ﬂ ’
(/ SMAI

e

‘G,

Jo ofo
% ool

<,

g~ SMAI-JCM
SMAI JOURNAL OF
COMPUTATIONAL MATHEMATICS

A Reynolds-robust preconditioner
for the Scott-Vogelius discretization
of the stationary incompressible
Navier-Stokes equations

PATRICK E. FARRELL, LAWRENCE MITCHELL,
L. RIDGWAY SCcOTT & FLORIAN WECHSUNG

Volume 7 (2021), p. 75-96.
<http://smai-jcm.centre-mersenne.org/item?id=SMAI-JCM_2021__7__75_0>

© Société de Mathématiques Appliquées et Industrielles, 2021
Certains droits réservés.

<
>
CENTRE
MERSENNE

Publication membre du
Centre Mersenne pour I’édition scientifique ouverte
http://www.centre-mersenne.org/

Soumission sur https://smai-jcm.centre-mersenne.org/ojs/submission

creative
commons



http://smai-jcm.centre-mersenne.org/item?id=SMAI-JCM_2021__7__75_0
http://www.centre-mersenne.org/
http://www.centre-mersenne.org/
https://smai-jcm.centre-mersenne.org/ojs/submission

Y

/

SMAI Journal of Computational Mathematics
Vol. 7, 75-96 (2021)

A Reynolds-robust preconditioner for the Scott-Vogelius
discretization of the stationary incompressible Navier-Stokes
equations

PATRICK E. FARRELL *
LAWRENCE MITCHELL 2
L. RIDGWAY ScoTT 3
FLORIAN WECHSUNG

! Mathematical Institute, University of Oxford, Oxford, UK

E-mail address: patrick.farrell@maths.ox.ac.uk

2 Department of Computer Science, Durham University, Durham, UK

E-mail address: lawrence.mitchell@durham.ac.uk

3 Department of Computer Science, University of Chicago, Chicago, USA

E-mail address: ridg@Quchicago.edu

4 Courant Institute of Mathematical Sciences, New York University, New York, USA
FE-mail address: wechsung@nyu.edu.

Abstract. Augmented Lagrangian preconditioners have successfully yielded Reynolds-robust preconditioners for
the stationary incompressible Navier—Stokes equations, but only for specific discretizations. The discretizations for
which these preconditioners have been designed possess error estimates which depend on the Reynolds number, with
the discretization error deteriorating as the Reynolds number is increased. In this paper we present an augmented
Lagrangian preconditioner for the Scott—Vogelius discretization on barycentrically-refined meshes. This achieves
both Reynolds-robust performance and Reynolds-robust error estimates. A key consideration is the design of a
suitable space decomposition that captures the kernel of the grad-div term added to control the Schur complement;
the same barycentric refinement that guarantees inf-sup stability also provides a local decomposition of the kernel
of the divergence. The robustness of the scheme is confirmed by numerical experiments in two and three dimensions.

1. Introduction
The stationary Navier—Stokes equations for the flow of a viscous, isothermal, incompressible, Newto-

nian fluid on a bounded Lipschitz domain Q C R?, d € {2, 3}, are given by: find (u,p) € H'(Q;R%) x Q
such that

-V 2ve(u)+ (u-V)u+Vp=f inQQ, (1.1a)
Vou=0 inQ, (1.1b)

u=g¢g onlp, (1.1c)

2ve(u) -n=pn on 'y, (1.1d)

where e(u) = 3(Vu+ Vu'), v > 0 is the kinematic viscosity, f € L%(Q;R?), n is the outward-facing
unit normal to 092, I'p and 'y are disjoint with I'p UT'y = 082, and ¢ € HI/Q(FD;RC[). If ITn| >0,
then a suitable trial space for the pressure is Q := L?(Q); if |['y| = 0, then the pressure is only defined

This research is supported by the Engineering and Physical Sciences Research Council [grant numbers EP/R029423/1
and EP/V001493/1], and by the EPSRC Centre For Doctoral Training in Industrially Focused Mathematical Modelling
[grant number EP/L015803/1] in collaboration with London Computational Solutions. LM also acknowledges support
from the UK Fluids Network [EPSRC grant number EP/N032861/1] for funding a visit to Oxford. This work used the
ARCHER UK National Supercomputing Service (http://www.archer.ac.uk). The authors would like to acknowledge
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up to an additive constant and @ := L3(Q) is used instead [17]. The Reynolds number UL /v, where U
and L are the characteristic velocity and length scale of the flow, is a dimensionless number governing
the nature of the system [36].

For high-Reynolds number flows, it is important that the error estimates should not degrade as
the Reynolds number increases. For most discretizations, the velocity error estimates are not robust,
as they are polluted by the pressure approximation scaled by the inverse viscosity. For the Stokes
equations, the discrete solution uy, € V3, can be shown to satisfy [33, (3.5)]

v (u— <2 inf ||V(u—1 ~inf |p— : 1.2
IV (= i) g2y < 2_inf IV (u =) gy + v ind [lp = anllaco) (1.2
where Vi, € H'(€;R?) is the velocity trial space, Q5 C @ is the pressure trial space, and

Nh:{vhth:/Qth-vhd:v:0thth} (1.3)

is the space of discretely divergence-free velocity trial functions.

One way to achieve robustness is to choose a pair Vj x @y, such that V-V, C Qp, so that V-up =0
holds pointwise [33]. If this choice is made, the second term on the right-hand side of the error
estimate (1.2) for the Stokes equations can be removed and the velocity error is then independent of
both pressure and viscosity. The analysis is more complicated for the Navier—Stokes equations, but
progress has recently been made [2]. We also mention that similar results are available for the time-
dependent case [42]. Consequently, it is highly advantageous to choose such a discretization, especially
for high Reynolds number flows. Such discretizations are termed pressure robust or Reynolds-robust.

