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Abstract. We construct a family of numerical methods for the Pauli equation of charged particles in a time-
dependent, homogeneous magnetic field. These methods are described in a general setting comprising systems of
multiple particles and extend the usual splitting and Fourier grid approach. The issue is that the magnetic field
causes charged particles to rotate. The corresponding rotations of the wave function are highly incompatible with
the Fourier grid approach used for the standard Schrödinger equation. Motivated by the theory of Lie algebras
and their representations, our new approach approximates the exact flow map in terms of rotated potentials and
rotated initial data, and thereby avoids this issue. Finally, we provide numerical examples to examine convergence
and preservation of norm and energy.
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Introduction

The Pauli equation as introduced in 1927 describes an electron in an external, homogeneous magnetic
field [17]. Though formulated almost one century ago, it is still used in modern applications, e.g. ion
traps used to realize qubits in quantum computing: the Penning trap confines charged particles in a
homogeneous magnetic field and is modelled by the Pauli equation [20].

For the standard Schrödinger equation (i.e. zero magnetic field), splitting methods in combination
with FFT have been used for instance in [1] and are standard by now. The presence of a magnetic field
gives rise to a new term in the Hamiltonian, we call it the magnetic term. Several attempts have been
made to adapt the standard splitting/FFT approach to the magnetic Schrödinger equation [14, 4, 11].

We provide a novel method to handle the magnetic term via splitting and FFT. The efficiency of our
method is comparable to the standard one for zero magnetic field and also maintains the advantages
of the latter, such as natural norm preservation and exponential convergence in space. The spectral
approach which is the key to exponential convergence in space requires magnetic fields that depend
only on time, but not on space. However, we allow for general potentials, depending on space and
time.

Another spectral method that relies on splitting is presented in [22], where generalized coherent
states (so called Hagedorn wavepackets) are used instead of the Fourier grid. This approach improves
for small values of the model parameter in [7], while the Fourier grid approach is suited for large
values.
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1. The Mathematical Model

Consider a spinless1 particle of mass m > 0 and charge e ∈ R living in Rd subject to an electric
potential φ(x, t) and a magnetic potential 1-form A(x, t) = Ak(x, t)dxk, where x ∈ Rd. We assume the
corresponding magnetic field 2-form dA to be independent of x. Therefore we choose

A(x, t) := 1
2Bjk(t)x

jdxk (1.1)

where B(t) = (Bjk(t))16j,k6d is a real, skew-symmetric matrix. The corresponding magnetic field
2-form is given by

dA =
∑

16j<k6d

Bjk(t) dxj ∧ dxk.

We introduce for j, k ∈ {1, . . . , d} the operators [13, Eq (14)], [6, Eq (3.21)]

pk := −ih∂k (components of linear momentum)
Ljk := xjpk − xkpj . (generalized angular momentum)

Our system is then described by the Pauli Hamiltonian

HP (t) := 1
2m

d∑
k=1

(
pk − eAk(x, t)

)2
+ eφ(x, t)

= 1
2m

(
h2(−∆)− e

∑
16j<k6d

Bjk(t)Ljk + e2

4 ‖B(t)x‖2Rd

)
+ eφ(x, t).

(1.2)

Upon redefining t, x,B and introducing a more general potential V (x, t), we may instead consider the
new Hamiltonian

H(t) := −∆ +HB(t) + V (x, t) (1.3)
on2 L2(Rd), where (now h = 1)

pk = −i∂k
Ljk = xjpk − xkpj (1.4)

HB(t) := −
∑

16j<k6d

Bjk(t)Ljk

with associated Schrödinger equation

i∂tψ(x, t) = H(t)ψ(x, t), ψ0(x) = ψ(x, 0). (H)

Note that this equation is more general as V (x, t) can also contain an external potential besides φ(x, t).

Remark 1.1. If we choose in (1.3)

V (x, t) = ‖B(t)x‖2Rd + φ(x, t),

we recover (up to scaling) the potential terms in the physical Pauli Hamiltonian (1.2).

The paper is organized as follows: Section 2 describes a numerical method for (H), where each
subsection deals with one subproblem. Physical applications and concrete examples of the abstract
setting above are in Section 3.

1Our theory can easily be extended to particles that carry spin. This is explained in Subsection 3.1.
2We write L2(Rd) := L2(Rd; C) for the complex-valued, square-integrable functions.
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2. The Numerical Method

We split (H) into the three simpler equations:
i∂tψ(x, t) = −∆ψ(x, t) (K)
i∂tψ(x, t) = HB(t)ψ(x, t) (M)
i∂tψ(x, t) = V (x, t)ψ(x, t) (P)

The main steps of our method are:

(1) Solve the potential equation (P) using pointwise multiplication by e−i
∫ t

t0
V (x,s)ds.

(2) Solve the kinetic equation (K) in the (discrete) Fourier space.

(3) Reduce the magnetic equation (M) to the linear ODE3

d
dty(t) = B(t) y(t), (B)

where y : R→ Rd. This is achieved using a Lie algebra isomorphism relating B(t) and HB(t).
We then use Magnus expansion to solve (B).

