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1. Introduction

The focus of this work is the development of mixed finite element schemes for the stationary Brinkman
problem. Given a bounded and connected domain Ω ⊂ Rd (d = 2, 3) with Lipschitz continuous
boundary Γ, the problem is given by

α(x)u− div
(
ν(x)(∇u+∇uT )− pI

)
= f in Ω,

div(u) = g in Ω, (1.1)
u = uΓ on Γ.

Here u is velocity, p is pressure, α(x) ≥ 0 is the dynamic viscosity divided by permeability, and
ν(x) ≥ 0 is the effective viscosity. With the usual definition of the Lebesgue space L2(Ω), the external
force f is assumed to be in (L2(Ω))d and g ∈ L2(Ω) satisfies

∫
Ω g dx =

∫
Γ uΓ · nds.

In a manner similar to dual-mixed methods for the Stokes and Navier-Stokes problems [17, 18],
the work presented here constructs a dual-mixed variational formulation of (1.1) in which the fluid
velocity, the fluid stress, and the deviatoric part of the velocity gradient are the primary unknowns.
This construction results in a twofold saddle point problem whose coercivity is guaranteed for all
meaningful α, ν under a generalized Poincaré inequality. Based on this formulation, two classes of finite
element methods are presented and analyzed, one of which utilizes classical finite element spaces, while
the other is based on a discrete pivoting strategy. The former method is convergent, yet sub–optimal
by one order, while the latter method converges with optimal order for all physically relevant α and ν.

The Brinkman problem arises in a homogenized model of fluid flow in porous media [24, 1, 2, 4, 32].
An example physical domain for the Brinkman problem is given in Figure 1.1, in which each subdomain
of Ω corresponds to a different medium and effective viscosity in (1.1).
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Sloan Foundation. The third author was supported in part by National Science Foundation grants DMS–1418991 and
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α

ν

River (Stokes flow): ν = 1, α = 0

Gravel bed: ν(x) ∈ [0, 1], α(x) = 1 − ν(x)

Sub–surface (Darcy flow): ν = 0, α = 1

Fig. 1.1. Typical flow configuration for the Brinkman problem.

Figure 1.1, in which each subdomain of Ω corresponds to a different medium and ef-
fective viscosity in (1.1). The Brinkman model is also employed in several application
areas, including filtration [26], groundwater flow through permeable membranes [9],
liquid and vapor flow in heat pipes [19], flow through permeable textile microstruc-
tures [13], computational fuel cell dynamics [35], vascular tissue engineering [3], and
bioreactors for tissue regeneration [28, 29].

Mathematically, the Brinkman problem (1.1) resembles both the Stokes problem for
fluid flow and the Darcy problem for flow in porous media. Indeed, when α = 0
and ν > 0, the Stokes problem is recovered; alternately if ν = 0 and α > 0, (1.1) is
the Darcy problem. When ν and α are both positive constants, the problem (1.1)
also arises in semidiscrete formulations of the nonstationary Stokes problem [12]
and in this case α represents the reciprocal of a time step. Each of these individual
situations have been studied extensively and stable finite element schemes are widely
employed for computing approximate solutions. Additionally, coupled Stokes and
Darcy flows, which pose different equations in subdomains of Ω with various coupling
conditions, have been studied extensively (the reader is referred to [8, 18, 11, 24] for
a sample of recent developments in that direction).

However, there is a considerable challenge in constructing finite element methods
that can be applied to (1.1) for arbitrary choices of α, ν ≥ 0. This stems from the
fundamental differences in the function spaces used to construct the variational form
of (1.1) for the two extreme cases: in the Darcy limit (ν → 0), the standard mixed
velocity-pressure formulation of (1.1) requires H(Ω; div)−L2(Ω) compatibility, while
in the Stokes limit (α → 0), the standard mixed formulation requires H1(Ω)−L2(Ω)
compatibility.

One approach to addressing this problem is to construct non-conforming finite ele-
ment spaces by modifying H(Ω; div) − L2(Ω) compatible spaces. Such efforts have
been undertaken by by Mardal, Tai, and Winther [23], Tai and Winther [33] for the
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Figure 1.1. Typical flow configuration for the Brinkman problem.

The Brinkman model is also employed in several application areas, including filtration [28], ground-
water flow through permeable membranes [10], liquid and vapor flow in heat pipes [21], flow through
permeable textile microstructures [14], computational fuel cell dynamics [37], vascular tissue engineer-
ing [3], and bioreactors for tissue regeneration [30, 34].

Mathematically, the Brinkman problem (1.1) resembles both the Stokes problem for fluid flow and
the Darcy problem for flow in porous media. Indeed, when α = 0 and ν > 0, the Stokes problem
is recovered; alternately if ν = 0 and α > 0, (1.1) is the Darcy problem. When ν and α are both
positive constants, the problem (1.1) also arises in semidiscrete formulations of the nonstationary
Stokes problem [13], and in this case α represents the reciprocal of a time step. Each of these individual
situations have been studied extensively, and stable finite element schemes are widely employed for
computing approximate solutions. Additionally, coupled Stokes and Darcy flows, which pose different
equations in subdomains of Ω with various coupling conditions, have been studied extensively (the
reader is referred to [9, 20, 12, 26] for a sample of recent developments in that direction).

Constructing finite element methods to solve (1.1) for arbitrary choices of α, ν ≥ 0 is challenging.
This stems from the fundamental differences in the function spaces used to construct the variational
form of (1.1) for the two extreme cases: in the Darcy limit (ν → 0), the standard mixed velocity-
pressure formulation of (1.1) requires H(Ω; div)−L2(Ω) compatibility, while in the Stokes limit (α→
0), the standard mixed formulation requires H1(Ω)− L2(Ω) compatibility.

One approach to address this problem is to construct non-conforming finite element spaces by
modifying H(Ω; div) − L2(Ω) compatible spaces. Such efforts have been undertaken by by Mardal,
Tai, and Winther [25], Tai and Winther [35] for the case ν → 0 assuming α > 0, and Xie, Xu, and Xue
[37] for the case ν > 0, α ≥ 0. Guzmán and Neilan [15] construct nonconforming spaces for ν, α > 0
that satisfy mass-conservation properties. Alternately, the work of Stenberg and his collaborators
[19, 16, 22, 23] approaches the Brinkman problem by modifying the mixed term in the velocity-pressure
variational formulation depending on the particular value of ν (assuming α > 0). Other approaches
to the classical velocity-pressure formulation of the Brinkman problem include [38, 31]. A different
approach is to consider an alternative to the classical velocity-pressure mixed variational formulation
of (1.1). In this direction, Gatica, Gatica, and Márquez [11] construct a variational formulation for
the Brinkman problem (with g = 0 and α, ν > 0) in which the pseudostress and the velocity are the
primary unknowns.