There are several choices of element pairs that satisfy this requirement. They include H(div)-L?(Q)
discretizations, such as the Raviart—-Thomas and Brezzi-Douglas—Marini families [16, 60, 32]; hybrid
discontinuous Galerkin schemes [39]; or H! conforming approaches such as the Scott—Vogelius ]P’k—IP’%if‘i
pair [55, 56]. The former two options allow for arbitrary order approximations, but are nonconforming:
the discretization of the momentum equation requires penalty terms. In contrast, the Scott—Vogelius
pair is straightforward to implement, but is only inf-sup stable on certain types of meshes and for
certain polynomial degrees. In this work, we employ the Scott—Vogelius element. In [45], Olshanskii
& Rebholz demonstrate the accuracy of this discretization and investigate the numerical performance
of direct sparse solvers. While these solvers perform very well for problems with sizes of the order of
millions of degrees of freedom, they do not scale and a different strategy is required to solve larger
problems.

In this work, we build on the insights of [7, 32, 25, 24] to develop a Reynolds-robust block precon-
ditioner for the Reynolds-robust Scott—Vogelius discretization of the Navier—Stokes equations. When
building block preconditioners, the usual difficulty is developing a good approximation for the inverse
of the Schur complement. We employ an augmented Lagrangian term to control the Schur comple-
ment of the system; this simplifies the approximation of the Schur complement, at the cost of making
the momentum equation significantly more difficult to solve. We then develop a specialized geometric
multigrid scheme for the resulting augmented momentum equation. This approach is based on the
work of Schéberl [54]. Its application to the Navier—-Stokes equations was pioneered in two dimensions
by Benzi & Olshanskii [7], and has recently been extended to three dimensions [25]. A similar strategy
has proven successful for a H(div)-L?(Q) discretization of the Stokes equations [32]. While effective at
controlling iteration counts as the Reynolds number is varied, the schemes presented in [7, 25] heav-
ily rely on the use of piecewise constant pressure functions and are not effective for Scott—Vogelius
discretizations.

Many alternative approaches to solving (1.1) have been considered in the literature. These include
the pressure convection-diffusion (PCD), least-squares commutator (LSC) and SIMPLE block pre-
conditioners [46, 34, 19, 20|, monolithic multigrid approaches [59, 58], and a modified augmented
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Lagrangian strategy which trades off control of the Schur complement against ease of solving the
augmented momentum block [8]. These preconditioners do not generally enjoy Reynolds-robustness.

The remainder of this manuscript is structured as follows. In section 2 we discuss the discretization
and the conditions under which inf-sup stability of the Scott—Vogelius element is known. In section 3 we
recall the augmented Lagrangian preconditioning strategy and the difficulties it introduces for solving
the momentum equations. A Reynolds-robust multigrid cycle for the augmented Scott—Vogelius mo-
mentum operator is introduced in section 4. Finally, numerical examples in two and three dimensions
are presented in section 5.

2. Discretization

We begin by recalling that finite dimensional subspaces V;, C V and Q) C @Q are said to satisfy the
inf-sup condition if there exists a v > 0 such that

V-
inf sup MZ’Y (2.1)
an€Qn vaeVi  llvnllllanll
a#0  vp#0

for all mesh sizes h > 0. Intuitively, the inf-sup condition encourages large velocity and small pressure
spaces, but the opposite is true for the condition V-V, C @Q,. For this reason it is difficult to construct
discretizations that satisfy both of these properties. Most of the popular inf-sup stable finite element
discretizations of the Stokes and Navier—Stokes equations (such as the Taylor-Hood, the MINI or the
[Py]2—Py elements) do not satisfy V -V, C Q.

The Scott—Vogelius element is given by choosing continuous piecewise polynomials of degree k for
the velocity and discontinuous piecewise polynomials of degree k—1 for the pressure. While this clearly
implies that V - V;, C Qp, inf-sup stability of the Scott—Vogelius element is more delicate, and is a
topic of ongoing research. In two dimensions, Scott & Vogelius proved [56] that the element is inf-sup
stable for k > 4 if the mesh does not have nearly singular vertices. In three dimensions, it was proven
more recently in [67] that the element is stable for k£ > 6 on uniform meshes. The stability on general
tetrahedral meshes continues to be an open question [44].

On barycentrically refined meshes, however, the pair is known to be stable for polynomial order
k = d, see [48, Section 4.6] for the 2D case and [65] for the 3D case. If one is willing to consider the
more complicated Powell-Sabin split, the order can be reduced further to kK = d — 1 [66, 68]. The two
refinement patterns are shown for the two dimensional case in Figure 2.1. In this work we will consider

~
I~
|
|
|
|
1

FIGURE 2.1. Barycentrically refined triangle (also known as Alfeld split) on the left,
and Powell-Sabin split on the right.

the case of k > d on barycentrically refined meshes, but the arguments apply mutatis mutandis to the
Powell-Sabin split.

In the context of the multigrid scheme that we will develop in section 4, the requirement for barycen-
trically refined elements has some implications for our mesh hierarchy. First, note that repeatedly
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barycentrically refining a mesh leads to degenerate elements. Furthermore, it is not known whether
regularly refining a mesh, on which an element pair with k = d is stable, always results in a refined
mesh for which stability is maintained. Consequently, we build the multigrid hierarchy in a different
way. Given a domain 2, we consider a given simplicial mesh M, = {K"} with Uy M, K h = and
(KMen (th)o = () for i # j. The elements K" € M, will be referred to as the macro cells. For each
level h, we obtain the mesh M, by barycentric refinement: that is, for each macro cell K" € M, we
obtain d + 1 many cells IA(ih, 0<1¢<dand

My ={Kl:0<i<dK"e My} (2:2)
The function spaces on M, are then given by
Vi, i={v e H' (% RY) ;v i€ [PYE))? VK € My}, (2.3)
Qn={g € L*(Q) : ¢|p € PY"Y(K) VK € My} (2.4)
We construct the hierarchy as follows. We start with an initial coarse triangulation of the domain,

given by Mpy. We obtain My, h = %H , by uniform refinement of the initial mesh. Both My and

My, are then refined barycentrically to obtain My and M,,. Note that though My and M, form
a nested hierarchy, this is not true for My and M,,. This two-level approach canonically extends to
many levels; a hierarchy of three levels is shown in Figure 2.2.