(4) Using that −∆ and HB(t) commute, combine the previous solutions to a solution of
i∂tψ = (−∆ +HB(t))ψ. (K+M)

(5) A splitting scheme merges the solutions from Steps 4 and 1 to a solution of (H).

Since Steps 1 and 2 are standard, we discuss only Steps 3, 4 and 5 in detail. Step 5 includes a
fundamentally new idea which makes the algorithm applicable for any Fourier grid in space and time
and hence feasible in higher dimensions. For convenience, we use exclusively uniform grids and standard
FFT in our numerical experiments. Finally, we introduce the following notation: Given a Hamiltonian
H̃(t) we denote by ΦH̃(t, t0) the unitary flow associated with the time-dependent Schrödinger equation

i∂tψ(x, t) = H̃(t)ψ(x, t), ψ0(x) = ψ(x, 0),
i.e. ΦH̃(t, t0) satisfies

d
dtΦH̃(t, t0) = −iH̃(t)ΦH̃(t, t0), ΦH̃(t0, t0) = id. (2.1)

2.1. Step 3: Solving Equation (M)

Let SO(d) denote the special orthogonal group of real d× d matrices. Note that [18, Thm X.69] yields
existence of a flow map U(t, t0) ∈ SO(d) solving (B), i.e.

d
dtU(t, t0) = B(t)U(t, t0), U(t0, t0) = id . (2.2)

To accomplish a link between equations (B) and (M), we consider the group U(L2(Rd)) of unitary
operators on L2(Rd) and the unitary representation

ρ : SO(d) −→ U(L2(Rd))
defined as the map satisfying

(ρ(R)ψ)(x) = ψ(R−1x) (2.3)
for all R ∈ SO(d), ψ ∈ L2(Rd) and all x ∈ Rd.

3After multiplication by i on both sides, (B) becomes a Schrödinger equation with Hamiltonian iB(t).
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Lemma 2.1. The flow map U(t, t0) of (B) gives rise to a flow map of (M) by

ΦHB
(t, t0) = ρ(U(t, t0))

for all t, t0 ∈ R.

Proof. Observe that

− iHB(t) =
d∑

j,k=1
Bjk(t)xj∂k. (2.4)

and fix t, t0 ∈ R. For all j, k ∈ {1, . . . , d} and all x ∈ Rd, we have
xj∂kψ0(U−1(t, t0)x) = dψ0

∣∣
U−1(t,t0)x · xj∂kU

−1(t, t0)x = dψ0
∣∣
U−1(t,t0)x · U

−1(t, t0)xj∂kx.
Hence by (2.4) and linearity

−iHB(t)ψ0(U−1(t, t0)x) = dψ0
∣∣
U−1(t,t0)x · U

−1(t, t0)(−iHB(t)x).

Anti-symmetry of B(t) and (2.4) yield similarly for all x ∈ Rd

−iHB(t)x = −B(t)x.
We take the transpose on both sides of (2.2) and use anti-symmetry of B(t) again in order to get

d
dtU

−1(t, t0) = (−1)U−1(t, t0)B(t).

Fix some initial data ψ0 ∈ L2(R). Using the last three equations, we compute
−iHB(t)ψ0(U−1(t, t0)x) = dψ0

∣∣
U−1(t,t0)x · U

−1(t, t0)(−iHB(t)x)

= dψ0
∣∣
U−1(t,t0)x · (−1)U−1(t, t0)B(t)x

= dψ0
∣∣
U−1(t,t0)x ·

d
dtU

−1(t, t0)x

= d
dtψ0(U−1(t, t0)x).

Hence ρ(U(t, t0)) is a flow map for (M).

There is a more general principle behind the last lemma, which involves the theory of Lie groups,
Lie algebras, and their representation theory. The rest of this subsection is rather technical and briefly
explains this principle. But for our purpose, Lemma 2.1 will suffice. The reader may thus continue
with Subsection 2.2 if he is only interested in the numerical method.

Besides the group structure, SO(d) is a manifold, more precisely a Lie group. Its tangent space at
the identity, endowed with the matrix commutator, is called the Lie algebra

so(d) := {Ω ∈ Rd×d | ΩT = −Ω}

of SO(d). Moreover, we consider the Lie algebra spanned by (i times) the angular momentum opera-
tors (1.4)

l(L2(Rd)) := spanR{iLjk | 1 6 j < k 6 d},
also endowed with the usual commutator4. The derivative of ρ is the Lie algebra isomorphism (com-
pare [6, Eq (2.14)] and [6, Eq (3.28)])

ρ∗ : so(d) −→ l(L2(Rd)), Ω 7−→ −iHΩ.

4The notation l(L2(Rd)) is not standard.
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Note that B(t) ∈ so(d) for all t ∈ R. We see that ρ maps the flow of (B) to the flow of (M) because
ρ∗ maps B(t) to −iHB(t) (i.e. relates the right-hand-sides of the two equations). This relation is
summarized in the following commuting diagram

so(d) ρ∗ //

exp
��

l(L2(Rd))

exp
��

SO(d) ρ
// U(L2(Rd))

where exp denotes the exponential map from a tangent space into its manifold.