None of the aforementioned works has utilized a single-domain variational formulation that is well–
posed for all choices of α, ν ≥ 0 satisfying α + ν > 0 everywhere in the problem domain. In [36],
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Vassilevski and Villa construct an innovative variational formulation for the Brinkman problem (with
non–symmetric stress) using the vorticity, velocity, and pressure as primary unknowns and are able
to show well–posedness for the constant coefficient case with α + ν > 0. The work presented here
also addresses the case α + ν > 0, but does not require the coefficients to be constant and considers
Dirichlet boundary conditions with both symmetric and non–symmetric constitutive laws.

The remainder of this work is organized as follows. The new dual-mixed variational formulation of
equations (1.1) is established, and existence and uniqueness of solutions are shown in Section 2. In
Section 3, the discrete problem is formulated and abstract criteria are given to ensure that the method
is well–posed. Two finite element methods, each with different spaces and discrete pivoting strategies,
are then developed. Finally, numerical examples are presented in Section 4.

2. Variational Formulation

Standard notation will be used for Lebesgue and Sobolev spaces, and vector or tensor spaces will
be denoted using uppercase blackboard bold letters. The pairing (f, g) denotes the standard L2(Ω)
inner product for scalar and vector functions f and g. Tensor functions F and G are represented with
capital letters and the Frobenius inner product is also written as (F,G). The pairing 〈f, g〉 represents
a duality pairing of traces on the boundary Γ of Ω, where the dual spaces are inferred from context.
The norm on the space X will be denoted by ‖ · ‖X and X∗ will denote the dual space of X.

For the remainder of this work we consider the problem

α(x)u− div (A(x,∇u)− pI) = f in Ω,
div(u) = g in Ω, (2.1)

u = uΓ on Γ.

where the constitutive law A : Ω×Rd×d → Rd×d has the property that A(x,D) = A(x,dev(D)) where
dev(D) denotes the trace free (deviatoric) part of D,

dev(D) = D − (1/d)tr(D)I,

and (G,H) → (G,A(·, H)) is a semi–inner product on L2(Ω)d×d. With this formulation our results
are directly applicable to (1.1) as well as to the equation

α(x)u− div (ν(x)∇u− pI) = f,

which is considered in several related works. Subsequently the notational dependence of α, ν, and A
on x will be suppressed.

The dual–mixed formulation of (2.1) is derived by setting the variable G = dev(∇u) to be the
trace free (deviatoric) part of the velocity gradient, and introducing the stress S = A(∇u)− pI as an
additional variable. Equations (2.1) can then be written as

αu− div(S) = f,

dev (A(G)− S) = 0,
−∇u+G = −(g/d)I.

Note that if A = 0 the middle equation requires the stress to be diagonal, S = −p I and the pressure
can be recovered via the formula p = (1/d)tr(A(G)−S). The natural weak statement of these equations
is obtained upon taking the inner product of the above with smooth functions (v,H, T ), where H is
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trace free, and integrating the last equation by parts to get
(αu, v)− (div(S), v) = (f, v),
(A(G), H)− (S,H) = 0,
(u,div(T )) + (G,T ) = −(1/d)(g, tr(T )) + 〈uΓ, Tn〉.

The natural spaces for the velocity and stress are

U = L2(Ω)d
, and S =

{
S ∈ H(div; Ω) |

∫
Ω

tr(S) = 0
}
,

whereH(div; Ω) denotes the functions in L2(Ω)d×d with divergence in L2(Ω)d. We denote the associated
norms as ‖ · ‖U = ‖ · ‖L2(Ω) and ‖ · ‖S = ‖ · ‖H(div;Ω).

To characterize the space containing the deviatoric part of the velocity gradient, first define the
norm ‖·‖G on C∞(Ω̄)d×d to be

‖G‖2G := ‖G‖2L2
A(Ω) + ‖G‖2S∗ , where ‖G‖S∗ := sup

T∈S

(G,T )
‖T‖S

and ‖G‖2
L2
A(Ω) := (A(G), G) is the semi–norm on the weighted L2(Ω) space. Then let

G = {G ∈ C∞(Ω̄)d×d | tr(G) = 0}
‖·‖G

,

where the overbar denotes the closure with respect to the indicated norm. In this context the smooth
functions are identified with elements of S∗ by pivoting through L2(Ω)d×d so pairings of the form
(G,T ) with G ∈ G and T ∈ S need to be interpreted as G(T ). In general G ⊂ S∗ and elements in G
need not be square integrable; for example, when A = 0 this space can be characterized as

G = {G ∈ H(Ω; div)∗ | G(φI) = 0, φ ∈ H1(Ω)}.
In the other direction, if A(G) = νdev(G) with ν ≥ ν0 > 0 in Ω, then

G = {G ∈ L2(Ω)d×d | tr(G) = 0}.
The mixed formulation of the Brinkman problem may then be stated as ((u,G), S) ∈ (U×G)× S,

a((u,G), (v,H))− b(S, (v,H)) = f(v,H), (v,H) ∈ U×G (2.2a)
b(T, (u,G)) = F (T ), T ∈ S, (2.2b)

where the bilinear forms
a : (U×G)× (U×G)→ R and b : S× (U×G)→ R

are
a((u,G), (v,H)) = (αu, v) + (A(G), H) and b(T, (u,G)) = (u,div(T )) +G(T )

respectively, f(v,H) = (f, v), and F (T ) = 〈uΓ, Tn〉 − (1/d)(g, tr(T )).
Equations (2.2) pose the Brinkman equations as a standard saddle point problem, and the spaces

have been chosen so that the bilinear forms are continuous and the classical inf–sup condition is
satisfied. The following hypotheses on the coefficients α and A will guarantee coercivity of a(·, ·) over
the kernel of b(·, ·).

