 2.2, and
p1+ -+ pe =5, p1+ p2 +pg > 2, pa + ps + pe < 3.

Distinguishing cases by the number of corner knots, yields

AdddoHas

2.2.4. The case d=3 andr =2

The C%-smooth cubic simplex splines Q[K] on A have, by Lemma 2.2, knot multiplicities satisfying
pr = pg = pg = p1o =0
p1 4+ po + pg >3, pa + s+ pe < 3. (2.19)
Let e = [p;, p;] be any edge of A with midpoint p;. If p; + pj + pp < 5, then Q[K][e = 0 by (2.8).
In the remaining case p; + pj + g = 5 we demand that Q[K] reduces to a B-spline on the boundary,
yielding the conditions
not(p1 + pa + p2 = 5 and py > 2),
not(uy + pg + pe =5 and pg > 1 and pe > 1 and pyg # 1),

(
(
ot(pg + p5 + p3 =5 and ps > 2),
(
(
(

3

o (2.20)

=

po + s+ ps =5 and pue > 1 and ps > 1 and ps # 1),
not(p1 + pe + p3 = 5 and g > 2),
not(uy + e + p3 =5 and py > 1 and pg > 1 and pg # 1).

Theorem 2.3. With one representative for each G-equivalence class, Table 2.1 presents an exhaustive
list of the C? cubic simplex splines on A that reduce to either zero or a B-spline on the boundary.

Proof. By (2.10), it suffices to consider the following cases according to the support [K] of Q[K], up
to a symmetry of G,

Case 0, no corner included, K| = [py, P5, Pg): By (2.11), w4 + pi5 + pe = 6, contradicting (2.15). Hence
this case does not happen.

Case 1la, 1 corner included, K| = [p;,p4,Pg): For a positive support pi,ps, e > 1, and since
ta + pe < 2 by (2.15), we obtain e% .
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> M A M A A MM A

B M A e A B S S R
Y- V-VV

B B A & &
Y-V VYV VYWY

B % A A D S &

TABLE 2.1. For d = 1,2,3, the C% '-smooth simplex splines of degree d on A, one
representative for each G-equivalence class, that reduce to a B-spline on the boundary.

Case 1b, 1 corner included, [K] = [py, P4, P5, Pg): By (2.11) and (2.19) one has p1 = 6—pa— s — g > 3,
contradicting p1 + ps < 2 from (2.15). Hence this case does not occur.

Case 2a, 2 corners included, [K] = [py, Pa, Pg|: For a positive support, u1, 2, e > 1. Since po + pe < 2
by (2.15), it follows po = g = 1. Moreover, pug = 1 by (2.20), and we obtain &

Case 2b, 2 corners included, [K] = [p;,Pa,Ps, Pg): Since u1 + ps, 2 + pe < 2 by (2.15), implying
w1 = po = ps = pe = 1. Then py = 2 by (2.11), contradicting (2.20). Hence this case does not occur.

Case 3, 3 corners included, [K] = [p;, Py, P3]: We distinguish cases for (u4, us, g), with g > ps > pe.
By (215)7 M, sy e < 1.

(0,0,0) One has p1, g, u3 = 2 by (2.20), and we obtain A

(1,0,0) One has ps + pg < 2 by (2.15) implying us = ug4 = 1, yielding G&) and *

(1,0,1) One has pg+ pug, g2 + e < 2 by (2.15), implying po = pug = pg = ug = 1. It follows from (2.11)
that p; = 2, yielding ﬁ)

(1,1,1) From (2.11) one immediately obtains .& -

3. S-bases on the 12-split

For d = 0,1, 2, 3, consider the S-bases sch = [Sin,]id, listed in Table 4.1. In this section, we relate these
bases through a matrix recurrence relation (Property P5), generalizing Theorem 2.3 and Corollary 2.4
in [3] for d < 2.
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FIGURE 3.1. Domain meshes (solid) with numbering of the domain points (circles)
and remaining dual point averages (hexagons), used in the quasi-interpolant (4.20), for
the bases (A) s2, (B) S2, (C) s3, (D) 83 on the Powell-Sabin 12-split (dotted).

Theorem 3.1. We have

sy = sy 1Ry, d=1,2,3, (3.1)

where Ry € ]P’}z’w is given by (3.4), Ry € Pio’m by (3.5), and R3 € IP’}2’16 by (3.7). Moreover,
Ry(i,5)Sia—1(x) >0 for alli,j and x € A.

Corollary 3.2. Suppose © € /Ny, for some 1 < k < 12. Then

sl =efRy--- Ry, d=0,1,2,3. (3.2)

In the remainder of the section we build up this recurrence relation, starting from degree 0. We will
make use of the short-hands (1.5) involving the barycentric coordinates 1, 32, 53 of & with respect to
the triangle A.

3.1. Constant S-basis

Since So(4) has dimension ng = 12, it is easy to see that there is a unique S-basis s9 = [S10,- - ., S12,0]
forming a partition of unity. Explicitly,

1, :BEAJ‘,

. ; (3.3)
0, otherwise,

Sjo(®) =14 (2) := {

where the /\; are the half-open subtriangles in Figure 1.1 (right), with disjoint union A U+ - - U5 =
/\. This implies that Corollary 3.2 follows immediately from Theorem 3.1.

3.2. Linear S-basis

The basis sT = [S11,...,5101] of S1(A) is the nodal basis dual to the point evaluations at the
vertices of &, i.e., Sj1(p;) = 0ij, 1,5 = 1,...,10. Represented as elements of P12, the basis functions
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S11,-..,510,1 are precomputed and assembled as the columns of the matrix
[vv 0 0 0 0 2832 4B 0 0 0 ]
Y1 0 0 25273 0 0 453 0 0 0
0 Y2 0 25173 0 0 0 453 0 0
0 72 0 0 2837 0 0 45 0 0
0 0 v 0 287 0 0 0 48 0
0 0 n3 0 0  2B12 0 0 43 0 12,10
Ri=10 0 0 0 0 280 485 0 0 —3y|SF " (3-4)
0 0 0 263 0 0 4812 O 0 —3m
0 0 0 283 0 0 0 4pB21 0 —37v9
0 0 0 0 2837 0 0 4B23 0 =37
0 0 O 0 2621 0 0 0  4P32 —373
|10 0 0 0 0  2B12 0 0 4831 —373)

The element R;(i,7) in row i and column j gives the value of S;1(z) in subtriangle /\;, which can be
seen to be nonnegative in ;. For instance, for the last column this follows from (1.6).