2.2. Step 3: Solving Equation (B) by Magnus Expansion

We approximate the exact flow U(t, t0) ∈ SO(d) of (B) by a Magnus expansion (see [15] or [10, Ch IV.7]
for details), i.e.

U(t, t0) ≈ Un(t, t0) := eΩ[n](t,t0), Ω[n](t, t0) :=
n∑

m=1
Ωm(t, t0), (2.5)

for some Ωm(t, t0) ∈ so(d) and the first two terms of the truncated series are

Ω1(t, t0) =
t∫

t0

B(s1)ds1, Ω2(t, t0) = 1
2

t∫
t0

s1∫
t0

[
B(s1), B(s2)

]
ds2ds1.

The Magnus expansion yields a unitary approximation of ΦHB
(t, t0) = ρ(U(t, t0)) as stated in the next

lemma.

Lemma 2.2. For all t, t0 ∈ R and all n ∈ N, we have

(i) Un(t, t0) ∈ SO(d) and

(ii) ρ(Un(t, t0)) is a unitary map on L2(Rd).

Proof. Part (i) holds since the matrix exponential on a Lie algebra maps to its Lie group. Moreover,
(i) implies (ii) by means of the substitution y := U−1

n (t, t0)x in the integral of the inner product on
L2(Rd).

Example 2.3. In all subsequent simulations, we use the following fourth order commutator free
Magnus integrator from Example 1 in [3]. Define the nodes and weights

c :=
(

1
2 −

√
3

6
1
2 +

√
3

6

)
, α :=

(
1
4 −

√
3

6
1
4 +

√
3

6

)
.

For a sufficiently small time step h > 0 we define the orthogonal matrix

Ũ(h, t0) := exp(α1hB1 + α2hB2) · exp(α2hB1 + α1hB2), Bi := B(t0 + cih).
For the uniform time grid tj := t0 + jh, where j ∈ {0, . . . , J} and t := tJ , we have

U(t, t0) =
J∏
j=0

Ũ(tj , tj−1) +O(h5).

As pointed out in [3], the forth order convergence is due to [1, Eq (12)].
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2.3. Step 4: Solving Equation (K+M)

The following lemma shows that we can switch the flows and hence the internal steps in our algorithm
in a convenient way. It also justifies the treatment of −∆ and HB together in one step.
Lemma 2.4. Fix any t, t0 ∈ R. Then

(i) for all R ∈ SO(d) the operators ρ(R) and Φ−∆(t, t0) commute and

(ii) we have Φ−∆+HB
(t, t0) = ΦHB

(t, t0) Φ−∆(t, t0) = Φ−∆(t, t0) ΦHB
(t, t0).

Proof. Fix any R ∈ SO(d). Note that ρ(R) commutes with the Fourier transform F and that
Rd → C, k 7→ e−i(t−t0)k2 is rotation invariant. Hence

ρ(R)e−i(t−t0)(−∆) = ρ(R)F−1e−i(t−t0)k2F

= F−1e−i(t−t0)k2Fρ(R)

= e−i(t−t0)(−∆)ρ(R).
This proves (i), which in turn proves the second equality in (ii) by Lemma 2.1. It remains to show
that the first equality also holds:

d
dt
(
ΦHB

(t, t0)Φ−∆(t, t0)
)

= Φ̇HB
(t, t0)Φ−∆(t, t0) + ΦHB

(t, t0)Φ̇−∆(t, t0)
(2.1)= −iHB(t)ΦHB

(t, t0)Φ−∆(t, t0)− iΦHB
(t, t0)(−∆)Φ−∆(t, t0)

= −i
(
−∆ +HB(t)

)
ΦHB

(t, t0)Φ−∆(t, t0),
where we used rotation invariance of the Laplacian to swap −∆ and ΦHB

(t, t0). It follows that
ΦHB

(t, t0)Φ−∆(t, t0) solves (2.1) for H̃ = −∆ +HB, which concludes the proof.

2.4. Step 5: Solving Equation (H) by Splitting

Let U(t, t0) denote the flow map of (B) and ρ the left-regular representation defined in (2.3). We
construct an approximation of the solution of the time-dependent Schrödinger Equation (H) associated
with the full Hamiltonian

H(t) = −∆ +HB(t) + V (x, t)
by a splitting with coefficients5 (ai, bi)i∈{1,...,n}. We start with a few notations. Fix times t0 < t and
introduce for i ∈ {0, . . . , n} the time grids

ti = t0 + (t− t0)
i∑

j=1
bj and si = t0 + (t− t0)

i∑
j=1

aj (2.6)

and for any two Hamiltonians H1 and H2 write6

(ΦH2

(a,b)
◦ ΦH1)(t, t0) :=

n−1∏
i=0

ΦH2(ti+1, ti)ΦH1(si+1, si).

Our splitting scheme for (H) then reads

ΦH(t, t0) ≈ (Φ−∆+HB

(a,b)
◦ ΦV )(t, t0) =

n−1∏
i=0

Φ−∆(ti+1, ti)ΦHB
(ti+1, ti)ΦV (si+1, si)

5For example we obtain the Strang splitting by a = ( 1
2 ,

1
2 ) and b = (1, 0).