Assumption 1 (Generalized Poincaré Inequality). There exists cp > 0 such that

‖u‖2L2
α(Ω) + ‖G‖2L2

A(Ω) ≥ cp‖u‖2L2(Ω), (2.3)

for all
(u,G) ∈ {(u,G) ∈ U×G | (u,div(T )) +G(T ) = 0, T ∈ S}, (2.4)

where ‖u‖2L2
α(Ω) = (αu, u).
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In addition to guaranteeing that ∇u = G in the sense of distributions, condition (2.4) also implies
boundary conditions upon u, the precise form depending upon A through the requirement G ∈ G.

Example 2.1. The following prototypical examples illustrate that the generalized Poincaré inequality
is satisfied for a broad class of problems which may include degeneracies. Let (u,G) be a pair satisfying
(2.4) so that ∇u = G in D∗(Ω), and assume that A(G) = νG.

(1) If α ≥ α0 > 0 ∀x ∈ Ω, then (2.3) trivially holds with cp = α0. Clearly this condition is also
necessary in the degenerate case ν = 0.

(2) When ν ≥ ν0 > 0 ∀x ∈ Ω we have G ⊂ L2(Ω)d×d so ∇u = G ∈ L2(Ω)d×d. Then u ∈ H1(Ω)d

and (2.4) requires u to vanish on the boundary. The Poincaré inequality for functions inH1
0 (Ω)d

then guarantees
‖u‖L2(Ω) ≤ (cp/ν0)‖G‖L2(Ω).

(3) Let Ω1 = ∪N
k=0Dk ⊂ Ω be the finite union of connected, Lipschitz domains with |∂Ω∩∂Dk| > 0,

ν ≥ ν0 > 0 on Ω1, and α ≥ α0 > 0 on Ω0 ≡ Ω \Ω1 (see Figure 1.1). Appealing to the Poincaré
inequality as in the previous example, it follows that

‖u‖2L2(Ω) = ‖u‖2L2(Ω0) + ‖u‖2L2(Ω1) ≤ (1/α0)‖u‖2L2
α(Ω0) + (cp/ν0)‖G‖2L2

A(Ω1).

For an alternative argument that extends to the discrete setting set u1 = u on Ω1 and zero
on Ω0. Let T ∈ H(Ω1; div) satisfy div(T ) = u1 and Tn = 0 on Ω̄0 ∩ Ω̄1 with ‖T‖H(div,Ω1) ≤
C‖u1‖L2(Ω). Then extend T by zero to H(Ω; div) and compute

‖u1‖2L2(Ω) = (u,div(T )) = −(G,T )
≤ ‖G‖L2(Ω1)C‖u1‖L2(Ω)

≤ (C/
√
ν0)‖G‖L2

A(Ω)‖u1‖L2(Ω).

The next theorem shows that the dual mixed formulation developed in this section is well–posed.
While we do not state it explicitly, the general theory for saddle point problems also shows that
Assumption 1 is a necessary condition for the problem to be well–posed (with this choice of spaces).

Theorem 2.2. Let Ω ⊂ Rd be a bounded Lipschitz domain and suppose that α ∈ L∞(Ω) is non–
negative, A : L∞(Ω,L(Rd×d)) is the Riesz map for a semi–inner product on L2(Ω,Rd×d), and that
Assumption 1 is satisfied. Then for each f ∈ U∗ × G∗ and F ∈ S∗ there exists a unique ((u,G), S) ∈
(U×G)× S satisfying (2.2). Moreover, there holds

‖u‖U + ‖G‖G + ‖S‖S ≤ C
(
‖f‖U∗×G∗ + ‖F‖S∗

)
, (2.5)

where C = C(Ω, ‖α‖L∞(Ω), ‖A‖L∞(Ω,L(Rd×d)), cp) > 0 and is otherwise independent of α and A.

Proof. It is well known [8, 6] that problem (2.2) is well–posed and that (2.5) is satisfied if the bilinear
forms are continuous, b(·, ·) satisfies an inf–sup condition and a(·, ·) is coercive over the kernel of b(·, ·).
Here, the kernel of b(·, ·) is given by

Z = {(u,G) ∈ U×G | b(T, (u,G)) = 0, T ∈ S}. (2.6)
Continuity of the bilinear forms follows directly from the Cauchy–Schwarz inequality:

a((u,G), (v,H)) ≤ ‖α‖L∞(Ω)‖u‖L2(Ω)‖v‖L2(Ω) + ‖G‖L2
A(Ω)‖H‖L2

A(Ω)

≤ C‖(u,G)‖U×G‖(v,H)‖U×G,
b(T, (u,G)) ≤ ‖u‖L2(Ω)‖div(T )‖L2(Ω) + ‖G‖S∗‖T‖S ≤ C‖(u,G)‖U×G‖T‖S.
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In the current setting, the inf–sup condition on b(·, ·) reads

sup
(u,G)∈U×G

(u,div(T )) +G(T )
‖(u,G)‖U×G

≥ C‖T‖H(Ω;div), T ∈ S. (2.7)

Equivalent conditions for an inf–sup condition to hold over a product space were developed in [17]
where it was shown that (2.7) holds and that ‖u‖U ≤ C‖G‖G for pairs (u,G) ∈ Z if and only if [17,
Lemma 3.2]

sup
T∈S

(u,div(T ))
‖T‖S

≥ C‖u‖U, ∀u ∈ U, and (2.8)

sup
G∈G

G(T )
‖G‖G

≥ C‖T‖S, T ∈ {T ∈ S | (u,div(T )) = 0, u ∈ U}. (2.9)

Since div : S → U is surjective and is continuous, it follows from the closed graph theorem that
div : S/Ker(div)→ U has a continuous inverse; thus (2.8) is satisfied. To verify the second condition,
recall that if T ∈ S and div(T ) = 0 then ‖T‖S ≤ C‖dev(T )‖L2(Ω) [5, Lemma 3.1]. Since G contains
the trace free functions in L2(Ω)d×d, it follows that

sup
G∈G

G(T )
‖G‖L2(Ω)

≥ sup
G∈L2(Ω)d×d

tr(G)=0

(G,T )
‖G‖L2(Ω)

≥ (dev(T ), T )
‖dev(T )‖L2(Ω)

=‖dev(T )‖L2(Ω).