3.3. Quadratic S-basis

Next we consider the quadratic S-basis s;f = [S1,2,...,5122]. This basis is precomputed using the
recurrence relation (2.4). With appropriate choices of the coefficients in this relation, the result of the
precomputation is the matrix

fm 26 0 0 0 0 0 0 0 0 0 28]

0 0 0 28 72 26 0 0 0 0 0 0

0 0 0 0 0 0 0 2 19 26 0 0

0 iz 30 Bz 0 0 0 0 0 0 0 0

0 0 0 0 0 P21 361 Pa1 O 0 0 0 1012

R2=10 0 0 0 0 0 0 0 0 f32 36 foo|EP1 " (3.5)

0 & 3% 9 o 0o 0o 0 0 o % Ao

0 0 M B og P21 3 g o 0 0 0

0 0 0 0 0 o0 2 B B2 3 o

L0 0 -5 0 0 0 -y 0 0 0 -3 0 ]

The element in row ¢ and column j of the matrix product R;(x)Rz(x) gives the value of S;2(x)
in triangle A\;. This computation only involves nonnegative combinations of nonnegative quantities.
Thus the computation of the S; 2 is fast and stable.

Remark 3.3 (Alternative quadratic S-basis). The basis s is the unique quadratic simplex spline
basis with local linear independence, as changing out any of its elements with another spline in the
second row of Table 2.1 will cause the outer subtriangles A\1,/\s, ...,/ \g to become overloaded.

Consider the basis so as in Table 4.1, which only differs from so in the entries 3,7,11, satisfying the
relation

T = (3.6)

[ss) SIEE NI
D—ol= O
= O Nl

g
et
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which follows from knot insertion (2.6) at the midpoints in terms of the endpoints. Hence 33 = sd T,

where Ty € R'%!2 is obtained from the identity matrix by replacing its principal (3,7, 11)-submatrix
by T%. Hence (3.1), (3.2) hold, for d = 2, with sy replaced by 32 and Ry replaced by Ry := RyT5.

3.4. Cubic S-basis

Finally we consider the cubic S-basis 33T = [S1,3,...,516,33). This basis is precomputed using the
recurrence relation (2.4). With appropriate choices of the coefficients in this relation, the result of the
precomputation is the matrix

[m 26, 0 0 0O 0O 0O 0 0 0O 0 26 0 0 0 07
0 fs B O 0O 0O 0O 0 0O 0 0 0 28 0 0 0
0 0 % 0 0 0 % 0o 0 0 £ o 2 22 o &
0 0 P s O 0 O 0 0O 0 0O 0 0 26 0 0
0 0 0 2 7% 26 0 0 0 0 0 0 0 0 0 0
Ro |0 0 0 0 0 By B 0 0 0 0 0 0 26 0 0 pi2.16
5710 0o & o 0o o0 = o0 0 0 & o o 2 2 & |Sh
0 0 0 0 0 0 B B3z 0 0 0 0 0 0 28 0
0 0 0 0 0 0 0 26 v 26 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 f52 B 0 0 0 28 0
o 0 2 o 0 0o 2 0o 0o 0o @2 o 2 o 2 L
Lo 0o 0 0 0 0 0 0 0 0 fB5 Pz 20 0 0 0 |
(3.7)

Proof. [Proof of Theorem 3.1] It remains to show the statement in the cubic case. Using the G-
invariance of the basis, it suffices to show the recursion relations for the columns j = 1,2,3,13,16 of
R3(,3) We find

Si,3 1= 4@% = 15146 =151,
Sa3 = 5 @9 1 5%’2’6&+ ~By 266% = $1352,2 + 25251 2,
S3,3 1= & = 51&-%52& e b1 (;C&+ ;&) + B2 <;$’+ ;%)
BRISE ST Se YRStEr R ST
= b (i§57,2 + lé53,2 + S4,2> + B2 ( 511,2 + 53 2 + S 2)
= P2S22+ 3 (51 + B82)S3,2 + 1542 + 51572 + 52511 2,

S13,3 ::$3 = 51(%)4-,32% +53$3 (29 51( é +;$) +52£ +ﬁ3$)

2 2
= p < =511,2 + Ss 2> +282512,2 + 2B3522 = 233522 + 55153,2 + 551511,2 + 22512,2,

S16,3 1= 4$ 23 1 1 <ﬁ1 %—l—ﬁz* —I—ﬁs&) 1 (51572 + B2511,2 + £353.2) -

Clearly all coefficients in the recurrence relations for Ss 3, 313,3, S16,3 are nonnegative on /\. The same
holds for S; 3 on the triangle [py, p,, pg] and for S 3 on the triangle [p;, py, Pg]. The remaining columns
of Rj3 can be found similarly, or using G-invariance.
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The final statement is easily checked by verifying that for each column ¢ with entry ; the corresponding
spline S; 2 has support satisfying 8; > %, and for each column ¢ with entry 3;; the corresponding

spline S; 2 has support satisfying 5; > Bj. [ |

Remark 3.4 (No local linear independence). Since S3(4A) contains all 10 cubic polynomials on A\,
the basis s3 has local linear independence (Property P9) if exactly 10 cubic S-splines in s3 overlap
each triangle A\p. Now the support of S;3, j = 3,7,11,13,14, 15,16, a total of 7 functions, contains
all the triangles. While the inner triangles 2\;, i = 7,8,9,10, 11, 12, contain the support of 10 cubic
S-splines, the border triangles A\;, i = 1,2, 3,4, 5,6, contain the support of 11 cubic S-splines. Hence
the basis s3 does not have local linear independence.

