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1. Introduction

The problem of discretizing the d-dimensional unit cube [0, 1]d is a fundamental problem of mathemat-
ics. Certainly, we should clarify what do we mean by discretization. There are different ways of doing
that. We can interpret [0, 1]d as a compact set of Rd and use the idea of covering numbers (metric
entropy). With such approach, for instance in the case of `∞ norm, we can find optimal coverings. For
a given n ∈ N the regular grid with coordinates at the centers of intervals [(k−1)/n, k/n], k = 1, . . . , n,
provides an optimal `∞ covering with the number of points N = nd. Very often the unit cube [0, 1]d
plays the role of a domain, where smooth functions of d variables are defined and we are interested in
discretizing some continuous operations with these functions. A classical example of such a problem is
the problem of numerical integration of functions. It turns out that the mentioned above regular grids
are very far from being good economical discretizations of [0, 1]d for numerical integration purposes.
It is a fundamental problem of computational mathematics. Several areas of mathematical research
are devoted to this problem: numerical integration, discrepancy, dispersion, sampling. Many nontrivial
examples of good (in different sense) point sets are known (see, for instance, [2], [12], [18], [19], [20],
[29], [31], [40]). The main goal of this paper is to provide a brief survey of recent results, which connect
together results from different areas of research. It is well known that numerical integration of func-
tions with mixed smoothness is closely related to the discrepancy theory. We discuss this connection
in detail and provide a general view of this connection. It was established recently (see [42]) that the
new concept of fixed volume discrepancy is very useful in proving the upper bounds for the dispersion.
Also, it was understood recently that point sets with small dispersion are very good for the universal
discretization of the uniform norm of trigonometric polynomials (see [41]).

For the reader’s orientation we now present a very brief informal description of the content of the
paper. The main topic of the paper is numerical integration, which is discussed in all sections except
Sections 7 and 8. Numerical integration takes different forms and in some cases it is studied under
other name – discrepancy. One of the goals of this paper is to provide a unified way of studying
numerical integration. In Section 2 we show that the classical discrepancy problem can be seen as a
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numerical integration problem for a special class of functions. In Section 9 we further develop this idea
and show that even in a very general setting numerical integration of a function class WK

p and the
(K, q)-discrepancy are tied by the duality principle (see Section 9 for details).

A very important issue in numerical integration is evaluation of quality of a given cubature formula.
A standard criterion is to compare performance of a cubature formula Λm( · , ξ) on a given function class
W (the quantity Λm(W, ξ)) with the optimal performance on W of cubature formulas with m knots
(the quantity κm(W)). This criterion is applied in both numerical integration and discrepancy theory.
However, the testing function classes, used in application of this criterion are somewhat different in
numerical integration and discrepancy theory. Typically, in numerical integration smoothness classes
are used and in discrepancy theory the class of characteristic functions of boxes (parallelepipeds with
edges parallel to the coordinate axes) are used. Further, in addition to the above criterion, researchers in
numerical integration would like to have a cubature formula, which is good (near optimal) not only for
one given smoothness class but for a collection of similar smoothness classes with different smoothness
parameter (unsaturated cubature formulas). Moreover, they would like to have a cubature formula,
which is good (near optimal) for a collection of different type of smoothness classes (universal cubature
formulas). For more detailed discussion of unsaturated and universal cubature formulas see [40, Ch. 6].
Implementation of a unified way of studying numerical integration in different settings immediately
brings to our attention an extension of the discrepancy theory setting from characteristic functions of
boxes to smooth hat functions supported on boxes. We discuss this setting – the smooth discrepancy
setting – in Sections 4 and 5. We present there two different versions of smooth discrepancy. We note
that there are outstanding open problems in this area (see Conjectures 5.2, 5.4, 9.5, and 9.6).

Numerical integration is a classical discretization problem. In addition to this problem we discuss
two more discretization problems – dispersion and the Marcinkiewicz-type discretization. Formally,
numerical integration and dispersion are not closely connected. In both problems we evaluate quality
of a given finite set of points in the unit cube, but the criteria for that evaluation are different – the
error of numerical integration of functions from a given function class in numerical integration and the
volume of the largest box in [0, 1]d, which does not contain points of the set in dispersion. However, it
turns out that the point sets, which are good for numerical integration, are also good for dispersion.
The optimal dispersion of N points is of order 1/N (optimal in N , we do not discuss dependence on d).
It is easy to understand that a direct use of the upper bounds on discrepancy (r-smooth discrepancy),
which have an extra (logN)c, c > 0, factor, will not give an optimal upper bound for dispersion. An
important new observation in discrepancy theory, which is discussed in Section 6, claims that a new
version of discrepancy – the r-smooth fixed volume discrepancy – allows us to obtain optimal rate
of dispersion from numerical integration results. The r-smooth fixed volume discrepancy takes into
account two characteristics of a smooth hat function hrB – its smoothness r and the volume of its
support vol(B).

As we already pointed out above numerical integration provides results on decay of the error under
an assumption that a function belongs to a smoothness class. For instance, classical results on discrep-
ancy guarantee the following rate of decay D(m, d)2 � m−1(logm)(d−1)/2 for numerical integration
of d-variate characteristic functions of boxes. These functions have smoothness (see Section 4 below)
and special geometric structure. In Section 10 we report a recent surprising observation that we can
obtain the rate of decay of order m−1/2 for characteristic functions of subsets of a unit cube without
any assumption on smoothness or geometric structure.

We discuss several areas of research – numerical integration, discrepancy, dispersion – which are (to a
certain extent) independent areas. Therefore, notations used in these areas are not always compatible.
On the one hand, we try to use standard notations for each area and, on the other hand, we try
to unify those notations. Sometimes, it results in the use of the same symbol in different meaning,
for instance, the letter r is mostly used for smoothness, but in Sections 7 and 8, where we do not
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discuss smoothness at all, it is used in the notation for the number of points – 2r. We hope that
it will not cause any confusion. We use a number of notations for different concepts of discrepancy.
We now make a remark on these notations, which, hopefully, will help to digest these notations. A
classical Lq discrepancy of a point set ξ is denoted by Dq(ξ), where the subscript q refers to the Lq
norm used in the definition. Sometimes, in the case q = ∞ we drop it from the notation. In this
definition every point of the set ξ of cardinality m is counted with the same weight 1/m. The optimal
discrepancy for sets of cardinality m is denoted by D(m, d)q. Here, d refers to the dimension of the
unit cube [0, 1]d. These notations are standard in discrepancy theory. As it is explained above, we
develop this theory in different directions: consider general weights Λ = {λj}mj=1, consider two versions
of smooth discrepancy, consider fixed volume discrepancy, and, finally, consider the periodic analogs of
some of these concepts. Naturally, we try to reflect these new ingredients in the notations. In order to
distinguish the periodic case from the non-periodic case we put tilde over D to get D̃. Smoothness is
reflected by parameter r ∈ N in the superscript. For instance, r-discrepancy in the Lq norm of the pair
(ξ,Λ) is denoted by Dr

q(ξ,Λ). We add a symbol “o” to the superscript to point out that we optimize
over point sets of cardinality m and over weights Λ. For instance, the optimal r-discrepancy in the Lq
norm is denoted by Dr,o

q (m, d). In the same way, symbol “V ” in the notation Dr(ξ, V ) refers to the
fixed volume setting (with volume V ) of the r-smooth discrepancy with equal weights for a set ξ. The
optimized over weights version is denoted by Dr,o(ξ, V ).

2. Discrepancy as a special case of numerical integration

We formulate the numerical integration problem in a general setting. Numerical integration seeks good
ways of approximating an integral ∫

Ω
f(x)dµ

by an expression of the form

Λm(f, ξ) :=
m∑
j=1

λjf(ξj), ξ = (ξ1, . . . , ξm), ξj ∈ Ω, j = 1, . . . ,m. (2.1)

It is clear that we must assume that f is integrable and defined at the points ξ1, . . . , ξm. Expres-
sion (2.1) is called a cubature formula (ξ,Λ) (if Ω ⊂ Rd, d ≥ 2) or a quadrature formula (ξ,Λ) (if Ω ⊂ R)
with knots ξ = (ξ1, . . . , ξm) and weights Λ := (λ1, . . . , λm). Usually, in this paper Ω = Ωd := [0, 1)d is
the unit cube and µ is the Lebesgue measure on it (dµ = dx). In some cases Ω = Td := [0, 2π)d and
µ is a normalized Lebesgue measure on [0, 2π)d (dµ = (2π)−ddx)).

Some classes of cubature formulas are of special interest. For instance, the Quasi-Monte Carlo
cubature formulas, which have equal weights 1/m, are important in applications. We use a special
notation for these cubature formulas

Qm(f, ξ) := 1
m

m∑
j=1

f(ξj).

The following class is a natural subclass of all cubature formulas. Let B be a positive number and
Q(B,m) be the set of cubature formulas Λm( · , ξ) satisfying the additional condition

m∑
µ=1
|λµ| ≤ B. (2.2)

Clearly, the Quasi-Monte Carlo cubature formulas Qm( · , ξ) belong to the class Q(1,m). Condi-
tion (2.2) can be seen as a “stability” condition imposed on a cubature formula Λm( · , ξ) ∈ Q(B,m).