6The order of the product is “lowest index first”:
∏n

i=1 Ai := An · · ·A1
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where we used part (ii) of Lemma 2.4. The equality

ρ(R)(f · ψ) = (ρ(R)f) · (ρ(R)ψ)

holds for all7 ψ ∈ L2(Rd), f ∈ L∞(Rd) and all R ∈ SO(d). We apply it to the special choice R = U(t, t′)
and f(x) = e−i

∫ s

s′ V (x,s̃)ds̃. Lemma 2.1 yields then

ΦHB
(t, t′)ΦV (s, s′) = Φρ(U(t,t′))V (s, s′)ΦHB

(t, t′) (2.7)

for all t, t′, s, s′ ∈ R. This is crucial for proving Lemma 2.5 below, which provides an expression for
(Φ−∆+HB

(a,b)
◦ ΦV )(t, t0) in terms of rotated potentials and a single rotation of the initial data.

Lemma 2.5. For splitting coefficients (ai, bi)i∈{1,...,n} and times s0, . . . , sn, t0, . . . , tn, t as in (2.6), we
have

(Φ−∆+HB

(a,b)
◦ ΦV )(t, t0) =

( n−1∏
i=0

Φ−∆(ti+1, ti)Φρ(U(tn,ti))V (si+1, si)
)

ΦHB
(tn, t0).

Proof. We proceed by induction on n. For n = 1, the assertion follows immediately from (2.7).
Suppose now that the formula holds for any set of coefficients of length n − 1. Using this hypothesis
on the last n− 1 factors and Lemma 2.4, we obtain

(Φ−∆+HB

(a,b)
◦ ΦV )(t, t0) =

( n−1∏
i=1

Φ−∆(ti+1, ti)Φρ(U(tn,ti))V (si+1, si)
)

ΦHB
(tn, t1)

× Φ−∆(t1, t0)ΦHB
(t1, t0)ΦV (s1, s0)

=
( n−1∏
i=1

Φ−∆(ti+1, ti)Φρ(U(ti+1,ti))V (si+1, si)
)

× Φ−∆(t1, t0)ΦHB
(tn, t0)ΦV (s1, s0)

=
( n−1∏
i=1

Φ−∆(ti+1, ti)Φρ(U(tn,ti))V (si+1, si)
)

× Φ−∆(t1, t0)Φρ(U(tn,t0))V (s1, s0)ΦHB
(tn, t0)

which is exactly the claim for n factors.

2.5. The Main Result

The application of ΦHB
requires rotation of functions in their argument. This is impossible if the

functions are defined on a grid as in the Fourier grid approach used for Φ−∆. However, we can rotate
the initial data ψ0(x) and the potential V (x, t) if they are given as concrete expressions. This is done
by Equation (2.8) below, our main result. It provides an approximation of the flow map of (H) in terms
of rotated potentials and a single rotation of the initial data. It uses only the flow maps Φ−∆,ΦHB

,ΦV

which were discussed above.
In Lemma 2.5 we have only treated a single timestep [t0, t]. If we generalize the idea to N steps

of length h := t− t0, we arrive at the following formula: For splitting coefficients (ai, bi)i∈{1,...,n} and

7Even if f /∈ L2(Rd) we still define ρ(R)f as in (2.3).
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times s0, . . . , sn, t0, . . . , tn as in (2.6), we have

ΦH(t0 +Nh, t0)

=
(N−1∏
j=0

n−1∏
i=0

Φ−∆(ti+1, ti)Φρ(U(t0+Nh,ti+jh))V (si+1 + jh, si + jh)
)

ΦHB
(t0 +Nh, t0) +O(hp), (2.8)

for h → 0 and p ∈ N is the order of the splitting scheme (see Table 2.1). Here we assume that
U(t, t0) ∈ SO(d) is the exact flow map defined in Equation (2.2). The right-hand side of (2.8) is an
N -fold concatenation of

(Φ−∆+HB

(a,b)
◦ ΦV )(t, t0),

followed by subsequent applications of (2.7). Since we can represent each of the involved propagators
exactly, we expect the order of our method to be the order of the splitting scheme. However, we only
provide a proof of consistency and convergence in the simplest case of the Lie-Trotter splitting (n =
a1 = b1 = 1) in Theorem 2.9 below. For higher order splittings we refer to the numerical experiments in
Section 3, see Table 2.1 for a complete list of splitting methods used in these experiments. Algorithm 1
provides a pseudo-code for efficient computing of the right-hand side of (2.8).

Table 2.1. Several splitting methods. The first row provides labels for the legends of
the plots in Section 3.