Remark 3.5 (Alternative cubic S-basis). Consider the alternative basis 83, which only differs from
83 in the entries 13, 14,15, 16. From (2.7) it follows that

5000
0200
=Ty TS =, & 3 ol (3.8)
11t
4 4 4

o=

Bireb

i

and therefore 33 = si T3, where T3 € R!6:16 is obtained from the identity matrix by replacing its
principal (13,14, 15, 16)-submatrix by T%. Hence (3.1), (3.2) hold, for d = 3, with s3 replaced by 33
and Rj replaced by Rg := R3T'3 (but keeping s and Ry the same). The alternative basis §3 does not
satisfy Property P9, by Remark 3.4 and since the transformation (3.8) does not change the support
of the basis functions.

3.5. Fast evaluation

Since the support of most splines in the bases s4 only cover part of 2\, the evaluation procedure (3.2)

of 84 (and similarly for its derivatives) for points on a given triangle can be efficiently implemented

using multiplication of submatrices. For this purpose we define the index sets
Ghi=1{j: Lk Csupp(Sja)},  k=1,...,12, d=0,1,2,3,

1= U _ (3.9)
’Hd;:{];Rd(k,])#O}, k=1,...,n4-1, d=1,2,3.

Here Qs encodes the splines in s;lf that are nonzero over /\;, and H’j encodes the splines in 35_1 that
appear in the recurrence relation for Sy 4. In particular Q(])“ = {k}, and the remaining sets are listed
explicitly in Table 3.1. We use the symbols gfl and hs for the vectors consisting of the elements in g[;
and ’HS, respectively, arranged in increasing order.

For d = 0, 1,2, it is easily verified that each G¥ contains vy = (d+1)(d+2)/2 = dim P4(R?) elements.
Hence g% = [i1,...,i,,]T with i; < .- <4,, (cf. Table 4.1). Also note that

Gi=HE and  GY =HEUMHRUME, [i1,ii3] =g, k=1,...,12. (3.10)

For d =0,1,2,3, let Sﬁd be the polynomial representing S; 4 on A\, and let

k k k 1T —k k(o k
Sq = [va - "Snd,d] ) 5, = 84(94);
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Hh =gl 2k o gk o
k=1 1,6,7 1,2,12 1,2,12 1,2,3,10,11,12 1,2,10,12
k=2 1,4,7 4,5,6 2,3,13 1,2,3,4,11,12 1,2,4,12
k=3 2,48 8,9,10 3,7,11,13,14,16 2,3,4,5,6,7 2,4,5,6
k=4 2,58 2,3,4 3,4,14 3,4,5,6,7,8 4,5,6,8
k=5 3,5,9 6,7,8 4,56 6,7,8,9,10,11 6,8,9,10
k=6 3,6,9 10,11,12 6,7,14 7,8,9,10,11,12 8,9,10,12
k=17 6,7,10 2,3,11,12 3,7,11,14,15,16 2,3,7,10,11,12 2,10,12
k=8 4,7,10 3,4,6,7 7,8,15 2,3,4,7,11,12 2,4,12
k=9 4,8,10 7,8,10,11 8,9,10 2,3,4,6,7,11 2,4,6
k=10 5,8,10 3,7,11 10,11,15 3,4,6,7,8,11 4,6,8
k=11 5,9,10 3,7,11,13,15,16 3,6,7,8,10,11 6,8,10
k=12 6,9,10 11,12,13 3,7,8,10,11,12 8,10,12

TABLE 3.1. The sets HX and G¥ from (3.9), with G§ := a’; u{3,7,11,13,14,15, 16}

which represents the (ordered) vector whose elements form the set S¥ := {S}'f g1 J € Gk Next, for

1 < k <12, define submatrices

R} := Ry(k,g¥) € RY?,

R} == Ry(g},g5) e R®S,

where g’j is defined in (3.9), my =---=ng =11 and n; = --- = 12 = 10.

Example 3.6. Since g} = [1,6,7] and g} = [1,2,3,10,11,12] as in Table 3.1,

M 282 0

0 283

R; := Rs(g5,g5) € RO™

Ri(z)Ri(x) = [y1 2Bs2 4B2] |0 0 0 P32 3B fi2
0 51273 B2 % 712,2

We are now ready to state the polynomial version of Corollary 3.2.

Corollary 3.7. For d = 0,1,2,3, k = 1,...,12, coefficient vector ¢ € R™ with subvector c(gfl),
Fy;= SEC S Sd(&), and Ff = Fd‘Ak € Pd(Rz),

si" =R}---Ri,  F} =R} Ric(g}) (3.11)

Proof. Clearly sk =1 and F} = ¢(k), showing the result for d = 0. By Corollary 3.2,

Sk =Ri(k.j), j=1,...,10,
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and (3.11) follows for d = 1. Now
10

SkQ — el RiRy(;, ZRl (k,i)Ra(i,7)
i=1
= Y Ry(k,i)Ra(i,j) = Ri(k, g})Ra(gh, ), j=1,...,12,
i€gy
12 10
Sg]?,:a =ej RiRyR3(:,j) = Z ZRl(k»l)R2(l»m)R3(m,j)
m=1[=1
= Ri(k, g})Ra(g7, 95) R3 (g5, ), j=1,...,16.
Hence (3.11) follows for d = 2,3 as well. [ |

Remark 3.8. For the alternative bases 33 (resp. 33) the set H5 (resp. H5) needs to be recomputed from
the modified recursion matrices Ry (resp. Rg) The splines in $3 and s3 have identical support, so that
they can be evaluated by slicing their recursion matrices using the same index vectors. In the quadratic
case, 5’3 25 5’7 25 511 -2 have full support, as opposed to the trapezoidal support of S3 2,57 2, 511,2. Hence
R (resp G3,G5, resp. G3,GS) need to be augmented by {7} (resp. {11}, resp. {3})

3.6. Derivatives

Analogous to the evaluation procedure for splines expressed in an S-basis, this section presents a
formula and evaluation procedure for their (higher-order) directional derivatives (Property P6). This
is achieved by applying the Leibniz rule to (3.2), and making use of special properties of the recursion
matrices R;, made precise in the following two lemmas. As before, we consider barycentric coordinates
B and directional coordinates a with respect to a triangle 2\ = [py, ps, P3]-

Lemma 3.9. Let m > 1 and f € C™(U), where U C R? is a region and © € U with barycentric
coordinates 8 = (B1, B2, B3). Fori=1,...,m, consider vectors u; € R? with directional coordinates
a; = (af, ab,a8). Then
SR o f
D, ---D. f— l g 3.12
Um u f Z Z T 0B, -~ 0B, (3.12)

11=1 im=1

Moreover, with o, ay directional coordinates of eq, e,

1] (2] i, O
81:71”1835 =2 X ( )( 2)“1 Q3 aﬂif’ (3.13)

[i|=m t1+i2=1

where we used standard multi-index notation.