187



V.N. Temlyakov

For a function class W we introduce a concept of error of the cubature formula Λm( · , ξ) by

Λm(W, ξ) := sup
f∈W

∣∣∣∣∫
Ω
fdµ− Λm(f, ξ)

∣∣∣∣ . (2.3)

The quantity Λm(W, ξ) is a classical characteristic of the quality of a given cubature formula Λm( · , ξ).
This setting is called the worst case setting in the Information Based Complexity. Typically, in approx-
imation theory we study the behavior of the quantity Λm(W, ξ) for classes W of smooth functions, in
particular, for the unit balls of different spaces of smooth functions – Sobolev, Nikol’skii, Besov spaces
and spaces with mixed smoothness (see [40] and [12]). The problem of finding optimal in the sense of
order cubature formulas for a given class is of special importance. This means that we are looking for
a cubature formula Λoptm (W, ξ) such that

Λoptm (W, ξ) � inf
ξ,Λ

Λm(W, ξ) =: κm(W). (2.4)

We now describe a typical class χd, which is of interest in numerical integration and in discrepancy
theory. The following way is used in discrepancy theory for evaluation of a quality of replacing the
Lebesgue measure µ on [0, 1]d by a discrete measure µm such that µm(ξj) = 1/m, j = 1, . . . ,m. We
begin with a classical definition of discrepancy (“star discrepancy”, L∞-discrepancy) of a point set
ξ := {ξµ}mµ=1 ⊂ [0, 1)d. Let d ≥ 2 and [0, 1)d be the d-dimensional unit cube. For convenience we
sometimes use the notation Ωd := [0, 1)d. For x,y ∈ [0, 1)d with x = (x1, . . . , xd) and y = (y1, . . . , yd)
we write x < y if this inequality holds coordinate-wise. For x < y we write [x,y) for the axes-parallel
box [x1, y1)× · · · × [xd, yd) and define

B := {[x,y) : x,y ∈ [0, 1)d,x < y}.

Introduce a class of special d-variate characteristic functions

χd :=

χ[0,b)(x) :=
d∏
j=1

χ[0,bj)(xj), bj ∈ [0, 1), j = 1, . . . , d


where χ[a,b)(x) is a univariate characteristic function of the interval [a, b). Then for b ∈ Ωd the quantity∫

Ωd
χ[0,b)dx−

∫
Ωd
χ[0,b)dµm =

d∏
j=1

bj −
1
m

m∑
µ=1

χ[0,b)(ξµ)

gives a discrepancy between the Lebesgue measure of the box [0,b) and its discrete measure µm([0,b)).
The classical definition of discrepancy of a set ξ of points {ξ1, . . . , ξm} ⊂ [0, 1)d is as follows

D∞(ξ) := sup
b∈[0,1)d

∣∣∣∣∣∣
d∏
j=1

bj −
1
m

m∑
µ=1

χ[0,b)(ξµ)

∣∣∣∣∣∣ . (2.5)

It is clear from the definition of Λm(W, ξ) in (2.3) that

D∞(ξ) = Qm(χd, ξ)

with Qm( · , ξ) being the Quasi-Monte Carlo cubature formula.
The class χd is parametrized by the parameter b ∈ [0, 1)d. Therefore, we can define the Lq-

discrepancy, 1 ≤ q ≤ ∞, of ξ as follows

Dq(ξ) :=

∥∥∥∥∥∥
d∏
j=1

bj −
1
m

m∑
µ=1

χ[0,b)(ξµ)

∥∥∥∥∥∥
q

, (2.6)
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where the Lq norm is taken with respect to b over the domain Ωd. In order to emphasize the connection
between discrepancy and numerical integration we use the notation

Qm(χd, ξ, q) := Dq(ξ), 1 ≤ q ≤ ∞.

We note that the fact that the class χd is parametrized by b ∈ Ωd is a special important feature,
which allows us to consider along with the worst case setting (2.5) the setting (2.6). We call the (2.6)
setting in case q <∞ – the average case setting.

3. A brief history of results on classical discrepancy

The first result on the lower bound for discrepancy was the following conjecture of van der Corput [8]
and [9] for d = 1 formulated in 1935. Let ξj ∈ [0, 1], j = 1, 2, . . . , then we have

lim sup
m→∞

mD∞(ξ1, . . . , ξm) =∞.

This conjecture was proved by van Aardenne–Ehrenfest [47] in 1945 (see also [48]):

lim sup
m→∞

log log logm
log logm mD∞(ξ1, . . . , ξm) > 0.

We now list some classical lower estimates of discrepancy of point sets in the unit cube Ωd. Let us
denote

D(m, d)q := inf
ξ
Dq(ξ), ξ = {ξj}mj=1, 1 ≤ q ≤ ∞,

where Dq(ξ) is defined in (2.6). In 1954 K. Roth [21] proved that

D(m, d)2 ≥ C(d)m−1(logm)(d−1)/2. (3.1)

In 1972 W. Schmidt [23] proved
D(m, 2)∞ ≥ Cm−1 logm. (3.2)

In 1977 W. Schmidt [24] proved

D(m, d)q ≥ C(d, q)m−1(logm)(d−1)/2, 1 < q ≤ ∞. (3.3)

In 1981 G. Halász [15] proved
D(m, d)1 ≥ C(d)m−1(logm)1/2. (3.4)

The following conjecture has been formulated in [2] as an excruciatingly difficult great open problem.

Conjecture 3.1. We have for d ≥ 3

D(m, d)∞ ≥ C(d)m−1(logm)d−1.

This problem is still open. Recently, D. Bilyk and M. Lacey [4] and D. Bilyk, M. Lacey, and
A. Vagharshakyan [5] proved

D(m, d)∞ ≥ C(d)m−1(logm)(d−1)/2+δ(d)

with some positive δ(d).
For further historical discussion we refer the reader to surveys [3], [12], [31], and books [2], [18], [40].
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4. Smooth discrepancy and numerical integration

We say that a univariate function f has smoothness 1 in L1 if ‖∆tf‖1 ≤ C|t|, where ∆tf(x) :=
f(x)− f(x+ t) is the first difference. In case ‖∆r

tf‖1 ≤ C|t|r, where ∆r
t := (∆t)r is the rth difference

operator, r ∈ N, we say that f has smoothness r in L1. In the above definitions the function class χd
with d = 1 consists of characteristic functions, which have smoothness 1 in the L1 norm. In numerical
integration it is natural to study function classes with arbitrary smoothness r. There are different
generalizations of the above concept of discrepancy to the case of smooth discrepancy. We discuss two
of them here. In the definition of the first version of the r-discrepancy, r ∈ N, (see [29], [40]) instead
of the characteristic function (this corresponds to 1-discrepancy) we use the following function

Br(x,y) :=
d∏
j=1

(
(r − 1)!

)−1(yj − xj)r−1
+ , x,y ∈ Ωd, (a)+ := max(a, 0).

In case d = 1 function Br(x, y) has smoothness r (on R+) in the L1 norm.
Denote

Br,d := {Br(x,y) : y ∈ Ωd}.

Definition 4.1. For a point set ξ := {ξµ}mµ=1 of cardinality m and weights Λ := {λµ}mµ=1 we define
the r-discrepancy of the pair (ξ,Λ) by the formula

Dr
q(ξ,Λ) :=

∥∥∥∥∥∥
m∑
µ=1

λµBr(ξµ,y)−
d∏
j=1

(yrj/r!)

∥∥∥∥∥∥
q

, 1 ≤ q ≤ ∞. (4.1)

It is clear from the definition of Λm(W, ξ) in (2.3) that

Dr
∞(ξ,Λ) = Λm(Br,d, ξ).

Consider the class Ẇr
p consisting of the functions f(x), which have an integral representation with

the kernel Br(x,y),

Ẇr
p :=

{
f : f(x) =

∫
Ωd
Br(x,y)ϕ(y)dy, ‖ϕ‖p ≤ 1

}
.

In connection with the definition of the class Ẇr
p we remark here that for the error of the cubature

formula (ξ,Λ) with weights Λ = (λ1, . . . , λm) and knots ξ = (ξ1, . . . , ξm) the following relation holds
with p′ := p/(p− 1)

Λm
(
Ẇr

p, ξ
)

=

∥∥∥∥∥∥
m∑
µ=1

λµBr(ξµ,y)−
d∏
j=1

(yrj/r!)

∥∥∥∥∥∥
p′

= Dr
p′(ξ,Λ). (4.2)

Thus, errors of numerical integration of classes Ẇr
p are dual to the average errors of numerical inte-

gration of functions in classes Br,d.
We now consider classes of periodic functions (with period 2π in each variable) on Td, which usually

are referred to as classes of functions with bounded mixed derivative. For x = (x1, . . . , xd) denote

Fr(x) :=
d∏
j=1

Fr(xj), Fr(xj) := 1 + 2
∞∑
k=1

k−r cos(kxj − rπ/2),

and
Wr

p := {f : f = Fr ∗ ϕ := (2π)−d
∫
Td
Fr(x− y)ϕ(y)dy, ‖ϕ‖p ≤ 1}.
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We note that in the univariate case for a 2π-periodic function f with
∫ 2π

0 f(x)dx = 0 we have for r ∈ N

f(x) = (2π)−1
∫ 2π

0
Fr(x− y)f (r)(y)dy.

For f ∈Wr
p we denote f (r) := ϕ where ϕ is such that f = Fr ∗ϕ. In the case of r ∈ N the class Wr

p is
very close to the class of functions f , satisfying ‖f (r,...,r)‖p ≤ 1, where f (r,...,r) is the mixed derivative
of f of order rd. We refer the reader to [40, Ch. 4], and [12, Ch. 3], for detailed discussion of periodic
classes of functions with bounded mixed derivative. It turns out that errors of numerical integration
of classes χd, defined on Ωd, and classes W1

1, defined on Td, are very close. In order to formulate this,
we introduce a notation. For a point set ξ = {ξj}mj=1 ⊂ Ωd denote 2πξ := {2πξj}mj=1 ⊂ Td.