Method Order p Author(s) Reference(s)
SS 2 Strang [19], [9]: Page 42, Eq. 5.3

PRKS6 4 Blanes/Moan [2]: Page 318, Table 2, ‘S6’
BM42 4 Blanes/Moan [2]: Page 318, Table 3, ‘SRKNb6’
Y61 6 Yoshida [21], [9]: Page 144, Eq. 3.11
KL6 6 Kahan/Li [12], [9]: Page 144, Eq. 3.12
KL8 8 Kahan/Li [12], [9]: Page 145, Eq. 3.14

Remark 2.6. It only remains to approximate the flow U(t, t0), for instance by a Magnus expansion
as discussed in Example 2.3. Since this problem is low-dimensional, we can approximate U(t, t0) up
to machine precision by brute force in every timestep. Thus the order of convergence in (2.8) remains
valid if we replace U(t, t0) by its approximation. In the simulations in Section 3, we implement this
as follows: We divide the time interval into Ñ = d1001 · (t− t0)e equidistant sub-intervals. Then we
apply the Magnus expansion to each sub-interval und multiply the resulting rotation matrices. Since
the Magnus expansion happens in a low-dimensional setting, the impact on the overall runtime is
neglectable. The choice of Ñ is tuned for the particular examples we consider. Other examples might
require different tuning.

Remark 2.7. If for all t ∈ R the potential V (x, t) is spherically symmetric, i.e.
∀R ∈ SO(d) : ρ(R)V (x, t) = V (x, t),

then we may replace ρ(U(t0 +Nh, ti + jh))V = V in (2.8).

In [5], the authors give a general consistency and convergence result, stating that the classical order
of consistency and convergence of splitting schemes carries over to the setting of time-independent,
unbounded operators. We conjecture that the same ideas as in [5] can be used for splittings of time-
dependent unbounded operators. However, for the sake of simplicity, we restrict ourselfs to the simplest
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Algorithm 1 Compute the RHS of (2.8)

Input: first time step [t0, t]; number of time steps N ; meshgrid X; initial wave function ψ0 at time
t0; potential V ; splitting coefficients (ai, bi)i∈{1,...,n}; flow maps Φ−∆,ΦV and U corresponding
to (K),(P) and (B);
Output: Y is the solution at time (t− t0) ·N + t0 evaluated on X;

1: h := t− t0
2: ta := t0
3: tb := t0
4: R := U(t0 +N · h, t0)
5: Y := ψ0 ◦R−1(X) {= (ρ(R)ψ0)(X)}
6: for j = 0 to N − 1 do
7: for i = 1 to n do
8: Ṽ := V ◦R−1 {= ρ(R)V }
9: Y = ΦṼ (ta + ai · h, ta)Y

10: R = R · U−1(tb + bi · h, tb)
11: Y = Φ−∆(tb + bi · h, tb)Y
12: ta = ta + ai · h
13: tb = tb + bi · h
14: end for
15: end for
16: return Y

possible case of the Lie-Trotter splitting (n = a1 = b1 = 1), which contains already the basic ideas. Note
that this was already done in a similar context in [4]. Moreover, we consider only formal computations
to avoid the technicalities arising in the context of unbounded operators. To this end, we treat time-
dependent operators, say C(t), such that iC(t) is self-adjoint for all times. We denote the corresponding
unitary propagator by ΦC(t, t0), meaning that formally

d
dtΦC(t, t0) = C(t)ΦC(t, t0), ΦC(t0, t0) = id .

We denote its formal derivative by Ċ(t). If for example C(t) = i∆− iHB(t), we have Ċ(t) = −iH∂tB(t),
where ∂tB(t) is the magnetic field matrix differentiated in every entry. Likewise, if C(t) = −iV (x, t),
we have Ċ(t) = −i∂tV (x, t). The next theorem provides a formal consistency and convergence result.
The proof is analog to the one of [5, Thm 2].

Theorem 2.8. Let iA(t) and iB(t) be two time-dependent, self-adjoint operators on a Hilbert space
H. Fix t, t0 ∈ R and let Φ(t, t0) = ΦB(t, t0)ΦA(t, t0) denote the Lie-Trotter splitting operator. Then
for all φ ∈ H, we have

‖Φ(t, t0)φ− ΦA+B(t, t0)φ‖ ≤ (c1(t0, t,A,B, φ) + c2(t0, t,A,B, φ)) |t− t0|2

provided that the following constants exist

c1(t0, t,A,B, φ) = max
t0≤s,s̃≤t

‖[ΦB(s, t0), Ȧ(s)] ΦA(s̃, t0)φ‖

c2(t0, t,A,B, φ) = max
t0≤s,s̃≤t

‖[B(s),A(s)] ΦB(s, t0)ΦA(s̃, t0)φ‖.

Now let ϕN denote the approximate solution of the Lie-Trotter splitting after N ∈ N timesteps up to
a final time T = N(t− t0) + t0, applied to initial data ϕ(t0) ∈ H, where ϕ denotes the exact solution.
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Then

‖ϕN − ϕ(T )‖ ≤ max
t0≤s0≤T

(c1(s0, T,A,B, ϕ(s0)) + c2(s0, T,A,B, ϕ(s0))) |t− t0|,

provided that the maximum exists.

Proof. We compute the formal derivative of the splitting operator
d
dtΦ(t, t0) = (A(t) + B(t)) Φ(t, t0) +R(t, t0),

where
R(t, t0) = [ΦB(t, t0),A(t)] ΦA(t, t0).