Proof. Withx = x(01, 82, B2) = [1(x)p1+L2(x)py+L3(x)ps, we can consider f(x) = f(x (b1, B2, 52))
as a function of S, B2, Bs.
For any t € R and j = 1,...,m, the barycentric coordinates of & + tu; are 8 + ta;, implying

I%ﬂ@=gﬂ%+mM%H&+mmnH&+m%@ (3.14)

=0
JOf g Of O
o ap1 58 B2 RN 9Bs
Hence the action of D,,; on f is that of the differential polynomial
. 9 )
o+ ad—+af—,
Yop  P0By T Pops

j=1,...,m. (3.15)
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Since these differential polynomials commute, we can apply polynomial arithmetic to compute their
product, and thus arrive at (3.12).

Next consider the standard basis vectors e; and es, with corresponding directional coordinates ar; =

(a},ad,ad) and as = (af,03,03), and let {uy,...,un} = {€" €5} as multisets. Then, taking the

product of (3.15) in this case and applying the multinomial theorem twice,

of i1\ i, O i\ 4, O]
OuTT 0" (§m<>°‘ o )\ 22, \ia ) ¥ o7 |

from which (3.13) follows. |

Lemma 3.10. For any z,y,u € R? and i =1, 2,
Ri(z)Rit1(y) = Ri(y)Ri+1(z), (3.16)
(DuRi)RZ‘_;,_l(CC) = Ri(w)(DuRz‘—i—l)- (317)

Proof. Fix x,y € R? with barycentric coordinates 8% and BY, respectively. Equation (3.16) will
follow from

Ri(B*)Ri11(BY) = Ri(BY)Riy1(B%),  i=1,2. (3.18)
For i = 1 this was proved in [3]. For i = 2 it was checked symbolically in the Jupyter notebook. Taking
the derivative with respect to & on both sides of (3.16) and setting y = « we obtain (3.17). |

Note that, for fixed u, the matrices D, R; and D, R;;1 are constant. In fact, with a = (a1, g, a3)
the directional coordinates of u, Lemma 3.9 implies

OR4(B) . OR4(B) IRa(B)

Ujuw:=DyR = d=1,2,3. 3.19
d,u u d(ﬁ) ] 861 2 aﬁQ as 663 ) s 4y ( )
From the definition (1.5) of v; :=28; — 1, B; j := f; — Bj, and 0 j := B; + f;, it follows that
I 9P 0o 5
a7 = 20k, L = Opi — Ok g L = Opi + Ok j-
6614: 5] 6614: )2 ) 8/3k )2 5J
Hence one obtains the matrix Uy, from Ry by replacing
63' =, Bi,j = Qg = oG — Q) Y5 20éj, Oij — Tij = Oy -+ Qg

Analogous to the recursive evaluation (3.2) of the value of sg4, there exist recursive formulas for its
directional derivatives.

Theorem 3.11. For any point © € R? and direction vectors u,v, w € R?,

Dy (R1(x) Ry(x) R3(x)) = 3Ry () Ra(2)U'3 0, (3:20)
DvDu(Rl(m)RQ(m)Rg(ac)) = 6R1($)U27UU3’u, (321)
DvaDu(Rl(ZB)RQ(:D)R3(:B)) = 6U17wU27vU3,u, (3.22)

where in (3.22) we assume that x is not on a knot line of A.

Proof. By the product rule

Du(RleRg) = (DuRl)RgRg + R (DuRz)Rg + RlRQ(DuRg).
Using (3.17) repeatedly we obtain (3.20). Differentiating (3.20) using the product rule, applying (3.17)
and that D,U3z, = 0, we obtain

DyDy(R1RoR3) = 3((DyR1)R2U 3, + R1(DyR2)U34,)
= 6R1 (w)(Dng)U&u,
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i 0i Sai,S SUi=3|e %D(a17a37a3)so—i73|6 3%2D(2o¢1,a3,a3)50i73’5

1 1 ! (% B3 201 B2 402 B}

2 2 % & Bg QOZQB% + OélgB% 20[2(40&1 + a2)B11 + Oé%SBQl
3 3 A B3 9B} + o B? 203B] + 20109 B3 + 203 B}
4 4 ! c& B3 23 B2 + 201 B2 a2y B) + 201 (g + 4a2) Bl
5 5 1 & B3 20, B2 403B}

6 12 3 % 0 203 B} 2a3(4o + a3) B

7 13 %} 0 203 B3 8anas Bt + 2a3(3a; + az) B3
8 14 '& 0 203 B3 2a3(3ag + 1) B3 + 8aya3 Bl
9 6 3 &) 0 20387 2a3(4ag + a3) Bl

10 11 & 0 0 203B} + o3B3

11 16 : é} 0 0 o3Bj]

12 7 e&; 0 0 o3B3 + 2a3B3

13 15 eé) 0 0 0

14 10 3 'é 0 0 0

15 8 3 & 0 0 0

16 9 : é 0 0 0

TABLE 3.2. With o; the reordering (5.2), restrictions of Sy, 3 and its directional deriva-
tives to e = [p;, Py| are expressed as linear combinations of the univariate B-splines
B, ..., Bi.,.

and (3.21) follows. The proof of (3.22) is similar.