Proposition 4.2. There exist two positive constants C1(d) and C2(d) such that for any Λm( · , ξ) with
a property

∑
j λj = 1 we have

C1(d)Λm(χd, ξ) ≤ Λm(W1
1, 2πξ) ≤ C2(d)Λm(χd, ξ). (4.3)

The reader can find the proof of Proposition 4.2 in [31]. The following theorem, which extends (in
a ceratin sense) Proposition 4.2 to the case of arbitrary smoothness r ∈ N, is from [31] (see also [40,
p. 250]). The definition of κm(W), which we use in Theorem 4.3, is given in (2.4).

Theorem 4.3. Let 1 ≤ p ≤ ∞. Then for r ∈ N

κm
(
Ẇr

p(Ωd)
)
� κm

(
Wr

p

)
. (4.4)

We now proceed to the second version of smooth discrepancy – the r-smooth discrepancy. The
classical definition of discrepancy D∞(ξ) (see (2.5)) of a set ξ of points {ξ1, . . . , ξm} ⊂ [0, 1)d, which
is sometimes called anchored discrepancy, is equivalent within multiplicative constants that may only
depend on d to the following definition

D1(ξ) := sup
B∈B

∣∣∣∣∣∣vol(B)− 1
m

m∑
µ=1

χB(ξµ)

∣∣∣∣∣∣ , (4.5)

where for B = [a,b) ∈ B we denote χB(x) :=
∏d
j=1 χ[aj ,bj)(xj). Moreover, we consider the following

optimized version of D1(ξ)

D1,o(ξ) := inf
λ1,...,λm

sup
B∈B

∣∣∣∣∣∣vol(B)−
m∑
µ=1

λµχB(ξµ)

∣∣∣∣∣∣ . (4.6)

In the definition of D1(ξ) and D1,o(ξ) – the 1-smooth discrepancy – we use as a building block
the univariate characteristic function. In numerical integration L1-smoothness of a function plays an
important role. A characteristic function of an interval has smoothness 1 in the L1 norm. This is why we
call the corresponding discrepancy characteristics the 1-smooth discrepancy. In the definition of D2(ξ),
D2,o(ξ), D2(ξ, V ), and D2,o(ξ, V ) (see below and [42]) we use the hat function h[−u,u)(x) = u− |x| for
|x| ≤ u and h[−u,u)(x) = 0 for |x| ≥ u instead of the characteristic function χ[−u/2,u/2)(x). Function
h[−u,u)(x) has smoothness 2 in L1. This fact gives the corresponding name. Note that

h[−u,u)(x) = χ[−u/2,u/2)(x) ∗ χ[−u/2,u/2)(x),

where
f(x) ∗ g(x) :=

∫
R
f(x− y)g(y)dy.
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Now, for r = 1, 2, 3, . . . we inductively define
h1(x, u) := χ[−u/2,u/2)(x), h2(x, u) := h[−u,u)(x),
hr(x, u) := hr−1(x, u) ∗ h1(x, u), r = 3, 4, . . . .

Then hr(x, u) has smoothness r in L1 and has support (−ru/2, ru/2). Represent a box B ∈ B in the
form

B =
d∏
j=1

[x0
j − ruj/2, x0

j + ruj/2)

and define

hrB(x) := hr(x,x0,u) :=
d∏
j=1

hr(xj − x0
j , uj).

We note that in the above definition of hr(x,x0,u) parameters x0 and u play different roles. Parameter
x0 gives a shift, while parameter u controls the size and the shape of the box B.

In [42] we modified definitions (4.5) and (4.6), replacing the characteristic function χB by a smoother
(r-smooth) hat function hrB.

Definition 4.4. The r-smooth discrepancy, r ∈ N, is defined as

Dr(ξ) := sup
B∈B

∣∣∣∣∣∣
∫
hrB(x)dx− 1

m

m∑
µ=1

hrB(ξµ)

∣∣∣∣∣∣ (4.7)

and its optimized version is defined as

Dr,o(ξ) := inf
λ1,...,λm

sup
B∈B

∣∣∣∣∣∣
∫
hrB(x)dx−

m∑
µ=1

λµh
r
B(ξµ)

∣∣∣∣∣∣ . (4.8)

Note that the known concept of r-discrepancy (see, for instance, [29], [31], and above in this section)
is close to the concept of r-smooth discrepancy.

It is more convenient for us to consider the average setting in the periodic case. For a function
f ∈ L1(Rd) with a compact support we define its periodization f̃ as follows

f̃(x) :=
∑

m∈Zd
f(m + x).

For each z ∈ [0, 1)d and u ∈ (0, 1
2 ]d consider a periodization of the function hr(x, z,u) in x with period

1 in each variable h̃r(x, z,u). Consider the class of periodic r-smooth hat functions

Hr,d := {h̃r(x, z,u) : z ∈ [0, 1)d; u ∈ (0, 1/2]d}.
The following definition is from [36].

Definition 4.5. Define the periodic r-smooth discrepancy for a pair (ξ,Λ) as follows

D̃r
∞(ξ,Λ) := sup

z∈[0,1)d;u∈(0,1/2]d

∣∣∣∣∣∣
∫

[0,1)d
h̃r(x, z,u)dx−

m∑
µ=1

λµh̃
r(ξµ, z,u)

∣∣∣∣∣∣ . (4.9)

The corresponding optimized version of the periodic r-smooth discrepancy is defined as

D̃r,o
∞ (m, d) := inf

ξ,Λ
D̃r
∞(ξ,Λ). (4.10)

It is clear that
D̃r
∞(ξ,Λ) := Λm(Hr,d, ξ).
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Definition 4.6. For p = (p1, p2), 1 ≤ p1, p2 ≤ ∞, define the corresponding periodic r-smooth Lp-
discrepancy, which also can be called Weyl r-smooth Lp-discrepancy ([17], [49]), as follows

D̃r
p1,p2(ξ,Λ) :=

∥∥∥∥∥∥∥
∥∥∥∥∥∥
∫

[0,1)d
h̃r(x, z,u)dx−

m∑
µ=1

λµh̃
r(ξµ, z,u)

∥∥∥∥∥∥
p1

∥∥∥∥∥∥∥
p2

, (4.11)

where the Lp1 norm is taken with respect to z over the unit cube [0, 1)d and the Lp2 norm is taken
with respect to u over the cube (0, 1/2]d.

In the definition of D̃r
p1,p2(ξ,Λ) parameters z and u play different roles. The most important pa-

rameter is u – it controls the size and the shape of supports of the corresponding hat functions. It
seems like the most natural value for parameter p2 is ∞. In this case we obtain bounds uniform with
respect to the shape and the size of supports of hat functions.

5. Lower estimates for the smooth discrepancy

We begin with a presentation of results on the lower estimates for the r-discrepancy. As above for
a point set ξ := {ξµ}mµ=1 of cardinality m and weights Λ := {λµ}mµ=1 we define the r-discrepancy
Dr
q(ξ,Λ) of the pair (ξ,Λ) by the formula (4.1). We denote

Dr
q(m, d) := inf

ξ
Dr
q(ξ, (1/m, . . . , 1/m)),

where Dr
q(ξ,Λ) is defined in (4.1) and also denote

Dr,o
q (m, d) := inf

ξ,Λ
Dr
q(ξ,Λ).

It is clear that
Dr,o
q (m, d) ≤ Dr

q(m, d).
The first result on estimating the r-discrepancy was obtained in 1985 by V. A. Bykovskii [7]

Dr,o
2 (m, d) ≥ C(r, d)m−r(logm)(d−1)/2. (5.1)

This result is a generalization of Roth’s result (3.1). The generalization of Schmidt’s result (3.3) was
obtained by the author in 1990 (see [28])

Dr,o
q (m, d) ≥ C(r, d, q)m−r(logm)(d−1)/2, 1 < q ≤ ∞. (5.2)

In 1994 (see [30]) the author proved the lower bounds in the case of weights Λ satisfying an extra
condition (2.2) and smoothness parameter r ∈ N being an even number.

Theorem 5.1. Let B be a positive number. For any points ξ1, . . . , ξm ⊂ Ωd and any weights Λ =
(λ1, . . . , λm) satisfying the condition (2.2)

m∑
µ=1
|λµ| ≤ B

we have for even integers r
Dr
∞(ξ,Λ) ≥ C(d,B, r)m−r(logm)d−1

with a positive constant C(d,B, r).

This result encouraged us to formulate the following generalization of Conjecture 3.1 (see [31]).

Conjecture 5.2. For all d, r ∈ N we have
Dr,o
∞ (m, d) ≥ C(r, d)m−r(logm)d−1.
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We point out that inequality (5.2) gives the same, in the sense of order, lower bound for all 1 < q <
∞, while Conjecture 5.2 gives a stronger lower bound in case q =∞.

We now proceed to the r-smooth Lp-discrepancy (see Definitions 4.5 and 4.6 above). The first lower
bound for such discrepancy was obtained in the case p = ∞ under an extra condition (2.2) on the
weights (see [36]) and under assumption that r is an even number. Here is the corresponding result
from [36].

Theorem 5.3. For any points ξ1, . . . , ξm ⊂ Ωd and weights Λ = (λ1, . . . , λm) satisfying condition (2.2)
we have for even integers r

D̃r
∞(ξ,Λ) ≥ C(d,B, r)m−r(logm)d−1

with a positive constant C(d,B, r).

Denote
D̃r,o

p (m, d) := inf
ξ,Λ

D̃r
p(ξ,Λ).

Theorem 5.3 supports the following conjecture.

Conjecture 5.4. For all d, r ∈ N we have

D̃r,o
∞ (m, d) ≥ C(r, d)m−r(logm)d−1.