The second inf–sup condition (2.9) then follows since ‖G‖G ≤ (1 + ‖A‖L∞(Ω,L(Rd×d)))‖G‖L2(Ω) for all
G ∈ G ∩ L2(Ω)d×d. Thus the inf–sup condition (2.7) is satisfied.
To establish coercivity of a(·, ·) on the kernel note that if (u,G) ∈ Z then (1) the generalized Poincaré
inequality holds for this pair, (2) ‖G‖S∗ ≤ ‖u‖U, and (3) ‖u‖U ≤ C‖G‖G. It then suffices to show
coercivity over G. Applying Assumption 1 yields

a((u,G), (u,G)) = ‖u‖2L2
α(Ω) + ‖G‖2L2

A(Ω)

≥ (cp/2)‖u‖2U + (1/2)‖G‖2L2
A(Ω)

≥ (cp/2)‖G‖2S∗ + (1/2)‖G‖2L2
A(Ω) ≥ min(cp/2, 1/2)‖G‖2G.

3. Discrete Problem

In the previous section it was essential to identify a norm for the deviatoric part of the velocity gradient
for which a(·, ·) would be coercive on the kernel of b(·, ·). This was facilitated by identifying (trace
free) smooth functions as a dense subspace of S∗ by pivoting through L2(Ω)d×d. With this strategy
both of the pairings H∗(S) = (H,S) and (A(G), H) are well defined for S ∈ S and G ∈ L2

A(Ω).
If Gh ⊂ G and Sh ⊂ S are closed subspaces we may select a pivoting strategy ∗ : Gh → L2(Ω)d×d

so that Gh has optimal approximation properties in L2(Ω) and G∗h ≡ {G∗h | Gh ∈ Gh} has op-
timal approximation properties for the dual space. In this context, the numerical scheme becomes
(uh, Gh, Sh) ∈ Uh ×Gh × Sh

a((uh, Gh), (vh, H
∗
h))− b((vh, H

∗
h), Sh) = f(vh, H

∗
h) (3.1a)

b((uh, G
∗
h), Th) = 0, (3.1b)
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for all (vh, H
∗
h, Th) ∈ Uh×G∗h× Sh. If (A(·, Gh), G∗h) ≥ 0 the natural norm on Gh, for which a(·, ·) will

be coercive on the discrete kernel, is

‖Gh‖2Gh = (A(Gh), G∗h) + ‖Gh‖2S∗
h
, where ‖Gh‖S∗

h
= sup

Th∈Sh

G∗h(Th)
‖Th‖S

. (3.2)

In general this may only be a semi–norm; however, in the next theorem we require it to be a norm on
the space Gh. The proof of the following theorem is identical to that of Theorem 2.2 so is omitted.

Theorem 3.1. Let Uh ⊂ U, Sh ⊂ S and Gh ⊂ G be closed subspaces, and let ∗ : Gh → L2(Ω)d×d be
an embedding. Let ‖ · ‖Gh be given by (3.2) and Zh denote the discrete kernel of b(·, ·):

Zh = {(uh, Gh) ∈ Uh ×Gh | b(Th, (uh, G
∗
h)) = 0, Th ∈ Sh}.

Assume that the coefficients and data satisfy the hypotheses of Theorem 2.2 and that the discrete spaces
satisfy the following properties.

(1) Discrete Poincaré inequality: The pairing (A(Gh), G∗h) ≥ 0 and there exists cp > 0 such that

‖uh‖2L2
α(Ω) + (A(Gh), G∗h) ≥ cp‖uh‖2U, (uh, Gh) ∈ Zh.

(2) Discrete dual norm: ‖·‖Gh is a norm on Gh. In the degenerate setting (A = 0) this requires
supTh∈Sh G

∗
h(Th) > 0 for all Gh ∈ Gh \ {0}.

(3) Discrete inf–sup condition: There exist constants c1, c2 > 0 such that

sup
Th∈Sh

(uh,div(Th))
‖Th‖S

≥ c1‖uh‖U, uh ∈ Uh, and (3.3)

sup
Gh∈Gh

(G∗h, Th)
‖Gh‖Gh

≥ c2‖Th‖S, Th ∈ {Th ∈ Sh : (uh, div(Th)) = 0, uh ∈ Uh}. (3.4)

Then for each f ∈ U∗ × G∗h, and F ∈ S∗ the discrete weak problem (3.1) has a unique solution.
Moreover, there is a constant C > 0 depending on cp, c1, c2 such that

‖uh‖U + ‖Gh‖Gh + ‖Sh‖S ≤ C
(
‖f‖U∗

h
×G∗

h
+ ‖F‖S∗

h

)
. (3.5)

The error estimate for this scheme does not follow immediately from the general saddle point theory
since ‖·‖S∗ 6= ‖·‖S∗

h
and the pivoting strategies for the continuous and discrete schemes may differ.

When Gh ⊂ L2(Ω)d×d the orthogonality condition satisfied by solutions of the discrete problem gives
the estimate

‖up − uh‖U + ‖Gp −Gh‖Gh + ‖Sp − Sh‖S

≤ C
(
‖up − u‖U + ‖Gp −G‖L2

A(Ω) + ‖div(Sp − S)‖L2(Ω)

+ ‖G∗p −G‖S∗h + sup
Hh∈Gh

|(Sp − S,H∗h)|
‖Hh‖Gh

)
(3.6)

for all (up, Gp, Sp) ∈ Uh ×Gh × Sh.
The following two sections address the construction of spaces satisfying the hypotheses of this

theorem and the corresponding error estimate that results from this formula. While the discrete
Poincaré is method specific, the argument presented in the third case of Example 2.1 extends to the
discrete settings, so the Poincaré inequality will simply be assumed below.
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3.1. Classical Elements & Pivoting

There are many pairs (Uh,Sh) ⊂ L2(Ω)d×H(Ω; div) satisfying the first inf–sup condition; the Raviart–
Thomas space

(Uh,Sh) = Pk(Th)d × RTk(Th)d (3.7a)

on simplices and product elements being prototypical [33, 29]. Using the natural pivoting strategy,
G∗h(Th) = (Gh, Th)

L2(Ω)d×d , and selecting

Gh = dev(Pk(Th)d×d) ≡ {Gh ∈ Pk(Th)d×d | tr(Gh) = 0}, (3.7b)

the second inf–sup condition (3.4) follows a fortiori from the continuous case since div : Sh → Uh is
surjective.