We will see in Section 4.1 that this macro element structure not only guarantees inf-sup stability,
but is also crucial in defining a robust relaxation method.

FIGURE 2.2. A three level barycentrically refined multigrid hierarchy.

3. Variational formulation and augmented Lagrangian strategy

For boundary data g € H'/?(I'p), let
V, = {ve HYQRY : o, = g}, (3.1)
The weak form of (1.1) is: find (u,p) € V, x @ such that

/QZVes(u):e(v) dx—i—/g(u'V)u-vdx—/Qmeda:—/QqV-udx:/Qf-vdm, (3.2)
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for all (v,q) € Vyh x Q.
Given finite dimensional subspaces V;, ¢ H'(;R?) and @ C Q and after applying Newton’s
method to the nonlinear equations, at each Newton step we must solve a nonsymmetric linear system

of generalized saddle point structure:
A BT\ [éu b
(6 %)) - () 3

where A is the discrete linearized momentum operator, BT the discrete gradient, B the discrete
divergence, and du and dp are the updates to the velocity and pressure solutions respectively. This
system becomes increasingly difficult to solve as the Reynolds number is increased.

There are two key ingredients when building block preconditioners for (3.3): an effective solver
for A and an effective solver for the Schur complement S = —BA~!BT. Since S is usually dense,
tractable approximations to S~! must be developed on a PDE-specific basis. The main issue with
PCD, LSC and SIMPLE is that their choice for the approximate Schur complement becomes a poor
approximation to the true Schur complement as the Reynolds number is increased, which in turn
results in significant growth of the iteration counts. In [7], Benzi & Olshanskii proposed an augmented
Lagrangian strategy that significantly simplifies the approximation of the Schur complement: for v > 0,
the linear system (3.3) is augmented by adding a term to the top-left block and adjusting the residual

accordingly:
A+~yBTM;'B BT] 511 B

B 0| |op (3.4)

where M), is the mass matrix for the pressure space. It is immediately clear that this modification does
not change the solution of the linear system. Furthermore, one can show that the Schur complement

of the augmented system, S, satisfies

C

b+ fyBTMp_lc]

STh=8"1—qM, ", (3.5)

where S is the Schur complement of the original system. The advantage is clear: as ¥ — oo, S~1 can
be approximated by a scaled inverse pressure mass matrix, which is easy to solve.

In general, a triple matrix product as it occurs in the augmented Lagrangian term is both expensive
to compute and store. However, it is straightforward to check that adding 7BTM1; !B to the linear

system corresponds to augmenting the weak form with a term

- /Q o, (V - u)llg, (V - v) da, (3.6)

where Ilg, is the projection onto Q.

The same augmentation, without the projection onto @y, is known as grad-div stabilization as it
corresponds to the weak form of —yVV - u. We remark that this form does not lead to any additional
non-zeros in the assembled linear system. As we focus on discretizations that satisfy V -V}, C @y,
in this work the projection onto the pressure space is always the identity operator and hence the
augmented Lagrangian and grad-div stabilization coincide.

To summarize, the augmented problem in weak form reads: find (u, p) € (V4 NVy) x Qp, such that

/92V5(u):6(v) dx—i—/Q(wV)u-vdac—l—v/QV-uV-vdx

(3.7)
—/pV-vdx—/qV-udx:/f'vdx,
Q Q Q

for all (v,q) € (VLN V) X Qp.

Remark 3.1. A discretization for which the augmented Lagrangian and the grad-div stabilization do
not coincide is the classical [Py]¢—Py_; Taylor-Hood element. While the Taylor-Hood element does not
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enforce the divergence constraint exactly, it can be shown that when using grad-div stabilization, in the
limit of 7 — oo the solution converges to that obtained when using the Scott—Vogelius discretization,
so long as the Scott—Vogelius element is stable [14, Theorem 3.1].

It turns out that not only are the solutions obtained from these two elements related, but also that
(on the particular meshes considered here) the solver developed for the Scott—Vogelius element can
be used for the Taylor—-Hood element. First observe that since the pressure space is continuous, the
projection onto @, in the augmented Lagrangian term introduces additional coupling and adding (3.6)
increases the number of non-zeros in the assembled matrix. However, it was shown in [31, Lemma 2]
that in the limit of h — 0 grad-div stabilization converges to the discrete augmented Lagrangian
approach. Hence one can simply use grad-div stabilization and still use the Schur complement ap-
proximation in (3.5). Clearly, the obtained top-left block is then identical to that obtained from the
Scott—Vogelius element and hence the multigrid scheme that we propose in the next section applies in
the same way. From a solver point of view, a minor disadvantage of this approach is that the pressure
mass matrix corresponding to a continuous finite element space is more expensive to invert than that
of a discontinuous space.

4. Solving the top-left block

Although the augmented Lagrangian approach is appealing since it provides for an excellent Schur
complement approximation, it introduces some new challenges to developing fast solvers for the equa-
tions as a whole. In contrast to A, the performance of standard multigrid schemes deteriorates quickly
for A, = A+ fyBTMp_ !B as v is increased. The additional term has a large kernel consisting of
solenoidal vector-fields, implying that the problem becomes nearly singular as v increases. If a scal-
able solver for the nearly singular top-left block can be developed that is robust to v and =, the overall
solver will be Reynolds-robust.