We now proceed to the case p 6=∞. The following theorem is from [38].

Theorem 5.5. Let r ∈ N. Then for any (ξ,Λ) we have

D̃r
2,2(ξ,Λ) ≥ C(r, d)m−r(logm)(d−1)/2, C(r, d) > 0.

Theorem 5.5 gives the following lower bound for r ∈ N and p ≥ 2

D̃r,o
p (m, d) ≥ C(r, d)m−r(logm)(d−1)/2. (5.3)

The lower bound (5.3) is different from the lower bound in Theorem 5.3. However, the following
Proposition 5.6 (see [38]) shows that this bound is sharp in case p = 2.

Proposition 5.6. For r ∈ N there exists a cubature formula (ξ,Λ) such that

D̃r
2,∞(ξ,Λ) ≤ C(r, d)m−r(logm)(d−1)/2, C(r, d) > 0.

Under a stronger assumption on r, namely, assuming that r is an even number, we obtained in [38]
a stronger than (5.3) lower bound.

Theorem 5.7. Let r ∈ N be an even number. Then for any (ξ,Λ) we have for 1 < p <∞

D̃r
p,1(ξ,Λ) ≥ C(r, d, p)m−r(logm)(d−1)/2, C(r, d, p) > 0.

Theorem 5.7 gives that for even r for any 1 < p <∞

D̃r,o
p,1(m, d) ≥ C(r, d, p)m−r(logm)(d−1)/2, C(r, d, p) > 0.

The following result from [38] is an extension of Proposition 5.6.

Proposition 5.8. For r ∈ N and 1 < p <∞ there exists a cubature formula (ξ,Λ) such that

D̃r
p,∞(ξ,Λ) ≤ C(r, p, d)m−r(logm)(d−1)/2.

Proposition 5.8 shows that the above lower bound is sharp. Moreover, it shows that for r even we
have for all 1 < p1 <∞ and 1 ≤ p2 ≤ ∞

D̃r,o
p1,p2(m, d) � m−r(logm)(d−1)/2. (5.4)
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Comment. In some of the lower bounds reported in this section we are able to prove better results
under an extra assumption that r is an even number. The reason of a distinction between odd and
even r is in a special trick, which is used in the proof (see, for instance, [40, pp. 269–270]). This trick
uses the fact that the Fourier coefficients F̂r(k) of the function Fr(x) are positive in the case of an
even number r ∈ N.

6. Fixed volume discrepancy

Along with Dr(ξ) and Dr,o(ξ) (see Definition 4.4 above) we consider a more refined quantity – the
r-smooth fixed volume discrepancy – defined as follows.

Definition 6.1. Let V ∈ (0, 1]. We define the r-smooth fixed volume discrepancy with equal weights as

Dr(ξ, V ) := sup
B∈B:vol(B)=V

∣∣∣∣∣∣
∫
hrB(x)dx− 1

m

m∑
µ=1

hrB(ξµ)

∣∣∣∣∣∣ . (6.1)

The optimized version of the r-smooth fixed volume discrepancy is defined as follows

Dr,o(ξ, V ) := inf
λ1,...,λm

sup
B∈B:vol(B)=V

∣∣∣∣∣∣
∫
hrB(x)dx−

m∑
µ=1

λµh
r
B(ξµ)

∣∣∣∣∣∣ . (6.2)

Clearly,
Dr(ξ) = sup

V ∈(0,1]
Dr(ξ, V ).

We begin with the case d = 2. It is well known that the Fibonacci cubature formulas are optimal in
the sense of order for numerical integration of different kind of smoothness classes of functions of two
variables (see [12], [29], [40]). We present a result from [42], which shows that the Fibonacci point set
has good fixed volume discrepancy.

Let {bn}∞n=0, b0 = b1 = 1, bn = bn−1 + bn−2, n ≥ 2, – be the Fibonacci numbers. Denote the nth
Fibonacci point set by

Fn := {(µ/bn, {µbn−1/bn}), µ = 1, . . . , bn} .
In this definition {a} is the fractional part of the number a. The cardinality of the set Fn is equal to
bn. In [42] we proved the following upper bound.

Theorem 6.2. Let d = 2, r ≥ 2. There exists a constant c(r) > 0 such that for any V ≥ V0 := c(r)/bn
we have for all B ∈ B, vol(B) = V∣∣∣∣∣∣b−1

n

bn∑
µ=1

hrB(µ/bn, {µbn−1/bn})− ĥrB(0)

∣∣∣∣∣∣ ≤ C(r) log(2V/V0)/brn. (6.3)

Theorem 6.2 provides the following inequalities for the Fibonacci point sets Fn in case r ≥ 2

Dr,o(Fn, V ) ≤ Dr(Fn, V ) ≤ C(r)(log(2V/V0))/brn, V ≥ V0.

We now proceed to the case d ≥ 3. It is well known that the Frolov point sets are very good for
numerical integration of smoothness classes of functions of several variables (see [12], [13], [29], [31],
[40], [43]). Theorem 6.4 below, which was proved in [42], shows that the Frolov point sets have good
fixed volume discrepancy. Construction of the Frolov point sets is more involved than the construction
of the Fibonacci point sets. We begin with a description of the Frolov point sets. The following lemma
plays a fundamental role in the construction of such point sets (see [29, Ch. 4, §4] or [40, Ch. 6, §6.7]
for its proof).
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Lemma 6.3. There exists a matrix A such that the lattice L(m) = Am

L(m) =

L1(m)
...

Ld(m)

 ,
where m is a (column) vector with integer coordinates, has the following properties

10.
∣∣∣∏d

j=1 Lj(m)
∣∣∣ ≥ 1 for all m 6= 0;

20. each parallelepiped P with volume |P | whose edges are parallel to the coordinate axes contains
no more than |P |+ 1 lattice points.

Let a > 1 and A be the matrix from Lemma 6.3. We consider the cubature formula

Φ(a,A)(f) :=
(
ad| detA|

)−1 ∑
m∈Zd

f

(
(A−1)Tm

a

)

for f with a compact support.
We call the Frolov point set the following set associated with the matrix A and parameter a

F(a,A) :=
{(

(A−1)Tm
a

)}
m∈Zd

∩ [0, 1]d =: {zµ}Nµ=1.

Clearly, the number N = |F(a,A)| of points of this set does not exceed C(A)ad. The following
Theorem 6.4 and its Corollary 6.5 are from [42].

Theorem 6.4. Let r ≥ 2. There exists a constant c(d,A, r) > 0 such that for any V ≥ V0 :=
c(d,A, r)a−d we have for all B ∈ B, vol(B) = V ,

|Φ(a,A)(hrB)− ĥrB(0)| ≤ C(d,A, r)a−rd(log(2V/V0))d−1. (6.4)

Corollary 6.5. For r ≥ 2 there exists a constant c(d,A, r) > 0 such that for any V ≥ V0 :=
c(d,A, r)a−d we have

Dr,o(F(a,A), V ) ≤ C(d,A, r)a−rd(log(2V/V0))d−1. (6.5)

The following technical Lemma 6.6 played the main role in the proofs of Theorems 6.2 and 6.4.
Lemma 6.6 might be of interest by itself. Consider

σr(v,u) :=
∑
‖s‖1=v

d∏
j=1

min
(

(2sjuj)r/2,
1

(2sjuj)r/2

)
, v ∈ N0.

Denote

pr(u, d) :=
d∏
j=1

uj .

Lemma 6.6. Let v ∈ N0 and u ∈ Rd+. Then we have the following inequalities.

(I) Under condition 2vpr(u, d) ≥ 1 we have

σr(v,u) ≤ C(d)
(
log(2v+1pr(u, d))

)d−1

(2vpr(u, d))r/2
. (6.6)
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(II) Under condition 2vpr(u, d) ≤ 1 we have

σr(v,u) ≤ C(d)(2vpr(u, d))r/2
(

log 2
2vpr(u, d)

)d−1
. (6.7)

In [36] we extended Theorem 6.4 and Corollary 6.5 to the periodic case (with period 1 in each
variable). For that we need to modify the set F(a,A) and the cubature formula Φ(a,A). For y ∈ Rd
denote {y} := ({y1}, . . . , {yd}), where for y ∈ R notation {y} means the fractional part of y. For given
a and A denote

η := {ηµ}mµ=1 :=
{(

(A−1)Tm
a

)}
m∈Zd

∩ [−1/2, 3/2)d

and
ξ := {ξµ}mµ=1 := {{ηµ}}mµ=1 . (6.8)

Clearly, m ≤ C(A)ad. Next, let w(t) be infinitely differentiable on R function with the following
properties

supp(w) ⊂ (−1/2, 3/2) and
∑
k∈Z

w(t+ k) = 1. (6.9)

Denote w(x) :=
∏d
j=1w(xj). Then for f(x) defined on [0, 1)d we consider the cubature formula

Φ(a,A,w)(f) :=
m∑
µ=1

wµf(ξµ), wµ := w(ηµ).

In [36] we proved the following analogs of Theorem 6.4 and Corollary 6.5.
Theorem 6.7. Let r ≥ 2. There exists a constant c(d,A, r) > 0 such that for any V ≥ V0 :=
c(d,A, r)a−d we have for all u ∈ (0, 1/2]d, pr(u, d) = V , and z ∈ [0, 1)d

|Φ(a,A,w)(h̃r( · , z,u))− ˆ̃hr(0, z,u)| ≤ C(d,A, r, w)a−rd(log(2V/V0))d−1.