3.1.1. Non–Degenerate Problem

When A ≥ ν0I > 0 it is immediate that ‖·‖Gh ' ‖·‖L2(Ω) and Theorem 3.1 establishes coercivity of
the weak form and existence and well–posedness of discrete solutions follows. In this situation the
orthogonality condition (3.6) gives the error estimate

‖u− uh‖U + ‖G−Gh‖L2(Ω) + ‖S − Sh‖S

≤ C inf
(vh,Hh,Th)∈Uh×Gh×Sh

(
‖u− vh‖U + ‖G−Hh‖L2(Ω) + ‖S − Th‖S

)
≤ Chk+1

(
‖u‖Hk+1(Ω) + ‖G‖Hk+1(Ω) + ‖S‖Hk+1(div,Ω)

)
.

3.1.2. Degenerate Case

When A vanishes on a portion of the domain we do not have a proof that ‖·‖Gh is a norm in spite
of numerical experiments that suggest that it is. If Th is a simplicial partition, a calculation shows
dim(Gh) ≤ dim(Sh), so it is plausible that the choice of spaces (3.7) satisfies the first hypothesis of
Theorem 3.1 independently of the strict positivity of A.

In the absence of a convenient characterization of ‖·‖Gh , bounding the last term in the orthogonality
condition (3.6) is problematic. In the degenerate case A = 0 the stress is diagonal with S = Ip and
the last term in (3.6) vanishes upon selecting Sp = phI where ph ∈ Pk(Th) ∩ H1(Ω) is the classical
Lagrange interpolant of p. This results in the sub–optimal estimate

‖u− uh‖U + ‖G−Gh‖Gh + ‖S − Sh‖S
≤ Chk

(
‖u‖Hk(Ω) + ‖G‖Hk(Ω) + ‖p‖Hk+1(Ω)

)
.

Numerical experiments confirm this rate; in particular, the method with spaces (3.7) is not convergent
in the lowest order case, k = 0, unless A ≥ ν0I > 0.

3.2. Alternative Pivoting

The denominator in the last term of the orthogonality condition (3.6) is only implicitly defined through
equation (3.2), and it may be unclear whether it actually is a norm, and if so how to estimate it. To
circumvent this issue, we construct a specific choice of spaces Gh and pivoting strategy ∗ : Gh → S∗h
for which ‖·‖S∗

h
is a norm on Gh, and a projection Sp ∈ Sh with optimal approximation properties for

which the numerator of this last term in (3.6) vanishes. The developments in this section are motivated
by the following lemmas, the proofs of which are given in the appendix.
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Lemma 3.2. If u ∈ H1(Ω) and up ∈ RTk(Th) is the Raviart–Thomas projection, then by writing
G = dev(∇u), ∣∣∣ ∑

K∈Th

(
G− dev(∇up), Th

)
K

+
∑

e∈Eh

∫
e
Th : ([up]⊗ ne) ds

∣∣∣ (3.8)

≤ C‖u− up‖H(Ω;div)‖Th‖H(Ω;div),

for all Th ∈ RTk(Th)d. Here, the jump on an interior edge is [up] = u+
p −u−p with u±p (x) = lims↘0 up(x±

sne) where ne is a normal to the edge and the jump on a boundary edge is [up] = up − Pk,e(u) where
Pk,e : L2(e)d → Pk(e) is orthogonal projection.

Since the jump in the normal component of the Raviart–Thomas projection vanishes, this lemma
shows that (for sufficiently regular G) (G,Th) can be well-approximated by functions G∗p ∈ S∗h of the
form

G∗p(Th) =
∑

K∈Th

(GK , Th)K +
∑

e∈Eh

∫
e
Th : (ge ⊗ ne),

where GK ∈ Pk(K)d×d and ge ∈ Pk(e)d
tan is a vector valued polynomial tangent to e. The following

lemma shows that these degrees of freedom are sufficient to control the deviatoric part of Th required
for the second inf–sup condition (3.4).

Lemma 3.3. (1) If K is a simplex, then every Hh ∈ dev(Pk(K)d×d) is uniquely determined by
(a) The moments of (I − ne ⊗ ne)Hhne up to degree k on each e ⊂ ∂K.
(b) The moments of Hh up to degree (k − 1) on K.

(2) Let RTk(K) be the local Raviart–Thomas space. Then if K is a cube, the deviatoric part of
every divergence–free Th ∈ RTk(K)d is uniquely determined by
(a) The moments of (I − ne ⊗ ne)Thne up to degree k on each e ⊂ ∂K.
(b) The values (Th,dev(κ))K for all divergence–free and diagonal κ ∈ Pk(K)d×d.

Given G∗p as above, it is necessary to construct a function Gp which approximates G = dev(∇u) in
order to compute an approximation of A(G). That is, to identify an inverse of the maps u→ up → G∗p.
To illustrate how this idea can be used to construct finite element spaces, we explicitly construct the
lowest order elements on rectangular meshes. While it is possible to construct more general spaces for
polynomials of higher degree on more general meshes, these developments are long and technical.

3.2.1. Low-Order Elements on Rectangular Meshes

Letting Th be a rectangular mesh we consider consider pairs (Uh, Sh) = P0(Th)2 × RT0(Th)2 (which
coincides with the BDFM1 space [7]). If u ∈ P1(R2)2 and up ∈ RT0(Th) is its Raviart–Thomas
projection then (u − up)(x) = (u − up)(xK) + dev(∇u)(x − xK) on each rectangle K ∈ Th, and a
calculation shows that

(∇u) :
[
1 0
0 −1

]
= (∇up) :

[
1 0
0 −1

]
, and (∇u) : (n⊥e ⊗ ne) = 2

h⊥e+ + h⊥e−
[up] · n⊥e

on each internal edge e. Here ne is a normal to the edge and n⊥e the tangential vector obtained by
rotating ne by π/2, and h⊥e± denotes the perpendicular height of the adjacent rectangles. Given degrees
of freedom {ge}e∈Eh ∪ {gK}K∈Th the lowest order element with these degrees of freedom (Gp(xe) :
(n⊥e ⊗ ne) = ge etc.) is

Gp|K =
[

gK/2 −gB(yT−y)+gT (y−yB)
yT−yB

gL(xR−x)+gR(x−xL)
xR−xL

−gK/2

]
≡ gKΨK +

∑
e⊂∂K

geΨe,

9
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where the edges and coordinates of K are labeled (T)op, (B)ottom, (L)eft, (R)ight. For Th ∈ Sh let

(G∗p, Th) =
∑

K∈Th

gK |K|
[
1 0
0 −1

]
: Th(xK) +

∑
e∈Eh

(ge/2)he(h⊥e+ + h⊥e−)(n⊥e ⊗ ne) : Th(xe)

=
∑

K∈Th

|K|

gK

[
1 0
0 −1

]
: Th(xK) +

∑
e⊂∂K

(ge/2)(n⊥e ⊗ ne) : Th(xe)


≡

∑
K∈Th

gKΨ∗K +
∑

e⊂∂K

geΨ∗e, Th


K

,

where xK ∈ K and xe ∈ e are the centroids. If u ∈ H1(div; Ω) and ge is the average of (∇u) : (n⊥e ⊗ne)
on e and gK the average of (∇u) : diag(1,−1) overK, then Lemma 3.2 shows that ‖dev(∇u)−G∗p‖S∗h =
O(h) and ‖dev(∇u)−Gp‖L2(Ω) = O(h), since dev(∇u)−Gp vanishes when u is linear on a neighbor-
hood of K.