Multigrid schemes for nearly singular problems have been studied previously by Schéberl [53, 54, 52]
and Lee et al. [38, 37|, and a similar analysis was carried out for overlapping Schwarz methods by
Ewing and Wang [21]. While these works only consider the symmetric case, they clearly demonstrate
that a necessary condition for a y-robust scheme is a good understanding and characterization of the
kernel of the semidefinite term, which in this case means understanding the kernel of the divergence
operator. This has implications for both multigrid relaxation and prolongation, as we now consider.

4.1. Relaxation

The core requirement for obtaining a parameter robust relaxation is that the space decomposition
defining the relaxation needs to provide a decomposition of the kernel of the singular operator. Classical
point relaxation methods such as point-block Jacobi do not satisfy this property and are ineffective
for this problem; their smoothing strength degrades as v increases.

Many smoothers can be expressed as so-called subspace correction methods [63]. We consider a
decomposition

Vi=>_Vi, (4.1)

where the sum is not necessarily a direct sum. This decomposition naturally defines an associated
additive Schwarz relaxation method. For each subspace ¢ we then denote the natural inclusion by
I; : V; =V}, and we define the restriction A; of A onto V; as

(Aiui, ’Ui) = (Aflu“]ﬂ}l) for all u;, v; € V;. (42)
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Now denoting
Dt = ZIZ»A;UJ (4.3)

and introducing a damping parameter 7 > 0, we can express one update of the additive Schwarz
method as

Uk41 = Uk + TD_l(f - Auk) (4.4)
The method is also known as the parallel subspace correction method [63]. For the choice V; =
span ({¢;}), we recover the classical Jacobi iteration. Usually each subspace is described by an index
set J; and V; = span ({¢; : j € J;}). In that case we also speak of a block Jacobi method.

Both Schoberl (for additive relaxation) and later Lee et al. (for multiplicative relaxation) recognize
that the key condition for a v-robust relaxation is that the subspaces V; need to satisfy a kernel
decomposition property:

N =) (Vin M), (4.5)

(2
where we recall that A}, is the space of discretely divergence-free vector-fields. In essence, we require
that any kernel function can be written as the sum of kernel functions drawn from the subspaces.
When considering the [P3]2—Pg element on a 2D triangulation My, that is

Vi = {v e HY(Q;RY) : v|g € [P*(K)]¢ VK € My},

) (4.6)
Qn={q€ L*(Q) : q/x = const VK € My},
Schoberl proved that the space decomposition around vertices {v; };5 defined by
Vi == {up € V}, : supp(uy) C star(v;)}, (4.7)
where
star(v;) == U K, (4.8)

KeMy:v,eK
satisfies the kernel decomposition property (4.5). The subspaces are illustrated in Figure 4.1. This

FIGURE 4.1. The star patch satisfies the kernel decomposition property (4.5) for the
[Py]2—Py element.

decomposition was subsequently used in [7] for the Navier-Stokes equations in two dimensions and
in [25] in three dimensions. It was also used for H(div)-L?(f2) discretizations of the Stokes and linear
elasticity equations in [32], and provides a robust relaxation method for the H(div) and H (curl) Riesz
maps [4, 5].

However, the proof that this element pair satisfies the kernel decomposition property depends
on the pressure space being piecewise constant, and does not generalise to either Taylor-Hood or
conforming divergence-free finite elements. In fact, the same choice of space decomposition applied to
a barycentrically refined mesh does not result in a y-robust smoother for the Scott—Vogelius element
considered here.
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To find a space decomposition that decomposes the kernel of the divergence operator for the Scott—
Vogelius element, we consider the following Hilbert complexes in two

R4 g2 el 2 A, g2 il (4.9)
and three dimensions
R 9% B2 22 g (eurl) < (gYE A g2l g (4.10)

where H(curl) = {u € [H']3, curlu € [H']?}. These sequences are exact on simply connected domains,
which implies that every field u in the kernel of the divergence can be represented as the curl of a
potential ®. If we are given a discrete subcomplex of the form

curl div null

o= Yy — Vy,— Q — 0, (4.11)

then for a divergence-free discrete vector-field up, € Vj, we can write it as the curl of a potential
®y, € ¥y, Writing &y, = Zj ®; in terms of basis functions of 3, we can then define a divergence-free
decomposition of uy as up, = >-; V x ®;. Hence, a space decomposition such that V x ®; is contained
in some V; for any basis function ®; decomposes the kernel and satisfies (4.5).

In two dimensions, the Scott—Vogelius velocity and pressure spaces Vj and @ form an exact se-
quence with 3, chosen as the HCT finite element space [15, §6.1]. The three elements are displayed
in Figure 4.2. For a given vertex v; in the macro mesh Mj,, we define the macrostar(v;) of the vertex

FIGURE 4.2. 2D exact Stokes complex.

as the union of all macro elements touching the vertex. We then see that for every basis function ®;
there exists a vertex v; such that supp(®;) C macrostar(v;). Hence also supp(V x ®;) C macrostar(v;)
and if we define

Vi = {v € V}, : supp(v) C macrostar(v;)} (4.12)
then these subspaces decompose the kernel. The macrostar is shown in Figure 4.3.

A similar argument can be made in three dimensions. Here the existence of an exact sequence is
given by the recent work of Fu, Guzman, and Neilan [27].

We note that the proof for robustness of the multigrid scheme in [54] actually has a stricter require-
ment than simply the kernel decomposition property (4.5). The kernel decomposition must be stable:
given a function v € N}, with u = " u; and u; € V; NN}, one needs to be able to estimate the norm of
the u; in terms of u. In general this estimate does not follow purely from the exactness of the discrete
sequence, but it was shown in [24] that one can use the existence of a particular Fortin operator to
obtain the required bounds.

4.2. Relaxation in the presence of stabilization

It is well known that straightforward Galerkin discretizations of advection-dominated problems are
oscillatory [9, 58, 49, 20]. Several approaches have been developed to address these issues, for example
by adding a small amount of artificial viscosity as in the case of Streamline Upwind/Petrov Galerkin
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F1GURE 4.3. Left: The star patch applied to the barycentrically refined mesh does not
yield a robust relaxation method for the Scott—Vogelius element. Right: The macrostar
patch satisfies the kernel decomposition property (4.5) for the [Px]?—P{s¢ element for
k > d (here shown for k = d = 2).