Definition 6.8. Let V ∈ (0, 1]. We define the periodic r-smooth fixed volume discrepancy with equal
weights as

D̃r(ξ, V ) := sup
B∈B:vol(B)=V

∣∣∣∣∣∣
∫
h̃rB(x)dx− 1

m

m∑
µ=1

h̃rB(ξµ)

∣∣∣∣∣∣ . (6.10)

The optimized version of the periodic r-smooth fixed volume discrepancy is defined as follows

D̃r,o(ξ, V ) := inf
λ1,...,λm

sup
B∈B:vol(B)=V

∣∣∣∣∣∣
∫
h̃rB(x)dx−

m∑
µ=1

λµh̃
r
B(ξµ)

∣∣∣∣∣∣ . (6.11)

Corollary 6.9. For r ≥ 2 there exists a constant c(d,A, r) > 0 such that for any V ≥ V0 :=
c(d,A, r)a−d we have for the point set ξ defined by (6.8)

D̃r,o(ξ, V ) ≤ C(d,A, r)a−rd(log(2V/V0))d−1.

In particular, Theorem 6.7 implies that the periodic r-smooth discrepancy (see Definition 4.5)
satisfies the bound (for r ∈ N, r ≥ 2)

D̃r,o
∞ (m, d) ≤ C(d, r)m−r(logm)d−1. (6.12)

Theorem 5.3 shows that the bound (6.12) cannot be improved for a natural class of weights λ1, . . . , λm
used in the optimization procedure in the definition of D̃r,o

∞ (m, d), namely, for weights, satisfying
condition (2.2)

m∑
µ=1
|λµ| ≤ B.
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7. Dispersion

We remind the definition of dispersion. Let d ≥ 2 and [0, 1)d be the d-dimensional unit cube. As above
for x,y ∈ [0, 1)d with x = (x1, . . . , xd) and y = (y1, . . . , yd) we write x < y if this inequality holds
coordinate-wise. For x < y we write [x,y) for the axes-parallel box [x1, y1)× · · · × [xd, yd) and define

B := {[x,y) : x,y ∈ [0, 1)d,x < y}.
For N ≥ 1 let T be a set of points in [0, 1)d of cardinality |T | = N . The volume of the largest empty
(from points of T ) axes-parallel box, which can be inscribed in [0, 1)d, is called the dispersion of T :

disp(T ) := sup
B∈B:B∩T=∅

vol(B).

An interesting extremal problem is to find (estimate) the minimal dispersion of point sets of fixed
cardinality:

disp*(N, d) := inf
T⊂[0,1)d,|T |=N

disp(T ).

It is known that
disp*(N, d) ≤ C∗(d)/N. (7.1)

Inequality (7.1) with C∗(d) = 2d−1∏d−1
i=1 pi, where pi denotes the ith prime number, was proved

in [11] (see also [20]). The authors of [11] used the Halton–Hammersly set of N points (see [18]).
Inequality (7.1) with C∗(d) = 27d+1 was proved in [1]. The authors of [1], following G. Larcher, used
the (t, r, d)-nets (see [18], [19] for results on (t, r, d)-nets and Definition 8.2 below for the definition).
We point out that both the Halton–Hammersly points and the (t, r, d)-nets provide constructive results
in (7.1).

It was demonstrated in [42] how good upper bounds on fixed volume discrepancy can be used for
proving good upper bounds for dispersion. This fact was one of the motivations for studying the fixed
volume discrepancy. Theorem 7.1 below was derived from Theorem 6.2 (see [42]). The upper bound
in Theorem 7.1 combined with the trivial lower bound shows that the Fibonacci point set provides
optimal rate of decay for the dispersion.

Theorem 7.1. There is an absolute constant C such that for all n we have
disp(Fn) ≤ C/bn. (7.2)

The following Theorem 7.2 was derived in [42] from Theorem 6.4.

Theorem 7.2. Let A be a matrix from Lemma 6.3. There is a constant C(d,A), which may only
depend on A and d, such that for all a we have

disp(F(a,A)) ≤ C(A, d)a−d. (7.3)

Other proof of Theorem 7.2 was given by M. Ullrich [45]. His proof is based on a deep result on
admissible matrices obtained by M. M. Skriganov [25].

We only discussed behavior of disp*(N, d) as a function on N . Certainly, the problem of finding the
right dependence of disp*(N, d) on both parameters is an important and difficult problem. The reader
can find further recent results in this direction in [16], [22], [26], [44], [45], and [46].

8. Universal discretization

In this section we demonstrate an application of results on dispersion from Section 7 to the problem
of universal discretization. For a more detailed discussion of universality in approximation theory and
in learning theory we refer the reader to [6], [12], [14], [27], [29], [31], [33], [40], [41]. We remind the
discretization problem setting, which we plan to discuss (see [37] and [39]).
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Marcinkiewicz problem. Let Ω be a compact subset of Rd with the probability measure µ. We
say that a linear subspace XN (usually N stands for the dimension of XN ) of the Lq(Ω) := Lq(Ω, µ),
1 ≤ q < ∞, admits the Marcinkiewicz-type discretization theorem with parameters m and q if there
exist a set {ξν ∈ Ω, ν = 1, . . . ,m} and two positive constants Cj(d, q), j = 1, 2, such that for any
f ∈ XN we have

C1(d, q)‖f‖qq ≤
1
m

m∑
ν=1
|f(ξν)|q ≤ C2(d, q)‖f‖qq. (8.1)

In the case q =∞ we define L∞ as the space of continuous on Ω functions and ask for

C1(d)‖f‖∞ ≤ max
1≤ν≤m

|f(ξν)| ≤ ‖f‖∞. (8.2)

We will also use a brief way to express the above property: theM(m, q) theorem holds for a subspace
XN or XN ∈M(m, q). The reader can find a survey on recent results in this direction in the paper [10].
We only remind classical results on discretization of the Lp norms of trigonometric polynomials defined
on Td. By Q we denote a finite subset of Zd, and |Q| stands for the number of elements in Q. Let

T (Q) :=

f : f(x) =
∑
k∈Q

cke
i(k,x), ck ∈ C

 .
Consider the case Q = Π(N) := [−N1, N1] × · · · × [−Nd, Nd], Nj ∈ N or Nj = 0, j = 1, . . . , d,
N = (N1, . . . , Nd). We set

P (N) :=
{

n = (n1, . . . , nd) ∈ Zd : 0 ≤ nj ≤ 2Nj , j = 1, . . . , d
}
,

and
xn :=

( 2πn1
2N1 + 1 , . . . ,

2πnd
2Nd + 1

)
, n ∈ P (N).

For any f ∈ T (Π(N)), one has

‖f‖22 = ϑ(N)−1 ∑
n∈P (N)

∣∣f(xn)
∣∣2,

where ϑ(N) :=
∏d
j=1(2Nj + 1) = dim T (Π(N)). In particular, this implies that for any N one has

T (Π(N)) ∈M(ϑ(N), 2). (8.3)

In the case 1 < q < ∞, the well-known Marcinkiewicz discretization theorem (for d = 1) is given as
follows (see, for instance, [40, §§1.3.3 and 3.3.4]): for f ∈ T (Π(N)),

C1(d, q)‖f‖qq ≤ ϑ(N)−1 ∑
n∈P (N)

∣∣f(xn)
∣∣q ≤ C2(d, q)‖f‖qq, 1 < q <∞.

This yields the following extension of (8.3):

T (Π(N)) ∈M(ϑ(N), q), 1 < q <∞.

For q = 1 or q =∞, one needs some adjustments. Let

P ′(N) :=
{

n = (n1, . . . , nd) ∈ Zd : 1 ≤ nj ≤ 4Nj , j = 1, . . . , d
}

and
x(n) :=

(
πn1
2N1

, . . . ,
πnd
2Nd

)
, n ∈ P ′(N).
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If Nj = 0, we let xj(n) = 0. Set N := max(N, 1) and ν(N) :=
∏d
j=1N j . The following Marcinkiewicz-

type discretization theorem (see [40, p. 102]): for f ∈ T (Π(N))

C1(d, q)‖f‖qq ≤ ν(4N)−1 ∑
n∈P ′(N)

∣∣f(x(n))
∣∣q ≤ C2(d, q)‖f‖qq, 1 ≤ q ≤ ∞, (8.4)

implies that
T (Π(N)) ∈M(ν(4N), q), 1 ≤ q ≤ ∞.

We note that ν(4N) ≤ C(d) dim T (Π(N)).

Universal discretization problem. This problem is about finding (proving existence) of a set of
points, which is good in the sense of the above Marcinkiewicz-type discretization for a collection of
linear subspaces (see [41]). We formulate it in an explicit form. Let XN := {Xj

N}kj=1 be a collection
of linear subspaces Xj

N of the Lq(Ω), 1 ≤ q ≤ ∞. We say that a set {ξν ∈ Ω, ν = 1, . . . ,m} provides
universal discretization for the collection XN if, in the case 1 ≤ q <∞, there are two positive constants
Ci(d, q), i = 1, 2, such that for each j ∈ [1, k] and any f ∈ Xj

N we have

C1(d, q)‖f‖qq ≤
1
m

m∑
ν=1
|f(ξν)|q ≤ C2(d, q)‖f‖qq. (8.5)

In the case q =∞ for each j ∈ [1, k] and any f ∈ Xj
N we have

C1(d)‖f‖∞ ≤ max
1≤ν≤m

|f(ξν)| ≤ ‖f‖∞. (8.6)

In [41] we studied the universal discretization for the collection of subspaces of trigonometric poly-
nomials with frequencies from parallelepipeds (rectangles). For s ∈ Nd0 define

R(s) := {k ∈ Zd : |kj | < 2sj , j = 1, . . . , d}.
Consider the collection C(n, d) := {T (R(s)), ‖s‖1 = n}.