The dual function G∗p on each element is

G∗p|K =

 gK −gB

(
6(yT−y)
yT−yB

− 2
)
− gT

(
6(y−yB)
yT−yB

− 2
)

gL

(
6(xR−x)
xR−xL

− 2
)

+ gR

(
6(x−xL)
xR−xL

− 2
)

−gK

 ,
and the basis functions Ψ∗K and {Ψ∗e}e⊂∂K ⊂ L2(K)2×2 are immediate. Using these formulas, the
hypotheses of Theorem 3.1 are readily verified.

(1) We construct non–negative approximations of (A(Gh), G∗h) for the two prototypical constitutive
laws in equations (1.1) and (2.1).
(a) A(x,G) = ν(x)G: The dual basis functions were constructed so that

(Gh, G
∗
h)K = |K|(g2

K +
∑

e⊂∂K

g2
e).

In particular,
2‖Gh‖2L2(K) ≤ (Gh, G

∗
h)K ≤ 6‖Gh‖2L2(K).

Thus if (A(·, Gh), G∗h) is approximated by (ν̄Gh, G
∗
h)K , where ν̄K = ν̄|K = supx∈K ν(x),

it is immediate that this quantity is non–negative when ν(·) ≥ 0.
(b) A(x,G) = ν(x)(G+G>): Writing Gsym

h for the symmetric part of Gh, a calculation shows
2‖Gsym

h ‖2L2(K) ≤ (Gsym
h , G∗h)K ≤ 6‖Gsym

h ‖2L2(K).

Approximating (A(·, Gh), G∗h) by 2ν̄(Gsym
h , G∗h), it is immediate that this quantity is non–

negative when ν(·) ≥ 0.

(2) We show that ‖ ·‖S∗
h
is a norm on Gh. To this end, suppose that Gh ∈ Gh satisfies (G∗h, Th) = 0

for all Th ∈ Sh. Since Th|K ∈ P1(K)d×d for each rectangle K it follows that
Th(xK) : diag(1,−1) = Th(xK) : (e1 ⊗ e1 − e2 ⊗ e2)

= (1/2)(Th(xL) + Th(xR)) : e1 ⊗ e1 − (1/2)(Th(xT ) + Th(xB)) : e2 ⊗ e2,

where e1 = (1, 0)> and e2 = (0, 1)> are the standard basis vectors of R2. It follows that
Th(xK) : diag(1,−1) vanishes if the normal degrees of freedom Th(xe) : ne ⊗ ne vanish. Thus
selecting the degrees of freedom for Th to be Th(xe) : ne ⊗ ne = 0 and Th(xe) : ne ⊗ n⊥e = ge

shows
0 = (G∗h, Th) =

∑
K

|K|
∑

e⊂∂K

|ge|2,

10
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and therefore the edge degrees of freedom vanish.

To verify that the face degrees of freedom vanish, let Ω̂ = ∪{K | gK 6= 0}. If Ω̂ is non–empty,
let K̂ ⊂ Ω̂ be a boundary rectangle of Ω̂, and let ê ⊂ ∂K̂ ∩ ∂Ω̂ be an edge on the boundary.
Selecting Th to have Th(xê) : nê ⊗ nê = 1 and all other degrees of freedom to vanish gives the
contradiction.

0 = (G∗h, Th) = (±1/2)gK̂ ⇒ K̂ 6∈ Ω̂.
(The sign depending upon whether ê is a horizontal or vertical edge.)

(3) The BDFM family of elements were constructed so that the first inf–sup condition (3.3) is
satisfied. Lemma 3.3 is used to verify second inf–sup condition (3.4). Selecting the degrees
of freedom for G∗h to be as in the lemma immediately gives ‖dev(Th)‖2L2(Ω) ≤ (G∗h, Th). The
second inf–sup then follows since ‖Gh‖Gh ≤ C‖Gh‖L2(Ω) ≤ C‖dev(Th)‖L2(Ω).

Equation (3.6) can now be used to establish a first order rate of convergence with constants de-
pending upon α and ν only through the generalized Poincaré constant as follows.

• The estimate ‖u− up‖L2(Ω) ≤ Ch‖u‖H1(div,Ω) is immediate when up is the Raviart–Thomas
projection of u.

• The spaces Gh and G∗h and projections in this section were constructed so that
‖G∗p −G‖S∗h ≤ C‖u− up‖H(Ω;div) ≤ Ch‖u‖H1(div,Ω).

The piecewise constant approximation ν̄ of the viscosity ν used to construct non–negative
approximations of (A(Gh), G∗h) gives rise to an additional consistency error of the form

‖(ν/
√
ν̄ −
√
ν̄)G‖L2(Ω) ≤ ‖ν/

√
ν̄ −
√
ν̄‖L2(Ω)‖G‖L∞(Ω).

For the prototypical situation illustrated in Figure 1.1 an explicit calculation shows

‖ν/
√
ν̄ −
√
ν̄‖L2(Ω) ≤ Ch

√
‖∇ν‖L∞(Ω) ln(1/h)

when ν̄|K = ν(xK) and cmax(ν|K) ≤ ν̄|K ≤ max(ν|K) on an element where ν vanishes.