Splines in S3(A), and their directional derivatives of order k, restrict to univariate C>~*-smooth
splines of degree 3 — k£ on each boundary edge, with a single knot at the midpoint. Hence they
can, after a reparametrization (2.8), be expressed as linear combinations of the univariate B-splines
Bf,..., Bfil+2 on the open knot multiset {09+1 0.5 19+1}; see Table 3.2. Here the directional derivatives
D,, are written in terms of the directional coordinates a1, as, a3 of u with respect to the triangle

A= [Py, P2, P3]-

147



T. LycHE & G. MUNTINGH

Example 3.12. The directional coordinates of u with respect to the triangles A\ = [p;, p,, p3] and
/
A = [p17p4>p6] are

U = a1Pp; + aaPy + a3ps = 201Py + 200p, + 203pg, @1 + s + a3 = 0.
Repeatedly applying the differentiation formula (2.5) with respect to A/,

%Du% =201 g . ima% — 1} g

When applying (2.8), the weight of S 3 cancels the ratio ;rr:;([%)), yielding the first row in Table 3.2.

4. Marsden identity and ensuing properties

In this section we derive and apply Marsden identities for the bases in (1.1), establishing Property P3.
These identities imply polynomial reproduction, i.e., Pq(A\) C Sq(A), yield the construction of quasi-
interpolants, imply stability of the bases in the L., norm, and yield a bound for the distance between
spline values and corresponding control points.

4.1. Derivation of the Marsden identity

To the vertices p; of A\ we associate linear polynomials

cj=cj(y)=1-p;yeP, j=1,...,10, (4.1)
which satisfy, by (1.2) and (1.3),
C_Cl+CQ C_CQ—I—C:), C_C3+Cl c _caatc+tces (4.2)
4 — 2 ; 5 — 2 ’ 6 — 2 ) 10 — 3 . .

Table 4.1 introduces dual polynomials V; 4 as d-fold products of these linear polynomials. Writing the
kth factor of ¥; 5 as 1 —p;r,dvky, with p; 4 € {P1, ..., P10} the dual points of degree d, one obtains the
explicit form

d
Hl—p]dkyel[”d, j=1,...,n4, d=0,1,2,3, (4.3)

with ng4 the dimension in (1.10). For each basis, the dual polynomials are assembled in a vector
Y= Yig.. .,V at, d=0,1,23. (4.4)
Corresponding to the dual polynomials ¥, 4 (or basis functions S 4), we define the domain points

Pjd1 T T Pjdd .
éj,d:: : d : ) J=1...,nq,

as the averages of the corresponding dual points. Figure 3.1 shows each set of domain points, sym-
metrically connected in a domain mesh. Note that each set of domain points satisfies Property P4.

Theorem 4.1. For x,y € R? we have
Rd(x)’lpd(y) = (1 - mTy),lnbdfl(y)a d= 17 27 35 (45)
where Ry(x) is given by (3.4),(3.5),(3.7).

Proof. This holds for d = 1,2 by Theorem 3.4 in [3]. Consider d = 3. Let x,y € R2. Let (51, 82, 53)
be the barycentric coordinates of & with respect to A\. From (1.4), it follows

Brei(y) + Baca(y) + Bacs(y) =1 —z'y.
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Thus, it is enough to show that

(Rg'l,bS)i = (5161 + 5262 + ,8303)\111'72, 1 =1... s 12. (46)
We verify this statement for ¢ = 1,2, 3, by taking the product of the ith row of R3 as in (3.7) with 13
as in Table 4.1, which gives

(R33)1 = 1V13+ 2B2Wa 3+ 2830123 = (281 — 1)c + 2Bactes + 2B3c3 o
2
:)<(51 — B2 — B3)cr + Pa(c1 + c2) + Ba(er + 03))6% = (5101 + Baca + ﬂ363)\1’1,2,
(R3vp3)2 = B13%23 + BoVWs 3+ 2B3F153 = (B1 — B3)cica + Bacicaca + 2B3c1cace

(4.2
)((51 B3)c1 + Baca + Bs(er + 03))6104 = (B1c1 + Bacz + B3c3) Voo,
3(R3v3)3 = 012W33 + B3V73+ B3W113 +281W133 + 202W 143 + B3¥16 3

= Bi(crcaca + 2c1cac) + Ba(crcace + 2cacacs) + B3 (cacses + cscger + cicacs)

(4.2) 1
="3B1c1c4c10 + 3B2c2c4c10 + §ﬂ303 (CQ(CQ + 63) +cico 4+ (61 + 63) + Clcg)

= )3(5161 + Baca + B3c3) V3 o.

The remaining components are found similarly, or using G-invariance. |

From Theorem 4.1 we immediately obtain the following Marsden identity, generalizing Theorem 3.1
in [3].

Corollary 4.2 (Marsden identity). With S; 4 and ¥;q as in Table 4.1,
(1-=z"y) ZS, jd(y) = sa(@) Py(y),  d=0,1,2,3. (4.7)

As was shown in [15, Thm. 5}, the Marsden identity can be brought into the following barycentric
form, which is independent of the vertices of the triangle.

Corollary 4.3 (Barycentric Marsden identity). Let 8; = fj(x), j = 1,2,3, be the barycentric coordi-
nates of © € R? with respect to /\ = [py, py, P3]. Then (4.7) is equivalent to

ng
(Bre1 + Baca + Bacs)? = Z S;.d(B1py + Bapy + Bap3)Vj(ci, 2, c3), (4.8)
j=1
where © € /\, c1,c2,c3 €R, and, for j =1,...,nq4,
d
Uj(er,ea,e3) = [ (Bi®jap)cr + Ba(pjan)ca + Bs(pjan)es)-
k=1

Example 4.4. The barycentric Marsden identity for the cubic S-basis s3 is

(181 + c2B2 + c3P3)® = (CIA + 02& + C3A>
1. 1s 1o 1,
1 10203‘&—# Clg% + 61046%.—# czczlc&)—l—016204&4-010406%J
&—i— 70205 &vt 0305 &—1—020305&—%020405&
%é + CgCﬁé clcﬁeé —1—010306& C&
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Remark 4.5. Substituting (3.6) and (3.8), we also obtain Marsden identities for the alternative bases
Sq = [Sj.alj, for d = 2,3, with corresponding dual polynomials ¥q = [¥; 4;, shown in Table 4.1.