The following theorem was proved in [41].

Theorem 8.1. Let a set T with cardinality |T | = 2r =: m have dispersion satisfying the bound
disp(T ) < C(d)2−r with some constant C(d). Then there exists a constant c(d) ∈ N such that the
set 2πT := {2πx : x ∈ T} provides the universal discretization in L∞ for the collection C(n, d) with
n = r − c(d).

Theorem 8.1 is a conditional result. As we discussed in Section 7 existence of sets with a property
required in Theorem 8.1 is a non-trivial fact. In particular, the (t, r, d)-nets provide such existence.
We now give a definition of the (t, r, d)-nets.

Definition 8.2. A (t, r, d)-net (in base 2) is a set T of 2r points in [0, 1)d such that each dyadic box
[(a1− 1)2−s1 , a12−s1)× · · ·× [(ad− 1)2−sd , ad2−sd), 1 ≤ aj ≤ 2sj , j = 1, . . . , d, of volume 2t−r contains
exactly 2t points of T .

We note that existence of (t, r, d)-nets is a very non-trivial problem. A construction of such nets for
all d and t ≥ Cd, where C is a positive absolute constant, r ≥ t is given in [19].

Theorem 8.1 in a combination with Theorems 7.1 and 7.2 guarantees that the appropriately chosen
Fibonacci (d = 2) and Frolov (any d ≥ 2) point sets provide universal discretization in L∞ for the
collection C(n, d).

The following Theorem 8.3 (see [41]) can be seen as an inverse to Theorem 8.1.

Theorem 8.3. Assume that T ⊂ [0, 1)d is such that the set 2πT provides universal discretization in
L∞ for the collection C(n, d) with a constant C1(d) (see (8.2)). Then there exists a positive constant
C(d) with the following property disp(T ) ≤ C(d)2−n.
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Arbitrary trigonometric polynomials. For n ∈ N denote Πn := Π(N) ∩ Zd with N = (2n−1 −
1, . . . , 2n−1 − 1), where Π(N) := [−N1, N1]× · · · × [−Nd, Nd]. Then |Πn| = (2n − 1)d < 2dn. Let v ∈ N
and v ≤ |Πn|. Consider

S(v, n) := {Q ⊂ Πn : |Q| = v}.
Then it is easy to see that

|S(v, n)| =
(
|Πn|
v

)
< 2dnv. (8.7)

We are interested in solving the following problem of universal discretization. For a given S(v, n)
and q ∈ [1,∞) find a condition on m such that there exists a set ξ = {ξν}mν=1 with the property: for
any Q ∈ S(v, n) and each f ∈ T (Q) we have

C1(q, d)‖f‖qq ≤
1
m

m∑
ν=1
|f(ξν)|q ≤ C2(q, d)‖f‖qq. (8.8)

We present results from [10] for q = 2 and q = 1.

Theorem 8.4. There exist three positive constants Ci(d), i = 1, 2, 3, such that for any n, v ∈ N and
v ≤ |Πn| there is a set ξ = {ξν}mν=1 ⊂ Td, with m ≤ C1(d)v2n, which provides universal discretization
in L2 for the collection S(v, n): for any f ∈ ∪Q∈S(v,n)T (Q)

C2(d)‖f‖22 ≤
1
m

m∑
ν=1
|f(ξν)|2 ≤ C3(d)‖f‖22.

The classical Marcinkiewicz-type result for T (Πn) (see, for instance, (8.3)) provides a universal
set ξ with cardinality m ≤ C(d)2dn. Thus, Theorem 8.4 gives a non-trivial result for v satisfying
v2n ≤ C(d)2dn. We now present a result for discretization of the L1 norm.

Theorem 8.5. There exist three positive constants C1(d), C2, C3, such that for any n, v ∈ N and v ≤
|Πn| there is a set ξ = {ξν}mν=1 ⊂ Td, with m ≤ C1(d)v2n9/2, which provides universal discretization
in L1 for the collection S(v, n): for any f ∈ ∪Q∈S(v,n)T (Q)

C2‖f‖1 ≤
1
m

m∑
ν=1
|f(ξν)| ≤ C3‖f‖1.

The classical Marcinkiewicz-type result for T (Πn) (see (8.4) with q = 1) provides a universal
set ξ with cardinality m ≤ C(d)2dn. Thus, Theorem 8.5 gives a non-trivial result for v satisfying
v2n9/2 ≤ C(d)2dn.

9. Generalizations

In Section 4 we discussed numerical integration of functions from special classes Wr
p and Ẇr

p. Functions
from both of these classes have integral representations with the kernel Fr(x− y) in case of the class
Wr

p and with the kernel Br(x,y) in case of the class Ẇr
p. In this section we present a generalization

to the case, when a function class WK
p is defined with a help of a general kernel K(x,y). As above

for a function class W we have a concept of error of the cubature formula Λm( · , ξ)

Λm(W, ξ) := sup
f∈W

∣∣∣∣∫
Ω
fdµ− Λm(f, ξ)

∣∣∣∣ . (9.1)

If the class W = {f(x,y) : y ∈ Y } is parametrized by a parameter y ∈ Y ⊂ Rn with Y being a
bounded measurable set, then we can consider a natural average case setting. For p = (p1, . . . , pn)
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define
Λm(W, ξ,p) :=

∥∥∥∥∫
Ω
f( · ,y)dµ− Λm(f( · ,y), ξ)

∥∥∥∥
p
, (9.2)

where the vector Lp norm is taken with respect to the Lebesgue measure on Y . We write
Λm(W, ξ,∞) := Λm(W, ξ).

We are interested in dependence on m of the optimal errors of numerical integration with m knots
κm(W,p) := inf

λ1,...,λm;ξ1,...,ξm
Λm(W, ξ,p)

for different classes W. We have κm(W,∞) = κm(W) (see (2.4).
We now present a rather general setting of this problem. Let 1 ≤ q ≤ ∞. We define a set Kq of

kernels possessing the following properties. Let K(x,y) be a measurable function on Ω1 × Ω2. We
assume that for any x ∈ Ω1 we have K(x, · ) ∈ Lq(Ω2); for any y ∈ Ω2 the K( · ,y) is integrable over
Ω1 and

∫
Ω1 K(x, · )dx ∈ Lq(Ω2). For 1 ≤ p ≤ ∞ and a kernel K ∈ Kp′ , p′ := p/(p− 1), we define the

class
WK

p :=
{
f : f(x) =

∫
Ω2
K(x,y)ϕ(y)dy, ‖ϕ‖Lp(Ω2) ≤ 1

}
. (9.3)

Then each f ∈ WK
p is integrable on Ω1 (by Fubini’s theorem) and defined at each point of Ω1. We

denote for convenience
JK(y) :=

∫
Ω1
K(x,y)dx.

For a cubature formula Λm( · , ξ) we have

Λm(WK
p , ξ) = sup

‖ϕ‖Lp(Ω2)≤1

∣∣∣∣∣∣
∫

Ω2

(
JK(y)−

m∑
µ=1

λµK(ξµ,y)
)
ϕ(y)dy

∣∣∣∣∣∣
=

∥∥∥∥∥∥JK( · )−
m∑
µ=1

λµK(ξµ, · )

∥∥∥∥∥∥
Lp′ (Ω2)

. (9.4)

Consider a problem of numerical integration of functions K(x,y), y ∈ Ω2, with respect to x, K ∈ Kq,
in other words a problem of numerical integration of functions from the function class K := {K(x,y) :
y ∈ Ω2}: ∫

Ω1
K(x,y)dx−

m∑
µ=1

λµK(ξµ,y).

Definition 9.1. (K, q)-discrepancy of a set of knots ξ = {ξ1, . . . , ξm} and a set of weights Λ =
{λ1, . . . , λm} (a pair (ξ,Λ)) is

D(ξ,Λ,K, q) := Λm(K, ξ, q) =

∥∥∥∥∥∥
∫

Ω1
K(x,y)dx−

m∑
µ=1

λµK(ξµ,y)

∥∥∥∥∥∥
Lq(Ω2)

.

In a special case Λm( · , ξ) = Qm( · , ξ) we write D(ξ,Q,K, q). The above definition of the (K, q)-
discrepancy and relation (9.4) imply right a way the following relation

D(ξ,Λ,K, p′) = Λm(WK
p , ξ). (9.5)

Relation (9.5) shows that numerical integration in the class WK
p and the (K, q)-discrepancy are tied by

the duality principle. In a special case, when K(x,y) = Br(x,y) the (K, q)-discrepancy D(ξ,Λ, Br, q)
of a set of knots ξ1, . . . , ξm and a set of weights λ1, . . . , λm coincides with the r-discrepancy Dr

q(ξ,Λ)
of the pair (ξ,Λ) (see (4.1)).
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Let us consider a special case, when K(x,y) = F (x − y), Ω1 = Ω2 = [0, 1)d and we deal with
1-periodic in each variable functions. Associate with a cubature formula (ξ,Λ) and the function F the
following function

gξ,Λ,F (x) :=
∑

k
Λ(ξ,k)F̂ (k)e2πi(k,x) − F̂ (0),

where
Λ(ξ,k) := Λm(e2πi(k,x), ξ).