(SUPG) or Galerkin Least Squares (GLS) or by enriching the space with bubble functions. SUPG
stabilization was used in previous works on Reynolds-robust preconditioners [7, 25]. As both of these
works consider piecewise constant pressures, the pressure gradient on each cell vanishes and hence only
the top-left block is modified when adding SUPG stabilization. For the Scott—Vogelius element this
is not the case, and SUPG stabilization results in a modification of the top-right block, introducing
additional coupling between the velocity and the pressure [10, p. 1249], [29, p. 250]. This makes the
nonlinear problem much more difficult to solve. In fact, in numerical experiments we observe that
the outer Newton solver already fails to converge at Re = 50 for a two dimensional lid-driven cavity,
even with the use of a direct solver. Furthermore, the modified top-right block needs to be taken into
account when adding the augmented Lagrangian term and in the multigrid scheme for the top-left
block.

In 1976 Douglas & Dupont [18] suggested an interior penalty scheme that penalises a jump of the
derivative across facets:

S(u,v) = Y ;/ ShE i [Vau] : [Vv] ds, (4.13)
KGMh oK

where [Vu] denotes the jump of the gradient, hyg is a function giving the facet size, and 4§ is a free
parameter. The term vanishes when the velocity is C''-continuous. This scheme has received renewed
attention and it was shown in [11] that it successfully stabilizes advection-dominated problems and
has subsequently been used to stabilize the Stokes [12] and the Oseen equations [10, 13]. In addition to
not introducing any additional coupling of the pressure and the velocity, an advantage of this scheme
is that it is adjoint consistent. This means that for low Reynolds number one can prove that the order
of convergence in the L? norm is preserved [13, Remark 12]. In fact, for the problem considered in
Section 5.2 we observe optimal convergence even at high Reynolds number, although this is not in

general guaranteed.
We now consider the effect of adding (4.13) to the top-left block on the multigrid scheme. Since
S vanishes for functions that have continuous gradients, we have added another bilinear form to
our system that has a nontrivial kernel consisting of C' vector fields. As the weight 5h%K is small,
the impact is not as significant as that of the grad-div term, but for very high Reynolds number
or coarse meshes, we still observe reduced performance of the multigrid scheme. As discussed in the
previous section, we know that for the smoother to be robust the space decomposition must provide
a decomposition of the kernel. In two dimensions, this is satisfied if k¥ > 3, as the macrostar around
vertices then captures the support of the HCT element. In three dimensions the lowest degree (that
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the authors are aware of) for a local basis for C! vector fields on barycentrically refined meshes is
k=5, see [3, 35].

This argument is heuristic, and a full analysis of problems with two different singular terms is out
of the scope of this work. Nevertheless, in the numerical experiments we will see that the scheme is
noticeably more robust for £ = 3 in two dimensions and k£ = 5 in three dimensions in the presence of
the stabilization (4.13).

Remark 4.1. We conjecture that similar robustness properties will carry over to the case of Powell-
Sabin splits. In two dimensions, there is a local C'-conforming quadratic basis on Powell-Sabin
splits [47], and in three dimensions there is a local C'-conforming cubic basis [62]. We therefore
expect that the choice k& > d will provide more robust iteration counts in the presence of stabilization
than the minimal k& = d — 1 required for inf-sup stability on meshes with this macro structure.

4.3. Prolongation

The second key ingredient of the multigrid scheme is a robust prolongation operator. To keep notation
simple we consider the case of a two-level scheme and denote the coarse-grid function space by Vi
and the fine-grid space by Vj. We denote the standard prolongation operator induced by the finite
element interpolation operator in Vj, by Py : Vi — Vj. Let ug € Vi be a coarse-grid function. For
the multigrid scheme to be 7-robust, it was shown by Schoberl [54] that the prolongation operator
must satisfy

| Prumla,., < Cllumllag, (4.14)
with a constant C independent of . Calculating these norms for a divergence-free function uy € Vi,
we observe that

lur |y, = IVurllFe + AV - um]72,
=0 (4.15)
1Prunl, , = IV (Paun)liz + YV - (Prum)|?s-

However, since the multigrid hierarchy considered here is non-nested, the interpolation is not exact
and ugy being divergence-free does not necessarily imply the same property for Pyug.

Remark 4.2. We note that this scenario differs from the situation in [54, 7]. There the function
spaces are nested, but a discretely divergence-free function on the coarse-grid may not be discretely
divergence-free on the fine grid, as @), is larger than Q.

Inspecting the mesh hierarchy in Figure 2.2, we notice that the interpolation is exact along the
edges of the coarse-grid macro mesh. In turn, this means that the flux across these edges is preserved
exactly and hence the interpolated vector-field is divergence-free with respect to pressure functions
that are piecewise constant on the macro mesh (i.e. before barycentric refinement):

Qu = {q € LQ(Q) : |k = const VK € My,}. (4.16)

For a robust prolongation, we therefore only need to modify the degrees of freedom within a coarse-grid
macro cell to remove the divergence within the cell that was created by the interpolation. To this end
we define the subspace V}, C V}, of functions that vanish on the boundaries of macro cells

Vi={v€V,:v=0o0n0dK for all K € My}. (4.17)
We then solve for iy, € V}, such that
v(e(tp),e(op)) + (V- p, V- 0p) = 'y(HQh(V - (Phug)), HQh(V -y))  for all oy, € V. (4.18)
It was shown in [24] that then the modified prolongation given by

Pyug = Pyug — iy, (4.19)
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is continuous in the energy norm with a continuity constant independent of v. We emphasize that due
to the nature of the space Vj, (4.18) decouples into many small, independent solves and hence can be
solved efficiently, see Figure 4.4. In addition, since the problem solved on each coarse macro cell does
not vary through the nonlinear iteration, the small matrices can be assembled and factorized once in
an initialization step.