Thus the defect operator L(t, t0) := Φ(t, t0)− ΦA+B(t, t0) satisfies the initial value problem
d
dtL(t, t0) = (A(t) + B(t))L(t, t0) +R(t, t0), L(t0, t0) = 0.

The variation-of-constants formula thus yields the integral expression

L(t, t0) =
t∫

t0

ΦA+B(t, s)R(s, t0)ds.

We decompose R(s, t0) = r(s, t0)ΦA(s, t0) with r(s, t0) = [ΦB(s, t0),A(s)]. We construct an integral
expression for r(s, t0) in the same way we did before for L(t, t0). Observe that r(s, t0) solves the initial
values problem

d
dsr(s, t0) = B(s)r(s, t0) + R̃(s, t0), r(t0, t0) = 0,

where
R̃(s, t0) = [ΦB(s, t0), Ȧ(s)] + [B(s),A(s)] ΦB(s, t0).

As before, the variation-of-constants formula thus yields the integral expression

r(s, t0) =
s∫

t0

ΦB(s, s̃)R̃(s̃, t0)ds̃.

If we insert this into the integral expression for L(t, t0), we obtain

L(t, t0) =
t∫

t0

ΦA+B(t, s)

 s∫
t0

ΦB(s, s̃)R̃(s̃, t0)ds̃

ΦA(s, t0)ds.

Hence for all φ ∈ H, we have

‖L(t, t0)φ‖ ≤
(

max
t0≤s,s̃≤t

‖[ΦB(s, t0), Ȧ(s)] ΦA(s̃, t0)φ‖

+ max
t0≤s,s̃≤t

‖[B(s),A(s)] ΦB(s, t0)ΦA(s̃, t0)φ‖
)
|t− t0|2.

This implies the local error formula in the claim. The global error follows by a standard Lady Win-
dermere’s Fan argument (see [5, Eq (5.6)] and [8, Fig 7.1]).

The idea is that a rapidly decaying and smooth initial data compensates for a growing but smooth
potential V (x, t), so that the constants c1 and c2 in Theorem 2.8 can be uniformly bounded on a
compact time interval. Then we can infer local and global convergence of order 1 in case of the Lie-
Trotter splitting. But instead of searching for minimal requirements in our context, we will just make
this part of our assumptions.
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Theorem 2.9. Let U(t, t0) ∈ SO(d) be the exact flow map defined in Equation (2.2). Suppose that the
constants c1 and c2 in Theorem 2.8 exist and are finite on the interval [t0, T ] when applied to iA(t) =
V (x, t) and iB(t) = −∆ +HB(t). Then, in the case of the Lie-Trotter splitting (n = a1 = b1 = 1), the
method (2.8) is of consistency and convergence order 1.

Proof. The right-hand side of (2.8) is an N -fold concatenation of Lemma 2.5, followed by subsequent
applications of (2.7). Hence the order of convergence is equal to the one of the single step method in
Lemma 2.5, i.e. of

(Φ−∆+HB
◦ ΦV )(t, t0).

Recall that Φ−∆+HB
= Φ−∆ ◦ ΦHB

by Lemma 2.4. Since we can represent all three flow maps
Φ−∆,ΦHB

,ΦV exactly, Theorem 2.8 finishes the proof.

3. Examples

The Pauli Hamiltonian (1.2) (and thus also its abstract version (1.3)) contains many physically relevant
cases. In order to investigate them, it is convenient to introduce the notation

Ω( ~B) :=

 0 −B3 B2
B3 0 −B1
−B2 B1 0

 , ~B =

B1
B2
B3

 ∈ R3.

Example 3.1 (N particles in three dimensions). Consider a system of N particles of mass m > 0 and
charge e ∈ R where n ∈ {1, . . . , N}, subject to an electric potential φ(~x1, . . . , ~xN , t) and a homogeneous
magnetic field ~B(t). This system is modeled by the Pauli Hamiltonian

HN = 1
2m

N∑
n=1

(
~pn − e ~A(~xn, t)

)2
+ eφ(~x1, . . . , ~xN , t)

where ~pn := −ih~∇n and the vector potential is given by

~A(~x, t) := 1
2
~B(t)× ~x.

By choosing d = 3N and
B(t) = diag

(
Ω(− ~B(t)), . . . ,Ω(− ~B(t))

)
in (1.1) we can obtain this as special case of (1.2).

Example 3.2 (N particles in two dimensions). The setting of Example 3.1 can be adapted to N
particles moving only in the (x, y)-plane. The magnetic field can be assumed perpendicular to the
plane of motion, say ~B(t) = (0, 0, B3(t))T. Thus we have to choose d = 2N and

B(t) = diag
((

0 B3
−B3 0

)
, . . . ,

(
0 B3
−B3 0

))
in (1.1) to retrieve this system as a special case of (1.2).

Remark 3.3. By Remark 1.1, we can recover (1.2) (up to scaling) from (1.3) by choosing
V (x, t) = ‖B(t)x‖2Rd + φ(x, t).