Then for the quantity Λm(WF
p , ξ) we have (p′ := p/(p− 1))

Λm(WF
p , ξ) = sup

f∈WF
p

∣∣Λm(f, ξ)− f̂(0)
∣∣

= sup
‖ϕ‖p≤1

∣∣Λm(F (x) ∗ ϕ(x), ξ
)
− F̂ (0)ϕ̂(0)

∣∣
= sup
‖ϕ‖p≤1

∣∣〈gξ,Λ,F (−y), ϕ(y)〉
∣∣ = ‖gξ,Λ,F ‖p′ . (9.6)

Thus, the worst case error of a cubature formula Λm( · , ξ) on the class WF
p coincides with the Lp′

norm of the function gξ,Λ,F .
Let us discuss a special case of function F , which is very important in numerical integration (see,

for instance, [12], [29], [31], and [40]). Let for r > 0

Fr,α(x) := 1 + 2
∞∑
k=1

k−r cos(2πkx− απ/2). (9.7)

For x = (x1, . . . , xd), α = (α1, . . . , αd) denote

Fr,α(x) :=
d∏
j=1

Fr,αj (xj)

and
Wr

p,α := WFr,α
p = {f : f(x) = (Fr,α ∗ ϕ)(x), ‖ϕ‖p ≤ 1},

where
(Fr,α ∗ ϕ)(x) :=

∫
[0,1)d

Fr,α(x− y)ϕ(y)dy.

It is easy to see that

‖gξ,Λ,Fr,α‖2 =

∑
k 6=0
|Λ(ξ,k)|2

 d∏
j=1

(max(|kj |, 1))−r
2

+ |Λ(ξ,0)− 1|2


1/2

. (9.8)

The above quantity in the case r = 1 was introduced in [50] under the name diaphony. In case of generic
r it was called generalized diaphony and was studied in [17]. Relation (9.6) shows that generalized
diaphony is closely related to numerical integration of the class Wr

2,α. Following this analogy, we
can call the quantity ‖gξ,Λ,Fr,α‖q the (r, q)-diaphony of the pair (ξ,Λ) (the cubature formula (ξ,Λ)).
Behavior of κm(Wr

p,α) is well studied (see, for instance, [12] and [40]). By (9.6) results on κm(Wr
p,α)

provide estimates on
inf
ξ,Λ
‖gξ,Λ,Fr,α‖p′ .

For completeness we cite some known results on the lower bounds for κm(Wr
p,α). The reader can

find these and other results with a historical discussion in [40, Ch. 6] and in [12, Ch. 8].
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Theorem 9.2. The following lower estimate is valid for any cubature formula (ξ,Λ) with m knots
(r > 1/p)

Λm(Wr
p,α, ξ) ≥ C(r, d, p)m−r(logm)

d−1
2 , 1 ≤ p <∞.

The rate of decaym−r(logm)
d−1

2 in the lower bound in Theorem 9.2 does not depend on p. Therefore,
the larger the p <∞ the stronger the lower bound. It turns out that in the case p = 1 one can improve
the corresponding lower bound under certain restrictions on the weights of the cubature formula. We
obtained the lower estimates for the quantities

κBm(W) := inf
Λm( · ,ξ)∈Q(B,m)

Λm(W, ξ),

whereQ(B,m) is the collection of cubature formulas satisfying condition (2.2). We proved the following
relation.
Theorem 9.3. Let r > 1. Then

κBm(Wr
1,0) ≥ C(r,B, d)m−r(logm)d−1, C(r,B, d) > 0.

The case p =∞ is excluded in Theorem 9.2. There is no nontrivial general lower estimates in this
case. We give one conditional result in this direction (see, for instance, [40, p. 271]).
Theorem 9.4. Let the cubature formula (ξ,Λ) be such that the inequality

Λm(Wr
p,α, ξ) ≤ C1(p, r, d)m−r(logm)(d−1)/2, r > 1/p,

holds for some 1 < p <∞. Then there exists a constant C2(p, r, d) > 0 such that
Λm(Wr

∞,α, ξ) ≥ C2(p, r, d)m−r(logm)(d−1)/2.

There are two big open problems in this area. We formulate them as conjectures.
Conjecture 9.5. For any d ≥ 2 and any r ≥ 1 we have

κm(Wr
1,α) ≥ C(r, d)m−r(logm)d−1.

Conjecture 9.6. For any d ≥ 2 and any r > 0 we have
κm(Wr

∞,α) ≥ C(r, d)m−r(logm)(d−1)/2.

We note that by Theorem 4.3 and (4.2) Conjecture 9.5 implies Conjecture 3.1 and Conjecture 9.6
implies for any cubature formula (ξ,Λ)

Dr
1(ξ,Λ) ≥ C(r, d)m−r(logm)(d−1)/2. (9.9)

Remark 9.7. In the case d = 2, r = 1, and α = (1, 1) Conjecture 9.5 holds.
Remark 9.7 follows from an analog of the Schmidt’s bound (3.2) and Proposition 4.2. We discuss

this in more detail. D. Bilyk and I observed that a slight modification of the proof of (3.2) from [3]
gives the following lower bound. For any cubature formula (ξ,Λ) we have

Λm(χ2, ξ) ≥ C1m
−1 logm. (9.10)

Therefore, by Proposition 4.2 for any cubature formula (ξ,Λ), satisfying an extra condition
∑
j λj = 1,

we have for W1
1 = W1

1,(1,1)
Λm(W1

1, ξ) ≥ C2m
−1 logm. (9.11)

Further, it is well known (see [40, p. 269]) and easy to check, that for a function class W of periodic
functions, satisfying the condition: 1 ∈ W and for f ∈ W we have 1

2(f − f̂(0)) ∈ W, the inequality
holds

inf
Λ

Λm(W, ξ) ≥ 1
4 inf

Λ:
∑

j
λj=1

Λm(W, ξ). (9.12)
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Clearly, W1
1 satisfies the above condition on a class W. Combining (9.10)–(9.12) we obtain for d = 2

κm(W1
1) ≥ Cm−1 logm.

10. Numerical integration without smoothness assumptions

In the previous sections we discussed numerical integration for classes of functions under certain
conditions on smoothness. Parameter r controlled the smoothness. The above results show that the
numerical integration characteristics decay with the rate m−r(logm)c(d), which substantially depends
on smoothness r. The larger the smoothness – the faster the error decay. In this section we discuss the
case, when we do not impose any of the smoothness assumptions. Surprisingly, even in such a situation
we can guarantee some rate of decay. Results discussed in this section apply in a very general setting
presented in Section 9. We present here results from [38]. The following result is proved in [35] (see
also [31] for previous results). For the theory of greedy algorithms we refer the reader to [34]. Consider
a dictionary

D := {K(x, · ),x ∈ Ω1}
and define a Banach space X(K, q) as the Lq(Ω2)-closure of span of D.

Theorem 10.1. Let WK
p be a class of functions defined above in Section 9. Assume that K ∈ Kp′

satisfies the condition
‖K(x, · )‖Lp′ (Ω2) ≤ 1, x ∈ Ω1, |Ω1| = 1,

and JK ∈ X(K, p′). Then for any m there exists (provided by an appropriate greedy algorithm) a
cubature formula Qm( · , ξ) such that

Qm(WK
p , ξ) ≤ C(p− 1)−1/2m−1/2, 1 < p ≤ 2.

As a direct corollary of Theorem 10.1 and relation (9.5) we obtain the following result about the
(K, q)− discrepancy.

Theorem 10.2. Assume that K ∈ Kq satisfies the condition

‖K(x, · )‖Lq(Ω2) ≤ 1, x ∈ Ω1, |Ω1| = 1,

and JK ∈ X(K, q). Then for any m there exists (provided by an appropriate greedy algorithm) a
cubature formula Qm( · , ξ) such that

D(ξ,Q,K, q) ≤ Cq1/2m−1/2, 2 ≤ q <∞.

Remark 10.3. In Theorems 10.1 and 10.2 we impose the restriction 1 < p ≤ 2 or the dual one
2 ≤ q < ∞. The proof of Theorems 10.1 and 10.2 from [35] also works in the case 2 < p < ∞ or
1 < q < 2 and gives

Qm(WK
p , ξ) ≤ Cm−1/p, 2 < p <∞,

D(ξ,Q,K, q) ≤ Cm
1
q
−1
, 1 < q < 2.

Let us discuss a special case K(x,y) = F (x− y), Ω1 = Ω2 = [0, 1)d and 1-periodic in each variable
functions. Then, as in Section 9, we associate with a cubature formula (ξ,Λ) and a function F the
function gξ,Λ,F (x). The following Proposition is proved in [31].

Proposition 10.4. Let 1 < p <∞ and ‖F‖p′ ≤ 1. Then the kernel K(x,y) = F (x− y) satisfies the
assumptions of Theorem 10.1.

Proposition 10.4, Theorem 10.1, Remark 10.3, and relation (9.6) imply
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Theorem 10.5. Let 1 < p <∞ and ‖F‖p ≤ 1. Then there exists a set ξ of m points such that

‖gξ,Q,F (x)‖p ≤ Cp1/2m−1/2, 2 ≤ p <∞,

‖gξ,Q,F (x)‖p ≤ Cm
1
p
−1
, 1 < p < 2.

Here is a corollary of Theorem 10.2 and Proposition 10.4. Let E ⊂ [0, 1)d be a measurable set.
Consider F (x) := χ̃E(x).
Theorem 10.6. For any p ∈ [2,∞) there exists a set of m points ξ such that

Qm({χ̃E(x− z), z ∈ [0, 1)d}, ξ, p) ≤ Cp1/2m−1/2.

We note that there are interesting results on the behavior of Qm({χE(x − z), z ∈ [0, 1)d}, ξ,∞)
under assumption that E is a convex set (see [2]). Theorem 10.6 shows that for p <∞ we do not need
any assumptions on the geometry of E in order to get the upper bound � m−1/2 for the discrepancy.