FIGURE 4.4. The robust prolongation operator solves local Stokes problems on each
coarse macro cell.

5. Numerical examples

5.1. Detalils of the algorithm

A graphical depiction of the solver algorithm is given in Figure 5.1. The essential structure is the same
as in [25], with different multigrid components for A,. The code is implemented in Firedrake [50] using
PETSc [6] and PCPATCH [22]. Since the convergence behavior of Newton’s method is not Reynolds-
robust, we employ continuation in the Reynolds number to ensure its convergence. A flexible Krylov
variant is required as we apply GMRES inside the multigrid relaxation, and hence we use flexible
GMRES [51] as the outermost Krylov solver. We use the full block factorization preconditioner

_1 I —A;'BT A1 0 I 0
F _<0 bl )( 0 5*—1)(—321;1 1) (5:1)
with the scaled inverse of the (block diagonal) pressure mass matrix as S—1, and one full multigrid
cycle of the algorithm described in Section 4 as fl; !, Each relaxation sweep conducts 6 (in 2D) or 10
(in 3D) GMRES iterations preconditioned by the additive macrostar iteration. As in [25], the problem
on the coarsest level is solved with the SuperLU_DIST sparse direct solver [41, 40] and uses PETSc’s
telescoping functionality [43] for improved parallel scalability.

5.2. Verification and pressure robustness

We consider the two-dimensional test case of [57] to verify the implementation and to confirm that
the velocity errors are independent of the Reynolds number. The example is similar to the lid-driven
cavity but with a known analytical solution. Using either the [P2]?—P{i¢ Scott—Vogelius or the [Po]? Py
Taylor—-Hood element we observe the expected second order convergence of the velocity gradient and
of the pressure as the mesh is refined, see Figure 5.2. In addition, we compare to the [P3]2—Py element
used in [7, 25] which converges at first order only.
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Newton solver with line search|

L {Krylov solver (FGMRES)]

Block preconditioner |

Approximate Schur complement inversc|

Exact pressure mass matrix inverse |

F-cycle on augmented momentum block |

Coarse grid solver |

LU factorization |

—| Prolongation operator |

Local solves over coarse macro cells

Additive macrostar iteration

FIGURE 5.1. An outline of the algorithm for solving (1.1).

As motivated in the introduction, since the Taylor-Hood and the [P3]2—P element do not enforce
the divergence constraint exactly (see bottom right of Figure 5.2), the velocity error increases as the
Reynolds number is increased. This is in contrast to the solutions obtained using the Scott—Vogelius
element, which are divergence-free up to solver tolerances and exhibit Reynolds-robust errors.

5.3. Two dimensional examples

We begin by considering two classical benchmark problems: the regularised lid-driven cavity and
backward-facing step problems, shown in Figures 5.3 and 5.4, and described in detail in [20, Examples
8.1.2 and 8.1.3]. We choose relative and absolute tolerances of 1079 and 10~® respectively for the
nonlinear solver and 1072 and 107'° for the linear solver. The mesh hierarchy is constructed as
described in Section 2. In each case, we start with a given coarse grid, perform the specified number
of uniform refinements, and then barycentrically refine each level once.

We perform continuation in the Reynolds number: we start by solving the Stokes equations, and
then solve for Re = 1, Re = 10, Re = 100, Re = 200, Re = 300, etc., up to Re = 10000, using the
previous solution as initial guess for the subsequent Newton iteration. For the backward-facing step
cases we add additional continuation steps at Re € {50, 150,250,350}. The augmented Lagrangian
parameter is set to 7 = 10* and we run the solver with and without the stabilization (4.13). In the
former case, the stabilization parameter is chosen as 6 = 5-1073.

For the lid-driven cavity the coarse mesh is given by a regular 10 x 10 triangular mesh. Iteration
counts are shown in Table 5.1.

Iteration counts for the backwards-facing step are shown in Table 5.2. For this case we consider a
coarse mesh generated by the frontal meshing algorithm of Gmsh [30] consisting of 5996 triangles.

For both examples, we observe low and nearly flat iteration counts to Re = 1000 for both £ = 2 and
k = 3 both with and without stabilization. It is at larger Reynolds numbers that we see differences
between the four different configurations. The combination of the [P]?—P{i*¢ element and lack of
stabilization is least robust. Adding stabilization and increasing the polynomial degree (to additionally
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O [Po]2-Pisc, Re = 100 5 [Po)2—Py,Re = 100 5 [P]2-P;,Re =101 ---h
- [Po]*—P{*°,Re = 10> -5 [Po]*~Pg,Re = 10> 5 [Po]*~P1,Re = 10> - h?
—o— [Po]2—Pis°, Re = 103 —o— [P3]2—Py,Re = 10°  —=— [Py]*—P;,Re = 10° - 73
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10°
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10 ’ 278 277 276 275 974 973
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FIGURE 5.2. Velocity and pressure error as well as L? norm of the divergence for
the [P2]2—Pg, [P2]?—Py, and [Po]2—P{i*¢ elements for different Reynolds numbers. The
[P2]2—P{is¢ element yields velocity errors independent of the Reynolds number, while
the other discretizations do not.
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FIGURE 5.3. Streamlines for the two dimensional lid-driven cavity problem at Re =
2500. The domain is given by the [0,2] x [0,2] square. The boundary condition on
the top is given by a horizontal velocity field u(z,y) = (2%(2 — 2)2,0) and the other
boundaries are equipped with a no-slip condition.

FIGURE 5.4. Streamlines for the two dimensional backwards-facing step problem at
Re = 200. The domain is given by ([0, 10]x [0, 2])\([0,1)x[0,1)). The inflow condition at
the top-left boundary is given by a horizontal velocity field u(z,y) = (4(2—y)(y—1),0),
a natural outflow condition (1.1d) is enforced on the right and the other boundaries
are equipped with a no-slip condition.