• We select Sp so that the last term in (3.6) vanishes. The dual basis functions were selected
so that (Th,Ψ∗e) = Th(xe) : (n⊥e ⊗ ne) for any piecewise linear function on Th. Let {Φ∗e} ⊂
P1(Th)2×2 be the analogous dual basis for which (Th,Φ∗e) = Th(xe) : ne ⊗ ne and select the
tangential and normal degrees of freedom of Sp to be (S,Ψ∗e) and (S,Φ∗e) respectively. As in
the proof of the second inf–sup condition above, it follows that (Sp,Ψ∗K) = (S,Ψ∗K) so the last
term in term (3.6) vanishes. It is immediate that S − Sp vanishes when when S ∈ P1(Rd)2×2,
and so ‖div(S − Sp)‖L2(Ω) ≤ Ch‖S‖H2(Ω).

4. Numerical Examples

We manufacture solutions of equations (1.1) on Ω = (−1, 1)2 ⊂ R2 with data f , g, and uΓ chosen so
that

u = curl(ψ) +∇φ,
where curl(ψ) = (−ψy, ψx)T ,

ψ = ex2+y sin2(2πx) sin2(2πy),
φ = ey2+x cos2(2πx) cos2(2πy),

11



J. S. Howell, M. Neilan, et al.

Table 4.1. Non–symmetric stress A(G) = νG.

h ‖u− uh‖L2 ‖G−Gh‖L2
A
‖G−Gh‖S∗

h
‖S − Sh‖L2 |S − Sh|H(div)

1 46.19 267.77 89.37 586.31 4005.05
1/2 15.34 262.45 37.83 329.48 3260.96
1/4 7.85 123.02 3.17 97.24 1642.23
1/8 2.38 35.66 0.42 28.53 620.59
1/16 0.61 9.43 0.05 7.21 163.36
1/32 0.15 2.39 0.01 1.81 41.37
Rate 1.99 1.98 2.98 1.99 1.98
Norm 23.11 284.31 327.55 5068.74

Table 4.2. Symmetric stress A(G) = ν(G+G>).

h ‖u− uh‖L2 ‖G−Gh‖L2
A
‖G−Gh‖S∗

h
‖S − Sh‖L2 |S − Sh|H(div)

1 67.69 391.62 101.02 1130.40 5713.53
1/2 42.37 355.70 51.70 701.59 5412.97
1/4 9.11 161.94 5.55 235.28 2602.92
1/8 4.60 73.65 3.96 132.78 994.20
1/16 2.26 33.50 2.17 64.94 261.69
1/32 1.12 16.25 1.11 32.24 66.28
Rate 1.00 1.04 0.96 1.01 1.98
Norm 23.11 336.26 576.17 8153.62

Errors and rates for non–degenerate examples on triangles, ν = α = 1.

and
p = exy cos(2πx) sin(2πy) + C.

The constant C is chosen so that
∫

Ω tr(S) = 0 and depends upon the choice of A. We first consider a
non–degenerate case with α = ν = 1, and then a degenerate case for which (see Figure 1.1)

ν(x, y) =


1 y ≥ 1/2

y + 1/2 −1/2 ≤ y ≤ 1/2
0 y ≤ −1/2

and α = 1− ν, (4.1)

with the symmetric and the non–symmetric constitutive laws. Errors for G are presented for each of
the (semi) norms ‖G‖L2

A(Ω) = (A(G), G)1/2 and ‖G‖S∗
h
. The latter is mesh dependent and computed

as ‖G‖S∗
h

= ‖Rh(G)‖H(Ω;div) where Rh : S∗h → Sh is the Riesz map;

Rh(G) ∈ Sh, (Rh(G), Th)H(Ω;div) = G(Th), Th ∈ Sh.

In the tables to follow, Rate is the observed rate of convergence for the two finest meshes in that
norm or semi-norm, and Norm is the norm or semi-norm of the corresponding component of the exact
solution.

4.1. Non-degenerate Case on Triangles

As described in Section 3.1, standard Raviart–Thomas elements for Sh and discontinuous Lagrange
elements for Gh and Uh satisfy the inf–sup conditions (3.3)–(3.4). Moreover, if ‖ · ‖S∗

h
is a norm, then

the error estimate (3.6) is satisfied.

12
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Table 4.3. Non–symmetric stress A(G) = νG.

h ‖u− uh‖L2 ‖G−Gh‖L2
A
‖G−Gh‖S∗

h
‖S − Sh‖L2 |S − Sh|H(div)

1 59.10 221.05 95.69 449.08 3317.63
1/2 17.07 228.23 38.67 265.45 2575.43
1/4 8.43 102.80 4.39 75.48 1340.08
1/8 3.06 29.95 1.97 22.47 498.22
1/16 1.20 7.94 1.03 5.86 131.11
1/32 0.55 2.02 0.53 2.03 33.21
Rate 1.13 1.98 0.97 1.53 1.98
Norm 23.11 239.48 256.71 4001.66

Table 4.4. Symmetric stress A(G) = ν(G+G>).

h ‖u− uh‖L2 ‖G−Gh‖L2
A
‖G−Gh‖S∗

h
‖S − Sh‖L2 |S − Sh|H(div)

1 98.55 350.38 122.28 706.91 4476.65
1/2 59.13 307.06 65.40 550.13 3989.55
1/4 9.54 123.41 6.22 168.26 1962.87
1/8 5.04 58.46 4.46 99.34 738.22
1/16 2.46 26.57 2.38 48.52 194.06
1/32 1.22 12.90 1.21 24.22 49.14
Rate 1.01 1.04 0.97 1.00 1.98
Norm 23.11 270.91 431.71 5916.56
Errors and rates for degenerate case on triangles, ν as in (4.1) and α = 1− ν.

The results for the case A(G) = νG are presented in Table 4.1 and exhibit optimal rates of conver-
gence, namely, O(hk+1). These rates agree with the arguments given in Section 3.1.1 (since A ≥ I).
In addition, the numerical results suggest that the error of Gh in the dual norm has order O(hk+2).

Table 4.2 presents the corresponding results in the symmetric case A(G) = (1/2)(G + G>). In
this case, the rate of convergence decrease for all variables by an order of one; we observe linear
convergence in the energy norms when k = 1. This behavior is most likely attributed to a lack of a
discrete Korn inequality over the kernel Zh, implying that ‖·‖Gh 6' ‖·‖L2(Ω). On the other hand, if
‖ · ‖S∗

h
is a norm on Gh and if the mesh is quasi–uniform, then a simple scaling argument shows that

‖H‖S∗
h
≥ Ch‖PS(H)‖L2(Ω), where PS is the L2–projection onto S. In light of the last term in (3.6),

this formal argument suggests the observed sub–optimal rates.