The proof of the above Theorems 10.1–10.6 is constructive (see [35]), it is based on the greedy
algorithms. The use of greedy-type algorithms is an important new ingredient in numerical integra-
tion. For completeness, in order to give the reader an idea about a greedy-type algorithm, we briefly
formulate the related result from the theory of greedy approximation. We remind some notations from
the theory of greedy approximation in Banach spaces. The reader can find a systematic presentation
of this theory in [34, Ch. 6]. Let X be a Banach space with norm ‖ · ‖. We say that a set of elements
(functions) D from X is a dictionary if each g ∈ D has norm less than or equal to one (‖g‖ ≤ 1) and
the closure of span of D coincides with X.

For an element f ∈ X we denote by Ff a norming (peak) functional for f :
‖Ff‖ = 1, Ff (f) = ‖f‖.

The existence of such a functional is guaranteed by the Hahn–Banach theorem.
We proceed to the Incremental Greedy Algorithm (see [32] and [34, Ch. 6]). Let ε = {εn}∞n=1,

εn > 0, n = 1, 2, . . . . For a Banach space X and a dictionary D define the following algorithm IA(ε)
:= IA(ε,X,D).

Incremental Algorithm with schedule ε (IA(ε,X,D)). Denote f i,ε0 := f and Gi,ε0 := 0. Then,
for each m ≥ 1 we have the following inductive definition.

(1) ϕi,εm ∈ D is any element satisfying
F
f i,εm−1

(ϕi,εm − f) ≥ −εm.

(2) Define
Gi,εm := (1− 1/m)Gi,εm−1 + ϕi,εm /m.

(3) Let
f i,εm := f −Gi,εm .

We consider here approximation in uniformly smooth Banach spaces. For a Banach space X we
define the modulus of smoothness

ρ(u) := sup
‖x‖=‖y‖=1

(1
2(‖x+ uy‖+ ‖x− uy‖)− 1

)
.

It is well known that in the case X = Lp, 1 ≤ p <∞ we have

ρ(u) ≤
{
up/p if 1 ≤ p ≤ 2,
(p− 1)u2/2 if 2 ≤ p <∞.

(10.1)

Denote by A1(D) := A1(D, X) the closure in X of the convex hull of D. Proof of Theorem 10.1 and
Remark 10.3 is based on the following theorem proved in [32] (see also [34, Ch. 6]).
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Theorem 10.7. Let X be a Banach space with modulus of smoothness ρ(u) ≤ γuq, 1 < q ≤ 2. Set

εn := βγ1/qn−1/p, p := q

q − 1 , n = 1, 2, . . . .

Then, for every f ∈ A1(D) we have

‖f i,εm ‖ ≤ C(β)γ1/qm−1/p, m = 1, 2 . . . .
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[12] D. Dũng, V. N. Temlyakov, and T. Ullrich. Hyperbolic Cross Approximation. https://arxiv.org/abs/
1601.03978v2, 2016.

[13] K. K. Frolov. Upper bounds on the error of quadrature formulas on classes of functions. Dokl. Akad. Nauk
SSSR, 231:818–821, 1976. English transl. in Sov. Math., Dokl. 17, 1976.

[14] L. Györfy, M. Kohler, A. Krzyzak, and H. Walk. A distribution-free theory of nonparametric regression.
Springer, 2002.

[15] G. Halász. On Roth’s method in the theory of irregularities of points distributions. In Recent Progress in
Analytic Number Theory. Vol. 2, pages 79–94. Academic Press Inc., 1981.

[16] D. Krieg. On the Dispersion of Sparse Grids. https://arxiv.org/abs/1709.02983, 2017.

[17] V. F. Lev. The exact order of generalized diaphony and multidimensional numerical integration. J. Aust.
Math. Soc., Ser. A, 66:1–17, 1999.

[18] J. Matousek. Geometric Discrepancy. Springer, 1999.

207

https://arxiv.org/abs/1807.01353v1
https://arxiv.org/abs/1601.03978v2
https://arxiv.org/abs/1601.03978v2
https://arxiv.org/abs/1709.02983


V.N. Temlyakov

[19] H. Niederreiter and C. Xing. Low-discrepancy sequences and global function fields with many rational
places. Finite Fields Appl., 2:241–273, 1996.

[20] G. Rote and F. Tichy. Quasi-Monte Carlo methods and the dispersion of point sequences. Math. Comput.
Modelling, 23:9–23, 1996.

[21] K. F. Roth. On irregularities of distribution. Mathematica, 1:73–79, 1954.
[22] D. Rudolf. An Upper Bound of the Minimal Dispersion via Delta Covers. In Contemporary Computational

Mathematics - A Celebration of the 80th Birthday of Ian Sloan, pages 1099–1108. Springer, 2018.
[23] W. M. Schmidt. Irregularities of distribution.VII. Acta Arith., 21:45–50, 1972.
[24] W. M. Schmidt. Irregularities of distribution. X. In Number Theory and Algebra, pages 311–329. Academic

Press Inc., 1977.
[25] M. M. Skriganov. Constructions of uniform distributions in terms of geometry of numbers. Algebra Anal.,

6:200–230, 1994.
[26] J. Sosnovec. A note on minimal dispersion of point sets in the unit cube. Eur. J. Comb., 69:255–259, 2018.
[27] V. N. Temlyakov. Approximation by elements of a finite-dimensional subspace of functions from various

Sobolev or Nikol’skii spaces. Mat. Zametki, 43:770–786, 1988. English transl. in Math. Notes 43, 1988.
[28] V. N. Temlyakov. On a way of obtaining lower estimates for the errors of quadrature formulas.Mat. Sbornik,

181:1403–1413, 1990. English transl. in Math. USSR Sbornik 71, 1992.
[29] V. N. Temlyakov. Approximation of periodic functions. Computational Mathematics and Analysis Series.

Nova Science Publishers, 1993.
[30] V. N. Temlyakov. On error estimates for cubature formulas. Tr. Mat. Inst. Steklova, 207:326–338, 1994.

English transl. in Proc. Steklov Inst. Math. 6:299–309, 1995.
[31] V. N. Temlyakov. Cubature formulas, discrepancy, and nonlinear approximation. J. Complexity, 19:352–

391, 2003.
[32] V. N. Temlyakov. Greedy-Type Approximation in Banach Spaces and Applications. Constr. Approx.,

21:257–292, 2005.
[33] V. N. Temlyakov. On universal estimators in learning theory. Tr. Mat. Inst. Steklova, 255:256–272, 2006.

English transl. in Proc. Steklov Inst. Math. 255:244–259, 2006.
[34] V. N. Temlyakov. Greedy approximation. Cambridge University Press, 2011.
[35] V. N. Temlyakov. Incremental Greedy Algorithm and Its Applications in Numerical Integration. In Monte

Carlo and Quasi-Monte Carlo Methods, pages 557–570. Springer, 2016.
[36] V. N. Temlyakov. Fixed volume discrepancy in the periodic case. https://arxiv.org/abs/1710.11499v1,

2017.
[37] V. N. Temlyakov. The Marcinkiewicz-type discretization theorems for the hyperbolic cross polynomials.

Jaen J. Approx., 9:37–63, 2017.
[38] V. N. Temlyakov. Remarks on numerical integration, discrepancy, and diaphony. https://arxiv.org/

abs/1711.07017v1, 2017.
[39] V. N. Temlyakov. The Marcinkiewicz-type discretization theorems. Constr. Approx., 48:337–369, 2018.
[40] V. N. Temlyakov. Multivariate approximation. Cambridge University Press, 2018.
[41] V. N. Temlyakov. Universal discretization. J. Complexity, 47:97–109, 2018.
[42] V. N. Temlyakov. Smooth fixed volume discrepancy, dispersion, and related problems. J. Approximation

Theory, 237:113–134, 2019.
[43] M. Ullrich. On "Upper error bounds for quadrature formulas on function classes" by K. K. Frolov. In Monte

Carlo and Quasi-Monte Carlo Methods, MCQMC, pages 571–582. Springer, 2016.

208

https://arxiv.org/abs/1710.11499v1
https://arxiv.org/abs/1711.07017v1
https://arxiv.org/abs/1711.07017v1


Numerical integration, discrepancy and dispersion

[44] M. Ullrich. A lower bound for the dispersion on the torus. Math. Comput. Simulation, 143:186–190, 2018.
[45] M. Ullrich. A note on the dispersion of admissible lattices. Discrete Appl. Math., 257:385–387, 2019.
[46] M. Ullrich and J. Vybiral. An upper bound on the minimal dispersion. J. Complexity, 45:120–126, 2018.
[47] T. van Aardenne-Ehrenfest. Proof of the impossibility of a just distribution of an infinite sequence of points

over an interval. Proc. Akad. Wet. Amsterdam, 48:266–271, 1945.
[48] T. van Aardenne-Ehrenfest. On the impossibility of a just distribution. Proc. Akad. Wet. Amsterdam,

52:734–739, 1949.
[49] H. Weyl. Über die Gleichverteilung von Zahlen mod. Eins. Math. Ann., 77:313–352, 1916.
[50] P. Zinterhof. Über einige Abschätzungen bei der Approximation von Funktionen mit Gleichverteilungsmeth-

oden. Österr. Akad. Wiss., Math.-Naturw. Kl., S.-Ber., Abt. II, 185:121–132, 1976.

209


	1. Introduction
	2. Discrepancy as a special case of numerical integration
	3. A brief history of results on classical discrepancy
	4. Smooth discrepancy and numerical integration
	5. Lower estimates for the smooth discrepancy
	6. Fixed volume discrepancy
	7. Dispersion
	8. Universal discretization
	9. Generalizations
	10. Numerical integration without smoothness assumptions
	Acknowledgements
	References