Remark 4.6 (Are there other linear S-bases on the 12-split?). In order to not violate Properties P1
and P2, we can only alter s; by replacing

L@)Lby L&JQ (4.92)
E L b | R, ;g & L by | SR ]g 7 (4.9b)
% by.&y (4.9¢)

Regarding (4.9¢), it can be shown from the piecewise polynomial representation (obtained through
recursion) that

1 3 /1 1 1 3
S00= R —oftbe 1 (Gl * 5 AR 3 HR ) =y (05 S S (@0

Substituting this into the Marsden identity for s; yields the terms (67 — %010) S71 = 5015’7,1 and
1511 with coinciding domain points, violating Property P4 when counting multiplicities.
Regarding (4.9b), knot insertion at the barycenter p;y in terms of the midpoint ps; and opposing

corner p; gives
1 1 21 1 2
— = =z _Zz == - . 4.11
571 3% 2$ 34 21% 3101 (4.11)

Substituting this into the Marsden identity for s; yields the term (010 — %(07 +cg + Cg)) S101 =

—c10510,1, whose negative weight violates Property P3. Moreover, since knot insertion at the midpoints
in terms of the corners gives

%®

& , (4.12)
e

replacing instead { %} by [ &] still leaves the negative weight of S1¢,1. Moreover, combining
g g

(el NIEE I
NN = O

Il
Nl—= O M=

either of these replacements with (4.10) instead yields a negative weight for

Regarding (4.9a), knot insertion at the barycenter p;, in terms of the midpoint p, and opposing

corner ps gives
St ; A GA (4.13)
4L 3(&) 3 ) ’

Substituting this into the Marsden identity for s;, and eliminating ‘A using (4.10), yields the

term (610 — % (ca+c5+ 06)) S10,1 = —c10510,1, whose negative weight violates Property P3. Substi-
tuting (4.11) makes this weight even smaller and using (4.12) does not change this weight, while

substituting (4.10) instead yields a negative weight for A
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Remark 4.7 (Are there other quadratic S-bases on the 12-split?). In order to not violate Properties P1
and P2, Table 2.1 shows that our only option is to replace

PR

in either the basis s9 or Sy. Let us consider the latter case. Knot insertion at the midpoints in terms
of the endpoints gives

~ 1 1 2~
RPN 7 O

Inserting this equation in the Marsden identity for sy yields the Marsden identity for the new basis,

1 1
(c1B1 + c2fa + c3B3)% =+ 1 {C%s% + 3 &4' ‘3 é} 1 {C%%JJr C%&%- C%&]
+ {C1C4A + CICG$ + 0204& + 0205& + 6305& + 0306(&,} .

Hence the new basis does not form a positive partition of unity. Moreover, since the matrix in (3.6) is
nonnegative, the same holds for the basis obtained by making the replacement (4.14) in ss.

Remark 4.8 (Are there other cubic S-bases on the 12-split?). Similar to the quadratic case, our only

option is to replace
[&} b [A} (4.16)
g g

in either the basis s3 or s3. Analogous to Remark 4.7, the latter case yields a basis without positive
partition of unity. For the basis obtained by making the replacement (4.16) in s3, a similar calculation
yields dual polynomials without linear factors, violating Property P3.

4.2. Polynomial reproduction

The barycentric Marsden identity can directly be applied to express Bernstein polynomials on A\ in
terms of the S-basis. In particular, applying the multinomial theorem to the left hand side of (4.8), one

d appears as the coefficient of ¢}'ci?cs’. Hence, defining

notices that the Bernstein polynomial B Lo

the “coefficient of” operator [10]
1 Hi1tiatis
i1ligliz! O D Ok

for any formal power series F'(c1, ca,c3) and nonnegative integers with sum iy + ig + i3 = d,

[c’i1 c?cé‘"’]F = (0,0,0)

ng
Bl ivin = 8;.a(B1py + Bapa + B3ps)[ci ¢ 1T (c1, c2, c3).
i=1
Thus one immediately sees from the monomials in the dual polynomials which simplex splines appear
in the above linear combination. For instance, substituting the dual polynomials from Table 4.1 and
the short-hands (4.2), one obtains

1 1 1 1
B = by~ 1 1o 1 * il
800 v N 4& Tide T idte (4.17)
1 1 1
B = oy = idB0  2efl " idle (419
1 1 1 1
2= oy~ idle t ot 1d 188 (419

consistent with the result achieved by repeatedly applying knot insertion, see for instance (2.7).
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TABLE 4.1. Basis functions 5 4, gj,da domain points §; 4, Ej,d, and corresponding dual
polynomials ¥; 4, \IIM, factored into linear polynomials ¢; as in (4.1).
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4.3. Quasi-interpolation

Based on a standard construction, the Marsden identity gives rise to quasi-interpolants in terms of the
de Boor—Fix functionals. In this section, we present a different quasi-interpolant that solely involves
point evaluations at averages of dual points (Property P7).

Let (81, B2, B3) be the barycentric coordinates with respect to the triangle /\. As explained in [15,
§6.1], the Bernstein polynomial Bfll sy Can be expressed in terms of the simplex spline basis by
replacing each dual polynomial in (4.7), after substituting (4.2), by its coefficient of ¢} ci¢%.

Theorem 4.9. For d =1,2,3 and each basis in (1.1) with dual points Pjaks consider the map
nd
Qd : CO(A) — Sd(&), Qd(F) = le,d(F)Sj,d; (4.20)
j=1

where the functionals l; 4 : CO(A\) — R are given by

d d
m m Pidk, v " T Pjdkm
la(F) =Y H(_l)d > F( e J )

m=1 1<k <<k <d m
Then Qg is a quasi-interpolant reproducing polynomials up to degree d.