4.2. Degenerate Case on Triangles

Table 4.3 contains results for ν defined in (4.1) and α = 1−ν for A(G) = νG, while Table 4.4 contains
results for A(G) = ν(G+G>). While the problem is well–posed for this degeneracy in ν, in both cases
the rates of convergence degrade due to the presence of the last term on the right of (3.6).

4.3. Degenerate Case on Rectangles

The rectangular element developed in Section 3.2.1 exhibits the optimal first order rate of conver-
gence for every combination of degenerate and non–degenerate coefficients and symmetric and non–
symmetric constitutive law. Errors and rates for the degenerate coefficients are presented in Tables 4.5
and 4.6. The results for the non–degenerate case on meshes that do not align with the lines y = ±1/2
where derivatives of ν and α jump are similar to those shown in Tables 4.5 and 4.6.

13
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Table 4.5. Non–symmetric stress A(G) = νG.

h ‖u− uh‖L2 ‖G−Gh‖L2
A
‖G−Gh‖S∗

h
‖S − Sh‖L2 |S − Sh|H(div)

1 42.06 247.83 34.52 319.79 4002.80
1/2 37.50 242.87 28.95 313.25 3987.85
1/4 24.48 190.47 15.92 202.70 3454.66
1/8 11.65 109.12 3.88 103.47 2091.00
1/16 5.92 51.68 1.17 46.40 1115.03
1/32 2.97 24.97 0.38 21.68 566.68
Rate 1.00 1.05 1.62 1.10 0.98
Norm 23.11 239.48 256.71 4001.66

Table 4.6. Symmetric stress A(G) = ν(G+G>).

h ‖u− uh‖L2 ‖G−Gh‖L2
A
‖G−Gh‖S∗

h
‖S − Sh‖L2 |S − Sh|H(div)

1 33.00 269.00 23.54 520.61 5931.59
1/2 34.36 273.38 24.99 520.41 5898.06
1/4 21.94 216.99 15.14 355.78 5147.94
1/8 11.95 128.14 4.69 190.98 3096.49
1/16 6.05 64.49 1.71 91.18 1649.59
1/32 2.99 31.65 0.55 41.89 838.11
Rate 1.02 1.03 1.65 1.12 0.98
Norm 23.11 270.91 431.71 5916.56
Errors and rates for degenerate case on rectangles, ν as in (4.1) and α = 1− ν.

Appendix A. Proof of Lemma 3.2

Integration–by–parts shows

(G,Th) ≡ (−u,div(Th)) + 〈u, Thn〉 − (1/d)(div(u), tr(Th))
= (−u+ up, div(Th)) + 〈u, Thn〉 − (1/d)(div(u− up), tr(Th))
−(up,div(Th))− (1/d)(div(up), tr(Th))

= (−u+ up, div(Th))− (1/d)(div(u− up), tr(Th))

+
∑

K∈Th

(dev(∇up), Th)K −
∑

e∈Eh

∫
e
([up]⊗ ne) : Th.

The estimate (3.8) is now obtained by rearranging terms and applying the Cauchy–Schwarz inequality.

Appendix B. Proof of Lemma 3.3

(1) The total number conditions is (d + 1)(d − 1) dimPk(Rd−1) + (d2 − 1) dimPk−1(Rd) = (d2 −
1)
((k+d−1

d−1
)

+
(k+d−1

d

)
) = dim dev(Pk(K)d×d). It then suffices to show that H ∈ dev(Pk(K)d×d)

vanishes on the degrees of freedom if and only if H ≡ 0. We show this for the case d = 3; the
two–dimensional case follows from similar arguments.

First we consider the case where K = K̂ is the the reference tetrahedron. Label the faces so
that x̂k = 0 on f̂k and that x̂1 +x̂2 +x̂3 = 1 on f̂4. Explicit calculation shows that the condition
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(I − n̂⊗ n̂)Hn̂ = 0 reduces to

Hjk = 0 on f̂k = 0 j 6= k, k = 1, 2, 3, (B.1a)

3H11 + 2H12 + 2H13 −H21 −H23 −H31 −H32 = 0 on f̂4, (B.1b)

H21 + 2H22 +H23 −H31 −H32 +H11 = 0 on f̂4. (B.1c)

Since the moments of H on K̂ vanish up to degree (k − 1), we find

0 =
∫

K̂

∂(H2
i,j)

∂x̂k
dx̂ =

∫
∂K̂

H2
i,jn̂

(k) dŝ = −
∫

f̂k

H2
i,jdŝ+ 1√

3

∫
f̂4
H2

i,j dŝ. (B.2)

By (B.1a), Hjk = 0 vanishes on f̂4 for k = 1, 2, 3 and j 6= k. Therefore by (B.1b)–(B.1c), H = 0
on f̂4. Then using (B.2) and (B.1a), we conclude that H vanishes on ∂K̂. Since the moments
of H on K̂ equal zero up to degree (k − 1), we conclude that H ≡ 0.

For a general element K ∈ Th, let FK : K̂ → K denote an affine mapping with FK(x̂) =
BK x̂ + bK , BK ∈ R3×3 and bK ∈ R3. Let H ∈ dev(Pk(K)3×3) vanish at the degrees of
freedom, and define Ĥ ∈ dev(Pk(K̂)3×3) via

B−T
K Ĥ(x̂)BT

K = H(x), x = FK(x̂).

Since outward normal unit vectors and any tangential unit vectors satisfy the relations [27,
p. 79]

ni = B−T n̂i

‖B−T n̂i‖
, τi = BK τ̂i

‖BK τ̂i‖
,

there holds

τT
i Hni = τ̂T

i Ĥn̂i

‖B−T n̂i‖‖BK τ̂i‖
.

Therefore, the moments of (I − n̂i ⊗ n̂i)Ĥn̂i vanish up to degree k on f̂i. It then follows that
the moments of Ĥ vanish on K̂ so Ĥ ≡ 0 and hence H ≡ 0. This completes the proof of part
(1).

(2) To prove part (2), first note that all of the off–diagonal entries of dev(Th) (with Th ∈ RTk(K)d)
vanish if and only if the moments of (I − ne⊗ ne)Thne vanish up to degree k on each e ⊂ ∂K.
The result now follows upon noting that (Th,dev(κ))K = (dev(Th),dev(κ))K .
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