The integral of the magnetic part in the associated unitary flow

ΦV (t, t0) = exp
(
− i

∫ t

t0
V (x, s)ds

)
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can be computed independently of x ∈ Rd (and thus efficiently) since∫ t

t0
V (x, s)ds =

∫ t

t0

〈
B(s)x,B(s)x

〉
Rdds+

∫ t

t0
φ(x, s)ds

=
〈
x,

(
−
∫ t

t0
B2(s)ds

)
x

〉
Rd

+
∫ t

t0
φ(x, s)ds

where we used the skew-symmetry of B in the last step. For the integral of the electric potential part,
we require an analytical expression, as computing an integral at every point x ∈ Rd is expensive.

Remark 3.4. The assumption that all particles share the same mass and charge is only for simplicity.
Redefining the coordinates x, t as well as B and V allows us to reduce the general case to one of the
examples above.

Remark 3.5. Note that the block form of B(t) in the previous examples simplifies the computation of
the exponential in the Magnus expansion (2.5): In the notation of (2.5), the matrices Ωm(t, t0) inherit
the block form. Similarly, Ω[n](t, t0) and Un(t, t0) = eΩ[n](t,t0) become block-diagonal.

3.1. Spin

We have only treated spinless particles so far. However, in case of a single particle in a time-dependent,
but homogeneous (in space) magnetic field, this is not a restriction. To see this, we consider a single
particle (N = 1) of spin 1

2 . We obtain the corresponding Hamiltonian if we extend H1 of Example 3.1
by the Stern-Gerlach term,

H
1
2
1 =

(
H1 0
0 H1

)
− eh

2m~σ ·
~B(t),

where we have introduced the Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ2 =

(
1 0
0 −1

)
, ~σ =

σ1
σ2
σ3


and H

1
2
1 acts on the two-component wave function

ψ (~x, t) =
(
ψ+ (~x, t)
ψ− (~x, t)

)
.

We provide an expression for the time evolution of H
1
2
1 , in terms of the evolution operators for H1 and

for the Schrödinger equation of the Stern-Gerlach term

i∂tψ (~x, t) = − eh2m~σ ·
~B(t)ψ (~x, t) . (S)

We apply the same reasoning to Equation (S) as for Equation (M): By [18, Thm. X.69], the evolution
operator of (S) is given by some U(t, t0) ∈ SU(2), independent of ~x. Here, we use that ~B is independent
of ~x. Moreover, since U(t, t0) is independent of ~x, it commutes with the time evolution ΦH1(t, t0) of
H1. Thus, the time evolution of H

1
2
1 reads

Φ
H

1
2

1

(t, t0) =
(

ΦH1(t, t0) 0
0 ΦH1(t, t0)

)
· U(t, t0) = U(t, t0) ·

(
ΦH1(t, t0) 0

0 ΦH1(t, t0)

)
.

One can approximate U(t, t0) by a Magnus expansion as explained in Subsection 2.2. The time evolu-
tion of H1, i.e. the spinless case, was discussed in detail above.

264



High-Order Integrator for TDSE with Magnetic Field

3.2. Order of Convergence (Harmonic Potential)

We now examine the order of convergence of our method for different splittings (see step 5). Therefore,
we solve (H) for t ∈ [0, 2π] with magnetic field

B(t) = Ω(− ~B(t)), ~B(t) = cos(t)√
3

1
1
1

 .
The potential in (1.3) is chosen as8

V (~x, t) = x2
1 + x2

2 + x2
3.

The initial data at time t0 = 0 shall be the Gaussian

ψ0(~x) = 1
(2πσ2)

3
4

exp
(
− (~x− ~µ)2

4σ2 + 2ix1

)
, ~µ :=

1
1
1

 , σ2 := 1
2 (3.1)

of L2-norm one. This setting admits periodic solutions of period 2π. In particular, the solution ψ(~x, t)
to this IVP satisfies ψ0(~x) = ψ(~x, 2π) for all ~x ∈ R3. The initial data will thus serve as reference
solution for the convergence plots in Figure 3.1. They indicate that the order of our method is equal
to the order of the underlying splitting scheme. In particular, it is not limited by the order 4 of the
Magnus expansion, see Remark 2.6 for an explanation. We use a dense Fourier grid of equidistant
meshwidth 8π · 2−7 in each spacial direction filling the cube [−4π, 4π]3.
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Figure 3.1. Order of convergence using different splittings. See Table 2.1 for the
legend.

3.3. Order of Convergence (Mexican Hat Potential)

Now we consider the more involved example of a Mexican hat potential

φ(~x) = 1
32‖~x‖

4
R3 − x2

1 −
3
2x

2
2 − 2x2

3.

8This is not a special case of the Pauli Hamiltonian (1.2) since V (~x, t) is independent of the magnetic field. Compare
to Remark 1.1.