Proof. For d = 1,2 the statement is shown in [3, §6.1]. We give an explicit proof for the re-
maining case d = 3, analogous to the proof provided in [13]. In that case [l13(f),...,lis3(f)] =

[%, %, %, —%, —%, —%, %]f(M), applied component-wise, where
D131 T Di6,3,1
D132 T Di16,3,2
Pljrs,:s Tt P1§;3,3
P1,3,1TP1,3,2 Pi16,3,1T7P16,3,2
M = s E— G —
P1,3,117P1,3,3 L P16,3,117P16,3,3
2 2
P1,3217P1,3,3 o P16,3,21P16,3,3
2 2
P13,11tP1321tP133  Pi6,3,117P16,3,21P16,3,3
L 3 3

Lo L L 15 U5 U5 Us lg lg lg lg L 11 Is lg L
L Iy 15 15 U5 Us lg lg lg lg Ui Ui I3 Iy Il s
i I3 I3 13 U5 Uy Iy Iy lg bLin Uin ULin L I3 Iy
=\l UL Iz I ls Is l; lg ly lg lyn 1Ly liz lig 1oy I3
i iz Lir Lig U5 lig lig lag lg la1 la1 oo lao lig lag 111
Ii li7 Lig bLig U5 lig lag lag lg lo1 lao log laz loy los 7
L L U3 Uy ls lg Uz Ig lg lyp lin liz Liz Ly bLis lig
with I; = §&; 3 for j =1,...,16 the domain points, and with the quarterpoints

Iy — P+ Dy lis — Py + Dy Iy — Py + D5
2 ’ 2 ’ 2 ’
Ly — P3 + Ds Iy = P3 + Dg lyy — P1 + Dg
2 ’ 2 ’ 2 ’
) _ P4t Dg I _ P4t Dy I i
B=""5 u="0 %=""5 >

as in Figure 3.1c. To prove that Q)3 reproduces polynomials up to degree 3, i.e., Qd(ijk) = ijk

whenever i + j + k = 3, it suffices to show this for B3y, B3, Bj;; using the symmetries. Evaluating
these polynomials at the dual point averages yields Table 4.2.
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L I l3 ly ls le l7 ls ly o lu L2 s
A OB L ok o 0 0 0 0 4 By
Ay 0 x 3 = 0 0 0 0 0 0 0 0 2
A) 0 0 0 0 0 0 0 0 0 0 0 0 :

e s Lie Ly L lig  lo  lao lao ly b los
A ok F B E 0 0o & B O} & &
D N A R T B S S
& 3 3 2 0 0 0 0 0 o £ £ &

TABLE 4.2. The values of the Bernstein polynomials B3y, B30, B3;; at the dual point
averages lq,...,1lss.

For instance, the Bernstein polynomial Bi”n is only nonzero for lis, 14,115,116 and los, Loy, lo5. Hence
only the entries in the last 4 columns and last 2 rows in f(M) can be nonzero, yielding the coefficients

1 l l l
3 _|_4 9 3 23 b24 25 7
(s o] Bin = { 2} Bin <[l13 Ly Us l16D

w

3 3 3
_[_a 91|16 16 16 9] _[1 1 1
—{—3 2“116 Py 21—[4 zzl}a
9 9 9 9
consistent with (4.19). Similarly one establishes reproduction of B3y, and B3,,; additional details are
shown in the Jupyter notebook. |

The quasi-interpolant Q4 is bounded independently of the geometry of 2\, since, using that s, forms
a partition of unity,

d d
m®(d
1Qa(F)1a) < max a(F)| < CallFllp oy, Ca= ) ar <m>

m=1
In particular, [C1, Ca, Cs] = [1, 3, 9]. Therefore, by a standard argument, Q4 is a quasi-interpolant that
approximates locally with order 4 smooth functions whose first four derivatives are in Loo (D).

Remark 4.10. In [3, Lem. 6.1] it was shown, for d = 1, 2, that the functionals /; 4 form the dual basis
to sg, i.e., 1;a(Siq) = d;j. This is equivalent to the statement that Qq reproduces all splines in S;(A&).

However, for d = 3 this is not the case. For instance, repeatedly using the recurrence relation (2.4)
with respect to the triangle A’ := [pl,p4,p6

N e LA N
As immediately seen from the support of S13 and Flgure 3.1c, S13(l;) # 0 for i # 1,2,12,13,17,22.
Hence 116,3(S1,3) *S1 3(l1) % 75 0.

Remark 4.11. Although Q4 involves ng dual functionals each involving a sum with an:l (’ZZ) terms,
many of the dual point averages (and hence the point evaluations) coincide. In particular the quasi-
interpolant for the linear basis s; involves 10 point evaluations at the domain points. The quadratic
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bases s, 82 (respectively cubic bases s3,s3) involve 16 (respectively 25) point evaluations, whose
carriers are shown in Figure 3.1.

4.4. L., stability and distance to the control points

Each basis s in (1.1) is stable in the Lo norm with a condition number bounded independent of the
geometry of A\

Theorem 4.12. Let F = sTc with s as in (1.1). There is a constant x > 0 independent of the
geometry of /\, such that

-1
£ lelloe S HF L) < llelloo- (4.21)
Proof. For s = s, s1, 82 this was shown in [3, Thm. 6.2], with the best possible constants. It remains
to show this for s = [S1,...,5y,] = S2,83,83. Let A = [Aq,..., )\nd]T be the point evaluations at the
corresponding domain points £ = [£;,...,§,, ]

Applying these functionals to F' = sTc¢ yields a system f := AF = Me, with collocation matrix
M = xst =[5 ({i)]Z;:l. A computation (see the Jupyter notebook) shows that each collocation
matrix is nonsingular, and its elements are rational numbers independent of the geometry of A\. Note
that ¢ = M~ f are the coefficients of the Lagrange interpolant of the function values f at the
domain points &€. Hence, since s forms a partition of unity and therefore || M|/~ = 1, (4.21) holds with
ko= [ Moo [M ™ oo = [|1M 7o u

An exact computation in the Jupyter notebook shows that the L., condition numbers for the
collocation matrices M1, Mo, Mo, M3, M3 corresponding to the bases s1, s2, 82, 83, 83 and domain

points Elv 525 527 537 53 are

2 41
R1 = 1, Ro = é ~ 3.111, R3 = 75 = 51.875,
2995 1397 (4.22)
Ko = 5 ~ 32.778, K3 = 7 /2 76.294.