Reynolds number
Refinements Degrees of freedom 10 100 1000 5000 10000
[P2]2_]P>c1hsc
1 1.70 x 10* 4.50[4.50 5.00[5.00 6.67|5.67 18.00/25.00 25.50| >100
2 6.75 x 104 4.004.00 4.33|4.33 5.67|4.33 16.00/16.50 29.00|56.50
3 2.69 x 10° 4.00/4.00 4.00/4.00 4.00/3.00 10.00/9.50  18.00|27.00
4 1.08 x 106 3.00/3.00 3.33|3.33 2.67|2.67 6.50/6.50  11.50|17.50
[P3]2_]P>c2hsc
1 3.62 x 104 2.50/2.50 2.67|2.67 3.33]|2.67  8.00(8.00 11.50]15.00
2 1.44 x 10° 2.50[2.50 2.67|2.67 2.33|2.00 5.50/4.50 9.50|8.50
3 5.77 x 10° 2.00[2.00 2.67|2.67 2.00|/1.67  4.00|3.00 5.50/5.00
4 2.31 x 106 2.00[2.00 2.67|2.67 2.00/2.00 2.50/|2.00 5.00/4.00

TABLE 5.1. Average number of outer Krylov iterations per Newton step for the 2D
regularised lid-driven cavity problem using the Scott—Vogelius discretization with and
without stabilization for £k = 2 and k& = 3.
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Reynolds number
Refinements Degrees of freedom 10 100 1000 5000 10000
[PQ]Q_]P)(liiSC
1 4.79 x 10° 3.67|3.67 3.25|3.25 5.00/6.50 14.50/>100  19.50| >100
2 1.91 x 106 3.67|3.67 3.25|3.25 4.00/4.00  8.50|25.00 13.50/>100
3 7.64 x 10° 4.50/14.50 4.33|4.00 3.00/|3.00  5.00]|12.50 9.50/>100
[P3]27]P>(2hsc
1 1.02 x 108 2.00[2.00 2.00/2.00 2.50]|2.50  4.50[11.00 6.00[>100
4.10 x 106 2.50[2.50 2.33|2.33 1.50/1.50  2.00|3.50 3.00[10.50
3 1.64 x 107 2.50[2.50 3.33|3.33 2.00/2.00  1.50/2.00 2.00[4.50

TABLE 5.2. Average number of outer Krylov iterations per Newton step for the 2D
backwards-facing step problem using the Scott—Vogelius discretization with and with-
out stabilization for k = 2 and k = 3.

capture the kernel of the stabilization, cf. Section 4.2) results in highly robust iteration counts on the
finer meshes for both the lid-driven cavity and the backwards-facing step.

Remark 5.1. Asdiscussed in Remark 3.1, we expect that for the Taylor-Hood element on barycentrically-
refined meshes the combination of grad-div stabilization and the presented multigrid scheme for the
top-left block results in an effective preconditioner. To confirm this we solved the lid-driven cavity
using the [Ps]?—P; and [P3]>—P, Taylor-Hood elements and obtained essentially identical iteration
counts (up to £1) to those shown in Table 5.1.

Clearly the patches in the multigrid relaxation considered here are significantly larger than the
star patches considered in [7, 25]. To investigate the impact this has on performance, in Table 5.3
we compare the runtime of the implementation in [25] using the [Po]?—Py with the [Po]?2—P%¢ and
[P3]2—Pgis¢ discretization presented here. Since the mesh for the [Py]2—Py does not require barycentric
refinement, we choose a finer 16 x 16 grid, to obtain a problem of comparable size. As expected,
the solver is more expensive for the Scott—Vogelius discretization, as it requires the larger macrostar.
However, we emphasize that the improved robustness of the [P3]2—P$i¢ element implies that this
discretization is very attractive, especially at higher Reynolds number: it converges at higher order but
the computational cost is only ~ 50% bigger than that of the [P2]?—Py and [Po]?2—P{is¢ discretization
on the same mesh.

Reynolds number

Discretization Degrees of freedom 10 1000 1000 5000 10000

[Py]2—Pg 6.57 x 10° 3.38 3.74 456 8.85 9.64
[Py]2 —pSlise 1.08 x 106 10.39 10.84 9.06 18.63 32.31
[P3)2 —Pgisc 2.31 x 10° 25.83 30.28 24.73 28.43 48.07

TABLE 5.3. Runtime per Newton step (in seconds) for the 2D regularised lid-driven
cavity using the [P3)2—Pg, [P2]2 P, and [P3]>—P$ element pairs (with stabiliza-
tion). Measured on two Intel(R) Xeon(R) Gold 5118 CPUs running 12 MPI processes.

We study one final two dimensional problem. As discussed in [28], the nature of flows at high
Reynolds number is dependent on the Helmholtz decomposition of the convection term. Ahmed et
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al. [1] introduce the seminorm

Vel

1= sup
0ve(HE) V-

This seminorm vanishes for gradient fields, i.e. when (f,v) = (Vy,v);2 for some ¢ € Hi. In the
case when |(u - V)u| = 0 the non-linear convective term and the pressure gradient approximately bal-
ance. These types of flows are referred to as generalized Beltramsi flows and it is particularly for these
types of flows that exactly divergence-free methods were shown to outperform standard discretiza-
tions [28]. In particular, both of the previously studied examples are close to generalized Beltrami
flows at high Reynolds numbers. However, in general, flows may contain a significant divergence-
free component in the non-linear term. To demonstrate that the proposed preconditioner is effi-
cient for this type of flow, we consider the Oseen problem proposed in [1, §4.4] with exact veloc-
ity u(z,y) = (sin(2mz)sin(27y), cos(2mz) cos(2my)) ", pressure p = §(cos(4mz) — cos(4my)) and wind
B =u+(0,1)T on a domain = (0, 1)2. Since this problem is linear we no longer perform continuation
in the Reynolds number, and instead start the linear solver with a zero initial guess for each Reynolds
number.