265



V. Gradinaru & O. Rietmann

The magnetic field is given by

B(t) = Ω(− ~B(t)), ~B(t) = 1√
3

cos(t)
sin(t)

1

 .
Thus we arrive at the time-dependent potential (see Remark 1.1)

V (~x, t) = ‖B(t)~x‖2R3 + φ(~x).
We solve the corresponding time-dependent Schrödinger equation (H) on t ∈ [0, 2π] using different
splitting schemes. As before, (3.1) serves as initial data. The accurate KL8 splitting with time steps of
size h = 2π · 2−8 provides the reference solution for the results in Figure 3.2. The order of convergence
is not limited by the order 4 of the Magnus expansion, see Remark 2.6 for an explanation. We use a
dense Fourier grid of equidistant meshwidth 8π ·2−7 in each spacial direction filling the cube [−4π, 4π]3.
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Figure 3.2. Order of convergence using different splittings. See Table 2.1 for the
legend.

3.4. Norm and Energy Conservation (Morse Potential)

In this example we focus on the conservation of the L2-norm and of the energy. The latter is conserved
if the Hamiltonian is constant in time. We thus consider a modification of the Example 3.2 to the
threefold Morse potential (see Figure 3.3)

φ(x) = 16
(

1− exp
(
−
‖x‖2R2

32
(
1− cos(3 arctan2(x2, x1))

)2))2

and the constant magnetic field

B(t) = 1
2

(
0 −1
1 0

)
perpendicular to the plane of motion. The overall potential is hence now time-independent (see Re-
mark 1.1)

V (x, t) = ‖B(t)x‖2R2 + φ(x) = 1
4‖x‖

2
R2 + φ(x)
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Figure 3.3. The threefold Morse potential. We expect a high probability of finding
the particle within the back region, which is confirmed by Figure 3.5 below.

Finally, we take the Gaussian initial data

ψ0(x) = 1√
2πσ2

exp
(
− (x− µ)2

4σ2 + 2ix1

)
, µ :=

(
2
2

)
, σ2 := 1

2

of L2-norm one. Write ψ(t) = ψ(x, t) and denote by 〈 · , · 〉L2 the inner product on L2(Rd). We consider
the energies

Ekin(t) := 〈ψ(t),−∆ψ(t)〉L2 (kinetic energy)
Emag(t) := 〈ψ(t), (H−B(t) + ‖B(t)x‖2Rd)ψ(t)〉L2 (magetic energy)
Epot(t) := 〈ψ(t), φ(x)ψ(t)〉L2 (potential energy)
Etot(t) := Ekin(t) + Emag(t) + Epot(t). (total energy)

for d = 2. Figure 3.4 indicates that the total energy is preserved, although its components exhibit
non-trivial behavior. Note also that H−B(t) is not a positive semidefinite operator and hence the
magnetic energy can be negative. Moreover, the L2-norm is approximately constant as well. For the
simulation, we use a dense Fourier grid of equidistant meshwidth 8π · 2−8 in each spacial direction
filling the square [−4π, 4π]2.
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Figure 3.4. Energies and L2-norm along the solution in the setting above. Note the
scale on the right: The norm has oscillations of roughly 10−12 around 1.
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Figure 3.5. Initial data and solution in the setting above. A complex valued wave-
function ϕ is plotted as follows: The color at x encodes the phase of ϕ(x), while we
darken the pixel according to the modulus |ϕ(x)|. A black pixel indicates a vanishing
wave function at this point and the larger the value of |ϕ(x)|, the brighter the pixel at x.

3.5. Two Particles (Mie(4,2) Potential)

We consider two particles in two dimensions, i.e. Example 3.2 for N = 2. The initial data is given by

ψ0
(
x(1), x(2)

)
= 1

2πσ2 exp
(
− (x(1) − µ(1))2 + (x(2) − µ(2))2

4σ2 + 2ix(1)
1

)
,
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where x(1), x(2) ∈ R2 correspond to the first and second particle, and

µ(1) :=
(
−2
−1

)
, µ(2) :=

(
1
1

)
, σ2 := 1

2 .

We use the time-independent magnetic field

B(t) =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 ,

which corresponds to B3(t) ≡ 1 in Example 3.2. The electric potential is given by

φ
(
x(1), x(2)

)
= M0.1

(
‖x(1) − x(2)‖R2

)
,

where for small ε ≥ 0,

Mε (r) = 32
(

34

(r4 + ε) −
32

(r2 + ε)

)
+ 8

approximates a repulsive Mie(4, 2) potential [16]. We use ε = 0.1 in the simulations below to avoid
division by zero. See Figure 3.6 for plots of M0(r) and M0.1(r). Because B(t) is constant in time,
the total energy is conserved. Norm and energy of the solution to (H) in this setting are presented
in Figure 3.7. Here, we use a dense Fourier grid of equidistant meshwidth 8π · 2−6 in each spacial
direction filling the hypercube [−4π, 4π]4.
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The Mie(4,2) Potential M (r)
= 0.0
= 0.1

Figure 3.6. The potential Mε(r), where r > 0 is the distance between the two parti-
cles.
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Figure 3.7. Energies and L2-norm along the solution in the two-particle setting above.
The separate energies are defined the same way as in Subsection 3.4. Note the scale on
the right: The norm has oscillations of roughly 10−12 around 1.
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