Using a standard argument (presented in [15, Cor. 1]), one obtains an O(h?) bound for the distance
between values of a spline function F' = sTe, with s = s9, 39, 83, 33, and its control points.

Corollary 4.13. Let h be the longest edge in /\. With s = 89,382, 83,33 and corresponding domain
points &;,...,§,, and condition number k, let F' = sTc with Hessian matriz (polynomial) H and

values f = [F(&,),...,F(&,,)]". Then

If = clloo < 26h% max || H(2)]|o-
e

5. Smooth surface joins

Let A\ := [py, py, p3] and A= [Py, P2, P3| be triangles sharing the edge e := [p;, py| and with 12-splits
A and A. On these triangles we consider the spline spaces S3(4) and S3 (A) with bases s3 = [ 3]
and 83 = [SzS]z Here 83 is the pull-back of s3 under the affine map A : A — A that maps P to ps
and leaves p,, p, invariant, i.e., 83 = s3 o A. In this section we derive conditions for smooth joins of

A~

16 16
F(z):=Y cSos(x), zel,  Flx)=) &5,3x), e, (5.1)
=1 =1
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FIGURE 5.1. Domain points of the reordered bases s§ = [Sy, 3] (left) and 8§ = [S”%g]
(right).

where we used the reordering i — o; (cf. Figure 5.1) defined by

o=o]i% =11,2,3,4,5,12,13,14,6,11,16,7,15,10,8,9)]. (5.2)

Remark 5.1. The reordering (5.2) is chosen such that the splines Sy, 3 have an increasing number of
knots outside of e. In particular, there is 1 such knot for Sy, 3,...,Ss;.3, 2 knots for Sy, 3,...,55.3, 3
knots for Sy,,.3,5511,3, So10,3, and more than 3 knots for Sy, 3,...,S5.3. By (2.5), this implies that
after this reordering only the first 5 (resp. 5 + 4, resp. 5 + 4 + 3) splines in s§ are involved in the CO
(resp. O, resp. C?) conditions, as only these (resp. their derivatives, resp. their 2nd order derivatives)
are not identically zero on e.

Imposing a smooth join of F and F' along e translates into Bézier-like linear relations among the
ordinates ¢; and ¢é; (Property P8).

Theorem 5.2. Let (1, B2, B3 be the barycentric coordinates of ps with respect to the triangle /\. Then
F and F meet with C°-smoothness if and only if

¢ = c, Gy = ca, 3 = cs, Cq = cy, Cs5 = Cs;

C'-smoothness if and only if in addition

A . o+ c3
¢e = [1c1 + Baca + P3ce, 7 = Brea + fo= 5 T Bser,
« R c3+ ¢y
Co = B1c4 + Bacs + Bacy, Cg = [acy + B 5 + Bacs;
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C?-smoothness if and only z'f n addition

10 = 261822 25155 "0 42,5, T == ey 4 ey + Bheno
¢12 = 25lﬁzT + 2[3253 2 > 4 251ﬁ3 24 Yt Bles + Baes + Bicia,
. €1 —2co+4c3 —2¢4+ ¢
&1 = +251 By — 2 23 LI Bienr
c1 — 2c9 4¢3 — 3cg + 67 — 2¢8 + g
+ 23133 5 + B3 (2¢4 — ¢5)
c3 — 2¢4 + 5 — 3cg + 6¢cg — 2¢7 + ¢
+ 2By 83— ERE 29 i T2 4 822 — 1)

Proof. By the barycentric nature of the statement, we can change coordinates by the linear affine
map that sends p; — (0,0),py — (1,0), and ps — (0,1). In these coordinates, ps = £1(0,0) +
B2(1,0) + B3(0,1) = (B2, B3). Let w := p3 — p; = (B2, 83). For r = 0,1,2, the splines F and F' meet
with C"-smoothness along e if and only if DEF(-,0) = DEF(-,0) for k = 0,...,r. Substituting (5.1)
this is equivalent to

ZCZD So;3(+, 0 chDk 5:,3(+0), k=0,...,m (5.3)

which using Table 3.2 reduces to a sparse system
> rgBIE =0, k=0,...,r

where 7, is a linear combination of the ¢;,¢; with ¢ = 1,...,ng41, with n; = 5, no = 5+ 4, and
n3 = 5+4+3. This system holds identically if and only if rp; =0for j =1,...,5—kand k=0,...,r
Let ng = 0. For k = 0,1,2,3 one solves for &, 1,...,¢p,,,, each time eliminating the ordinates ¢;
that were previously obtained, resulting in the smoothness relations of the Theorem; see the Jupyter
notebook for details. ]

Remark 5.3. Since we forced our S-bases to restrict to B-spline bases on the boundary, the presented
local bases can trivially be extended to global bases with C°-smoothness across the macrotriangles.

Remark 5.4. To obtain global C2-smoothness for d = 3, maximal sharing of the degrees of freedom
is obtained by specifying values, first-order and second-order derivatives at the vertices of the coarse
triangulation. This would amount to 18 degrees of freedom on a single macro triangle, exceeding
the 16 available degrees of freedom. In particular, the degrees of freedom along the edges will be
overdetermined. Hence global C?-smoothness cannot be obtained in this way.

Remark 5.5. For d = 3, it is not clear how to extend these local bases to bases with C''-smoothness
on triangulations. One strategy is to attempt to construct a dual basis that determines the value of
the spline, as well as the value of its cross-boundary derivative, at the edges of the macro triangles,
thus forcing C°- and C'-smoothness across these edges. On a single edge, this would require fixing 5
degrees of freedom for obtaining C%-smoothness and an additional 4 degrees of freedom for attaining
C'-smoothness. Again maximal sharing is obtained by locating degrees of freedom (i.e., values and
first-order derivatives) at the vertices of the macro triangles. For each edge, one would additionally
need 1 degree of freedom for C° and 2 degrees of freedom for C', exceeding the remaining 7 of the
available 16 degrees of freedom. Hence global C''-smoothness on a general triangulation cannot be
obtained in this way. Whether this is possible on specific triangulations, such as cells, is an open
problem.
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