Iteration counts are shown in Table 5.4 — the results are qualitatively similar to those for the
backwards-facing step: robust iteration counts both with and without stabilization to Re = 1000.
Robust iteration counts to Re = 10000 are obtained when using stabilization and a cubic velocity
space.

. Reynolds number
Refinements Degrees of freedom 10 100 1000 5000 10000
[P2]2_]P>%isc
1 1.70 x 10* 313 3[3  6/13 10/>100 10/>100
2 6.75 x 10* 313 3|2  6/11 15/>100 18/>100
3 2.69 x 10° 313 212 4|7 15/>100 19/>100
4 1.08 x 106 313 22 35 12/>100 19/>100
[P3]2—Pgisc
1 3.62 x 10* 212 22 33 5[28  5/>100
2 1.44 x 10° 212 22 33 4121 6/>100
3 5.77 x 10° 202 22 22 4111 5|70
4 2.31 x 108 202 22 22 3|6 4]25

TABLE 5.4. Number of Krylov iterations at each Reynolds number for the example
in [1, §4.4] with and without stabilization for k¥ = 2 and k = 3.

5.4. Three dimensional examples

We now study three dimensional variants of the lid-driven cavity and backwards-facing step problems;
these are described in detail in [25, §5.5]. The solver tolerances are all relaxed to 10™® in three
dimensions. We study iteration counts both with and without adding the stabilization terms in (4.13).

Results for the lid-driven cavity are shown in Table 5.5. Both with and without stabilization we
observe iteration counts that approximately double as the Reynolds number is increased from Re = 10
to Re = 5000.
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We show results for the backward-facing step in Table 5.6. Without stabilization, we observe itera-
tion counts that approximately triple over the same range of Reynolds numbers. However, when adding
stabilization, iteration counts increase significantly and blow up for very high Reynolds number. We
attribute this to the issue raised in Section 4.2: the stabilization term itself has a large nullspace (con-
sisting of C! vector fields) that is not captured by the relaxation induced by the macrostar around
vertices. If we choose k = 5 we know that a local basis for C! functions exists. Indeed, we see in
Table 5.6 that iteration counts for the [P5]>—P$¢ element are significantly more robust.

Reynolds number
Refinements Degrees of freedom 10 100 1000 2500 5000
k = 3 without stabilization
1 1.03 x 108 3.00 3.67 3.50 4.00 5.00
2 8.22 x 10° 3.50 3.67 4.00 4.00 4.00
3 6.55 x 107 3.00 3.33 3.50 3.50 4.00
k = 3 with stabilization
1 1.03 x 108 3.00 4.00 4.50 5.00 6.00
2 8.22 x 10° 3.50 4.00 5.50 6.00 6.50
3 6.55 x 107 3.00 3.33 5.00 6.00 7.50

TABLE 5.5. Average number of outer Krylov iterations per Newton step for the 3D
regularised lid-driven cavity problem.

Reynolds number
Refinements Degrees of freedom 10 100 1000 2500 5000
k = 3 without stabilization
1 3.85 x 108 450 4.33 5.33 9.00 15.00
2 3.06 x 107 5.00 5.33 5.33 10.00 12.00
k = 3 with stabilization
1 3.85 x 108 450 5.33 7.33 11.50 13.50
2 3.06 x 107 5.00 6.33 12.50 14.00 154.00
k = 5 with stabilization
1 3.81 x 10° 1.50 1.67 2.00 3.50 4.00
2 3.03 x 107 2.00 1.67 2.00 2.50 5.00

TABLE 5.6. Average number of outer Krylov iterations per Newton step for the 3D
backwards-facing step problem. The results for k = 5 were obtained on a coarser mesh
to have a comparable number of degrees of freedom to the case of k = 3.

The results in Tables 5.5 and 5.6 were obtained on the ARCHER supercomputer. To provide an
impression of computational performance, the results on the twice refined mesh of Table 5.6 were run
on 512 cores (for k£ = 3, ~ 60000 dofs/core) and 960 cores (for &k = 5, ~ 31000 dofs/core). Without
stabilization, each Krylov iteration takes ~ 16 seconds. Adding stabilization increases this to ~ 30
seconds (due to the larger number of non-zeros in the matrix) and increasing the order to kK = 5
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increases the runtime further to ~ 450 seconds. Though we would not recommend the case k = 5 as a
practical discretization due to its high computational cost and memory requirements, we include the
results to demonstrate the necessity of capturing the nullspace of all singular operators in order to
obtain a fully robust scheme.

6. Summary

The goal of this work was to develop a scalable solver for the stationary incompressible Navier—Stokes
equations that exhibits both Reynolds-robust iteration counts and errors. To achieve this goal we apply
the augmented Lagrangian approach to the exactly incompressible Scott—Vogelius discretization on
barycentric grids, and solve the augmented momentum block with a specialized multigrid method that
exploits the barycentric structure in both relaxation and prolongation.

Dictated by inf-sup stability, the minimal polynomial degree that we require is k = d. For this
degree we observe robust iteration counts to Re ~ 1000 but increase for higher Reynolds numbers.
We attribute this behaviour to the singular nature of the stabilization term employed and show that
when using a sufficiently high order discretization, full robustness can be achieved.

Code availability

The code for the Navier—Stokes solver and the numerical experiments in this paper can be found at
https://github.com/florianwechsung/alfi/. For reproducibility, all major Firedrake components
as well as the code used to run these examples have been archived on Zenodo. The results in Tables 5.5,
and 5.6 were obtained on ARCHER, the UK national supercomputer using the code archived at [26, 61].
The results in Figure 5.2 and Tables 5.1, 5.2, 5.3, tand 5.4 were obtained using the code archived
at [64, 23].
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